linux/kernel/time/posix-timers.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * 2002-10-15  Posix Clocks & timers
   4 *                           by George Anzinger george@mvista.com
   5 *                           Copyright (C) 2002 2003 by MontaVista Software.
   6 *
   7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
   8 *                           Copyright (C) 2004 Boris Hu
   9 *
  10 * These are all the functions necessary to implement POSIX clocks & timers
  11 */
  12#include <linux/mm.h>
  13#include <linux/interrupt.h>
  14#include <linux/slab.h>
  15#include <linux/time.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/task.h>
  18
  19#include <linux/uaccess.h>
  20#include <linux/list.h>
  21#include <linux/init.h>
  22#include <linux/compiler.h>
  23#include <linux/hash.h>
  24#include <linux/posix-clock.h>
  25#include <linux/posix-timers.h>
  26#include <linux/syscalls.h>
  27#include <linux/wait.h>
  28#include <linux/workqueue.h>
  29#include <linux/export.h>
  30#include <linux/hashtable.h>
  31#include <linux/compat.h>
  32#include <linux/nospec.h>
  33
  34#include "timekeeping.h"
  35#include "posix-timers.h"
  36
  37/*
  38 * Management arrays for POSIX timers. Timers are now kept in static hash table
  39 * with 512 entries.
  40 * Timer ids are allocated by local routine, which selects proper hash head by
  41 * key, constructed from current->signal address and per signal struct counter.
  42 * This keeps timer ids unique per process, but now they can intersect between
  43 * processes.
  44 */
  45
  46/*
  47 * Lets keep our timers in a slab cache :-)
  48 */
  49static struct kmem_cache *posix_timers_cache;
  50
  51static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  52static DEFINE_SPINLOCK(hash_lock);
  53
  54static const struct k_clock * const posix_clocks[];
  55static const struct k_clock *clockid_to_kclock(const clockid_t id);
  56static const struct k_clock clock_realtime, clock_monotonic;
  57
  58/*
  59 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  60 * SIGEV values.  Here we put out an error if this assumption fails.
  61 */
  62#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  63                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  64#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  65#endif
  66
  67/*
  68 * The timer ID is turned into a timer address by idr_find().
  69 * Verifying a valid ID consists of:
  70 *
  71 * a) checking that idr_find() returns other than -1.
  72 * b) checking that the timer id matches the one in the timer itself.
  73 * c) that the timer owner is in the callers thread group.
  74 */
  75
  76/*
  77 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  78 *          to implement others.  This structure defines the various
  79 *          clocks.
  80 *
  81 * RESOLUTION: Clock resolution is used to round up timer and interval
  82 *          times, NOT to report clock times, which are reported with as
  83 *          much resolution as the system can muster.  In some cases this
  84 *          resolution may depend on the underlying clock hardware and
  85 *          may not be quantifiable until run time, and only then is the
  86 *          necessary code is written.  The standard says we should say
  87 *          something about this issue in the documentation...
  88 *
  89 * FUNCTIONS: The CLOCKs structure defines possible functions to
  90 *          handle various clock functions.
  91 *
  92 *          The standard POSIX timer management code assumes the
  93 *          following: 1.) The k_itimer struct (sched.h) is used for
  94 *          the timer.  2.) The list, it_lock, it_clock, it_id and
  95 *          it_pid fields are not modified by timer code.
  96 *
  97 * Permissions: It is assumed that the clock_settime() function defined
  98 *          for each clock will take care of permission checks.  Some
  99 *          clocks may be set able by any user (i.e. local process
 100 *          clocks) others not.  Currently the only set able clock we
 101 *          have is CLOCK_REALTIME and its high res counter part, both of
 102 *          which we beg off on and pass to do_sys_settimeofday().
 103 */
 104static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 105
 106#define lock_timer(tid, flags)                                             \
 107({      struct k_itimer *__timr;                                           \
 108        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 109        __timr;                                                            \
 110})
 111
 112static int hash(struct signal_struct *sig, unsigned int nr)
 113{
 114        return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 115}
 116
 117static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 118                                            struct signal_struct *sig,
 119                                            timer_t id)
 120{
 121        struct k_itimer *timer;
 122
 123        hlist_for_each_entry_rcu(timer, head, t_hash) {
 124                if ((timer->it_signal == sig) && (timer->it_id == id))
 125                        return timer;
 126        }
 127        return NULL;
 128}
 129
 130static struct k_itimer *posix_timer_by_id(timer_t id)
 131{
 132        struct signal_struct *sig = current->signal;
 133        struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 134
 135        return __posix_timers_find(head, sig, id);
 136}
 137
 138static int posix_timer_add(struct k_itimer *timer)
 139{
 140        struct signal_struct *sig = current->signal;
 141        int first_free_id = sig->posix_timer_id;
 142        struct hlist_head *head;
 143        int ret = -ENOENT;
 144
 145        do {
 146                spin_lock(&hash_lock);
 147                head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 148                if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 149                        hlist_add_head_rcu(&timer->t_hash, head);
 150                        ret = sig->posix_timer_id;
 151                }
 152                if (++sig->posix_timer_id < 0)
 153                        sig->posix_timer_id = 0;
 154                if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 155                        /* Loop over all possible ids completed */
 156                        ret = -EAGAIN;
 157                spin_unlock(&hash_lock);
