linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/uaccess.h>
  15#include <linux/hardirq.h>
  16#include <linux/kthread.h>      /* for self test */
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/oom.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37        trace_seq_puts(s, "# compressed entry header\n");
  38        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  39        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  40        trace_seq_puts(s, "\tarray       :   32 bits\n");
  41        trace_seq_putc(s, '\n');
  42        trace_seq_printf(s, "\tpadding     : type == %d\n",
  43                         RINGBUF_TYPE_PADDING);
  44        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  45                         RINGBUF_TYPE_TIME_EXTEND);
  46        trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  47                         RINGBUF_TYPE_TIME_STAMP);
  48        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51        return !trace_seq_has_overflowed(s);
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/* Used for individual buffers (after the counter) */
 123#define RB_BUFFER_OFF           (1 << 20)
 124
 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 126
 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 128#define RB_ALIGNMENT            4U
 129#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 130#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 131
 132#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 133# define RB_FORCE_8BYTE_ALIGNMENT       0
 134# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 135#else
 136# define RB_FORCE_8BYTE_ALIGNMENT       1
 137# define RB_ARCH_ALIGNMENT              8U
 138#endif
 139
 140#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 141
 142/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 143#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 144
 145enum {
 146        RB_LEN_TIME_EXTEND = 8,
 147        RB_LEN_TIME_STAMP =  8,
 148};
 149
 150#define skip_time_extend(event) \
 151        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 152
 153#define extended_time(event) \
 154        (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 155
 156static inline int rb_null_event(struct ring_buffer_event *event)
 157{
 158        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 159}
 160
 161static void rb_event_set_padding(struct ring_buffer_event *event)
 162{
 163        /* padding has a NULL time_delta */
 164        event->type_len = RINGBUF_TYPE_PADDING;
 165        event->time_delta = 0;
 166}
 167
 168static unsigned
 169rb_event_data_length(struct ring_buffer_event *event)
 170{
 171        unsigned length;
 172
 173        if (event->type_len)
 174                length = event->type_len * RB_ALIGNMENT;
 175        else
 176                length = event->array[0];
 177        return length + RB_EVNT_HDR_SIZE;
 178}
 179
 180/*
 181 * Return the length of the given event. Will return
 182 * the length of the time extend if the event is a
 183 * time extend.
 184 */
 185static inline unsigned
 186rb_event_length(struct ring_buffer_event *event)
 187{
 188        switch (event->type_len) {
 189        case RINGBUF_TYPE_PADDING:
 190                if (rb_null_event(event))
 191                        /* undefined */
 192                        return -1;
 193                return  event->array[0] + RB_EVNT_HDR_SIZE;
 194
 195        case RINGBUF_TYPE_TIME_EXTEND:
 196                return RB_LEN_TIME_EXTEND;
 197
 198        case RINGBUF_TYPE_TIME_STAMP:
 199                return RB_LEN_TIME_STAMP;
 200
 201        case RINGBUF_TYPE_DATA:
 202                return rb_event_data_length(event);
 203        default:
 204                BUG();
 205        }
 206        /* not hit */
 207        return 0;
 208}
 209
 210/*
 211 * Return total length of time extend and data,
 212 *   or just the event length for all other events.
 213 */
 214static inline unsigned
 215rb_event_ts_length(struct ring_buffer_event *event)
 216{
 217        unsigned len = 0;
 218
 219        if (extended_time(event)) {
 220                /* time extends include the data event after it */
 221                len = RB_LEN_TIME_EXTEND;
 222                event = skip_time_extend(event);
 223        }
 224        return len + rb_event_length(event);
 225}
 226
 227/**
 228 * ring_buffer_event_length - return the length of the event
 229 * @event: the event to get the length of
 230 *
 231 * Returns the size of the data load of a data event.
 232 * If the event is something other than a data event, it
 233 * returns the size of the event itself. With the exception
 234 * of a TIME EXTEND, where it still returns the size of the
 235 * data load of the data event after it.
