linux/kernel/sched/debug.c
<<
>>
Prefs
   1/*
   2 * kernel/sched/debug.c
   3 *
   4 * Print the CFS rbtree and other debugging details
   5 *
   6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#include "sched.h"
  13
  14static DEFINE_SPINLOCK(sched_debug_lock);
  15
  16/*
  17 * This allows printing both to /proc/sched_debug and
  18 * to the console
  19 */
  20#define SEQ_printf(m, x...)                     \
  21 do {                                           \
  22        if (m)                                  \
  23                seq_printf(m, x);               \
  24        else                                    \
  25                pr_cont(x);                     \
  26 } while (0)
  27
  28/*
  29 * Ease the printing of nsec fields:
  30 */
  31static long long nsec_high(unsigned long long nsec)
  32{
  33        if ((long long)nsec < 0) {
  34                nsec = -nsec;
  35                do_div(nsec, 1000000);
  36                return -nsec;
  37        }
  38        do_div(nsec, 1000000);
  39
  40        return nsec;
  41}
  42
  43static unsigned long nsec_low(unsigned long long nsec)
  44{
  45        if ((long long)nsec < 0)
  46                nsec = -nsec;
  47
  48        return do_div(nsec, 1000000);
  49}
  50
  51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  52
  53#define SCHED_FEAT(name, enabled)       \
  54        #name ,
  55
  56static const char * const sched_feat_names[] = {
  57#include "features.h"
  58};
  59
  60#undef SCHED_FEAT
  61
  62static int sched_feat_show(struct seq_file *m, void *v)
  63{
  64        int i;
  65
  66        for (i = 0; i < __SCHED_FEAT_NR; i++) {
  67                if (!(sysctl_sched_features & (1UL << i)))
  68                        seq_puts(m, "NO_");
  69                seq_printf(m, "%s ", sched_feat_names[i]);
  70        }
  71        seq_puts(m, "\n");
  72
  73        return 0;
  74}
  75
  76#ifdef CONFIG_JUMP_LABEL
  77
  78#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  79#define jump_label_key__false STATIC_KEY_INIT_FALSE
  80
  81#define SCHED_FEAT(name, enabled)       \
  82        jump_label_key__##enabled ,
  83
  84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  85#include "features.h"
  86};
  87
  88#undef SCHED_FEAT
  89
  90static void sched_feat_disable(int i)
  91{
  92        static_key_disable_cpuslocked(&sched_feat_keys[i]);
  93}
  94
  95static void sched_feat_enable(int i)
  96{
  97        static_key_enable_cpuslocked(&sched_feat_keys[i]);
  98}
  99#else
 100static void sched_feat_disable(int i) { };
 101static void sched_feat_enable(int i) { };
 102#endif /* CONFIG_JUMP_LABEL */
 103
 104static int sched_feat_set(char *cmp)
 105{
 106        int i;
 107        int neg = 0;
 108
 109        if (strncmp(cmp, "NO_", 3) == 0) {
 110                neg = 1;
 111                cmp += 3;
 112        }
 113
 114        i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 115        if (i < 0)
 116                return i;
 117
 118        if (neg) {
 119                sysctl_sched_features &= ~(1UL << i);
 120                sched_feat_disable(i);
 121        } else {
 122                sysctl_sched_features |= (1UL << i);
 123                sched_feat_enable(i);
 124        }
 125
 126        return 0;
 127}
 128
 129static ssize_t
 130sched_feat_write(struct file *filp, const char __user *ubuf,
 131                size_t cnt, loff_t *ppos)
 132{
 133        char buf[64];
 134        char *cmp;
 135        int ret;
 136        struct inode *inode;
 137
 138        if (cnt > 63)
 139                cnt = 63;
 140
 141        if (copy_from_user(&buf, ubuf, cnt))
 142                return -EFAULT;
 143
 144        buf[cnt] = 0;
 145        cmp = strstrip(buf);
 146
 147        /* Ensure the static_key remains in a consistent state */
 148        inode = file_inode(filp);
 149        cpus_read_lock();
 150        inode_lock(inode);
 151        ret = sched_feat_set(cmp);
 152        inode_unlock(inode);
 153        cpus_read_unlock();
 154        if (ret < 0)
 155                return ret;
 156
 157        *ppos += cnt;
 158
 159        return cnt;
 160}
 161
 162static int sched_feat_open(struct inode *inode, struct file *filp)
 163{
 164        return single_open(filp, sched_feat_show, NULL);
 165}
 166
 167static const struct file_operations sched_feat_fops = {
 168        .open           = sched_feat_open,
 169        .write          = sched_feat_write,
 170        .read           = seq_read,
 171        .llseek         = seq_lseek,
 172        .release        = single_release,
 173};
 174
 175__read_mostly bool sched_debug_enabled;
 176
 177static __init int sched_init_debug(void)
 178{
 179        debugfs_create_file("sched_features", 0644, NULL, NULL,
 180                        &sched_feat_fops);