 158        } while (ret == -ENOENT);
 159        return ret;
 160}
 161
 162static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 163{
 164        spin_unlock_irqrestore(&timr->it_lock, flags);
 165}
 166
 167/* Get clock_realtime */
 168static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
 169{
 170        ktime_get_real_ts64(tp);
 171        return 0;
 172}
 173
 174/* Set clock_realtime */
 175static int posix_clock_realtime_set(const clockid_t which_clock,
 176                                    const struct timespec64 *tp)
 177{
 178        return do_sys_settimeofday64(tp, NULL);
 179}
 180
 181static int posix_clock_realtime_adj(const clockid_t which_clock,
 182                                    struct timex *t)
 183{
 184        return do_adjtimex(t);
 185}
 186
 187/*
 188 * Get monotonic time for posix timers
 189 */
 190static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
 191{
 192        ktime_get_ts64(tp);
 193        return 0;
 194}
 195
 196/*
 197 * Get monotonic-raw time for posix timers
 198 */
 199static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 200{
 201        ktime_get_raw_ts64(tp);
 202        return 0;
 203}
 204
 205
 206static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 207{
 208        ktime_get_coarse_real_ts64(tp);
 209        return 0;
 210}
 211
 212static int posix_get_monotonic_coarse(clockid_t which_clock,
 213                                                struct timespec64 *tp)
 214{
 215        ktime_get_coarse_ts64(tp);
 216        return 0;
 217}
 218
 219static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 220{
 221        *tp = ktime_to_timespec64(KTIME_LOW_RES);
 222        return 0;
 223}
 224
 225static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
 226{
 227        ktime_get_boottime_ts64(tp);
 228        return 0;
 229}
 230
 231static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
 232{
 233        ktime_get_clocktai_ts64(tp);
 234        return 0;
 235}
 236
 237static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 238{
 239        tp->tv_sec = 0;
 240        tp->tv_nsec = hrtimer_resolution;
 241        return 0;
 242}
 243
 244/*
 245 * Initialize everything, well, just everything in Posix clocks/timers ;)
 246 */
 247static __init int init_posix_timers(void)
 248{
 249        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 250                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 251                                        NULL);
 252        return 0;
 253}
 254__initcall(init_posix_timers);
 255
 256/*
 257 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 258 * are of type int. Clamp the overrun value to INT_MAX
 259 */
 260static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 261{
 262        s64 sum = timr->it_overrun_last + (s64)baseval;
 263
 264        return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 265}
 266
 267static void common_hrtimer_rearm(struct k_itimer *timr)
 268{
 269        struct hrtimer *timer = &timr->it.real.timer;
 270
 271        timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 272                                            timr->it_interval);
 273        hrtimer_restart(timer);
 274}
 275
 276/*
 277 * This function is exported for use by the signal deliver code.  It is
 278 * called just prior to the info block being released and passes that
 279 * block to us.  It's function is to update the overrun entry AND to
 280 * restart the timer.  It should only be called if the timer is to be
 281 * restarted (i.e. we have flagged this in the sys_private entry of the
 282 * info block).
 283 *
 284 * To protect against the timer going away while the interrupt is queued,
 285 * we require that the it_requeue_pending flag be set.
 286 */
 287void posixtimer_rearm(struct kernel_siginfo *info)
 288{
 289        struct k_itimer *timr;
 290        unsigned long flags;
 291
 292        timr = lock_timer(info->si_tid, &flags);
 293        if (!timr)
 294                return;
 295
 296        if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 297                timr->kclock->timer_rearm(timr);
 298
 299                timr->it_active = 1;
 300                timr->it_overrun_last = timr->it_overrun;
 301                timr->it_overrun = -1LL;
 302                ++timr->it_requeue_pending;
 303
 304                info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 305        }
 306
 307        unlock_timer(timr, flags);
 308}
 309
 310int posix_timer_event(struct k_itimer *timr, int si_private)
 311{
 312        enum pid_type type;
 313        int ret = -1;
 314        /*
 315         * FIXME: if ->sigq is queued we can race with
 316         * dequeue_signal()->posixtimer_rearm().
 317         *
 318         * If dequeue_signal() sees the "right" value of
 319         * si_sys_private it calls posixtimer_rearm().
 320         * We re-queue ->sigq and drop ->it_lock().
 321         * posixtimer_rearm() locks the timer
 322         * and re-schedules it while ->sigq is pending.
 323         * Not really bad, but not that we want.
 324         */
 325        timr->sigq->info.si_sys_private = si_private;
 326
 327        type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 328        ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 329        /* If we failed to send the signal the timer stops. */
 330        return ret > 0;
 331}
 332
 333/*
 334 * This function gets called when a POSIX.1b interval timer expires.  It
 335 * is used as a callback from the kernel internal timer.  The
 336 * run_timer_list code ALWAYS calls with interrupts on.
 337
 338 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 339 */
 340static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 341{
 342        struct k_itimer *timr;
 343        unsigned long flags;
 344        int si_private = 0;
 345        enum hrtimer_restart ret = HRTIMER_NORESTART;
 346
 347        timr = container_of(timer, struct k_itimer, it.real.timer);
 348        spin_lock_irqsave(&timr->it_lock, flags);
 349
 350        timr->it_active = 0;
 351        if (timr->it_interval != 0)
 352                si_private = ++timr->it_requeue_pending;
 353
 354        if (posix_timer_event(timr, si_private)) {
 355                /*
 356                 * signal was not sent because of sig_ignor
 357                 * we will not get a call back to restart it AND
 358                 * it should be restarted.
