linux/kernel/sys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/utsname.h>
  11#include <linux/mman.h>
  12#include <linux/reboot.h>
  13#include <linux/prctl.h>
  14#include <linux/highuid.h>
  15#include <linux/fs.h>
  16#include <linux/kmod.h>
  17#include <linux/perf_event.h>
  18#include <linux/resource.h>
  19#include <linux/kernel.h>
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/file.h>
  40#include <linux/mount.h>
  41#include <linux/gfp.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/version.h>
  44#include <linux/ctype.h>
  45
  46#include <linux/compat.h>
  47#include <linux/syscalls.h>
  48#include <linux/kprobes.h>
  49#include <linux/user_namespace.h>
  50#include <linux/binfmts.h>
  51
  52#include <linux/sched.h>
  53#include <linux/sched/autogroup.h>
  54#include <linux/sched/loadavg.h>
  55#include <linux/sched/stat.h>
  56#include <linux/sched/mm.h>
  57#include <linux/sched/coredump.h>
  58#include <linux/sched/task.h>
  59#include <linux/sched/cputime.h>
  60#include <linux/rcupdate.h>
  61#include <linux/uidgid.h>
  62#include <linux/cred.h>
  63
  64#include <linux/nospec.h>
  65
  66#include <linux/kmsg_dump.h>
  67/* Move somewhere else to avoid recompiling? */
  68#include <generated/utsrelease.h>
  69
  70#include <linux/uaccess.h>
  71#include <asm/io.h>
  72#include <asm/unistd.h>
  73
  74#include "uid16.h"
  75
  76#ifndef SET_UNALIGN_CTL
  77# define SET_UNALIGN_CTL(a, b)  (-EINVAL)
  78#endif
  79#ifndef GET_UNALIGN_CTL
  80# define GET_UNALIGN_CTL(a, b)  (-EINVAL)
  81#endif
  82#ifndef SET_FPEMU_CTL
  83# define SET_FPEMU_CTL(a, b)    (-EINVAL)
  84#endif
  85#ifndef GET_FPEMU_CTL
  86# define GET_FPEMU_CTL(a, b)    (-EINVAL)
  87#endif
  88#ifndef SET_FPEXC_CTL
  89# define SET_FPEXC_CTL(a, b)    (-EINVAL)
  90#endif
  91#ifndef GET_FPEXC_CTL
  92# define GET_FPEXC_CTL(a, b)    (-EINVAL)
  93#endif
  94#ifndef GET_ENDIAN
  95# define GET_ENDIAN(a, b)       (-EINVAL)
  96#endif
  97#ifndef SET_ENDIAN
  98# define SET_ENDIAN(a, b)       (-EINVAL)
  99#endif
 100#ifndef GET_TSC_CTL
 101# define GET_TSC_CTL(a)         (-EINVAL)
 102#endif
 103#ifndef SET_TSC_CTL
 104# define SET_TSC_CTL(a)         (-EINVAL)
 105#endif
 106#ifndef MPX_ENABLE_MANAGEMENT
 107# define MPX_ENABLE_MANAGEMENT()        (-EINVAL)
 108#endif
 109#ifndef MPX_DISABLE_MANAGEMENT
 110# define MPX_DISABLE_MANAGEMENT()       (-EINVAL)
 111#endif
 112#ifndef GET_FP_MODE
 113# define GET_FP_MODE(a)         (-EINVAL)
 114#endif
 115#ifndef SET_FP_MODE
 116# define SET_FP_MODE(a,b)       (-EINVAL)
 117#endif
 118#ifndef SVE_SET_VL
 119# define SVE_SET_VL(a)          (-EINVAL)
 120#endif
 121#ifndef SVE_GET_VL
 122# define SVE_GET_VL()           (-EINVAL)
 123#endif
 124#ifndef PAC_RESET_KEYS
 125# define PAC_RESET_KEYS(a, b)   (-EINVAL)
 126#endif
 127
 128/*
 129 * this is where the system-wide overflow UID and GID are defined, for
 130 * architectures that now have 32-bit UID/GID but didn't in the past
 131 */
 132
 133int overflowuid = DEFAULT_OVERFLOWUID;
 134int overflowgid = DEFAULT_OVERFLOWGID;
 135
 136EXPORT_SYMBOL(overflowuid);
 137EXPORT_SYMBOL(overflowgid);
 138
 139/*
 140 * the same as above, but for filesystems which can only store a 16-bit
 141 * UID and GID. as such, this is needed on all architectures
 142 */
 143
 144int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 145int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 146
 147EXPORT_SYMBOL(fs_overflowuid);
 148EXPORT_SYMBOL(fs_overflowgid);
 149
 150/*
 151 * Returns true if current's euid is same as p's uid or euid,
 152 * or has CAP_SYS_NICE to p's user_ns.
 153 *
 154 * Called with rcu_read_lock, creds are safe
 155 */
 156static bool set_one_prio_perm(struct task_struct *p)
 157{
 158        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 159
 160        if (uid_eq(pcred->uid,  cred->euid) ||
 161            uid_eq(pcred->euid, cred->euid))
 162                return true;
 163        if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 164                return true;
 165        return false;
 166}
 167
 168/*
 169 * set the priority of a task
 170 * - the caller must hold the RCU read lock
 171 */
 172static int set_one_prio(struct task_struct *p, int niceval, int error)
 173{
 174        int no_nice;
 175
 176        if (!set_one_prio_perm(p)) {
 177                error = -EPERM;
 178                goto out;
 179        }
 180        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 181                error = -EACCES;
 182                goto out;
 183        }
 184        no_nice = security_task_setnice(p, niceval);
 185        if (no_nice) {
 186                error = no_nice;
 187                goto out;
 188        }
 189        if (error == -ESRCH)
 190                error = 0;
 191        set_user_nice(p, niceval);
 192out:
 193        return error;
 194}
 195
 196SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 197{
 198        struct task_struct *g, *p;
 199        struct user_struct *user;
 200        const struct cred *cred = current_cred();
 201        int error = -EINVAL;
 202        struct pid *pgrp;
 203        kuid_t uid;
 204
 205        if (which > PRIO_USER || which < PRIO_PROCESS)
 206                goto out;
 207
 208        /* normalize: avoid signed division (rounding problems) */
 209        error = -ESRCH;
 210        if (niceval < MIN_NICE)
 211                niceval = MIN_NICE;
 212        if (niceval > MAX_NICE)
 213                niceval = MAX_NICE;
 214
 215        rcu_read_lock();
 216        read_lock(&tasklist_lock);
 217        switch (which) {
 218        case PRIO_PROCESS:
 219                if (who)
 220                        p = find_task_by_vpid(who);
 221                else
 222                        p = current;
 223                if (p)
 224                        error = set_one_prio(p, niceval, error);
 225                break;
 226        case PRIO_PGRP:
 227                if (who)
 228                        pgrp = find_vpid(who);
 229                else
 230                        pgrp = task_pgrp(current);
 231                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 232                        error = set_one_prio(p, niceval, error);
 233                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 234                break;
 235        case PRIO_USER:
 236                uid = make_kuid(cred->user_ns, who);
 237                user = cred->user;
 238                if (!who)
 239                        uid = cred->uid;
 240                else if (!uid_eq(uid, cred->uid)) {
 241                        user = find_user(uid);
 242                        if (!user)
 243                                goto out_unlock;        /* No processes for this user */
 244                }
 245                do_each_thread(g, p) {
 246                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 247                                error = set_one_prio(p, niceval, error);
 248                } while_each_thread(g, p);
 249                if (!uid_eq(uid, cred->uid))
 250                        free_uid(user);         /* For find_user() */
 251                break;
 252        }
 253out_unlock:
 254        read_unlock(&tasklist_lock);
 255        rcu_read_unlock();
 256out:
 257        return error;
 258}
 259
 260/*
 261 * Ugh. To avoid negative return values, "getpriority()" will
 262 * not return the normal nice-value, but a negated value that
 263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 264 * to stay compatible.
 265 */
 266SYSCALL_DEFINE2(getpriority, int, which, int, who)
 267{
 268        struct task_struct *g, *p;
 269        struct user_struct *user;
 270        const struct cred *cred = current_cred();
 271        long niceval, retval = -ESRCH;
 272        struct pid *pgrp;
 273        kuid_t uid;
 274
 275        if (which > PRIO_USER || which < PRIO_PROCESS)
 276                return -EINVAL;
 277
 278        rcu_read_lock();
 279        read_lock(&tasklist_lock);
 280        switch (which) {
 281        case PRIO_PROCESS:
 282                if (who)
 283                        p = find_task_by_vpid(who);
 284                else
 285                        p = current;
 286                if (p) {
 287                        niceval = nice_to_rlimit(task_nice(p));
 288                        if (niceval > retval)
 289                                retval = niceval;
 290                }
 291                break;
 292        case PRIO_PGRP:
 293                if (who)
 294                        pgrp = find_vpid(who);
 295                else
 296                        pgrp = task_pgrp(current);
 297                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 298                        niceval = nice_to_rlimit(task_nice(p));
 299                        if (niceval > retval)
 300                                retval = niceval;
 301                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 302                break;
 303        case PRIO_USER:
 304                uid = make_kuid(cred->user_ns, who);
 305                user = cred->user;
 306                if (!who)
 307                        uid = cred->uid;
 308                else if (!uid_eq(uid, cred->uid)) {
 309                        user = find_user(uid);
 310                        if (!user)
 311                                goto out_unlock;        /* No processes for this user */
 312                }
 313                do_each_thread(g, p) {
 314                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 315                                niceval = nice_to_rlimit(task_nice(p));
 316                                if (niceval > retval)
 317                                        retval = niceval;
 318                        }
 319                } while_each_thread(g, p);
 320                if (!uid_eq(uid, cred->uid))
 321                        free_uid(user);         /* for find_user() */
 322                break;
 323        }
 324out_unlock:
 325        read_unlock(&tasklist_lock);
 326        rcu_read_unlock();
 327
 328        return retval;
 329}
 330
 331/*
 332 * Unprivileged users may change the real gid to the effective gid
 333 * or vice versa.  (BSD-style)
 334 *
 335 * If you set the real gid at all, or set the effective gid to a value not
 336 * equal to the real gid, then the saved gid is set to the new effective gid.