 181
 182        debugfs_create_bool("sched_debug", 0644, NULL,
 183                        &sched_debug_enabled);
 184
 185        return 0;
 186}
 187late_initcall(sched_init_debug);
 188
 189#ifdef CONFIG_SMP
 190
 191#ifdef CONFIG_SYSCTL
 192
 193static struct ctl_table sd_ctl_dir[] = {
 194        {
 195                .procname       = "sched_domain",
 196                .mode           = 0555,
 197        },
 198        {}
 199};
 200
 201static struct ctl_table sd_ctl_root[] = {
 202        {
 203                .procname       = "kernel",
 204                .mode           = 0555,
 205                .child          = sd_ctl_dir,
 206        },
 207        {}
 208};
 209
 210static struct ctl_table *sd_alloc_ctl_entry(int n)
 211{
 212        struct ctl_table *entry =
 213                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 214
 215        return entry;
 216}
 217
 218static void sd_free_ctl_entry(struct ctl_table **tablep)
 219{
 220        struct ctl_table *entry;
 221
 222        /*
 223         * In the intermediate directories, both the child directory and
 224         * procname are dynamically allocated and could fail but the mode
 225         * will always be set. In the lowest directory the names are
 226         * static strings and all have proc handlers.
 227         */
 228        for (entry = *tablep; entry->mode; entry++) {
 229                if (entry->child)
 230                        sd_free_ctl_entry(&entry->child);
 231                if (entry->proc_handler == NULL)
 232                        kfree(entry->procname);
 233        }
 234
 235        kfree(*tablep);
 236        *tablep = NULL;
 237}
 238
 239static int min_load_idx = 0;
 240static int max_load_idx = CPU_LOAD_IDX_MAX-1;
 241
 242static void
 243set_table_entry(struct ctl_table *entry,
 244                const char *procname, void *data, int maxlen,
 245                umode_t mode, proc_handler *proc_handler,
 246                bool load_idx)
 247{
 248        entry->procname = procname;
 249        entry->data = data;
 250        entry->maxlen = maxlen;
 251        entry->mode = mode;
 252        entry->proc_handler = proc_handler;
 253
 254        if (load_idx) {
 255                entry->extra1 = &min_load_idx;
 256                entry->extra2 = &max_load_idx;
 257        }
 258}
 259
 260static struct ctl_table *
 261sd_alloc_ctl_domain_table(struct sched_domain *sd)
 262{
 263        struct ctl_table *table = sd_alloc_ctl_entry(14);
 264
 265        if (table == NULL)
 266                return NULL;
 267
 268        set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
 269        set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
 270        set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 271        set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 272        set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
 273        set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
 274        set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
 275        set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
 276        set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
 277        set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
 278        set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
 279        set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
 280        set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
 281        /* &table[13] is terminator */
 282
 283        return table;
 284}
 285
 286static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 287{
 288        struct ctl_table *entry, *table;
 289        struct sched_domain *sd;
 290        int domain_num = 0, i;
 291        char buf[32];
 292
 293        for_each_domain(cpu, sd)
 294                domain_num++;
 295        entry = table = sd_alloc_ctl_entry(domain_num + 1);
 296        if (table == NULL)
 297                return NULL;
 298
 299        i = 0;
 300        for_each_domain(cpu, sd) {
 301                snprintf(buf, 32, "domain%d", i);
 302                entry->procname = kstrdup(buf, GFP_KERNEL);
 303                entry->mode = 0555;
 304                entry->child = sd_alloc_ctl_domain_table(sd);
 305                entry++;
 306                i++;
 307        }
 308        return table;
 309}
 310
 311static cpumask_var_t            sd_sysctl_cpus;
 312static struct ctl_table_header  *sd_sysctl_header;
 313
 314void register_sched_domain_sysctl(void)
 315{
 316        static struct ctl_table *cpu_entries;
 317        static struct ctl_table **cpu_idx;
 318        char buf[32];
 319        int i;
 320
 321        if (!cpu_entries) {
 322                cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