 359                 */
 360                if (timr->it_interval != 0) {
 361                        ktime_t now = hrtimer_cb_get_time(timer);
 362
 363                        /*
 364                         * FIXME: What we really want, is to stop this
 365                         * timer completely and restart it in case the
 366                         * SIG_IGN is removed. This is a non trivial
 367                         * change which involves sighand locking
 368                         * (sigh !), which we don't want to do late in
 369                         * the release cycle.
 370                         *
 371                         * For now we just let timers with an interval
 372                         * less than a jiffie expire every jiffie to
 373                         * avoid softirq starvation in case of SIG_IGN
 374                         * and a very small interval, which would put
 375                         * the timer right back on the softirq pending
 376                         * list. By moving now ahead of time we trick
 377                         * hrtimer_forward() to expire the timer
 378                         * later, while we still maintain the overrun
 379                         * accuracy, but have some inconsistency in
 380                         * the timer_gettime() case. This is at least
 381                         * better than a starved softirq. A more
 382                         * complex fix which solves also another related
 383                         * inconsistency is already in the pipeline.
 384                         */
 385#ifdef CONFIG_HIGH_RES_TIMERS
 386                        {
 387                                ktime_t kj = NSEC_PER_SEC / HZ;
 388
 389                                if (timr->it_interval < kj)
 390                                        now = ktime_add(now, kj);
 391                        }
 392#endif
 393                        timr->it_overrun += hrtimer_forward(timer, now,
 394                                                            timr->it_interval);
 395                        ret = HRTIMER_RESTART;
 396                        ++timr->it_requeue_pending;
 397                        timr->it_active = 1;
 398                }
 399        }
 400
 401        unlock_timer(timr, flags);
 402        return ret;
 403}
 404
 405static struct pid *good_sigevent(sigevent_t * event)
 406{
 407        struct pid *pid = task_tgid(current);
 408        struct task_struct *rtn;
 409
 410        switch (event->sigev_notify) {
 411        case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 412                pid = find_vpid(event->sigev_notify_thread_id);
 413                rtn = pid_task(pid, PIDTYPE_PID);
 414                if (!rtn || !same_thread_group(rtn, current))
 415                        return NULL;
 416                /* FALLTHRU */
 417        case SIGEV_SIGNAL:
 418        case SIGEV_THREAD:
 419                if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 420                        return NULL;
 421                /* FALLTHRU */
 422        case SIGEV_NONE:
 423                return pid;
 424        default:
 425                return NULL;
 426        }
 427}
 428
 429static struct k_itimer * alloc_posix_timer(void)
 430{
 431        struct k_itimer *tmr;
 432        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 433        if (!tmr)
 434                return tmr;
 435        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 436                kmem_cache_free(posix_timers_cache, tmr);
 437                return NULL;
 438        }
 439        clear_siginfo(&tmr->sigq->info);
 440        return tmr;
 441}
 442
 443static void k_itimer_rcu_free(struct rcu_head *head)
 444{
 445        struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 446
 447        kmem_cache_free(posix_timers_cache, tmr);
 448}
 449
 450#define IT_ID_SET       1
 451#define IT_ID_NOT_SET   0
 452static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 453{
 454        if (it_id_set) {
 455                unsigned long flags;
 456                spin_lock_irqsave(&hash_lock, flags);
 457                hlist_del_rcu(&tmr->t_hash);
 458                spin_unlock_irqrestore(&hash_lock, flags);
 459        }
 460        put_pid(tmr->it_pid);
 461        sigqueue_free(tmr->sigq);
 462        call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 463}
 464
 465static int common_timer_create(struct k_itimer *new_timer)
 466{
 467        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 468        return 0;
 469}
 470
 471/* Create a POSIX.1b interval timer. */
 472static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 473                           timer_t __user *created_timer_id)
 474{
 475        const struct k_clock *kc = clockid_to_kclock(which_clock);
 476        struct k_itimer *new_timer;
 477        int error, new_timer_id;
 478        int it_id_set = IT_ID_NOT_SET;
 479
 480        if (!kc)
 481                return -EINVAL;
 482        if (!kc->timer_create)
 483                return -EOPNOTSUPP;
 484
 485        new_timer = alloc_posix_timer();
 486        if (unlikely(!new_timer))
 487                return -EAGAIN;
 488
 489        spin_lock_init(&new_timer->it_lock);
 490        new_timer_id = posix_timer_add(new_timer);
 491        if (new_timer_id < 0) {
 492                error = new_timer_id;
 493                goto out;
 494        }
 495
 496        it_id_set = IT_ID_SET;
 497        new_timer->it_id = (timer_t) new_timer_id;
 498        new_timer->it_clock = which_clock;
 499        new_timer->kclock = kc;
 500        new_timer->it_overrun = -1LL;
 501
 502        if (event) {
 503                rcu_read_lock();
 504                new_timer->it_pid = get_pid(good_sigevent(event));
 505                rcu_read_unlock();
 506                if (!new_timer->it_pid) {
 507                        error = -EINVAL;
 508                        goto out;
 509                }
 510                new_timer->it_sigev_notify     = event->sigev_notify;
 511                new_timer->sigq->info.si_signo = event->sigev_signo;
 512                new_timer->sigq->info.si_value = event->sigev_value;
 513        } else {
 514                new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 515                new_timer->sigq->info.si_signo = SIGALRM;
 516                memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 517                new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 518                new_timer->it_pid = get_pid(task_tgid(current));
 519        }
 520
 521        new_timer->sigq->info.si_tid   = new_timer->it_id;
 522        new_timer->sigq->info.si_code  = SI_TIMER;
 523
 524        if (copy_to_user(created_timer_id,
 525                         &new_timer_id, sizeof (new_timer_id))) {
 526                error = -EFAULT;
 527                goto out;
 528        }
 529
 530        error = kc->timer_create(new_timer);
 531        if (error)
 532                goto out;
 533
 534        spin_lock_irq(&current->sighand->siglock);
 535        new_timer->it_signal = current->signal;
 536        list_add(&new_timer->list, &current->signal->posix_timers);
 537        spin_unlock_irq(&current->sighand->siglock);
 538
 539        return 0;
 540        /*
 541         * In the case of the timer belonging to another task, after
 542         * the task is unlocked, the timer is owned by the other task
 543         * and may cease to exist at any time.  Don't use or modify
 544         * new_timer after the unlock call.