 236 */
 237unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 238{
 239        unsigned length;
 240
 241        if (extended_time(event))
 242                event = skip_time_extend(event);
 243
 244        length = rb_event_length(event);
 245        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 246                return length;
 247        length -= RB_EVNT_HDR_SIZE;
 248        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 249                length -= sizeof(event->array[0]);
 250        return length;
 251}
 252EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 253
 254/* inline for ring buffer fast paths */
 255static __always_inline void *
 256rb_event_data(struct ring_buffer_event *event)
 257{
 258        if (extended_time(event))
 259                event = skip_time_extend(event);
 260        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 261        /* If length is in len field, then array[0] has the data */
 262        if (event->type_len)
 263                return (void *)&event->array[0];
 264        /* Otherwise length is in array[0] and array[1] has the data */
 265        return (void *)&event->array[1];
 266}
 267
 268/**
 269 * ring_buffer_event_data - return the data of the event
 270 * @event: the event to get the data from
 271 */
 272void *ring_buffer_event_data(struct ring_buffer_event *event)
 273{
 274        return rb_event_data(event);
 275}
 276EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 277
 278#define for_each_buffer_cpu(buffer, cpu)                \
 279        for_each_cpu(cpu, buffer->cpumask)
 280
 281#define TS_SHIFT        27
 282#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 283#define TS_DELTA_TEST   (~TS_MASK)
 284
 285/**
 286 * ring_buffer_event_time_stamp - return the event's extended timestamp
 287 * @event: the event to get the timestamp of
 288 *
 289 * Returns the extended timestamp associated with a data event.
 290 * An extended time_stamp is a 64-bit timestamp represented
 291 * internally in a special way that makes the best use of space
 292 * contained within a ring buffer event.  This function decodes
 293 * it and maps it to a straight u64 value.
 294 */
 295u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 296{
 297        u64 ts;
 298
 299        ts = event->array[0];
 300        ts <<= TS_SHIFT;
 301        ts += event->time_delta;
 302
 303        return ts;
 304}
 305
 306/* Flag when events were overwritten */
 307#define RB_MISSED_EVENTS        (1 << 31)
 308/* Missed count stored at end */
 309#define RB_MISSED_STORED        (1 << 30)
 310
 311#define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
 312
 313struct buffer_data_page {
 314        u64              time_stamp;    /* page time stamp */
 315        local_t          commit;        /* write committed index */
 316        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 317};
 318
 319/*
 320 * Note, the buffer_page list must be first. The buffer pages
 321 * are allocated in cache lines, which means that each buffer
 322 * page will be at the beginning of a cache line, and thus
 323 * the least significant bits will be zero. We use this to
 324 * add flags in the list struct pointers, to make the ring buffer
 325 * lockless.
 326 */
 327struct buffer_page {
 328        struct list_head list;          /* list of buffer pages */
 329        local_t          write;         /* index for next write */
 330        unsigned         read;          /* index for next read */
 331        local_t          entries;       /* entries on this page */
 332        unsigned long    real_end;      /* real end of data */
 333        struct buffer_data_page *page;  /* Actual data page */
 334};
 335
 336/*
 337 * The buffer page counters, write and entries, must be reset
 338 * atomically when crossing page boundaries. To synchronize this
 339 * update, two counters are inserted into the number. One is
 340 * the actual counter for the write position or count on the page.
 341 *
 342 * The other is a counter of updaters. Before an update happens
 343 * the update partition of the counter is incremented. This will
 344 * allow the updater to update the counter atomically.
 345 *
 346 * The counter is 20 bits, and the state data is 12.
 347 */
 348#define RB_WRITE_MASK           0xfffff
 349#define RB_WRITE_INTCNT         (1 << 20)
 350
 351static void rb_init_page(struct buffer_data_page *bpage)
 352{
 353        local_set(&bpage->commit, 0);
 354}
 355
 356/**
 357 * ring_buffer_page_len - the size of data on the page.
 358 * @page: The page to read
 359 *
 360 * Returns the amount of data on the page, including buffer page header.
 361 */
 362size_t ring_buffer_page_len(void *page)
 363{
 364        struct buffer_data_page *bpage = page;
 365
 366        return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
 367                + BUF_PAGE_HDR_SIZE;
 368}
 369
 370/*
 371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 372 * this issue out.
 373 */
 374static void free_buffer_page(struct buffer_page *bpage)
 375{
 376        free_page((unsigned long)bpage->page);
 377        kfree(bpage);
 378}
 379
 380/*
 381 * We need to fit the time_stamp delta into 27 bits.