 323                if (!cpu_entries)
 324                        return;
 325
 326                WARN_ON(sd_ctl_dir[0].child);
 327                sd_ctl_dir[0].child = cpu_entries;
 328        }
 329
 330        if (!cpu_idx) {
 331                struct ctl_table *e = cpu_entries;
 332
 333                cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
 334                if (!cpu_idx)
 335                        return;
 336
 337                /* deal with sparse possible map */
 338                for_each_possible_cpu(i) {
 339                        cpu_idx[i] = e;
 340                        e++;
 341                }
 342        }
 343
 344        if (!cpumask_available(sd_sysctl_cpus)) {
 345                if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 346                        return;
 347
 348                /* init to possible to not have holes in @cpu_entries */
 349                cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 350        }
 351
 352        for_each_cpu(i, sd_sysctl_cpus) {
 353                struct ctl_table *e = cpu_idx[i];
 354
 355                if (e->child)
 356                        sd_free_ctl_entry(&e->child);
 357
 358                if (!e->procname) {
 359                        snprintf(buf, 32, "cpu%d", i);
 360                        e->procname = kstrdup(buf, GFP_KERNEL);
 361                }
 362                e->mode = 0555;
 363                e->child = sd_alloc_ctl_cpu_table(i);
 364
 365                __cpumask_clear_cpu(i, sd_sysctl_cpus);
 366        }
 367
 368        WARN_ON(sd_sysctl_header);
 369        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 370}
 371
 372void dirty_sched_domain_sysctl(int cpu)
 373{
 374        if (cpumask_available(sd_sysctl_cpus))
 375                __cpumask_set_cpu(cpu, sd_sysctl_cpus);
 376}
 377
 378/* may be called multiple times per register */
 379void unregister_sched_domain_sysctl(void)
 380{
 381        unregister_sysctl_table(sd_sysctl_header);
 382        sd_sysctl_header = NULL;
 383}
 384#endif /* CONFIG_SYSCTL */
 385#endif /* CONFIG_SMP */
 386
 387#ifdef CONFIG_FAIR_GROUP_SCHED
 388static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 389{
 390        struct sched_entity *se = tg->se[cpu];
 391
 392#define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
 393#define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
 394#define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 395#define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 396
 397        if (!se)
 398                return;
 399
 400        PN(se->exec_start);
 401        PN(se->vruntime);
 402        PN(se->sum_exec_runtime);
 403
 404        if (schedstat_enabled()) {
 405                PN_SCHEDSTAT(se->statistics.wait_start);
 406                PN_SCHEDSTAT(se->statistics.sleep_start);
 407                PN_SCHEDSTAT(se->statistics.block_start);
 408                PN_SCHEDSTAT(se->statistics.sleep_max);
 409                PN_SCHEDSTAT(se->statistics.block_max);
 410                PN_SCHEDSTAT(se->statistics.exec_max);
 411                PN_SCHEDSTAT(se->statistics.slice_max);
 412                PN_SCHEDSTAT(se->statistics.wait_max);
 413                PN_SCHEDSTAT(se->statistics.wait_sum);
 414                P_SCHEDSTAT(se->statistics.wait_count);
 415        }
 416
 417        P(se->load.weight);
 418        P(se->runnable_weight);
 419#ifdef CONFIG_SMP
 420        P(se->avg.load_avg);
 421        P(se->avg.util_avg);
 422        P(se->avg.runnable_load_avg);
 423#endif
 424
 425#undef PN_SCHEDSTAT
 426#undef PN
 427#undef P_SCHEDSTAT
 428#undef P
 429}
 430#endif
 431
 432#ifdef CONFIG_CGROUP_SCHED
 433static char group_path[PATH_MAX];
 434
 435static char *task_group_path(struct task_group *tg)
 436{
 437        if (autogroup_path(tg, group_path, PATH_MAX))
 438                return group_path;
 439
 440        cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 441
 442        return group_path;
 443}
 444#endif
 445
 446static void
 447print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 448{
 449        if (rq->curr == p)
 450                SEQ_printf(m, ">R");
 451        else
 452                SEQ_printf(m, " %c", task_state_to_char(p));
 453
 454        SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 455                p->comm, task_pid_nr(p),
 456                SPLIT_NS(p->se.vruntime),
 457                (long long)(p->nvcsw + p->nivcsw),
 458                p->prio);
 459
 460        SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 461                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 462                SPLIT_NS(p->se.sum_exec_runtime),
 463                SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 464
 465#ifdef CONFIG_NUMA_BALANCING