 545         */
 546out:
 547        release_posix_timer(new_timer, it_id_set);
 548        return error;
 549}
 550
 551SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 552                struct sigevent __user *, timer_event_spec,
 553                timer_t __user *, created_timer_id)
 554{
 555        if (timer_event_spec) {
 556                sigevent_t event;
 557
 558                if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 559                        return -EFAULT;
 560                return do_timer_create(which_clock, &event, created_timer_id);
 561        }
 562        return do_timer_create(which_clock, NULL, created_timer_id);
 563}
 564
 565#ifdef CONFIG_COMPAT
 566COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 567                       struct compat_sigevent __user *, timer_event_spec,
 568                       timer_t __user *, created_timer_id)
 569{
 570        if (timer_event_spec) {
 571                sigevent_t event;
 572
 573                if (get_compat_sigevent(&event, timer_event_spec))
 574                        return -EFAULT;
 575                return do_timer_create(which_clock, &event, created_timer_id);
 576        }
 577        return do_timer_create(which_clock, NULL, created_timer_id);
 578}
 579#endif
 580
 581/*
 582 * Locking issues: We need to protect the result of the id look up until
 583 * we get the timer locked down so it is not deleted under us.  The
 584 * removal is done under the idr spinlock so we use that here to bridge
 585 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 586 * be release with out holding the timer lock.
 587 */
 588static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 589{
 590        struct k_itimer *timr;
 591
 592        /*
 593         * timer_t could be any type >= int and we want to make sure any
 594         * @timer_id outside positive int range fails lookup.
 595         */
 596        if ((unsigned long long)timer_id > INT_MAX)
 597                return NULL;
 598
 599        rcu_read_lock();
 600        timr = posix_timer_by_id(timer_id);
 601        if (timr) {
 602                spin_lock_irqsave(&timr->it_lock, *flags);
 603                if (timr->it_signal == current->signal) {
 604                        rcu_read_unlock();
 605                        return timr;
 606                }
 607                spin_unlock_irqrestore(&timr->it_lock, *flags);
 608        }
 609        rcu_read_unlock();
 610
 611        return NULL;
 612}
 613
 614static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 615{
 616        struct hrtimer *timer = &timr->it.real.timer;
 617
 618        return __hrtimer_expires_remaining_adjusted(timer, now);
 619}
 620
 621static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 622{
 623        struct hrtimer *timer = &timr->it.real.timer;
 624
 625        return hrtimer_forward(timer, now, timr->it_interval);
 626}
 627
 628/*
 629 * Get the time remaining on a POSIX.1b interval timer.  This function
 630 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 631 * mess with irq.
 632 *
 633 * We have a couple of messes to clean up here.  First there is the case
 634 * of a timer that has a requeue pending.  These timers should appear to
 635 * be in the timer list with an expiry as if we were to requeue them
 636 * now.
 637 *
 638 * The second issue is the SIGEV_NONE timer which may be active but is
 639 * not really ever put in the timer list (to save system resources).
 640 * This timer may be expired, and if so, we will do it here.  Otherwise
 641 * it is the same as a requeue pending timer WRT to what we should
 642 * report.
 643 */
 644void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 645{
 646        const struct k_clock *kc = timr->kclock;
 647        ktime_t now, remaining, iv;
 648        struct timespec64 ts64;
 649        bool sig_none;
 650
 651        sig_none = timr->it_sigev_notify == SIGEV_NONE;
 652        iv = timr->it_interval;
 653
 654        /* interval timer ? */
 655        if (iv) {
 656                cur_setting->it_interval = ktime_to_timespec64(iv);
 657        } else if (!timr->it_active) {
 658                /*
 659                 * SIGEV_NONE oneshot timers are never queued. Check them
 660                 * below.
 661                 */
 662                if (!sig_none)
 663                        return;
 664        }
 665
 666        /*
 667         * The timespec64 based conversion is suboptimal, but it's not
 668         * worth to implement yet another callback.
 669         */
 670        kc->clock_get(timr->it_clock, &ts64);
 671        now = timespec64_to_ktime(ts64);
 672
 673        /*
 674         * When a requeue is pending or this is a SIGEV_NONE timer move the
 675         * expiry time forward by intervals, so expiry is > now.