 382 */
 383static inline int test_time_stamp(u64 delta)
 384{
 385        if (delta & TS_DELTA_TEST)
 386                return 1;
 387        return 0;
 388}
 389
 390#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 391
 392/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 393#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 394
 395int ring_buffer_print_page_header(struct trace_seq *s)
 396{
 397        struct buffer_data_page field;
 398
 399        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 400                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 401                         (unsigned int)sizeof(field.time_stamp),
 402                         (unsigned int)is_signed_type(u64));
 403
 404        trace_seq_printf(s, "\tfield: local_t commit;\t"
 405                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 406                         (unsigned int)offsetof(typeof(field), commit),
 407                         (unsigned int)sizeof(field.commit),
 408                         (unsigned int)is_signed_type(long));
 409
 410        trace_seq_printf(s, "\tfield: int overwrite;\t"
 411                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 412                         (unsigned int)offsetof(typeof(field), commit),
 413                         1,
 414                         (unsigned int)is_signed_type(long));
 415
 416        trace_seq_printf(s, "\tfield: char data;\t"
 417                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 418                         (unsigned int)offsetof(typeof(field), data),
 419                         (unsigned int)BUF_PAGE_SIZE,
 420                         (unsigned int)is_signed_type(char));
 421
 422        return !trace_seq_has_overflowed(s);
 423}
 424
 425struct rb_irq_work {
 426        struct irq_work                 work;
 427        wait_queue_head_t               waiters;
 428        wait_queue_head_t               full_waiters;
 429        bool                            waiters_pending;
 430        bool                            full_waiters_pending;
 431        bool                            wakeup_full;
 432};
 433
 434/*
 435 * Structure to hold event state and handle nested events.
 436 */
 437struct rb_event_info {
 438        u64                     ts;
 439        u64                     delta;
 440        unsigned long           length;
 441        struct buffer_page      *tail_page;
 442        int                     add_timestamp;
 443};
 444
 445/*
 446 * Used for which event context the event is in.
 447 *  NMI     = 0
 448 *  IRQ     = 1
 449 *  SOFTIRQ = 2
 450 *  NORMAL  = 3
 451 *
 452 * See trace_recursive_lock() comment below for more details.
 453 */
 454enum {
 455        RB_CTX_NMI,
 456        RB_CTX_IRQ,
 457        RB_CTX_SOFTIRQ,
 458        RB_CTX_NORMAL,
 459        RB_CTX_MAX
 460};
 461
 462/*
 463 * head_page == tail_page && head == tail then buffer is empty.
 464 */
 465struct ring_buffer_per_cpu {
 466        int                             cpu;
 467        atomic_t                        record_disabled;
 468        struct ring_buffer              *buffer;
 469        raw_spinlock_t                  reader_lock;    /* serialize readers */
 470        arch_spinlock_t                 lock;
 471        struct lock_class_key           lock_key;
 472        struct buffer_data_page         *free_page;
 473        unsigned long                   nr_pages;
 474        unsigned int                    current_context;
 475        struct list_head                *pages;
 476        struct buffer_page              *head_page;     /* read from head */
 477        struct buffer_page              *tail_page;     /* write to tail */
 478        struct buffer_page              *commit_page;   /* committed pages */
 479        struct buffer_page              *reader_page;
 480        unsigned long                   lost_events;
 481        unsigned long                   last_overrun;
 482        unsigned long                   nest;
 483        local_t                         entries_bytes;
 484        local_t                         entries;
 485        local_t                         overrun;
 486        local_t                         commit_overrun;
 487        local_t                         dropped_events;
 488        local_t                         committing;
 489        local_t                         commits;
 490        local_t                         pages_touched;
 491        local_t                         pages_read;
 492        long                            last_pages_touch;
 493        size_t                          shortest_full;
 494        unsigned long                   read;
 495        unsigned long                   read_bytes;
 496        u64                             write_stamp;
 497        u64                             read_stamp;
 498        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 499        long                            nr_pages_to_update;
 500        struct list_head                new_pages; /* new pages to add */
 501        struct work_struct              update_pages_work;
 502        struct completion               update_done;
 503
 504        struct rb_irq_work              irq_work;
 505};
 506
 507struct ring_buffer {
 508        unsigned                        flags;
 509        int                             cpus;
 510        atomic_t                        record_disabled;
 511        atomic_t                        resize_disabled;
 512        cpumask_var_t                   cpumask;
 513
 514        struct lock_class_key           *reader_lock_key;
 515
 516        struct mutex                    mutex;
 517
 518        struct ring_buffer_per_cpu      **buffers;
 519
 520        struct hlist_node               node;
 521        u64                             (*clock)(void);
 522
 523        struct rb_irq_work              irq_work;
 524        bool                            time_stamp_abs;
 525};
 526
 527struct ring_buffer_iter {
 528        struct ring_buffer_per_cpu      *cpu_buffer;
 529        unsigned long                   head;
 530        struct buffer_page              *head_page;
 531        struct buffer_page              *cache_reader_page;
 532        unsigned long                   cache_read;
 533        u64                             read_stamp;
 534};
 535
 536/**
 537 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 538 * @buffer: The ring_buffer to get the number of pages from
 539 * @cpu: The cpu of the ring_buffer to get the number of pages from
 540 *
 541 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 542 */
 543size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
 544{
 545        return buffer->buffers[cpu]->nr_pages;
 546}
 547
 548/**
 549 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 550 * @buffer: The ring_buffer to get the number of pages from
 551 * @cpu: The cpu of the ring_buffer to get the number of pages from
 552 *
 553 * Returns the number of pages that have content in the ring buffer.