 337 *
 338 * This makes it possible for a setgid program to completely drop its
 339 * privileges, which is often a useful assertion to make when you are doing
 340 * a security audit over a program.
 341 *
 342 * The general idea is that a program which uses just setregid() will be
 343 * 100% compatible with BSD.  A program which uses just setgid() will be
 344 * 100% compatible with POSIX with saved IDs.
 345 *
 346 * SMP: There are not races, the GIDs are checked only by filesystem
 347 *      operations (as far as semantic preservation is concerned).
 348 */
 349#ifdef CONFIG_MULTIUSER
 350long __sys_setregid(gid_t rgid, gid_t egid)
 351{
 352        struct user_namespace *ns = current_user_ns();
 353        const struct cred *old;
 354        struct cred *new;
 355        int retval;
 356        kgid_t krgid, kegid;
 357
 358        krgid = make_kgid(ns, rgid);
 359        kegid = make_kgid(ns, egid);
 360
 361        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 362                return -EINVAL;
 363        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 364                return -EINVAL;
 365
 366        new = prepare_creds();
 367        if (!new)
 368                return -ENOMEM;
 369        old = current_cred();
 370
 371        retval = -EPERM;
 372        if (rgid != (gid_t) -1) {
 373                if (gid_eq(old->gid, krgid) ||
 374                    gid_eq(old->egid, krgid) ||
 375                    ns_capable(old->user_ns, CAP_SETGID))
 376                        new->gid = krgid;
 377                else
 378                        goto error;
 379        }
 380        if (egid != (gid_t) -1) {
 381                if (gid_eq(old->gid, kegid) ||
 382                    gid_eq(old->egid, kegid) ||
 383                    gid_eq(old->sgid, kegid) ||
 384                    ns_capable(old->user_ns, CAP_SETGID))
 385                        new->egid = kegid;
 386                else
 387                        goto error;
 388        }
 389
 390        if (rgid != (gid_t) -1 ||
 391            (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 392                new->sgid = new->egid;
 393        new->fsgid = new->egid;
 394
 395        return commit_creds(new);
 396
 397error:
 398        abort_creds(new);
 399        return retval;
 400}
 401
 402SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 403{
 404        return __sys_setregid(rgid, egid);
 405}
 406
 407/*
 408 * setgid() is implemented like SysV w/ SAVED_IDS
 409 *
 410 * SMP: Same implicit races as above.
 411 */
 412long __sys_setgid(gid_t gid)
 413{
 414        struct user_namespace *ns = current_user_ns();
 415        const struct cred *old;
 416        struct cred *new;
 417        int retval;
 418        kgid_t kgid;
 419
 420        kgid = make_kgid(ns, gid);
 421        if (!gid_valid(kgid))
 422                return -EINVAL;
 423
 424        new = prepare_creds();
 425        if (!new)
 426                return -ENOMEM;
 427        old = current_cred();
 428
 429        retval = -EPERM;
 430        if (ns_capable(old->user_ns, CAP_SETGID))
 431                new->gid = new->egid = new->sgid = new->fsgid = kgid;
 432        else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 433                new->egid = new->fsgid = kgid;
 434        else
 435                goto error;
 436
 437        return commit_creds(new);
 438
 439error:
 440        abort_creds(new);
 441        return retval;
 442}
 443
 444SYSCALL_DEFINE1(setgid, gid_t, gid)
 445{
 446        return __sys_setgid(gid);
 447}
 448
 449/*
 450 * change the user struct in a credentials set to match the new UID
 451 */
 452static int set_user(struct cred *new)
 453{
 454        struct user_struct *new_user;
 455
 456        new_user = alloc_uid(new->uid);
 457        if (!new_user)
 458                return -EAGAIN;
 459
 460        /*
 461         * We don't fail in case of NPROC limit excess here because too many
 462         * poorly written programs don't check set*uid() return code, assuming
 463         * it never fails if called by root.  We may still enforce NPROC limit
 464         * for programs doing set*uid()+execve() by harmlessly deferring the
 465         * failure to the execve() stage.
 466         */
 467        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 468                        new_user != INIT_USER)
 469                current->flags |= PF_NPROC_EXCEEDED;
 470        else
 471                current->flags &= ~PF_NPROC_EXCEEDED;
 472
 473        free_uid(new->user);
 474        new->user = new_user;
 475        return 0;
 476}
 477
 478/*
 479 * Unprivileged users may change the real uid to the effective uid
 480 * or vice versa.  (BSD-style)
 481 *
 482 * If you set the real uid at all, or set the effective uid to a value not
 483 * equal to the real uid, then the saved uid is set to the new effective uid.
 484 *
 485 * This makes it possible for a setuid program to completely drop its
 486 * privileges, which is often a useful assertion to make when you are doing
 487 * a security audit over a program.
 488 *
 489 * The general idea is that a program which uses just setreuid() will be
 490 * 100% compatible with BSD.  A program which uses just setuid() will be
 491 * 100% compatible with POSIX with saved IDs.
 492 */
 493long __sys_setreuid(uid_t ruid, uid_t euid)
 494{
 495        struct user_namespace *ns = current_user_ns();
 496        const struct cred *old;
 497        struct cred *new;
 498        int retval;
 499        kuid_t kruid, keuid;
 500
 501        kruid = make_kuid(ns, ruid);
 502        keuid = make_kuid(ns, euid);
 503
 504        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 505                return -EINVAL;
 506        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 507                return -EINVAL;
 508
 509        new = prepare_creds();
 510        if (!new)
 511                return -ENOMEM;
 512        old = current_cred();
 513
 514        retval = -EPERM;
 515        if (ruid != (uid_t) -1) {
 516                new->uid = kruid;
 517                if (!uid_eq(old->uid, kruid) &&
 518                    !uid_eq(old->euid, kruid) &&
 519                    !ns_capable(old->user_ns, CAP_SETUID))
 520                        goto error;
 521        }
 522
 523        if (euid != (uid_t) -1) {
 524                new->euid = keuid;
 525                if (!uid_eq(old->uid, keuid) &&
 526                    !uid_eq(old->euid, keuid) &&
 527                    !uid_eq(old->suid, keuid) &&
 528                    !ns_capable(old->user_ns, CAP_SETUID))
 529                        goto error;
 530        }
 531
 532        if (!uid_eq(new->uid, old->uid)) {
 533                retval = set_user(new);
 534                if (retval < 0)
 535                        goto error;
 536        }
 537        if (ruid != (uid_t) -1 ||
 538            (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 539                new->suid = new->euid;
 540        new->fsuid = new->euid;
 541
 542        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 543        if (retval < 0)
 544                goto error;
 545
 546        return commit_creds(new);
 547
 548error:
 549        abort_creds(new);
 550        return retval;
 551}
 552
 553SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 554{
 555        return __sys_setreuid(ruid, euid);
 556}
 557
 558/*
 559 * setuid() is implemented like SysV with SAVED_IDS
 560 *
 561 * Note that SAVED_ID's is deficient in that a setuid root program
 562 * like sendmail, for example, cannot set its uid to be a normal
 563 * user and then switch back, because if you're root, setuid() sets
 564 * the saved uid too.  If you don't like this, blame the bright people
 565 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 566 * will allow a root program to temporarily drop privileges and be able to
 567 * regain them by swapping the real and effective uid.
 568 */
 569long __sys_setuid(uid_t uid)
 570{
 571        struct user_namespace *ns = current_user_ns();
 572        const struct cred *old;
 573        struct cred *new;
 574        int retval;
 575        kuid_t kuid;
 576
 577        kuid = make_kuid(ns, uid);
 578        if (!uid_valid(kuid))
 579                return -EINVAL;
 580
 581        new = prepare_creds();
 582        if (!new)
 583                return -ENOMEM;
 584        old = current_cred();
 585
 586        retval = -EPERM;
 587        if (ns_capable(old->user_ns, CAP_SETUID)) {
 588                new->suid = new->uid = kuid;
 589                if (!uid_eq(kuid, old->uid)) {
 590                        retval = set_user(new);
 591                        if (retval < 0)
 592                                goto error;
 593                }
 594        } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 595                goto error;
 596        }
 597
 598        new->fsuid = new->euid = kuid;
 599
 600        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 601        if (retval < 0)
 602                goto error;
 603
 604        return commit_creds(new);
 605
 606error:
 607        abort_creds(new);
 608        return retval;
 609}
 610
 611SYSCALL_DEFINE1(setuid, uid_t, uid)
 612{
 613        return __sys_setuid(uid);
 614}
 615
 616
 617/*
 618 * This function implements a generic ability to update ruid, euid,
 619 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 620 */
 621long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 622{
 623        struct user_namespace *ns = current_user_ns();
 624        const struct cred *old;
 625        struct cred *new;
 626        int retval;
 627        kuid_t kruid, keuid, ksuid;
 628
 629        kruid = make_kuid(ns, ruid);
 630        keuid = make_kuid(ns, euid);
 631        ksuid = make_kuid(ns, suid);
 632
 633        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 634                return -EINVAL;
 635
 636        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 637                return -EINVAL;
 638
 639        if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 640                return -EINVAL;
 641
 642        new = prepare_creds();
 643        if (!new)
 644                return -ENOMEM;
 645
 646        old = current_cred();
 647
 648        retval = -EPERM;
 649        if (!ns_capable(old->user_ns, CAP_SETUID)) {
 650                if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 651                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 652                        goto error;
 653                if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 654                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 655                        goto error;
 656                if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 657                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 658                        goto error;
 659        }
 660
 661        if (ruid != (uid_t) -1) {
 662                new->uid = kruid;
 663                if (!uid_eq(kruid, old->uid)) {
 664                        retval = set_user(new);
 665                        if (retval < 0)
 666                                goto error;
 667                }
 668        }
 669        if (euid != (uid_t) -1)
 670                new->euid = keuid;
 671        if (suid != (uid_t) -1)
 672                new->suid = ksuid;
 673        new->fsuid = new->euid;
 674
 675        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 676        if (retval < 0)
 677                goto error;
 678
 679        return commit_creds(new);
 680
 681error:
 682        abort_creds(new);
 683        return retval;
 684}
 685
 686SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 687{
 688        return __sys_setresuid(ruid, euid, suid);
 689}
 690
 691SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 692{
 693        const struct cred *cred = current_cred();
 694        int retval;
 695        uid_t ruid, euid, suid;
 696
 697        ruid = from_kuid_munged(cred->user_ns, cred->uid);
 698        euid = from_kuid_munged(cred->user_ns, cred->euid);
 699        suid = from_kuid_munged(cred->user_ns, cred->suid);
 700
 701        retval = put_user(ruid, ruidp);
 702        if (!retval) {
 703                retval = put_user(euid, euidp);
 704                if (!retval)
 705                        return put_user(suid, suidp);
 706        }
 707        return retval;
 708}
 709
 710/*
 711 * Same as above, but for rgid, egid, sgid.