 466        SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 467#endif
 468#ifdef CONFIG_CGROUP_SCHED
 469        SEQ_printf(m, " %s", task_group_path(task_group(p)));
 470#endif
 471
 472        SEQ_printf(m, "\n");
 473}
 474
 475static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 476{
 477        struct task_struct *g, *p;
 478
 479        SEQ_printf(m, "\n");
 480        SEQ_printf(m, "runnable tasks:\n");
 481        SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
 482                   "     wait-time             sum-exec        sum-sleep\n");
 483        SEQ_printf(m, "-------------------------------------------------------"
 484                   "----------------------------------------------------\n");
 485
 486        rcu_read_lock();
 487        for_each_process_thread(g, p) {
 488                if (task_cpu(p) != rq_cpu)
 489                        continue;
 490
 491                print_task(m, rq, p);
 492        }
 493        rcu_read_unlock();
 494}
 495
 496void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 497{
 498        s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 499                spread, rq0_min_vruntime, spread0;
 500        struct rq *rq = cpu_rq(cpu);
 501        struct sched_entity *last;
 502        unsigned long flags;
 503
 504#ifdef CONFIG_FAIR_GROUP_SCHED
 505        SEQ_printf(m, "\n");
 506        SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 507#else
 508        SEQ_printf(m, "\n");
 509        SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 510#endif
 511        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 512                        SPLIT_NS(cfs_rq->exec_clock));
 513
 514        raw_spin_lock_irqsave(&rq->lock, flags);
 515        if (rb_first_cached(&cfs_rq->tasks_timeline))
 516                MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 517        last = __pick_last_entity(cfs_rq);
 518        if (last)
 519                max_vruntime = last->vruntime;
 520        min_vruntime = cfs_rq->min_vruntime;
 521        rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 522        raw_spin_unlock_irqrestore(&rq->lock, flags);
 523        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 524                        SPLIT_NS(MIN_vruntime));
 525        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 526                        SPLIT_NS(min_vruntime));
 527        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 528                        SPLIT_NS(max_vruntime));
 529        spread = max_vruntime - MIN_vruntime;
 530        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 531                        SPLIT_NS(spread));
 532        spread0 = min_vruntime - rq0_min_vruntime;
 533        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 534                        SPLIT_NS(spread0));
 535        SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 536                        cfs_rq->nr_spread_over);
 537        SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 538        SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 539#ifdef CONFIG_SMP
 540        SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
 541        SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 542                        cfs_rq->avg.load_avg);
 543        SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
 544                        cfs_rq->avg.runnable_load_avg);
 545        SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 546                        cfs_rq->avg.util_avg);
 547        SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 548                        cfs_rq->avg.util_est.enqueued);
 549        SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 550                        cfs_rq->removed.load_avg);
 551        SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 552                        cfs_rq->removed.util_avg);
 553        SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
 554                        cfs_rq->removed.runnable_sum);
 555#ifdef CONFIG_FAIR_GROUP_SCHED
 556        SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 557                        cfs_rq->tg_load_avg_contrib);
 558        SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 559                        atomic_long_read(&cfs_rq->tg->load_avg));
 560#endif
 561#endif
 562#ifdef CONFIG_CFS_BANDWIDTH
 563        SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 564                        cfs_rq->throttled);
 565        SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 566                        cfs_rq->throttle_count);
 567#endif
 568
 569#ifdef CONFIG_FAIR_GROUP_SCHED
 570        print_cfs_group_stats(m, cpu, cfs_rq->tg);
 571#endif
 572}
 573
 574void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 575{