 676         */
 677        if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 678                timr->it_overrun += kc->timer_forward(timr, now);
 679
 680        remaining = kc->timer_remaining(timr, now);
 681        /* Return 0 only, when the timer is expired and not pending */
 682        if (remaining <= 0) {
 683                /*
 684                 * A single shot SIGEV_NONE timer must return 0, when
 685                 * it is expired !
 686                 */
 687                if (!sig_none)
 688                        cur_setting->it_value.tv_nsec = 1;
 689        } else {
 690                cur_setting->it_value = ktime_to_timespec64(remaining);
 691        }
 692}
 693
 694/* Get the time remaining on a POSIX.1b interval timer. */
 695static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 696{
 697        struct k_itimer *timr;
 698        const struct k_clock *kc;
 699        unsigned long flags;
 700        int ret = 0;
 701
 702        timr = lock_timer(timer_id, &flags);
 703        if (!timr)
 704                return -EINVAL;
 705
 706        memset(setting, 0, sizeof(*setting));
 707        kc = timr->kclock;
 708        if (WARN_ON_ONCE(!kc || !kc->timer_get))
 709                ret = -EINVAL;
 710        else
 711                kc->timer_get(timr, setting);
 712
 713        unlock_timer(timr, flags);
 714        return ret;
 715}
 716
 717/* Get the time remaining on a POSIX.1b interval timer. */
 718SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 719                struct __kernel_itimerspec __user *, setting)
 720{
 721        struct itimerspec64 cur_setting;
 722
 723        int ret = do_timer_gettime(timer_id, &cur_setting);
 724        if (!ret) {
 725                if (put_itimerspec64(&cur_setting, setting))
 726                        ret = -EFAULT;
 727        }
 728        return ret;
 729}
 730
 731#ifdef CONFIG_COMPAT_32BIT_TIME
 732
 733COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 734                       struct old_itimerspec32 __user *, setting)
 735{
 736        struct itimerspec64 cur_setting;
 737
 738        int ret = do_timer_gettime(timer_id, &cur_setting);
 739        if (!ret) {
 740                if (put_old_itimerspec32(&cur_setting, setting))
 741                        ret = -EFAULT;
 742        }
 743        return ret;
 744}
 745
 746#endif
 747
 748/*
 749 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 750 * be the overrun of the timer last delivered.  At the same time we are
 751 * accumulating overruns on the next timer.  The overrun is frozen when
 752 * the signal is delivered, either at the notify time (if the info block
 753 * is not queued) or at the actual delivery time (as we are informed by
 754 * the call back to posixtimer_rearm().  So all we need to do is
 755 * to pick up the frozen overrun.
 756 */
 757SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 758{
 759        struct k_itimer *timr;
 760        int overrun;
 761        unsigned long flags;
 762
 763        timr = lock_timer(timer_id, &flags);
 764        if (!timr)
 765                return -EINVAL;
 766
 767        overrun = timer_overrun_to_int(timr, 0);
 768        unlock_timer(timr, flags);
 769
 770        return overrun;
 771}
 772
 773static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 774                               bool absolute, bool sigev_none)
 775{
 776        struct hrtimer *timer = &timr->it.real.timer;
 777        enum hrtimer_mode mode;
 778
 779        mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 780        /*
 781         * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 782         * clock modifications, so they become CLOCK_MONOTONIC based under the
 783         * hood. See hrtimer_init(). Update timr->kclock, so the generic
 784         * functions which use timr->kclock->clock_get() work.
 785         *
 786         * Note: it_clock stays unmodified, because the next timer_set() might
 787         * use ABSTIME, so it needs to switch back.
 788         */
 789        if (timr->it_clock == CLOCK_REALTIME)
 790                timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 791
 792        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 793        timr->it.real.timer.function = posix_timer_fn;
 794
 795        if (!absolute)
 796                expires = ktime_add_safe(expires, timer->base->get_time());
 797        hrtimer_set_expires(timer, expires);
 798
 799        if (!sigev_none)
 800                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 801}
 802
 803static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 804{
 805        return hrtimer_try_to_cancel(&timr->it.real.timer);
 806}
 807
 808/* Set a POSIX.1b interval timer. */
 809int common_timer_set(struct k_itimer *timr, int flags,
 810                     struct itimerspec64 *new_setting,
 811                     struct itimerspec64 *old_setting)
 812{
 813        const struct k_clock *kc = timr->kclock;
 814        bool sigev_none;
 815        ktime_t expires;
 816
 817        if (old_setting)
 818                common_timer_get(timr, old_setting);
 819
 820        /* Prevent rearming by clearing the interval */
 821        timr->it_interval = 0;
 822        /*
 823         * Careful here. On SMP systems the timer expiry function could be
 824         * active and spinning on timr->it_lock.