 712 */
 713long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 714{
 715        struct user_namespace *ns = current_user_ns();
 716        const struct cred *old;
 717        struct cred *new;
 718        int retval;
 719        kgid_t krgid, kegid, ksgid;
 720
 721        krgid = make_kgid(ns, rgid);
 722        kegid = make_kgid(ns, egid);
 723        ksgid = make_kgid(ns, sgid);
 724
 725        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 726                return -EINVAL;
 727        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 728                return -EINVAL;
 729        if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 730                return -EINVAL;
 731
 732        new = prepare_creds();
 733        if (!new)
 734                return -ENOMEM;
 735        old = current_cred();
 736
 737        retval = -EPERM;
 738        if (!ns_capable(old->user_ns, CAP_SETGID)) {
 739                if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 740                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 741                        goto error;
 742                if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 743                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 744                        goto error;
 745                if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 746                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 747                        goto error;
 748        }
 749
 750        if (rgid != (gid_t) -1)
 751                new->gid = krgid;
 752        if (egid != (gid_t) -1)
 753                new->egid = kegid;
 754        if (sgid != (gid_t) -1)
 755                new->sgid = ksgid;
 756        new->fsgid = new->egid;
 757
 758        return commit_creds(new);
 759
 760error:
 761        abort_creds(new);
 762        return retval;
 763}
 764
 765SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 766{
 767        return __sys_setresgid(rgid, egid, sgid);
 768}
 769
 770SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 771{
 772        const struct cred *cred = current_cred();
 773        int retval;
 774        gid_t rgid, egid, sgid;
 775
 776        rgid = from_kgid_munged(cred->user_ns, cred->gid);
 777        egid = from_kgid_munged(cred->user_ns, cred->egid);
 778        sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 779
 780        retval = put_user(rgid, rgidp);
 781        if (!retval) {
 782                retval = put_user(egid, egidp);
 783                if (!retval)
 784                        retval = put_user(sgid, sgidp);
 785        }
 786
 787        return retval;
 788}
 789
 790
 791/*
 792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 794 * whatever uid it wants to). It normally shadows "euid", except when
 795 * explicitly set by setfsuid() or for access..
 796 */
 797long __sys_setfsuid(uid_t uid)
 798{
 799        const struct cred *old;
 800        struct cred *new;
 801        uid_t old_fsuid;
 802        kuid_t kuid;
 803
 804        old = current_cred();
 805        old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 806
 807        kuid = make_kuid(old->user_ns, uid);
 808        if (!uid_valid(kuid))
 809                return old_fsuid;
 810
 811        new = prepare_creds();
 812        if (!new)
 813                return old_fsuid;
 814
 815        if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 816            uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 817            ns_capable(old->user_ns, CAP_SETUID)) {
 818                if (!uid_eq(kuid, old->fsuid)) {
 819                        new->fsuid = kuid;
 820                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 821                                goto change_okay;
 822                }
 823        }
 824
 825        abort_creds(new);
 826        return old_fsuid;
 827
 828change_okay:
 829        commit_creds(new);
 830        return old_fsuid;
 831}
 832
 833SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 834{
 835        return __sys_setfsuid(uid);
 836}
 837
 838/*
 839 * Samma på svenska..
 840 */
 841long __sys_setfsgid(gid_t gid)
 842{
 843        const struct cred *old;
 844        struct cred *new;
 845        gid_t old_fsgid;
 846        kgid_t kgid;
 847
 848        old = current_cred();
 849        old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 850
 851        kgid = make_kgid(old->user_ns, gid);
 852        if (!gid_valid(kgid))
 853                return old_fsgid;
 854
 855        new = prepare_creds();
 856        if (!new)
 857                return old_fsgid;
 858
 859        if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 860            gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 861            ns_capable(old->user_ns, CAP_SETGID)) {
 862                if (!gid_eq(kgid, old->fsgid)) {
 863                        new->fsgid = kgid;
 864                        goto change_okay;
 865                }
 866        }
 867
 868        abort_creds(new);
 869        return old_fsgid;
 870
 871change_okay:
 872        commit_creds(new);
 873        return old_fsgid;
 874}
 875
 876SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 877{
 878        return __sys_setfsgid(gid);
 879}
 880#endif /* CONFIG_MULTIUSER */
 881
 882/**
 883 * sys_getpid - return the thread group id of the current process
 884 *
 885 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 886 * the pid are identical unless CLONE_THREAD was specified on clone() in
 887 * which case the tgid is the same in all threads of the same group.
 888 *
 889 * This is SMP safe as current->tgid does not change.
 890 */
 891SYSCALL_DEFINE0(getpid)
 892{
 893        return task_tgid_vnr(current);
 894}
 895
 896/* Thread ID - the internal kernel "pid" */
 897SYSCALL_DEFINE0(gettid)
 898{
 899        return task_pid_vnr(current);
 900}
 901
 902/*
 903 * Accessing ->real_parent is not SMP-safe, it could
 904 * change from under us. However, we can use a stale
 905 * value of ->real_parent under rcu_read_lock(), see
 906 * release_task()->call_rcu(delayed_put_task_struct).
 907 */
 908SYSCALL_DEFINE0(getppid)
 909{
 910        int pid;
 911
 912        rcu_read_lock();
 913        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 914        rcu_read_unlock();
 915
 916        return pid;
 917}
 918
 919SYSCALL_DEFINE0(getuid)
 920{
 921        /* Only we change this so SMP safe */
 922        return from_kuid_munged(current_user_ns(), current_uid());
 923}
 924
 925SYSCALL_DEFINE0(geteuid)
 926{
 927        /* Only we change this so SMP safe */
 928        return from_kuid_munged(current_user_ns(), current_euid());
 929}
 930
 931SYSCALL_DEFINE0(getgid)
 932{
 933        /* Only we change this so SMP safe */
 934        return from_kgid_munged(current_user_ns(), current_gid());
 935}
 936
 937SYSCALL_DEFINE0(getegid)
 938{
 939        /* Only we change this so SMP safe */
 940        return from_kgid_munged(current_user_ns(), current_egid());
 941}
 942
 943static void do_sys_times(struct tms *tms)
 944{
 945        u64 tgutime, tgstime, cutime, cstime;
 946
 947        thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 948        cutime = current->signal->cutime;
 949        cstime = current->signal->cstime;
 950        tms->tms_utime = nsec_to_clock_t(tgutime);
 951        tms->tms_stime = nsec_to_clock_t(tgstime);
 952        tms->tms_cutime = nsec_to_clock_t(cutime);
 953        tms->tms_cstime = nsec_to_clock_t(cstime);
 954}
 955
 956SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 957{
 958        if (tbuf) {
 959                struct tms tmp;
 960
 961                do_sys_times(&tmp);
 962                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 963                        return -EFAULT;
 964        }
 965        force_successful_syscall_return();
 966        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 967}
 968
 969#ifdef CONFIG_COMPAT
 970static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
 971{
 972        return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
 973}
 974
 975COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
 976{
 977        if (tbuf) {
 978                struct tms tms;
 979                struct compat_tms tmp;
 980
 981                do_sys_times(&tms);
 982                /* Convert our struct tms to the compat version. */
 983                tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
 984                tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
 985                tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
 986                tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
 987                if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
 988                        return -EFAULT;
 989        }
 990        force_successful_syscall_return();
 991        return compat_jiffies_to_clock_t(jiffies);
 992}
 993#endif
 994
 995/*
 996 * This needs some heavy checking ...
 997 * I just haven't the stomach for it. I also don't fully
 998 * understand sessions/pgrp etc. Let somebody who does explain it.