 576#ifdef CONFIG_RT_GROUP_SCHED
 577        SEQ_printf(m, "\n");
 578        SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 579#else
 580        SEQ_printf(m, "\n");
 581        SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 582#endif
 583
 584#define P(x) \
 585        SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 586#define PU(x) \
 587        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 588#define PN(x) \
 589        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 590
 591        PU(rt_nr_running);
 592#ifdef CONFIG_SMP
 593        PU(rt_nr_migratory);
 594#endif
 595        P(rt_throttled);
 596        PN(rt_time);
 597        PN(rt_runtime);
 598
 599#undef PN
 600#undef PU
 601#undef P
 602}
 603
 604void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 605{
 606        struct dl_bw *dl_bw;
 607
 608        SEQ_printf(m, "\n");
 609        SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 610
 611#define PU(x) \
 612        SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 613
 614        PU(dl_nr_running);
 615#ifdef CONFIG_SMP
 616        PU(dl_nr_migratory);
 617        dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 618#else
 619        dl_bw = &dl_rq->dl_bw;
 620#endif
 621        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 622        SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 623
 624#undef PU
 625}
 626
 627static void print_cpu(struct seq_file *m, int cpu)
 628{
 629        struct rq *rq = cpu_rq(cpu);
 630        unsigned long flags;
 631
 632#ifdef CONFIG_X86
 633        {
 634                unsigned int freq = cpu_khz ? : 1;
 635
 636                SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 637                           cpu, freq / 1000, (freq % 1000));
 638        }
 639#else
 640        SEQ_printf(m, "cpu#%d\n", cpu);
 641#endif
 642
 643#define P(x)                                                            \
 644do {                                                                    \
 645        if (sizeof(rq->x) == 4)                                         \
 646                SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
 647        else                                                            \
 648                SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 649} while (0)
 650
 651#define PN(x) \
 652        SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 653
 654        P(nr_running);
 655        SEQ_printf(m, "  .%-30s: %lu\n", "load",
 656                   rq->load.weight);
 657        P(nr_switches);
 658        P(nr_load_updates);
 659        P(nr_uninterruptible);
 660        PN(next_balance);
 661        SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 662        PN(clock);
 663        PN(clock_task);
 664        P(cpu_load[0]);
 665        P(cpu_load[1]);
 666        P(cpu_load[2]);
 667        P(cpu_load[3]);
 668        P(cpu_load[4]);
 669#undef P
 670#undef PN
 671
 672#ifdef CONFIG_SMP
 673#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 674        P64(avg_idle);
 675        P64(max_idle_balance_cost);
 676#undef P64
 677#endif
 678
 679#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 680        if (schedstat_enabled()) {
 681                P(yld_count);
 682                P(sched_count);
 683                P(sched_goidle);
 684                P(ttwu_count);
 685                P(ttwu_local);
 686        }
 687#undef P
 688
 689        spin_lock_irqsave(&sched_debug_lock, flags);
 690        print_cfs_stats(m, cpu);
 691        print_rt_stats(m, cpu);
 692        print_dl_stats(m, cpu);
 693
 694        print_rq(m, rq, cpu);
 695        spin_unlock_irqrestore(&sched_debug_lock, flags);
 696        SEQ_printf(m, "\n");
 697}
 698
 699static const char *sched_tunable_scaling_names[] = {
 700        "none",
 701        "logaritmic",
 702        "linear"
 703};
 704
 705static void sched_debug_header(struct seq_file *m)
 706{
 707        u64 ktime, sched_clk, cpu_clk;
 708        unsigned long flags;
 709
 710        local_irq_save(flags);
 711        ktime = ktime_to_ns(ktime_get());
 712        sched_clk = sched_clock();
 713        cpu_clk = local_clock();
 714        local_irq_restore(flags);
 715
 716        SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 717                init_utsname()->release,
 718                (int)strcspn(init_utsname()->version, " "),
 719                init_utsname()->version);
 720
 721#define P(x) \
 722        SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 723#define PN(x) \
 724        SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 725        PN(ktime);
 726        PN(sched_clk);
 727        PN(cpu_clk);
 728        P(jiffies);