 554 */
 555size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
 556{
 557        size_t read;
 558        size_t cnt;
 559
 560        read = local_read(&buffer->buffers[cpu]->pages_read);
 561        cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 562        /* The reader can read an empty page, but not more than that */
 563        if (cnt < read) {
 564                WARN_ON_ONCE(read > cnt + 1);
 565                return 0;
 566        }
 567
 568        return cnt - read;
 569}
 570
 571/*
 572 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 573 *
 574 * Schedules a delayed work to wake up any task that is blocked on the
 575 * ring buffer waiters queue.
 576 */
 577static void rb_wake_up_waiters(struct irq_work *work)
 578{
 579        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 580
 581        wake_up_all(&rbwork->waiters);
 582        if (rbwork->wakeup_full) {
 583                rbwork->wakeup_full = false;
 584                wake_up_all(&rbwork->full_waiters);
 585        }
 586}
 587
 588/**
 589 * ring_buffer_wait - wait for input to the ring buffer
 590 * @buffer: buffer to wait on
 591 * @cpu: the cpu buffer to wait on
 592 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 593 *
 594 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 595 * as data is added to any of the @buffer's cpu buffers. Otherwise
 596 * it will wait for data to be added to a specific cpu buffer.
 597 */
 598int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
 599{
 600        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 601        DEFINE_WAIT(wait);
 602        struct rb_irq_work *work;
 603        int ret = 0;
 604
 605        /*
 606         * Depending on what the caller is waiting for, either any
 607         * data in any cpu buffer, or a specific buffer, put the
 608         * caller on the appropriate wait queue.
 609         */
 610        if (cpu == RING_BUFFER_ALL_CPUS) {
 611                work = &buffer->irq_work;
 612                /* Full only makes sense on per cpu reads */
 613                full = 0;
 614        } else {
 615                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 616                        return -ENODEV;
 617                cpu_buffer = buffer->buffers[cpu];
 618                work = &cpu_buffer->irq_work;
 619        }
 620
 621
 622        while (true) {
 623                if (full)
 624                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 625                else
 626                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 627
 628                /*
 629                 * The events can happen in critical sections where
 630                 * checking a work queue can cause deadlocks.
 631                 * After adding a task to the queue, this flag is set
 632                 * only to notify events to try to wake up the queue
 633                 * using irq_work.
 634                 *
 635                 * We don't clear it even if the buffer is no longer
 636                 * empty. The flag only causes the next event to run
 637                 * irq_work to do the work queue wake up. The worse
 638                 * that can happen if we race with !trace_empty() is that
 639                 * an event will cause an irq_work to try to wake up
 640                 * an empty queue.
 641                 *
 642                 * There's no reason to protect this flag either, as
 643                 * the work queue and irq_work logic will do the necessary
 644                 * synchronization for the wake ups. The only thing
 645                 * that is necessary is that the wake up happens after
 646                 * a task has been queued. It's OK for spurious wake ups.
 647                 */
 648                if (full)
 649                        work->full_waiters_pending = true;
 650                else
 651                        work->waiters_pending = true;
 652
 653                if (signal_pending(current)) {
 654                        ret = -EINTR;
 655                        break;
 656                }
 657
 658                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 659                        break;
 660
 661                if (cpu != RING_BUFFER_ALL_CPUS &&
 662                    !ring_buffer_empty_cpu(buffer, cpu)) {
 663                        unsigned long flags;
 664                        bool pagebusy;
 665                        size_t nr_pages;
 666                        size_t dirty;
 667
 668                        if (!full)
 669                                break;
 670
 671                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 672                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 673                        nr_pages = cpu_buffer->nr_pages;
 674                        dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 675                        if (!cpu_buffer->shortest_full ||
 676                            cpu_buffer->shortest_full < full)
 677                                cpu_buffer->shortest_full = full;
 678                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 679                        if (!pagebusy &&
 680                            (!nr_pages || (dirty * 100) > full * nr_pages))
 681                                break;
 682                }
 683
 684                schedule();
 685        }
 686
 687        if (full)
 688                finish_wait(&work->full_waiters, &wait);
 689        else
 690                finish_wait(&work->waiters, &wait);
 691
 692        return ret;
 693}
 694
 695/**
 696 * ring_buffer_poll_wait - poll on buffer input
 697 * @buffer: buffer to wait on
 698 * @cpu: the cpu buffer to wait on
 699 * @filp: the file descriptor
 700 * @poll_table: The poll descriptor
 701 *
 702 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 703 * as data is added to any of the @buffer's cpu buffers. Otherwise
 704 * it will wait for data to be added to a specific cpu buffer.