 999 *
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1003 *
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1005 */
1006SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007{
1008        struct task_struct *p;
1009        struct task_struct *group_leader = current->group_leader;
1010        struct pid *pgrp;
1011        int err;
1012
1013        if (!pid)
1014                pid = task_pid_vnr(group_leader);
1015        if (!pgid)
1016                pgid = pid;
1017        if (pgid < 0)
1018                return -EINVAL;
1019        rcu_read_lock();
1020
1021        /* From this point forward we keep holding onto the tasklist lock
1022         * so that our parent does not change from under us. -DaveM
1023         */
1024        write_lock_irq(&tasklist_lock);
1025
1026        err = -ESRCH;
1027        p = find_task_by_vpid(pid);
1028        if (!p)
1029                goto out;
1030
1031        err = -EINVAL;
1032        if (!thread_group_leader(p))
1033                goto out;
1034
1035        if (same_thread_group(p->real_parent, group_leader)) {
1036                err = -EPERM;
1037                if (task_session(p) != task_session(group_leader))
1038                        goto out;
1039                err = -EACCES;
1040                if (!(p->flags & PF_FORKNOEXEC))
1041                        goto out;
1042        } else {
1043                err = -ESRCH;
1044                if (p != group_leader)
1045                        goto out;
1046        }
1047
1048        err = -EPERM;
1049        if (p->signal->leader)
1050                goto out;
1051
1052        pgrp = task_pid(p);
1053        if (pgid != pid) {
1054                struct task_struct *g;
1055
1056                pgrp = find_vpid(pgid);
1057                g = pid_task(pgrp, PIDTYPE_PGID);
1058                if (!g || task_session(g) != task_session(group_leader))
1059                        goto out;
1060        }
1061
1062        err = security_task_setpgid(p, pgid);
1063        if (err)
1064                goto out;
1065
1066        if (task_pgrp(p) != pgrp)
1067                change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069        err = 0;
1070out:
1071        /* All paths lead to here, thus we are safe. -DaveM */
1072        write_unlock_irq(&tasklist_lock);
1073        rcu_read_unlock();
1074        return err;
1075}
1076
1077static int do_getpgid(pid_t pid)
1078{
1079        struct task_struct *p;
1080        struct pid *grp;
1081        int retval;
1082
1083        rcu_read_lock();
1084        if (!pid)
1085                grp = task_pgrp(current);
1086        else {
1087                retval = -ESRCH;
1088                p = find_task_by_vpid(pid);
1089                if (!p)
1090                        goto out;
1091                grp = task_pgrp(p);
1092                if (!grp)
1093                        goto out;
1094
1095                retval = security_task_getpgid(p);
1096                if (retval)
1097                        goto out;
1098        }
1099        retval = pid_vnr(grp);
1100out:
1101        rcu_read_unlock();
1102        return retval;
1103}
1104
1105SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106{
1107        return do_getpgid(pid);
1108}
1109
1110#ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112SYSCALL_DEFINE0(getpgrp)
1113{
1114        return do_getpgid(0);
1115}
1116
1117#endif
1118
1119SYSCALL_DEFINE1(getsid, pid_t, pid)
1120{
1121        struct task_struct *p;
1122        struct pid *sid;
1123        int retval;
1124
1125        rcu_read_lock();
1126        if (!pid)
1127                sid = task_session(current);
1128        else {
1129                retval = -ESRCH;
1130                p = find_task_by_vpid(pid);
1131                if (!p)
1132                        goto out;
1133                sid = task_session(p);
1134                if (!sid)
1135                        goto out;
1136
1137                retval = security_task_getsid(p);
1138                if (retval)
1139                        goto out;
1140        }
1141        retval = pid_vnr(sid);
1142out:
1143        rcu_read_unlock();
1144        return retval;
1145}
1146
1147static void set_special_pids(struct pid *pid)
1148{
1149        struct task_struct *curr = current->group_leader;
1150
1151        if (task_session(curr) != pid)
1152                change_pid(curr, PIDTYPE_SID, pid);
1153
1154        if (task_pgrp(curr) != pid)
1155                change_pid(curr, PIDTYPE_PGID, pid);
1156}
1157
1158int ksys_setsid(void)
1159{
1160        struct task_struct *group_leader = current->group_leader;
1161        struct pid *sid = task_pid(group_leader);
1162        pid_t session = pid_vnr(sid);
1163        int err = -EPERM;
1164
1165        write_lock_irq(&tasklist_lock);
1166        /* Fail if I am already a session leader */
1167        if (group_leader->signal->leader)
1168                goto out;
1169
1170        /* Fail if a process group id already exists that equals the
1171         * proposed session id.
1172         */
1173        if (pid_task(sid, PIDTYPE_PGID))
1174                goto out;
1175
1176        group_leader->signal->leader = 1;
1177        set_special_pids(sid);
1178
1179        proc_clear_tty(group_leader);
1180
1181        err = session;
1182out:
1183        write_unlock_irq(&tasklist_lock);
1184        if (err > 0) {
1185                proc_sid_connector(group_leader);
1186                sched_autogroup_create_attach(group_leader);
1187        }
1188        return err;
1189}
1190
1191SYSCALL_DEFINE0(setsid)
1192{
1193        return ksys_setsid();
1194}
1195
1196DECLARE_RWSEM(uts_sem);
1197
1198#ifdef COMPAT_UTS_MACHINE
1199#define override_architecture(name) \
1200        (personality(current->personality) == PER_LINUX32 && \
1201         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202                      sizeof(COMPAT_UTS_MACHINE)))
1203#else
1204#define override_architecture(name)     0
1205#endif
1206
1207/*
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1211 * 2.6.60.
1212 */
1213static int override_release(char __user *release, size_t len)
1214{
1215        int ret = 0;
1216
1217        if (current->personality & UNAME26) {
1218                const char *rest = UTS_RELEASE;
1219                char buf[65] = { 0 };
1220                int ndots = 0;
1221                unsigned v;
1222                size_t copy;
1223
1224                while (*rest) {
1225                        if (*rest == '.' && ++ndots >= 3)
1226                                break;
1227                        if (!isdigit(*rest) && *rest != '.')
1228                                break;
1229                        rest++;
1230                }
1231                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1232                copy = clamp_t(size_t, len, 1, sizeof(buf));
1233                copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1234                ret = copy_to_user(release, buf, copy + 1);
1235        }
1236        return ret;
1237}
1238
1239SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1240{
1241        struct new_utsname tmp;
1242
1243        down_read(&uts_sem);
1244        memcpy(&tmp, utsname(), sizeof(tmp));
1245        up_read(&uts_sem);
1246        if (copy_to_user(name, &tmp, sizeof(tmp)))
1247                return -EFAULT;
1248
1249        if (override_release(name->release, sizeof(name->release)))
1250                return -EFAULT;
1251        if (override_architecture(name))
1252                return -EFAULT;
1253        return 0;
1254}
1255
1256#ifdef __ARCH_WANT_SYS_OLD_UNAME
1257/*
1258 * Old cruft
1259 */
1260SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1261{
1262        struct old_utsname tmp;
1263
1264        if (!name)
1265                return -EFAULT;
1266
1267        down_read(&uts_sem);
1268        memcpy(&tmp, utsname(), sizeof(tmp));
1269        up_read(&uts_sem);
1270        if (copy_to_user(name, &tmp, sizeof(tmp)))
1271                return -EFAULT;
1272
1273        if (override_release(name->release, sizeof(name->release)))
1274                return -EFAULT;
1275        if (override_architecture(name))
1276                return -EFAULT;
1277        return 0;
1278}
1279
1280SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1281{
1282        struct oldold_utsname tmp = {};
1283
1284        if (!name)
1285                return -EFAULT;
1286
1287        down_read(&uts_sem);
1288        memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1289        memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1290        memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1291        memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1292        memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1293        up_read(&uts_sem);
1294        if (copy_to_user(name, &tmp, sizeof(tmp)))
1295                return -EFAULT;
1296
1297        if (override_architecture(name))
1298                return -EFAULT;
1299        if (override_release(name->release, sizeof(name->release)))
1300                return -EFAULT;
1301        return 0;
1302}
1303#endif
1304
1305SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1306{
1307        int errno;
1308        char tmp[__NEW_UTS_LEN];
1309
1310        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1311                return -EPERM;
1312
1313        if (len < 0 || len > __NEW_UTS_LEN)
1314                return -EINVAL;
1315        errno = -EFAULT;
1316        if (!copy_from_user(tmp, name, len)) {
1317                struct new_utsname *u;
1318
1319                down_write(&uts_sem);
1320                u = utsname();
1321                memcpy(u->nodename, tmp, len);
1322                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1323                errno = 0;
1324                uts_proc_notify(UTS_PROC_HOSTNAME);
1325                up_write(&uts_sem);
1326        }
1327        return errno;
1328}
1329
1330#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331
1332SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1333{
1334        int i;
1335        struct new_utsname *u;
1336        char tmp[__NEW_UTS_LEN + 1];
1337
1338        if (len < 0)
1339                return -EINVAL;
1340        down_read(&uts_sem);
1341        u = utsname();
1342        i = 1 + strlen(u->nodename);
1343        if (i > len)
1344                i = len;
1345        memcpy(tmp, u->nodename, i);
1346        up_read(&uts_sem);
1347        if (copy_to_user(name, tmp, i))
1348                return -EFAULT;
1349        return 0;
1350}
1351
1352#endif
1353
1354/*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
1358SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359{
1360        int errno;
1361        char tmp[__NEW_UTS_LEN];
1362
1363        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364                return -EPERM;
1365        if (len < 0 || len > __NEW_UTS_LEN)
1366                return -EINVAL;
1367
1368        errno = -EFAULT;
1369        if (!copy_from_user(tmp, name, len)) {
1370                struct new_utsname *u;
1371
1372                down_write(&uts_sem);
1373                u = utsname();
1374                memcpy(u->domainname, tmp, len);
1375                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1376                errno = 0;
1377                uts_proc_notify(UTS_PROC_DOMAINNAME);
1378                up_write(&uts_sem);
1379        }
1380        return errno;
1381}
1382
1383SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1384{
1385        struct rlimit value;
1386        int ret;
1387
1388        ret = do_prlimit(current, resource, NULL, &value);
1389        if (!ret)
1390                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1391
1392        return ret;
1393}
1394
1395#ifdef CONFIG_COMPAT
1396
1397COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1398                       struct compat_rlimit __user *, rlim)
1399{
1400        struct rlimit r;
1401        struct compat_rlimit r32;
1402
1403        if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1404                return -EFAULT;
1405
1406        if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1407                r.rlim_cur = RLIM_INFINITY;
1408        else
1409                r.rlim_cur = r32.rlim_cur;
1410        if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1411                r.rlim_max = RLIM_INFINITY;
1412        else
1413                r.rlim_max = r32.rlim_max;
1414        return do_prlimit(current, resource, &r, NULL);
1415}
1416
1417COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1418                       struct compat_rlimit __user *, rlim)
1419{
1420        struct rlimit r;
1421        int ret;
1422
1423        ret = do_prlimit(current, resource, NULL, &r);
1424        if (!ret) {
1425                struct compat_rlimit r32;
1426                if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1427                        r32.rlim_cur = COMPAT_RLIM_INFINITY;
1428                else
1429                        r32.rlim_cur = r.rlim_cur;
1430                if (r.rlim_max > COMPAT_RLIM_INFINITY)
1431                        r32.rlim_max = COMPAT_RLIM_INFINITY;
1432                else
1433                        r32.rlim_max = r.rlim_max;
1434
1435                if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1436                        return -EFAULT;
1437        }
1438        return ret;
1439}
1440
1441#endif
1442
1443#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1444
1445/*
1446 *      Back compatibility for getrlimit. Needed for some apps.