 825         */
 826        if (kc->timer_try_to_cancel(timr) < 0)
 827                return TIMER_RETRY;
 828
 829        timr->it_active = 0;
 830        timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 831                ~REQUEUE_PENDING;
 832        timr->it_overrun_last = 0;
 833
 834        /* Switch off the timer when it_value is zero */
 835        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 836                return 0;
 837
 838        timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 839        expires = timespec64_to_ktime(new_setting->it_value);
 840        sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 841
 842        kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 843        timr->it_active = !sigev_none;
 844        return 0;
 845}
 846
 847static int do_timer_settime(timer_t timer_id, int flags,
 848                            struct itimerspec64 *new_spec64,
 849                            struct itimerspec64 *old_spec64)
 850{
 851        const struct k_clock *kc;
 852        struct k_itimer *timr;
 853        unsigned long flag;
 854        int error = 0;
 855
 856        if (!timespec64_valid(&new_spec64->it_interval) ||
 857            !timespec64_valid(&new_spec64->it_value))
 858                return -EINVAL;
 859
 860        if (old_spec64)
 861                memset(old_spec64, 0, sizeof(*old_spec64));
 862retry:
 863        timr = lock_timer(timer_id, &flag);
 864        if (!timr)
 865                return -EINVAL;
 866
 867        kc = timr->kclock;
 868        if (WARN_ON_ONCE(!kc || !kc->timer_set))
 869                error = -EINVAL;
 870        else
 871                error = kc->timer_set(timr, flags, new_spec64, old_spec64);
 872
 873        unlock_timer(timr, flag);
 874        if (error == TIMER_RETRY) {
 875                old_spec64 = NULL;      // We already got the old time...
 876                goto retry;
 877        }
 878
 879        return error;
 880}
 881
 882/* Set a POSIX.1b interval timer */
 883SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 884                const struct __kernel_itimerspec __user *, new_setting,
 885                struct __kernel_itimerspec __user *, old_setting)
 886{
 887        struct itimerspec64 new_spec, old_spec;
 888        struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
 889        int error = 0;
 890
 891        if (!new_setting)
 892                return -EINVAL;
 893
 894        if (get_itimerspec64(&new_spec, new_setting))
 895                return -EFAULT;
 896
 897        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 898        if (!error && old_setting) {
 899                if (put_itimerspec64(&old_spec, old_setting))
 900                        error = -EFAULT;
 901        }
 902        return error;
 903}
 904
 905#ifdef CONFIG_COMPAT_32BIT_TIME
 906COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 907                       struct old_itimerspec32 __user *, new,
 908                       struct old_itimerspec32 __user *, old)
 909{
 910        struct itimerspec64 new_spec, old_spec;
 911        struct itimerspec64 *rtn = old ? &old_spec : NULL;
 912        int error = 0;
 913
 914        if (!new)
 915                return -EINVAL;
 916        if (get_old_itimerspec32(&new_spec, new))
 917                return -EFAULT;
 918
 919        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 920        if (!error && old) {
 921                if (put_old_itimerspec32(&old_spec, old))
 922                        error = -EFAULT;
 923        }
 924        return error;
 925}
 926#endif
 927
 928int common_timer_del(struct k_itimer *timer)
 929{
 930        const struct k_clock *kc = timer->kclock;
 931
 932        timer->it_interval = 0;
 933        if (kc->timer_try_to_cancel(timer) < 0)
 934                return TIMER_RETRY;
 935        timer->it_active = 0;
 936        return 0;
 937}
 938
 939static inline int timer_delete_hook(struct k_itimer *timer)
 940{
 941        const struct k_clock *kc = timer->kclock;
 942
 943        if (WARN_ON_ONCE(!kc || !kc->timer_del))
 944                return -EINVAL;
 945        return kc->timer_del(timer);
 946}
 947
 948/* Delete a POSIX.1b interval timer. */
 949SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 950{
 951        struct k_itimer *timer;
 952        unsigned long flags;
 953
 954retry_delete:
 955        timer = lock_timer(timer_id, &flags);
 956        if (!timer)
 957                return -EINVAL;
 958
 959        if (timer_delete_hook(timer) == TIMER_RETRY) {
 960                unlock_timer(timer, flags);
 961                goto retry_delete;
 962        }
 963
 964        spin_lock(&current->sighand->siglock);
 965        list_del(&timer->list);
 966        spin_unlock(&current->sighand->siglock);
 967        /*
 968         * This keeps any tasks waiting on the spin lock from thinking
 969         * they got something (see the lock code above).
 970         */
 971        timer->it_signal = NULL;
 972
 973        unlock_timer(timer, flags);
 974        release_posix_timer(timer, IT_ID_SET);
 975        return 0;
 976}
 977
 978/*
 979 * return timer owned by the process, used by exit_itimers
 980 */
 981static void itimer_delete(struct k_itimer *timer)
 982{
 983        unsigned long flags;
 984
 985retry_delete:
 986        spin_lock_irqsave(&timer->it_lock, flags);
 987
 988        if (timer_delete_hook(timer) == TIMER_RETRY) {
 989                unlock_timer(timer, flags);
 990                goto retry_delete;
 991        }
 992        list_del(&timer->list);
 993        /*
 994         * This keeps any tasks waiting on the spin lock from thinking
 995         * they got something (see the lock code above).
 996         */
 997        timer->it_signal = NULL;
 998
 999        unlock_timer(timer, flags);
1000        release_posix_timer(timer, IT_ID_SET);
1001}
1002
1003/*
1004 * This is called by do_exit or de_thread, only when there are no more
1005 * references to the shared signal_struct.