 705 *
 706 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 707 * zero otherwise.
 708 */
 709__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 710                          struct file *filp, poll_table *poll_table)
 711{
 712        struct ring_buffer_per_cpu *cpu_buffer;
 713        struct rb_irq_work *work;
 714
 715        if (cpu == RING_BUFFER_ALL_CPUS)
 716                work = &buffer->irq_work;
 717        else {
 718                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 719                        return -EINVAL;
 720
 721                cpu_buffer = buffer->buffers[cpu];
 722                work = &cpu_buffer->irq_work;
 723        }
 724
 725        poll_wait(filp, &work->waiters, poll_table);
 726        work->waiters_pending = true;
 727        /*
 728         * There's a tight race between setting the waiters_pending and
 729         * checking if the ring buffer is empty.  Once the waiters_pending bit
 730         * is set, the next event will wake the task up, but we can get stuck
 731         * if there's only a single event in.
 732         *
 733         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 734         * but adding a memory barrier to all events will cause too much of a
 735         * performance hit in the fast path.  We only need a memory barrier when
 736         * the buffer goes from empty to having content.  But as this race is
 737         * extremely small, and it's not a problem if another event comes in, we
 738         * will fix it later.
 739         */
 740        smp_mb();
 741
 742        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 743            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 744                return EPOLLIN | EPOLLRDNORM;
 745        return 0;
 746}
 747
 748/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 749#define RB_WARN_ON(b, cond)                                             \
 750        ({                                                              \
 751                int _____ret = unlikely(cond);                          \
 752                if (_____ret) {                                         \
 753                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 754                                struct ring_buffer_per_cpu *__b =       \
 755                                        (void *)b;                      \
 756                                atomic_inc(&__b->buffer->record_disabled); \
 757                        } else                                          \
 758                                atomic_inc(&b->record_disabled);        \
 759                        WARN_ON(1);                                     \
 760                }                                                       \
 761                _____ret;                                               \
 762        })
 763
 764/* Up this if you want to test the TIME_EXTENTS and normalization */
 765#define DEBUG_SHIFT 0
 766
 767static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 768{
 769        /* shift to debug/test normalization and TIME_EXTENTS */
 770        return buffer->clock() << DEBUG_SHIFT;
 771}
 772
 773u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 774{
 775        u64 time;
 776
 777        preempt_disable_notrace();
 778        time = rb_time_stamp(buffer);
 779        preempt_enable_no_resched_notrace();
 780
 781        return time;
 782}
 783EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 784
 785void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 786                                      int cpu, u64 *ts)
 787{
 788        /* Just stupid testing the normalize function and deltas */
 789        *ts >>= DEBUG_SHIFT;
 790}
 791EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 792
 793/*
 794 * Making the ring buffer lockless makes things tricky.
 795 * Although writes only happen on the CPU that they are on,
 796 * and they only need to worry about interrupts. Reads can
 797 * happen on any CPU.
 798 *
 799 * The reader page is always off the ring buffer, but when the
 800 * reader finishes with a page, it needs to swap its page with
 801 * a new one from the buffer. The reader needs to take from
 802 * the head (writes go to the tail). But if a writer is in overwrite
 803 * mode and wraps, it must push the head page forward.
 804 *
 805 * Here lies the problem.
 806 *
 807 * The reader must be careful to replace only the head page, and
 808 * not another one. As described at the top of the file in the
 809 * ASCII art, the reader sets its old page to point to the next
 810 * page after head. It then sets the page after head to point to
 811 * the old reader page. But if the writer moves the head page
 812 * during this operation, the reader could end up with the tail.
 813 *
 814 * We use cmpxchg to help prevent this race. We also do something
 815 * special with the page before head. We set the LSB to 1.
 816 *
 817 * When the writer must push the page forward, it will clear the
 818 * bit that points to the head page, move the head, and then set
 819 * the bit that points to the new head page.