1447 */
1448SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1449                struct rlimit __user *, rlim)
1450{
1451        struct rlimit x;
1452        if (resource >= RLIM_NLIMITS)
1453                return -EINVAL;
1454
1455        resource = array_index_nospec(resource, RLIM_NLIMITS);
1456        task_lock(current->group_leader);
1457        x = current->signal->rlim[resource];
1458        task_unlock(current->group_leader);
1459        if (x.rlim_cur > 0x7FFFFFFF)
1460                x.rlim_cur = 0x7FFFFFFF;
1461        if (x.rlim_max > 0x7FFFFFFF)
1462                x.rlim_max = 0x7FFFFFFF;
1463        return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1464}
1465
1466#ifdef CONFIG_COMPAT
1467COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468                       struct compat_rlimit __user *, rlim)
1469{
1470        struct rlimit r;
1471
1472        if (resource >= RLIM_NLIMITS)
1473                return -EINVAL;
1474
1475        resource = array_index_nospec(resource, RLIM_NLIMITS);
1476        task_lock(current->group_leader);
1477        r = current->signal->rlim[resource];
1478        task_unlock(current->group_leader);
1479        if (r.rlim_cur > 0x7FFFFFFF)
1480                r.rlim_cur = 0x7FFFFFFF;
1481        if (r.rlim_max > 0x7FFFFFFF)
1482                r.rlim_max = 0x7FFFFFFF;
1483
1484        if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1485            put_user(r.rlim_max, &rlim->rlim_max))
1486                return -EFAULT;
1487        return 0;
1488}
1489#endif
1490
1491#endif
1492
1493static inline bool rlim64_is_infinity(__u64 rlim64)
1494{
1495#if BITS_PER_LONG < 64
1496        return rlim64 >= ULONG_MAX;
1497#else
1498        return rlim64 == RLIM64_INFINITY;
1499#endif
1500}
1501
1502static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1503{
1504        if (rlim->rlim_cur == RLIM_INFINITY)
1505                rlim64->rlim_cur = RLIM64_INFINITY;
1506        else
1507                rlim64->rlim_cur = rlim->rlim_cur;
1508        if (rlim->rlim_max == RLIM_INFINITY)
1509                rlim64->rlim_max = RLIM64_INFINITY;
1510        else
1511                rlim64->rlim_max = rlim->rlim_max;
1512}
1513
1514static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1515{
1516        if (rlim64_is_infinity(rlim64->rlim_cur))
1517                rlim->rlim_cur = RLIM_INFINITY;
1518        else
1519                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1520        if (rlim64_is_infinity(rlim64->rlim_max))
1521                rlim->rlim_max = RLIM_INFINITY;
1522        else
1523                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1524}
1525
1526/* make sure you are allowed to change @tsk limits before calling this */
1527int do_prlimit(struct task_struct *tsk, unsigned int resource,
1528                struct rlimit *new_rlim, struct rlimit *old_rlim)
1529{
1530        struct rlimit *rlim;
1531        int retval = 0;
1532
1533        if (resource >= RLIM_NLIMITS)
1534                return -EINVAL;
1535        if (new_rlim) {
1536                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1537                        return -EINVAL;
1538                if (resource == RLIMIT_NOFILE &&
1539                                new_rlim->rlim_max > sysctl_nr_open)
1540                        return -EPERM;
1541        }
1542
1543        /* protect tsk->signal and tsk->sighand from disappearing */
1544        read_lock(&tasklist_lock);
1545        if (!tsk->sighand) {
1546                retval = -ESRCH;
1547                goto out;
1548        }
1549
1550        rlim = tsk->signal->rlim + resource;
1551        task_lock(tsk->group_leader);
1552        if (new_rlim) {
1553                /* Keep the capable check against init_user_ns until
1554                   cgroups can contain all limits */
1555                if (new_rlim->rlim_max > rlim->rlim_max &&
1556                                !capable(CAP_SYS_RESOURCE))
1557                        retval = -EPERM;
1558                if (!retval)
1559                        retval = security_task_setrlimit(tsk, resource, new_rlim);
1560                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1561                        /*
1562                         * The caller is asking for an immediate RLIMIT_CPU
1563                         * expiry.  But we use the zero value to mean "it was
1564                         * never set".  So let's cheat and make it one second
1565                         * instead
1566                         */
1567                        new_rlim->rlim_cur = 1;
1568                }
1569        }
1570        if (!retval) {
1571                if (old_rlim)
1572                        *old_rlim = *rlim;
1573                if (new_rlim)
1574                        *rlim = *new_rlim;
1575        }
1576        task_unlock(tsk->group_leader);
1577
1578        /*
1579         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1580         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1581         * very long-standing error, and fixing it now risks breakage of
1582         * applications, so we live with it
1583         */
1584         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1585             new_rlim->rlim_cur != RLIM_INFINITY &&
1586             IS_ENABLED(CONFIG_POSIX_TIMERS))
1587                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1588out:
1589        read_unlock(&tasklist_lock);
1590        return retval;
1591}
1592
1593/* rcu lock must be held */
1594static int check_prlimit_permission(struct task_struct *task,
1595                                    unsigned int flags)
1596{
1597        const struct cred *cred = current_cred(), *tcred;
1598        bool id_match;
1599
1600        if (current == task)
1601                return 0;
1602
1603        tcred = __task_cred(task);
1604        id_match = (uid_eq(cred->uid, tcred->euid) &&
1605                    uid_eq(cred->uid, tcred->suid) &&
1606                    uid_eq(cred->uid, tcred->uid)  &&
1607                    gid_eq(cred->gid, tcred->egid) &&
1608                    gid_eq(cred->gid, tcred->sgid) &&
1609                    gid_eq(cred->gid, tcred->gid));
1610        if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1611                return -EPERM;
1612
1613        return security_task_prlimit(cred, tcred, flags);
1614}
1615
1616SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1617                const struct rlimit64 __user *, new_rlim,
1618                struct rlimit64 __user *, old_rlim)
1619{
1620        struct rlimit64 old64, new64;
1621        struct rlimit old, new;
1622        struct task_struct *tsk;
1623        unsigned int checkflags = 0;
1624        int ret;
1625
1626        if (old_rlim)
1627                checkflags |= LSM_PRLIMIT_READ;
1628
1629        if (new_rlim) {
1630                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1631                        return -EFAULT;
1632                rlim64_to_rlim(&new64, &new);
1633                checkflags |= LSM_PRLIMIT_WRITE;
1634        }
1635
1636        rcu_read_lock();
1637        tsk = pid ? find_task_by_vpid(pid) : current;
1638        if (!tsk) {
1639                rcu_read_unlock();
1640                return -ESRCH;
1641        }
1642        ret = check_prlimit_permission(tsk, checkflags);
1643        if (ret) {
1644                rcu_read_unlock();
1645                return ret;
1646        }
1647        get_task_struct(tsk);
1648        rcu_read_unlock();
1649
1650        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1651                        old_rlim ? &old : NULL);
1652
1653        if (!ret && old_rlim) {
1654                rlim_to_rlim64(&old, &old64);
1655                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1656                        ret = -EFAULT;
1657        }
1658
1659        put_task_struct(tsk);
1660        return ret;
1661}
1662
1663SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1664{
1665        struct rlimit new_rlim;
1666
1667        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1668                return -EFAULT;
1669        return do_prlimit(current, resource, &new_rlim, NULL);
1670}
1671
1672/*
1673 * It would make sense to put struct rusage in the task_struct,
1674 * except that would make the task_struct be *really big*.  After
1675 * task_struct gets moved into malloc'ed memory, it would
1676 * make sense to do this.  It will make moving the rest of the information
1677 * a lot simpler!  (Which we're not doing right now because we're not
1678 * measuring them yet).
1679 *
1680 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1681 * races with threads incrementing their own counters.  But since word
1682 * reads are atomic, we either get new values or old values and we don't
1683 * care which for the sums.  We always take the siglock to protect reading
1684 * the c* fields from p->signal from races with exit.c updating those
1685 * fields when reaping, so a sample either gets all the additions of a
1686 * given child after it's reaped, or none so this sample is before reaping.
1687 *
1688 * Locking:
1689 * We need to take the siglock for CHILDEREN, SELF and BOTH
1690 * for  the cases current multithreaded, non-current single threaded
1691 * non-current multithreaded.  Thread traversal is now safe with
1692 * the siglock held.
1693 * Strictly speaking, we donot need to take the siglock if we are current and
1694 * single threaded,  as no one else can take our signal_struct away, no one
1695 * else can  reap the  children to update signal->c* counters, and no one else
1696 * can race with the signal-> fields. If we do not take any lock, the
1697 * signal-> fields could be read out of order while another thread was just
1698 * exiting. So we should  place a read memory barrier when we avoid the lock.
1699 * On the writer side,  write memory barrier is implied in  __exit_signal
1700 * as __exit_signal releases  the siglock spinlock after updating the signal->
1701 * fields. But we don't do this yet to keep things simple.