1006 */
1007void exit_itimers(struct signal_struct *sig)
1008{
1009        struct k_itimer *tmr;
1010
1011        while (!list_empty(&sig->posix_timers)) {
1012                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1013                itimer_delete(tmr);
1014        }
1015}
1016
1017SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1018                const struct __kernel_timespec __user *, tp)
1019{
1020        const struct k_clock *kc = clockid_to_kclock(which_clock);
1021        struct timespec64 new_tp;
1022
1023        if (!kc || !kc->clock_set)
1024                return -EINVAL;
1025
1026        if (get_timespec64(&new_tp, tp))
1027                return -EFAULT;
1028
1029        return kc->clock_set(which_clock, &new_tp);
1030}
1031
1032SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1033                struct __kernel_timespec __user *, tp)
1034{
1035        const struct k_clock *kc = clockid_to_kclock(which_clock);
1036        struct timespec64 kernel_tp;
1037        int error;
1038
1039        if (!kc)
1040                return -EINVAL;
1041
1042        error = kc->clock_get(which_clock, &kernel_tp);
1043
1044        if (!error && put_timespec64(&kernel_tp, tp))
1045                error = -EFAULT;
1046
1047        return error;
1048}
1049
1050SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1051                struct timex __user *, utx)
1052{
1053        const struct k_clock *kc = clockid_to_kclock(which_clock);
1054        struct timex ktx;
1055        int err;
1056
1057        if (!kc)
1058                return -EINVAL;
1059        if (!kc->clock_adj)
1060                return -EOPNOTSUPP;
1061
1062        if (copy_from_user(&ktx, utx, sizeof(ktx)))
1063                return -EFAULT;
1064
1065        err = kc->clock_adj(which_clock, &ktx);
1066
1067        if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1068                return -EFAULT;
1069
1070        return err;
1071}
1072
1073SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1074                struct __kernel_timespec __user *, tp)
1075{
1076        const struct k_clock *kc = clockid_to_kclock(which_clock);
1077        struct timespec64 rtn_tp;
1078        int error;
1079
1080        if (!kc)
1081                return -EINVAL;
1082
1083        error = kc->clock_getres(which_clock, &rtn_tp);
1084
1085        if (!error && tp && put_timespec64(&rtn_tp, tp))
1086                error = -EFAULT;
1087
1088        return error;
1089}
1090
1091#ifdef CONFIG_COMPAT_32BIT_TIME
1092
1093COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1094                       struct old_timespec32 __user *, tp)
1095{
1096        const struct k_clock *kc = clockid_to_kclock(which_clock);
1097        struct timespec64 ts;
1098
1099        if (!kc || !kc->clock_set)
1100                return -EINVAL;
1101
1102        if (get_old_timespec32(&ts, tp))
1103                return -EFAULT;
1104
1105        return kc->clock_set(which_clock, &ts);
1106}
1107
1108COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1109                       struct old_timespec32 __user *, tp)
1110{
1111        const struct k_clock *kc = clockid_to_kclock(which_clock);
1112        struct timespec64 ts;
1113        int err;
1114
1115        if (!kc)
1116                return -EINVAL;
1117
1118        err = kc->clock_get(which_clock, &ts);
1119
1120        if (!err && put_old_timespec32(&ts, tp))
1121                err = -EFAULT;
1122
1123        return err;
1124}
1125
1126#endif
1127
1128#ifdef CONFIG_COMPAT
1129
1130COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1131                       struct compat_timex __user *, utp)
1132{
1133        const struct k_clock *kc = clockid_to_kclock(which_clock);
1134        struct timex ktx;
1135        int err;
1136
1137        if (!kc)
1138                return -EINVAL;
1139        if (!kc->clock_adj)
1140                return -EOPNOTSUPP;
1141
1142        err = compat_get_timex(&ktx, utp);
1143        if (err)
1144                return err;
1145
1146        err = kc->clock_adj(which_clock, &ktx);
1147
1148        if (err >= 0)
1149                err = compat_put_timex(utp, &ktx);
1150
1151        return err;
1152}
1153
1154#endif
1155
1156#ifdef CONFIG_COMPAT_32BIT_TIME
1157
1158COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1159                       struct old_timespec32 __user *, tp)
1160{
1161        const struct k_clock *kc = clockid_to_kclock(which_clock);
1162        struct timespec64 ts;
1163        int err;
1164
1165        if (!kc)
1166                return -EINVAL;
1167
1168        err = kc->clock_getres(which_clock, &ts);
1169        if (!err && tp && put_old_timespec32(&ts, tp))
1170                return -EFAULT;
1171
1172        return err;
1173}
1174
1175#endif
1176
1177/*
1178 * nanosleep for monotonic and realtime clocks
1179 */
1180static int common_nsleep(const clockid_t which_clock, int flags,
1181                         const struct timespec64 *rqtp)
1182{
1183        return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1184                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1185                                 which_clock);
1186}
1187
1188SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1189                const struct __kernel_timespec __user *, rqtp,
1190                struct __kernel_timespec __user *, rmtp)
1191{
1192        const struct k_clock *kc = clockid_to_kclock(which_clock);
1193        struct timespec64 t;
1194
1195        if (!kc)
1196                return -EINVAL;
1197        if (!kc->nsleep)
1198                return -EOPNOTSUPP;
1199
1200        if (get_timespec64(&t, rqtp))
1201                return -EFAULT;
1202
1203        if (!timespec64_valid(&t))
1204                return -EINVAL;
1205        if (flags & TIMER_ABSTIME)
1206                rmtp = NULL;
1207        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1208        current->restart_block.nanosleep.rmtp = rmtp;
1209