 729#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 730        P(sched_clock_stable());
 731#endif
 732#undef PN
 733#undef P
 734
 735        SEQ_printf(m, "\n");
 736        SEQ_printf(m, "sysctl_sched\n");
 737
 738#define P(x) \
 739        SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 740#define PN(x) \
 741        SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 742        PN(sysctl_sched_latency);
 743        PN(sysctl_sched_min_granularity);
 744        PN(sysctl_sched_wakeup_granularity);
 745        P(sysctl_sched_child_runs_first);
 746        P(sysctl_sched_features);
 747#undef PN
 748#undef P
 749
 750        SEQ_printf(m, "  .%-40s: %d (%s)\n",
 751                "sysctl_sched_tunable_scaling",
 752                sysctl_sched_tunable_scaling,
 753                sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 754        SEQ_printf(m, "\n");
 755}
 756
 757static int sched_debug_show(struct seq_file *m, void *v)
 758{
 759        int cpu = (unsigned long)(v - 2);
 760
 761        if (cpu != -1)
 762                print_cpu(m, cpu);
 763        else
 764                sched_debug_header(m);
 765
 766        return 0;
 767}
 768
 769void sysrq_sched_debug_show(void)
 770{
 771        int cpu;
 772
 773        sched_debug_header(NULL);
 774        for_each_online_cpu(cpu)
 775                print_cpu(NULL, cpu);
 776
 777}
 778
 779/*
 780 * This itererator needs some explanation.
 781 * It returns 1 for the header position.
 782 * This means 2 is CPU 0.
 783 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 784 * to use cpumask_* to iterate over the CPUs.
 785 */
 786static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 787{
 788        unsigned long n = *offset;
 789
 790        if (n == 0)
 791                return (void *) 1;
 792
 793        n--;
 794
 795        if (n > 0)
 796                n = cpumask_next(n - 1, cpu_online_mask);
 797        else
 798                n = cpumask_first(cpu_online_mask);
 799
 800        *offset = n + 1;
 801
 802        if (n < nr_cpu_ids)
 803                return (void *)(unsigned long)(n + 2);
 804
 805        return NULL;
 806}
 807
 808static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 809{
 810        (*offset)++;
 811        return sched_debug_start(file, offset);
 812}
 813
 814static void sched_debug_stop(struct seq_file *file, void *data)
 815{
 816}
 817
 818static const struct seq_operations sched_debug_sops = {
 819        .start          = sched_debug_start,
 820        .next           = sched_debug_next,
 821        .stop           = sched_debug_stop,
 822        .show           = sched_debug_show,
 823};
 824
 825static int __init init_sched_debug_procfs(void)
 826{
 827        if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
 828                return -ENOMEM;
 829        return 0;
 830}
 831
 832__initcall(init_sched_debug_procfs);
 833
 834#define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
 835#define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
 836#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 837#define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 838
 839
 840#ifdef CONFIG_NUMA_BALANCING
 841void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 842                unsigned long tpf, unsigned long gsf, unsigned long gpf)
 843{
 844        SEQ_printf(m, "numa_faults node=%d ", node);
 845        SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 846        SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 847}
 848#endif
 849
 850
 851static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 852{
 853#ifdef CONFIG_NUMA_BALANCING
 854        struct mempolicy *pol;
 855
 856        if (p->mm)
 857                P(mm->numa_scan_seq);
 858
 859        task_lock(p);
 860        pol = p->mempolicy;
 861        if (pol && !(pol->flags & MPOL_F_MORON))
 862                pol = NULL;
 863        mpol_get(pol);
 864        task_unlock(p);
 865
 866        P(numa_pages_migrated);
 867        P(numa_preferred_nid);
 868        P(total_numa_faults);
 869        SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 870                        task_node(p), task_numa_group_id(p));
 871        show_numa_stats(p, m);
 872        mpol_put(pol);
 873#endif
 874}
 875
 876void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 877                                                  struct seq_file *m)
 878{
 879        unsigned long nr_switches;
 880
 881        SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 882                                                get_nr_threads(p));
 883        SEQ_printf(m,
 884                "---------------------------------------------------------"
 885                "----------\n");
 886#define __P(F) \