1702 *
1703 */
1704
1705static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1706{
1707        r->ru_nvcsw += t->nvcsw;
1708        r->ru_nivcsw += t->nivcsw;
1709        r->ru_minflt += t->min_flt;
1710        r->ru_majflt += t->maj_flt;
1711        r->ru_inblock += task_io_get_inblock(t);
1712        r->ru_oublock += task_io_get_oublock(t);
1713}
1714
1715void getrusage(struct task_struct *p, int who, struct rusage *r)
1716{
1717        struct task_struct *t;
1718        unsigned long flags;
1719        u64 tgutime, tgstime, utime, stime;
1720        unsigned long maxrss = 0;
1721
1722        memset((char *)r, 0, sizeof (*r));
1723        utime = stime = 0;
1724
1725        if (who == RUSAGE_THREAD) {
1726                task_cputime_adjusted(current, &utime, &stime);
1727                accumulate_thread_rusage(p, r);
1728                maxrss = p->signal->maxrss;
1729                goto out;
1730        }
1731
1732        if (!lock_task_sighand(p, &flags))
1733                return;
1734
1735        switch (who) {
1736        case RUSAGE_BOTH:
1737        case RUSAGE_CHILDREN:
1738                utime = p->signal->cutime;
1739                stime = p->signal->cstime;
1740                r->ru_nvcsw = p->signal->cnvcsw;
1741                r->ru_nivcsw = p->signal->cnivcsw;
1742                r->ru_minflt = p->signal->cmin_flt;
1743                r->ru_majflt = p->signal->cmaj_flt;
1744                r->ru_inblock = p->signal->cinblock;
1745                r->ru_oublock = p->signal->coublock;
1746                maxrss = p->signal->cmaxrss;
1747
1748                if (who == RUSAGE_CHILDREN)
1749                        break;
1750
1751        case RUSAGE_SELF:
1752                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1753                utime += tgutime;
1754                stime += tgstime;
1755                r->ru_nvcsw += p->signal->nvcsw;
1756                r->ru_nivcsw += p->signal->nivcsw;
1757                r->ru_minflt += p->signal->min_flt;
1758                r->ru_majflt += p->signal->maj_flt;
1759                r->ru_inblock += p->signal->inblock;
1760                r->ru_oublock += p->signal->oublock;
1761                if (maxrss < p->signal->maxrss)
1762                        maxrss = p->signal->maxrss;
1763                t = p;
1764                do {
1765                        accumulate_thread_rusage(t, r);
1766                } while_each_thread(p, t);
1767                break;
1768
1769        default:
1770                BUG();
1771        }
1772        unlock_task_sighand(p, &flags);
1773
1774out:
1775        r->ru_utime = ns_to_timeval(utime);
1776        r->ru_stime = ns_to_timeval(stime);
1777
1778        if (who != RUSAGE_CHILDREN) {
1779                struct mm_struct *mm = get_task_mm(p);
1780
1781                if (mm) {
1782                        setmax_mm_hiwater_rss(&maxrss, mm);
1783                        mmput(mm);
1784                }
1785        }
1786        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1787}
1788
1789SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1790{
1791        struct rusage r;
1792
1793        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1794            who != RUSAGE_THREAD)
1795                return -EINVAL;
1796
1797        getrusage(current, who, &r);
1798        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1799}
1800
1801#ifdef CONFIG_COMPAT
1802COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1803{
1804        struct rusage r;
1805
1806        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1807            who != RUSAGE_THREAD)
1808                return -EINVAL;
1809
1810        getrusage(current, who, &r);
1811        return put_compat_rusage(&r, ru);
1812}
1813#endif
1814
1815SYSCALL_DEFINE1(umask, int, mask)
1816{
1817        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1818        return mask;
1819}
1820
1821static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1822{
1823        struct fd exe;
1824        struct file *old_exe, *exe_file;
1825        struct inode *inode;
1826        int err;
1827
1828        exe = fdget(fd);
1829        if (!exe.file)
1830                return -EBADF;
1831
1832        inode = file_inode(exe.file);
1833
1834        /*
1835         * Because the original mm->exe_file points to executable file, make
1836         * sure that this one is executable as well, to avoid breaking an
1837         * overall picture.
1838         */
1839        err = -EACCES;
1840        if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1841                goto exit;
1842
1843        err = inode_permission(inode, MAY_EXEC);
1844        if (err)
1845                goto exit;
1846
1847        /*
1848         * Forbid mm->exe_file change if old file still mapped.
1849         */
1850        exe_file = get_mm_exe_file(mm);
1851        err = -EBUSY;
1852        if (exe_file) {
1853                struct vm_area_struct *vma;
1854
1855                down_read(&mm->mmap_sem);
1856                for (vma = mm->mmap; vma; vma = vma->vm_next) {
1857                        if (!vma->vm_file)
1858                                continue;
1859                        if (path_equal(&vma->vm_file->f_path,
1860                                       &exe_file->f_path))
1861                                goto exit_err;
1862                }
1863
1864                up_read(&mm->mmap_sem);
1865                fput(exe_file);
1866        }
1867
1868        err = 0;
1869        /* set the new file, lockless */
1870        get_file(exe.file);
1871        old_exe = xchg(&mm->exe_file, exe.file);
1872        if (old_exe)
1873                fput(old_exe);
1874exit:
1875        fdput(exe);
1876        return err;
1877exit_err:
1878        up_read(&mm->mmap_sem);
1879        fput(exe_file);
1880        goto exit;
1881}
1882
1883/*
1884 * WARNING: we don't require any capability here so be very careful
1885 * in what is allowed for modification from userspace.
1886 */
1887static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1888{
1889        unsigned long mmap_max_addr = TASK_SIZE;
1890        struct mm_struct *mm = current->mm;
1891        int error = -EINVAL, i;
1892
1893        static const unsigned char offsets[] = {
1894                offsetof(struct prctl_mm_map, start_code),
1895                offsetof(struct prctl_mm_map, end_code),
1896                offsetof(struct prctl_mm_map, start_data),
1897                offsetof(struct prctl_mm_map, end_data),
1898                offsetof(struct prctl_mm_map, start_brk),
1899                offsetof(struct prctl_mm_map, brk),
1900                offsetof(struct prctl_mm_map, start_stack),
1901                offsetof(struct prctl_mm_map, arg_start),
1902                offsetof(struct prctl_mm_map, arg_end),
1903                offsetof(struct prctl_mm_map, env_start),
1904                offsetof(struct prctl_mm_map, env_end),
1905        };
1906
1907        /*
1908         * Make sure the members are not somewhere outside
1909         * of allowed address space.
1910         */
1911        for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1912                u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1913
1914                if ((unsigned long)val >= mmap_max_addr ||
1915                    (unsigned long)val < mmap_min_addr)
1916                        goto out;
1917        }
1918
1919        /*
1920         * Make sure the pairs are ordered.
1921         */
1922#define __prctl_check_order(__m1, __op, __m2)                           \
1923        ((unsigned long)prctl_map->__m1 __op                            \
1924         (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1925        error  = __prctl_check_order(start_code, <, end_code);
1926        error |= __prctl_check_order(start_data, <, end_data);
1927        error |= __prctl_check_order(start_brk, <=, brk);
1928        error |= __prctl_check_order(arg_start, <=, arg_end);
1929        error |= __prctl_check_order(env_start, <=, env_end);
1930        if (error)
1931                goto out;
1932#undef __prctl_check_order
1933
1934        error = -EINVAL;
1935
1936        /*
1937         * @brk should be after @end_data in traditional maps.
1938         */
1939        if (prctl_map->start_brk <= prctl_map->end_data ||
1940            prctl_map->brk <= prctl_map->end_data)
1941                goto out;
1942
1943        /*
1944         * Neither we should allow to override limits if they set.
1945         */
1946        if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1947                              prctl_map->start_brk, prctl_map->end_data,
1948                              prctl_map->start_data))
1949                        goto out;
1950
1951        /*
1952         * Someone is trying to cheat the auxv vector.
1953         */
1954        if (prctl_map->auxv_size) {
1955                if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1956                        goto out;
1957        }
1958
1959        /*
1960         * Finally, make sure the caller has the rights to
1961         * change /proc/pid/exe link: only local sys admin should
1962         * be allowed to.
1963         */
1964        if (prctl_map->exe_fd != (u32)-1) {
1965                if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1966                        goto out;
1967        }
1968
1969        error = 0;
1970out:
1971        return error;
1972}
1973
1974#ifdef CONFIG_CHECKPOINT_RESTORE
1975static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1976{
1977        struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1978        unsigned long user_auxv[AT_VECTOR_SIZE];
1979        struct mm_struct *mm = current->mm;
1980        int error;
1981
1982        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1983        BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1984
1985        if (opt == PR_SET_MM_MAP_SIZE)
1986                return put_user((unsigned int)sizeof(prctl_map),
1987                                (unsigned int __user *)addr);
1988
1989        if (data_size != sizeof(prctl_map))
1990                return -EINVAL;
1991
1992        if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1993                return -EFAULT;
1994
1995        error = validate_prctl_map(&prctl_map);
1996        if (error)
1997                return error;
1998
1999        if (prctl_map.auxv_size) {
2000                memset(user_auxv, 0, sizeof(user_auxv));
2001                if (copy_from_user(user_auxv,
2002                                   (const void __user *)prctl_map.auxv,
2003                                   prctl_map.auxv_size))
2004                        return -EFAULT;
2005
2006                /* Last entry must be AT_NULL as specification requires */
2007                user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2008                user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2009        }
2010
2011        if (prctl_map.exe_fd != (u32)-1) {
2012                error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2013                if (error)
2014                        return error;
2015        }
2016
2017        /*
2018         * arg_lock protects concurent updates but we still need mmap_sem for
2019         * read to exclude races with sys_brk.
2020         */
2021        down_read(&mm->mmap_sem);
2022
2023        /*
2024         * We don't validate if these members are pointing to
2025         * real present VMAs because application may have correspond
2026         * VMAs already unmapped and kernel uses these members for statistics
2027         * output in procfs mostly, except
2028         *
2029         *  - @start_brk/@brk which are used in do_brk but kernel lookups
2030         *    for VMAs when updating these memvers so anything wrong written
2031         *    here cause kernel to swear at userspace program but won't lead
2032         *    to any problem in kernel itself
2033         */
2034
2035        spin_lock(&mm->arg_lock);
2036        mm->start_code  = prctl_map.start_code;
2037        mm->end_code    = prctl_map.end_code;
2038        mm->start_data  = prctl_map.start_data;
2039        mm->end_data    = prctl_map.end_data;
2040        mm->start_brk   = prctl_map.start_brk;
2041        mm->brk         = prctl_map.brk;
2042        mm->start_stack = prctl_map.start_stack;
2043        mm->arg_start   = prctl_map.arg_start;
2044        mm->arg_end     = prctl_map.arg_end;
2045        mm->env_start   = prctl_map.env_start;
2046        mm->env_end     = prctl_map.env_end;
2047        spin_unlock(&mm->arg_lock);
2048
2049        /*
2050         * Note this update of @saved_auxv is lockless thus
2051         * if someone reads this member in procfs while we're
2052         * updating -- it may get partly updated results. It's
2053         * known and acceptable trade off: we leave it as is to
2054         * not introduce additional locks here making the kernel
2055         * more complex.