1210        return kc->nsleep(which_clock, flags, &t);
1211}
1212
1213#ifdef CONFIG_COMPAT_32BIT_TIME
1214
1215COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1216                       struct old_timespec32 __user *, rqtp,
1217                       struct old_timespec32 __user *, rmtp)
1218{
1219        const struct k_clock *kc = clockid_to_kclock(which_clock);
1220        struct timespec64 t;
1221
1222        if (!kc)
1223                return -EINVAL;
1224        if (!kc->nsleep)
1225                return -EOPNOTSUPP;
1226
1227        if (get_old_timespec32(&t, rqtp))
1228                return -EFAULT;
1229
1230        if (!timespec64_valid(&t))
1231                return -EINVAL;
1232        if (flags & TIMER_ABSTIME)
1233                rmtp = NULL;
1234        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1235        current->restart_block.nanosleep.compat_rmtp = rmtp;
1236
1237        return kc->nsleep(which_clock, flags, &t);
1238}
1239
1240#endif
1241
1242static const struct k_clock clock_realtime = {
1243        .clock_getres           = posix_get_hrtimer_res,
1244        .clock_get              = posix_clock_realtime_get,
1245        .clock_set              = posix_clock_realtime_set,
1246        .clock_adj              = posix_clock_realtime_adj,
1247        .nsleep                 = common_nsleep,
1248        .timer_create           = common_timer_create,
1249        .timer_set              = common_timer_set,
1250        .timer_get              = common_timer_get,
1251        .timer_del              = common_timer_del,
1252        .timer_rearm            = common_hrtimer_rearm,
1253        .timer_forward          = common_hrtimer_forward,
1254        .timer_remaining        = common_hrtimer_remaining,
1255        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1256        .timer_arm              = common_hrtimer_arm,
1257};
1258
1259static const struct k_clock clock_monotonic = {
1260        .clock_getres           = posix_get_hrtimer_res,
1261        .clock_get              = posix_ktime_get_ts,
1262        .nsleep                 = common_nsleep,
1263        .timer_create           = common_timer_create,
1264        .timer_set              = common_timer_set,
1265        .timer_get              = common_timer_get,
1266        .timer_del              = common_timer_del,
1267        .timer_rearm            = common_hrtimer_rearm,
1268        .timer_forward          = common_hrtimer_forward,
1269        .timer_remaining        = common_hrtimer_remaining,
1270        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1271        .timer_arm              = common_hrtimer_arm,
1272};
1273
1274static const struct k_clock clock_monotonic_raw = {
1275        .clock_getres           = posix_get_hrtimer_res,
1276        .clock_get              = posix_get_monotonic_raw,
1277};
1278
1279static const struct k_clock clock_realtime_coarse = {
1280        .clock_getres           = posix_get_coarse_res,
1281        .clock_get              = posix_get_realtime_coarse,
1282};
1283
1284static const struct k_clock clock_monotonic_coarse = {
1285        .clock_getres           = posix_get_coarse_res,
1286        .clock_get              = posix_get_monotonic_coarse,
1287};
1288
1289static const struct k_clock clock_tai = {
1290        .clock_getres           = posix_get_hrtimer_res,
1291        .clock_get              = posix_get_tai,
1292        .nsleep                 = common_nsleep,
1293        .timer_create           = common_timer_create,
1294        .timer_set              = common_timer_set,
1295        .timer_get              = common_timer_get,
1296        .timer_del              = common_timer_del,
1297        .timer_rearm            = common_hrtimer_rearm,
1298        .timer_forward          = common_hrtimer_forward,
1299        .timer_remaining        = common_hrtimer_remaining,
1300        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1301        .timer_arm              = common_hrtimer_arm,
1302};
1303
1304static const struct k_clock clock_boottime = {
1305        .clock_getres           = posix_get_hrtimer_res,
1306        .clock_get              = posix_get_boottime,
1307        .nsleep                 = common_nsleep,
1308        .timer_create           = common_timer_create,
1309        .timer_set              = common_timer_set,
1310        .timer_get              = common_timer_get,
1311        .timer_del              = common_timer_del,
1312        .timer_rearm            = common_hrtimer_rearm,
1313        .timer_forward          = common_hrtimer_forward,
1314        .timer_remaining        = common_hrtimer_remaining,
1315        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1316        .timer_arm              = common_hrtimer_arm,
1317};
1318
1319static const struct k_clock * const posix_clocks[] = {
1320        [CLOCK_REALTIME]                = &clock_realtime,
1321        [CLOCK_MONOTONIC]               = &clock_monotonic,
1322        [CLOCK_PROCESS_CPUTIME_ID]      = &clock_process,
1323        [CLOCK_THREAD_CPUTIME_ID]       = &clock_thread,
1324        [CLOCK_MONOTONIC_RAW]           = &clock_monotonic_raw,
1325        [CLOCK_REALTIME_COARSE]         = &clock_realtime_coarse,
1326        [CLOCK_MONOTONIC_COARSE]        = &clock_monotonic_coarse,
1327        [CLOCK_BOOTTIME]                = &clock_boottime,
1328        [CLOCK_REALTIME_ALARM]          = &alarm_clock,
1329        [CLOCK_BOOTTIME_ALARM]          = &alarm_clock,
1330        [CLOCK_TAI]                     = &clock_tai,
1331};
1332
1333static const struct k_clock *clockid_to_kclock(const clockid_t id)
1334{
1335        clockid_t idx = id;
1336
1337        if (id < 0) {
1338                return (id & CLOCKFD_MASK) == CLOCKFD ?
1339                        &clock_posix_dynamic : &clock_posix_cpu;
1340        }
1341
1342        if (id >= ARRAY_SIZE(posix_clocks))
1343                return NULL;
1344
1345        return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1346}
1347