 820 *
 821 * We also don't want an interrupt coming in and moving the head
 822 * page on another writer. Thus we use the second LSB to catch
 823 * that too. Thus:
 824 *
 825 * head->list->prev->next        bit 1          bit 0
 826 *                              -------        -------
 827 * Normal page                     0              0
 828 * Points to head page             0              1
 829 * New head page                   1              0
 830 *
 831 * Note we can not trust the prev pointer of the head page, because:
 832 *
 833 * +----+       +-----+        +-----+
 834 * |    |------>|  T  |---X--->|  N  |
 835 * |    |<------|     |        |     |
 836 * +----+       +-----+        +-----+
 837 *   ^                           ^ |
 838 *   |          +-----+          | |
 839 *   +----------|  R  |----------+ |
 840 *              |     |<-----------+
 841 *              +-----+
 842 *
 843 * Key:  ---X-->  HEAD flag set in pointer
 844 *         T      Tail page
 845 *         R      Reader page
 846 *         N      Next page
 847 *
 848 * (see __rb_reserve_next() to see where this happens)
 849 *
 850 *  What the above shows is that the reader just swapped out
 851 *  the reader page with a page in the buffer, but before it
 852 *  could make the new header point back to the new page added
 853 *  it was preempted by a writer. The writer moved forward onto
 854 *  the new page added by the reader and is about to move forward
 855 *  again.
 856 *
 857 *  You can see, it is legitimate for the previous pointer of
 858 *  the head (or any page) not to point back to itself. But only
 859 *  temporarily.
 860 */
 861
 862#define RB_PAGE_NORMAL          0UL
 863#define RB_PAGE_HEAD            1UL
 864#define RB_PAGE_UPDATE          2UL
 865
 866
 867#define RB_FLAG_MASK            3UL
 868
 869/* PAGE_MOVED is not part of the mask */
 870#define RB_PAGE_MOVED           4UL
 871
 872/*
 873 * rb_list_head - remove any bit
 874 */
 875static struct list_head *rb_list_head(struct list_head *list)
 876{
 877        unsigned long val = (unsigned long)list;
 878
 879        return (struct list_head *)(val & ~RB_FLAG_MASK);
 880}
 881
 882/*
 883 * rb_is_head_page - test if the given page is the head page
 884 *
 885 * Because the reader may move the head_page pointer, we can
 886 * not trust what the head page is (it may be pointing to
 887 * the reader page). But if the next page is a header page,
 888 * its flags will be non zero.
 889 */
 890static inline int
 891rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 892                struct buffer_page *page, struct list_head *list)
 893{
 894        unsigned long val;
 895
 896        val = (unsigned long)list->next;
 897
 898        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 899                return RB_PAGE_MOVED;
 900
 901        return val & RB_FLAG_MASK;
 902}
 903
 904/*
 905 * rb_is_reader_page
 906 *
 907 * The unique thing about the reader page, is that, if the
 908 * writer is ever on it, the previous pointer never points
 909 * back to the reader page.
 910 */
 911static bool rb_is_reader_page(struct buffer_page *page)
 912{
 913        struct list_head *list = page->list.prev;
 914
 915        return rb_list_head(list->next) != &page->list;
 916}
 917
 918/*
 919 * rb_set_list_to_head - set a list_head to be pointing to head.
 920 */
 921static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 922                                struct list_head *list)
 923{
 924        unsigned long *ptr;
 925
 926        ptr = (unsigned long *)&list->next;
 927        *ptr |= RB_PAGE_HEAD;
 928        *ptr &= ~RB_PAGE_UPDATE;
 929}
 930
 931/*
 932 * rb_head_page_activate - sets up head page
 933 */
 934static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 935{
 936        struct buffer_page *head;
 937
 938        head = cpu_buffer->head_page;
 939        if (!head)
 940                return;
 941
 942        /*
 943         * Set the previous list pointer to have the HEAD flag.