2056         */
2057        if (prctl_map.auxv_size)
2058                memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2059
2060        up_read(&mm->mmap_sem);
2061        return 0;
2062}
2063#endif /* CONFIG_CHECKPOINT_RESTORE */
2064
2065static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2066                          unsigned long len)
2067{
2068        /*
2069         * This doesn't move the auxiliary vector itself since it's pinned to
2070         * mm_struct, but it permits filling the vector with new values.  It's
2071         * up to the caller to provide sane values here, otherwise userspace
2072         * tools which use this vector might be unhappy.
2073         */
2074        unsigned long user_auxv[AT_VECTOR_SIZE];
2075
2076        if (len > sizeof(user_auxv))
2077                return -EINVAL;
2078
2079        if (copy_from_user(user_auxv, (const void __user *)addr, len))
2080                return -EFAULT;
2081
2082        /* Make sure the last entry is always AT_NULL */
2083        user_auxv[AT_VECTOR_SIZE - 2] = 0;
2084        user_auxv[AT_VECTOR_SIZE - 1] = 0;
2085
2086        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2087
2088        task_lock(current);
2089        memcpy(mm->saved_auxv, user_auxv, len);
2090        task_unlock(current);
2091
2092        return 0;
2093}
2094
2095static int prctl_set_mm(int opt, unsigned long addr,
2096                        unsigned long arg4, unsigned long arg5)
2097{
2098        struct mm_struct *mm = current->mm;
2099        struct prctl_mm_map prctl_map;
2100        struct vm_area_struct *vma;
2101        int error;
2102
2103        if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2104                              opt != PR_SET_MM_MAP &&
2105                              opt != PR_SET_MM_MAP_SIZE)))
2106                return -EINVAL;
2107
2108#ifdef CONFIG_CHECKPOINT_RESTORE
2109        if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2110                return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2111#endif
2112
2113        if (!capable(CAP_SYS_RESOURCE))
2114                return -EPERM;
2115
2116        if (opt == PR_SET_MM_EXE_FILE)
2117                return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2118
2119        if (opt == PR_SET_MM_AUXV)
2120                return prctl_set_auxv(mm, addr, arg4);
2121
2122        if (addr >= TASK_SIZE || addr < mmap_min_addr)
2123                return -EINVAL;
2124
2125        error = -EINVAL;
2126
2127        down_write(&mm->mmap_sem);
2128        vma = find_vma(mm, addr);
2129
2130        prctl_map.start_code    = mm->start_code;
2131        prctl_map.end_code      = mm->end_code;
2132        prctl_map.start_data    = mm->start_data;
2133        prctl_map.end_data      = mm->end_data;
2134        prctl_map.start_brk     = mm->start_brk;
2135        prctl_map.brk           = mm->brk;
2136        prctl_map.start_stack   = mm->start_stack;
2137        prctl_map.arg_start     = mm->arg_start;
2138        prctl_map.arg_end       = mm->arg_end;
2139        prctl_map.env_start     = mm->env_start;
2140        prctl_map.env_end       = mm->env_end;
2141        prctl_map.auxv          = NULL;
2142        prctl_map.auxv_size     = 0;
2143        prctl_map.exe_fd        = -1;
2144
2145        switch (opt) {
2146        case PR_SET_MM_START_CODE:
2147                prctl_map.start_code = addr;
2148                break;
2149        case PR_SET_MM_END_CODE:
2150                prctl_map.end_code = addr;
2151                break;
2152        case PR_SET_MM_START_DATA:
2153                prctl_map.start_data = addr;
2154                break;
2155        case PR_SET_MM_END_DATA:
2156                prctl_map.end_data = addr;
2157                break;
2158        case PR_SET_MM_START_STACK:
2159                prctl_map.start_stack = addr;
2160                break;
2161        case PR_SET_MM_START_BRK:
2162                prctl_map.start_brk = addr;
2163                break;
2164        case PR_SET_MM_BRK:
2165                prctl_map.brk = addr;
2166                break;
2167        case PR_SET_MM_ARG_START:
2168                prctl_map.arg_start = addr;
2169                break;
2170        case PR_SET_MM_ARG_END:
2171                prctl_map.arg_end = addr;
2172                break;
2173        case PR_SET_MM_ENV_START:
2174                prctl_map.env_start = addr;
2175                break;
2176        case PR_SET_MM_ENV_END:
2177                prctl_map.env_end = addr;
2178                break;
2179        default:
2180                goto out;
2181        }
2182
2183        error = validate_prctl_map(&prctl_map);
2184        if (error)
2185                goto out;
2186
2187        switch (opt) {
2188        /*
2189         * If command line arguments and environment
2190         * are placed somewhere else on stack, we can
2191         * set them up here, ARG_START/END to setup
2192         * command line argumets and ENV_START/END
2193         * for environment.
2194         */
2195        case PR_SET_MM_START_STACK:
2196        case PR_SET_MM_ARG_START:
2197        case PR_SET_MM_ARG_END:
2198        case PR_SET_MM_ENV_START:
2199        case PR_SET_MM_ENV_END:
2200                if (!vma) {
2201                        error = -EFAULT;
2202                        goto out;
2203                }
2204        }
2205
2206        mm->start_code  = prctl_map.start_code;
2207        mm->end_code    = prctl_map.end_code;
2208        mm->start_data  = prctl_map.start_data;
2209        mm->end_data    = prctl_map.end_data;
2210        mm->start_brk   = prctl_map.start_brk;
2211        mm->brk         = prctl_map.brk;
2212        mm->start_stack = prctl_map.start_stack;
2213        mm->arg_start   = prctl_map.arg_start;
2214        mm->arg_end     = prctl_map.arg_end;
2215        mm->env_start   = prctl_map.env_start;
2216        mm->env_end     = prctl_map.env_end;
2217
2218        error = 0;
2219out:
2220        up_write(&mm->mmap_sem);
2221        return error;
2222}
2223
2224#ifdef CONFIG_CHECKPOINT_RESTORE
2225static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2226{
2227        return put_user(me->clear_child_tid, tid_addr);
2228}
2229#else
2230static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2231{
2232        return -EINVAL;
2233}
2234#endif
2235
2236static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2237{
2238        /*
2239         * If task has has_child_subreaper - all its decendants
2240         * already have these flag too and new decendants will
2241         * inherit it on fork, skip them.
2242         *
2243         * If we've found child_reaper - skip descendants in
2244         * it's subtree as they will never get out pidns.
2245         */
2246        if (p->signal->has_child_subreaper ||
2247            is_child_reaper(task_pid(p)))
2248                return 0;
2249
2250        p->signal->has_child_subreaper = 1;
2251        return 1;
2252}
2253
2254int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2255{
2256        return -EINVAL;
2257}
2258
2259int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2260                                    unsigned long ctrl)
2261{
2262        return -EINVAL;
2263}
2264
2265SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2266                unsigned long, arg4, unsigned long, arg5)
2267{
2268        struct task_struct *me = current;
2269        unsigned char comm[sizeof(me->comm)];
2270        long error;
2271
2272        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2273        if (error != -ENOSYS)
2274                return error;
2275
2276        error = 0;
2277        switch (option) {
2278        case PR_SET_PDEATHSIG:
2279                if (!valid_signal(arg2)) {
2280                        error = -EINVAL;
2281                        break;
2282                }
2283                me->pdeath_signal = arg2;
2284                break;
2285        case PR_GET_PDEATHSIG:
2286                error = put_user(me->pdeath_signal, (int __user *)arg2);
2287                break;
2288        case PR_GET_DUMPABLE:
2289                error = get_dumpable(me->mm);
2290                break;
2291        case PR_SET_DUMPABLE:
2292                if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2293                        error = -EINVAL;
2294                        break;
2295                }
2296                set_dumpable(me->mm, arg2);
2297                break;
2298
2299        case PR_SET_UNALIGN:
2300                error = SET_UNALIGN_CTL(me, arg2);
2301                break;
2302        case PR_GET_UNALIGN:
2303                error = GET_UNALIGN_CTL(me, arg2);
2304                break;
2305        case PR_SET_FPEMU:
2306                error = SET_FPEMU_CTL(me, arg2);
2307                break;
2308        case PR_GET_FPEMU:
2309                error = GET_FPEMU_CTL(me, arg2);
2310                break;
2311        case PR_SET_FPEXC:
2312                error = SET_FPEXC_CTL(me, arg2);
2313                break;
2314        case PR_GET_FPEXC:
2315                error = GET_FPEXC_CTL(me, arg2);
2316                break;
2317        case PR_GET_TIMING:
2318                error = PR_TIMING_STATISTICAL;
2319                break;
2320        case PR_SET_TIMING:
2321                if (arg2 != PR_TIMING_STATISTICAL)
2322                        error = -EINVAL;
2323                break;
2324        case PR_SET_NAME:
2325                comm[sizeof(me->comm) - 1] = 0;
2326                if (strncpy_from_user(comm, (char __user *)arg2,
2327                                      sizeof(me->comm) - 1) < 0)
2328                        return -EFAULT;
2329                set_task_comm(me, comm);
2330                proc_comm_connector(me);
2331                break;
2332        case PR_GET_NAME:
2333                get_task_comm(comm, me);
2334                if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2335                        return -EFAULT;
2336                break;
2337        case PR_GET_ENDIAN:
2338                error = GET_ENDIAN(me, arg2);
2339                break;
2340        case PR_SET_ENDIAN:
2341                error = SET_ENDIAN(me, arg2);
2342                break;
2343        case PR_GET_SECCOMP:
2344                error = prctl_get_seccomp();
2345                break;
2346        case PR_SET_SECCOMP:
2347                error = prctl_set_seccomp(arg2, (char __user *)arg3);
2348                break;
2349        case PR_GET_TSC:
2350                error = GET_TSC_CTL(arg2);
2351                break;
2352        case PR_SET_TSC:
2353                error = SET_TSC_CTL(arg2);
2354                break;
2355        case PR_TASK_PERF_EVENTS_DISABLE:
2356                error = perf_event_task_disable();
2357                break;
2358        case PR_TASK_PERF_EVENTS_ENABLE:
2359                error = perf_event_task_enable();
2360                break;
2361        case PR_GET_TIMERSLACK:
2362                if (current->timer_slack_ns > ULONG_MAX)
2363                        error = ULONG_MAX;
2364                else
2365                        error = current->timer_slack_ns;
2366                break;
2367        case PR_SET_TIMERSLACK:
2368                if (arg2 <= 0)
2369                        current->timer_slack_ns =
2370                                        current->default_timer_slack_ns;
2371                else
2372                        current->timer_slack_ns = arg2;
2373                break;
2374        case PR_MCE_KILL:
2375                if (arg4 | arg5)
2376                        return -EINVAL;
2377                switch (arg2) {
2378                case PR_MCE_KILL_CLEAR:
2379                        if (arg3 != 0)
2380                                return -EINVAL;
2381                        current->flags &= ~PF_MCE_PROCESS;
2382                        break;
2383                case PR_MCE_KILL_SET:
2384                        current->flags |= PF_MCE_PROCESS;
2385                        if (arg3 == PR_MCE_KILL_EARLY)
2386                                current->flags |= PF_MCE_EARLY;
2387                        else if (arg3 == PR_MCE_KILL_LATE)
2388                                current->flags &= ~PF_MCE_EARLY;
2389                        else if (arg3 == PR_MCE_KILL_DEFAULT)
2390                                current->flags &=
2391                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2392                        else
2393                                return -EINVAL;
2394                        break;
2395                default:
2396                        return -EINVAL;
2397                }
2398                break;
2399        case PR_MCE_KILL_GET:
2400                if (arg2 | arg3 | arg4 | arg5)
2401                        return -EINVAL;
2402                if (current->flags & PF_MCE_PROCESS)
2403                        error = (current->flags & PF_MCE_EARLY) ?