 887        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
 888#define P(F) \
 889        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
 890#define P_SCHEDSTAT(F) \
 891        SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
 892#define __PN(F) \
 893        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
 894#define PN(F) \
 895        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 896#define PN_SCHEDSTAT(F) \
 897        SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
 898
 899        PN(se.exec_start);
 900        PN(se.vruntime);
 901        PN(se.sum_exec_runtime);
 902
 903        nr_switches = p->nvcsw + p->nivcsw;
 904
 905        P(se.nr_migrations);
 906
 907        if (schedstat_enabled()) {
 908                u64 avg_atom, avg_per_cpu;
 909
 910                PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 911                PN_SCHEDSTAT(se.statistics.wait_start);
 912                PN_SCHEDSTAT(se.statistics.sleep_start);
 913                PN_SCHEDSTAT(se.statistics.block_start);
 914                PN_SCHEDSTAT(se.statistics.sleep_max);
 915                PN_SCHEDSTAT(se.statistics.block_max);
 916                PN_SCHEDSTAT(se.statistics.exec_max);
 917                PN_SCHEDSTAT(se.statistics.slice_max);
 918                PN_SCHEDSTAT(se.statistics.wait_max);
 919                PN_SCHEDSTAT(se.statistics.wait_sum);
 920                P_SCHEDSTAT(se.statistics.wait_count);
 921                PN_SCHEDSTAT(se.statistics.iowait_sum);
 922                P_SCHEDSTAT(se.statistics.iowait_count);
 923                P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 924                P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 925                P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 926                P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 927                P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 928                P_SCHEDSTAT(se.statistics.nr_wakeups);
 929                P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 930                P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 931                P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 932                P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 933                P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 934                P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 935                P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 936                P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 937
 938                avg_atom = p->se.sum_exec_runtime;
 939                if (nr_switches)
 940                        avg_atom = div64_ul(avg_atom, nr_switches);
 941                else
 942                        avg_atom = -1LL;
 943
 944                avg_per_cpu = p->se.sum_exec_runtime;
 945                if (p->se.nr_migrations) {
 946                        avg_per_cpu = div64_u64(avg_per_cpu,
 947                                                p->se.nr_migrations);
 948                } else {
 949                        avg_per_cpu = -1LL;
 950                }
 951
 952                __PN(avg_atom);
 953                __PN(avg_per_cpu);
 954        }
 955
 956        __P(nr_switches);
 957        SEQ_printf(m, "%-45s:%21Ld\n",
 958                   "nr_voluntary_switches", (long long)p->nvcsw);
 959        SEQ_printf(m, "%-45s:%21Ld\n",
 960                   "nr_involuntary_switches", (long long)p->nivcsw);
 961
 962        P(se.load.weight);
 963        P(se.runnable_weight);
 964#ifdef CONFIG_SMP
 965        P(se.avg.load_sum);
 966        P(se.avg.runnable_load_sum);
 967        P(se.avg.util_sum);
 968        P(se.avg.load_avg);
 969        P(se.avg.runnable_load_avg);
 970        P(se.avg.util_avg);
 971        P(se.avg.last_update_time);
 972        P(se.avg.util_est.ewma);
 973        P(se.avg.util_est.enqueued);
 974#endif
 975        P(policy);
 976        P(prio);
 977        if (task_has_dl_policy(p)) {
 978                P(dl.runtime);
 979                P(dl.deadline);
 980        }
 981#undef PN_SCHEDSTAT
 982#undef PN
 983#undef __PN
 984#undef P_SCHEDSTAT
 985#undef P
 986#undef __P
 987
 988        {
 989                unsigned int this_cpu = raw_smp_processor_id();
 990                u64 t0, t1;
 991
 992                t0 = cpu_clock(this_cpu);
 993                t1 = cpu_clock(this_cpu);
 994                SEQ_printf(m, "%-45s:%21Ld\n",
 995                           "clock-delta", (long long)(t1-t0));
 996        }
 997
 998        sched_show_numa(p, m);
 999}
1000
1001void proc_sched_set_task(struct task_struct *p)
1002{
1003#ifdef CONFIG_SCHEDSTATS
1004        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1005#endif
1006}
1007