 944         */
 945        rb_set_list_to_head(cpu_buffer, head->list.prev);
 946}
 947
 948static void rb_list_head_clear(struct list_head *list)
 949{
 950        unsigned long *ptr = (unsigned long *)&list->next;
 951
 952        *ptr &= ~RB_FLAG_MASK;
 953}
 954
 955/*
 956 * rb_head_page_deactivate - clears head page ptr (for free list)
 957 */
 958static void
 959rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 960{
 961        struct list_head *hd;
 962
 963        /* Go through the whole list and clear any pointers found. */
 964        rb_list_head_clear(cpu_buffer->pages);
 965
 966        list_for_each(hd, cpu_buffer->pages)
 967                rb_list_head_clear(hd);
 968}
 969
 970static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 971                            struct buffer_page *head,
 972                            struct buffer_page *prev,
 973                            int old_flag, int new_flag)
 974{
 975        struct list_head *list;
 976        unsigned long val = (unsigned long)&head->list;
 977        unsigned long ret;
 978
 979        list = &prev->list;
 980
 981        val &= ~RB_FLAG_MASK;
 982
 983        ret = cmpxchg((unsigned long *)&list->next,
 984                      val | old_flag, val | new_flag);
 985
 986        /* check if the reader took the page */
 987        if ((ret & ~RB_FLAG_MASK) != val)
 988                return RB_PAGE_MOVED;
 989
 990        return ret & RB_FLAG_MASK;
 991}
 992
 993static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 994                                   struct buffer_page *head,
 995                                   struct buffer_page *prev,
 996                                   int old_flag)
 997{
 998        return rb_head_page_set(cpu_buffer, head, prev,
 999                                old_flag, RB_PAGE_UPDATE);
1000}
1001
1002static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1003                                 struct buffer_page *head,
1004                                 struct buffer_page *prev,
1005                                 int old_flag)
1006{
1007        return rb_head_page_set(cpu_buffer, head, prev,
1008                                old_flag, RB_PAGE_HEAD);
1009}
1010
1011static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1012                                   struct buffer_page *head,
1013                                   struct buffer_page *prev,
1014                                   int old_flag)
1015{
1016        return rb_head_page_set(cpu_buffer, head, prev,
1017                                old_flag, RB_PAGE_NORMAL);
1018}
1019
1020static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1021                               struct buffer_page **bpage)
1022{
1023        struct list_head *p = rb_list_head((*bpage)->list.next);
1024
1025        *bpage = list_entry(p, struct buffer_page, list);
1026}
1027
1028static struct buffer_page *
1029rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1030{
1031        struct buffer_page *head;
1032        struct buffer_page *page;
1033        struct list_head *list;
1034        int i;
1035
1036        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1037                return NULL;
1038
1039        /* sanity check */
1040        list = cpu_buffer->pages;
1041        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1042                return NULL;
1043
1044        page = head = cpu_buffer->head_page;
1045        /*
1046         * It is possible that the writer moves the header behind
1047         * where we started, and we miss in one loop.
1048         * A second loop should grab the header, but we'll do
1049         * three loops just because I'm paranoid.
1050         */
1051        for (i = 0; i < 3; i++) {
1052                do {
1053                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1054                                cpu_buffer->head_page = page;
1055                                return page;
1056                        }
1057                        rb_inc_page(cpu_buffer, &page);
1058                } while (page != head);
1059        }
1060
1061        RB_WARN_ON(cpu_buffer, 1);
1062
1063        return NULL;
1064}
1065
1066static int rb_head_page_replace(struct buffer_page *old,
1067                                struct buffer_page *new)
1068{
1069        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1070        unsigned long val;
1071        unsigned long ret;
1072
1073        val = *ptr & ~RB_FLAG_MASK;
1074        val |= RB_PAGE_HEAD;
1075
1076        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1077
1078        return ret == val;
1079}
1080
1081/*
1082 * rb_tail_page_update - move the tail page forward
1083 */
1084static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1085                               struct buffer_page *tail_page,
1086                               struct buffer_page *next_page)
1087{
1088        unsigned long old_entries;
1089        unsigned long old_write;
1090
1091        /*
1092         * The tail page now needs to be moved forward.
1093         *
1094         * We need to reset the tail page, but without messing
1095         * with possible erasing of data brought in by interrupts
1096         * that have moved the tail page and are currently on it.
1097         *
1098         * We add a counter to the write field to denote this.
1099         */
1100        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1101        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1102
1103        local_inc(&cpu_buffer->pages_touched);
1104        /*
1105         * Just make sure we have seen our old_write and synchronize
1106         * with any interrupts that come in.
1107         */
1108        barrier();
1109
1110        /*
1111         * If the tail page is still the same as what we think
1112         * it is, then it is up to us to update the tail
1113         * pointer.
1114         */
1115        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1116                /* Zero the write counter */
1117                unsigned long val = old_write & ~RB_WRITE_MASK;
1118                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1119
1120                /*
1121                 * This will only succeed if an interrupt did
1122                 * not come in and change it. In which case, we
1123                 * do not want to modify it.
1124                 *
1125                 * We add (void) to let the compiler know that we do not care
1126                 * about the return value of these functions. We use the
1127                 * cmpxchg to only update if an interrupt did not already
1128                 * do it for us. If the cmpxchg fails, we don't care.
1129                 */
1130                (void)local_cmpxchg(&next_page->write, old_write, val);
1131                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1132
1133                /*
1134                 * No need to worry about races with clearing out the commit.
1135                 * it only can increment when a commit takes place. But that
1136                 * only happens in the outer most nested commit.