2404                                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2405                else
2406                        error = PR_MCE_KILL_DEFAULT;
2407                break;
2408        case PR_SET_MM:
2409                error = prctl_set_mm(arg2, arg3, arg4, arg5);
2410                break;
2411        case PR_GET_TID_ADDRESS:
2412                error = prctl_get_tid_address(me, (int __user **)arg2);
2413                break;
2414        case PR_SET_CHILD_SUBREAPER:
2415                me->signal->is_child_subreaper = !!arg2;
2416                if (!arg2)
2417                        break;
2418
2419                walk_process_tree(me, propagate_has_child_subreaper, NULL);
2420                break;
2421        case PR_GET_CHILD_SUBREAPER:
2422                error = put_user(me->signal->is_child_subreaper,
2423                                 (int __user *)arg2);
2424                break;
2425        case PR_SET_NO_NEW_PRIVS:
2426                if (arg2 != 1 || arg3 || arg4 || arg5)
2427                        return -EINVAL;
2428
2429                task_set_no_new_privs(current);
2430                break;
2431        case PR_GET_NO_NEW_PRIVS:
2432                if (arg2 || arg3 || arg4 || arg5)
2433                        return -EINVAL;
2434                return task_no_new_privs(current) ? 1 : 0;
2435        case PR_GET_THP_DISABLE:
2436                if (arg2 || arg3 || arg4 || arg5)
2437                        return -EINVAL;
2438                error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2439                break;
2440        case PR_SET_THP_DISABLE:
2441                if (arg3 || arg4 || arg5)
2442                        return -EINVAL;
2443                if (down_write_killable(&me->mm->mmap_sem))
2444                        return -EINTR;
2445                if (arg2)
2446                        set_bit(MMF_DISABLE_THP, &me->mm->flags);
2447                else
2448                        clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2449                up_write(&me->mm->mmap_sem);
2450                break;
2451        case PR_MPX_ENABLE_MANAGEMENT:
2452                if (arg2 || arg3 || arg4 || arg5)
2453                        return -EINVAL;
2454                error = MPX_ENABLE_MANAGEMENT();
2455                break;
2456        case PR_MPX_DISABLE_MANAGEMENT:
2457                if (arg2 || arg3 || arg4 || arg5)
2458                        return -EINVAL;
2459                error = MPX_DISABLE_MANAGEMENT();
2460                break;
2461        case PR_SET_FP_MODE:
2462                error = SET_FP_MODE(me, arg2);
2463                break;
2464        case PR_GET_FP_MODE:
2465                error = GET_FP_MODE(me);
2466                break;
2467        case PR_SVE_SET_VL:
2468                error = SVE_SET_VL(arg2);
2469                break;
2470        case PR_SVE_GET_VL:
2471                error = SVE_GET_VL();
2472                break;
2473        case PR_GET_SPECULATION_CTRL:
2474                if (arg3 || arg4 || arg5)
2475                        return -EINVAL;
2476                error = arch_prctl_spec_ctrl_get(me, arg2);
2477                break;
2478        case PR_SET_SPECULATION_CTRL:
2479                if (arg4 || arg5)
2480                        return -EINVAL;
2481                error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2482                break;
2483        case PR_PAC_RESET_KEYS:
2484                if (arg3 || arg4 || arg5)
2485                        return -EINVAL;
2486                error = PAC_RESET_KEYS(me, arg2);
2487                break;
2488        default:
2489                error = -EINVAL;
2490                break;
2491        }
2492        return error;
2493}
2494
2495SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2496                struct getcpu_cache __user *, unused)
2497{
2498        int err = 0;
2499        int cpu = raw_smp_processor_id();
2500
2501        if (cpup)
2502                err |= put_user(cpu, cpup);
2503        if (nodep)
2504                err |= put_user(cpu_to_node(cpu), nodep);
2505        return err ? -EFAULT : 0;
2506}
2507
2508/**
2509 * do_sysinfo - fill in sysinfo struct
2510 * @info: pointer to buffer to fill
2511 */
2512static int do_sysinfo(struct sysinfo *info)
2513{
2514        unsigned long mem_total, sav_total;
2515        unsigned int mem_unit, bitcount;
2516        struct timespec64 tp;
2517
2518        memset(info, 0, sizeof(struct sysinfo));
2519
2520        ktime_get_boottime_ts64(&tp);
2521        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2522
2523        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2524
2525        info->procs = nr_threads;
2526
2527        si_meminfo(info);
2528        si_swapinfo(info);
2529
2530        /*
2531         * If the sum of all the available memory (i.e. ram + swap)
2532         * is less than can be stored in a 32 bit unsigned long then
2533         * we can be binary compatible with 2.2.x kernels.  If not,
2534         * well, in that case 2.2.x was broken anyways...
2535         *
2536         *  -Erik Andersen <andersee@debian.org>
2537         */
2538
2539        mem_total = info->totalram + info->totalswap;
2540        if (mem_total < info->totalram || mem_total < info->totalswap)
2541                goto out;
2542        bitcount = 0;
2543        mem_unit = info->mem_unit;
2544        while (mem_unit > 1) {
2545                bitcount++;
2546                mem_unit >>= 1;
2547                sav_total = mem_total;
2548                mem_total <<= 1;
2549                if (mem_total < sav_total)
2550                        goto out;
2551        }
2552
2553        /*
2554         * If mem_total did not overflow, multiply all memory values by
2555         * info->mem_unit and set it to 1.  This leaves things compatible
2556         * with 2.2.x, and also retains compatibility with earlier 2.4.x
2557         * kernels...
2558         */
2559
2560        info->mem_unit = 1;
2561        info->totalram <<= bitcount;
2562        info->freeram <<= bitcount;
2563        info->sharedram <<= bitcount;
2564        info->bufferram <<= bitcount;
2565        info->totalswap <<= bitcount;
2566        info->freeswap <<= bitcount;
2567        info->totalhigh <<= bitcount;
2568        info->freehigh <<= bitcount;
2569
2570out:
2571        return 0;
2572}
2573
2574SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2575{
2576        struct sysinfo val;
2577
2578        do_sysinfo(&val);
2579
2580        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2581                return -EFAULT;
2582
2583        return 0;
2584}
2585
2586#ifdef CONFIG_COMPAT
2587struct compat_sysinfo {
2588        s32 uptime;
2589        u32 loads[3];
2590        u32 totalram;
2591        u32 freeram;
2592        u32 sharedram;
2593        u32 bufferram;
2594        u32 totalswap;
2595        u32 freeswap;
2596        u16 procs;
2597        u16 pad;
2598        u32 totalhigh;
2599        u32 freehigh;
2600        u32 mem_unit;
2601        char _f[20-2*sizeof(u32)-sizeof(int)];
2602};
2603
2604COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2605{
2606        struct sysinfo s;
2607
2608        do_sysinfo(&s);
2609
2610        /* Check to see if any memory value is too large for 32-bit and scale
2611         *  down if needed
2612         */
2613        if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2614                int bitcount = 0;
2615
2616                while (s.mem_unit < PAGE_SIZE) {
2617                        s.mem_unit <<= 1;
2618                        bitcount++;
2619                }
2620
2621                s.totalram >>= bitcount;
2622                s.freeram >>= bitcount;
2623                s.sharedram >>= bitcount;
2624                s.bufferram >>= bitcount;
2625                s.totalswap >>= bitcount;
2626                s.freeswap >>= bitcount;
2627                s.totalhigh >>= bitcount;
2628                s.freehigh >>= bitcount;
2629        }
2630
2631        if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2632            __put_user(s.uptime, &info->uptime) ||
2633            __put_user(s.loads[0], &info->loads[0]) ||
2634            __put_user(s.loads[1], &info->loads[1]) ||
2635            __put_user(s.loads[2], &info->loads[2]) ||
2636            __put_user(s.totalram, &info->totalram) ||
2637            __put_user(s.freeram, &info->freeram) ||
2638            __put_user(s.sharedram, &info->sharedram) ||
2639            __put_user(s.bufferram, &info->bufferram) ||
2640            __put_user(s.totalswap, &info->totalswap) ||
2641            __put_user(s.freeswap, &info->freeswap) ||
2642            __put_user(s.procs, &info->procs) ||
2643            __put_user(s.totalhigh, &info->totalhigh) ||
2644            __put_user(s.freehigh, &info->freehigh) ||
2645            __put_user(s.mem_unit, &info->mem_unit))
2646                return -EFAULT;
2647
2648        return 0;
2649}
2650#endif /* CONFIG_COMPAT */
2651