1137                 */
1138                local_set(&next_page->page->commit, 0);
1139
1140                /* Again, either we update tail_page or an interrupt does */
1141                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1142        }
1143}
1144
1145static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1146                          struct buffer_page *bpage)
1147{
1148        unsigned long val = (unsigned long)bpage;
1149
1150        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1151                return 1;
1152
1153        return 0;
1154}
1155
1156/**
1157 * rb_check_list - make sure a pointer to a list has the last bits zero
1158 */
1159static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1160                         struct list_head *list)
1161{
1162        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1163                return 1;
1164        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1165                return 1;
1166        return 0;
1167}
1168
1169/**
1170 * rb_check_pages - integrity check of buffer pages
1171 * @cpu_buffer: CPU buffer with pages to test
1172 *
1173 * As a safety measure we check to make sure the data pages have not
1174 * been corrupted.
1175 */
1176static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1177{
1178        struct list_head *head = cpu_buffer->pages;
1179        struct buffer_page *bpage, *tmp;
1180
1181        /* Reset the head page if it exists */
1182        if (cpu_buffer->head_page)
1183                rb_set_head_page(cpu_buffer);
1184
1185        rb_head_page_deactivate(cpu_buffer);
1186
1187        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1188                return -1;
1189        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1190                return -1;
1191
1192        if (rb_check_list(cpu_buffer, head))
1193                return -1;
1194
1195        list_for_each_entry_safe(bpage, tmp, head, list) {
1196                if (RB_WARN_ON(cpu_buffer,
1197                               bpage->list.next->prev != &bpage->list))
1198                        return -1;
1199                if (RB_WARN_ON(cpu_buffer,
1200                               bpage->list.prev->next != &bpage->list))
1201                        return -1;
1202                if (rb_check_list(cpu_buffer, &bpage->list))
1203                        return -1;
1204        }
1205
1206        rb_head_page_activate(cpu_buffer);
1207
1208        return 0;
1209}
1210
1211static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1212{
1213        struct buffer_page *bpage, *tmp;
1214        bool user_thread = current->mm != NULL;
1215        gfp_t mflags;
1216        long i;
1217
1218        /*
1219         * Check if the available memory is there first.
1220         * Note, si_mem_available() only gives us a rough estimate of available
1221         * memory. It may not be accurate. But we don't care, we just want
1222         * to prevent doing any allocation when it is obvious that it is
1223         * not going to succeed.
1224         */
1225        i = si_mem_available();
1226        if (i < nr_pages)
1227                return -ENOMEM;
1228
1229        /*
1230         * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1231         * gracefully without invoking oom-killer and the system is not
1232         * destabilized.
1233         */
1234        mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1235
1236        /*
1237         * If a user thread allocates too much, and si_mem_available()
1238         * reports there's enough memory, even though there is not.
1239         * Make sure the OOM killer kills this thread. This can happen
1240         * even with RETRY_MAYFAIL because another task may be doing
1241         * an allocation after this task has taken all memory.
1242         * This is the task the OOM killer needs to take out during this
1243         * loop, even if it was triggered by an allocation somewhere else.
1244         */
1245        if (user_thread)
1246                set_current_oom_origin();
1247        for (i = 0; i < nr_pages; i++) {
1248                struct page *page;
1249
1250                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1251                                    mflags, cpu_to_node(cpu));
1252                if (!bpage)
1253                        goto free_pages;
1254
1255                list_add(&bpage->list, pages);
1256
1257                page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1258                if (!page)
1259                        goto free_pages;
1260                bpage->page = page_address(page);
1261                rb_init_page(bpage->page);
1262
1263                if (user_thread && fatal_signal_pending(current))
1264                        goto free_pages;
1265        }
1266        if (user_thread)
1267                clear_current_oom_origin();
1268
1269        return 0;
1270
1271free_pages:
1272        list_for_each_entry_safe(bpage, tmp, pages, list) {
1273                list_del_init(&bpage->list);
1274                free_buffer_page(bpage);
1275        }
1276        if (user_thread)
1277                clear_current_oom_origin();
1278
1279        return -ENOMEM;
1280}
1281
1282static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1283                             unsigned long nr_pages)
1284{
1285        LIST_HEAD(pages);
1286
1287        WARN_ON(!nr_pages);
1288
1289        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1290                return -ENOMEM;
1291
1292        /*
1293         * The ring buffer page list is a circular list that does not
1294         * start and end with a list head. All page list items point to
1295         * other pages.
1296         */
1297        cpu_buffer->pages = pages.next;
1298        list_del(&pages);
1299
1300        cpu_buffer->nr_pages = nr_pages;
1301
1302        rb_check_pages(cpu_buffer);
1303
1304        return 0;
1305}
1306
1307static struct ring_buffer_per_cpu *
1308rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1309{
1310        struct ring_buffer_per_cpu *cpu_buffer;
1311        struct buffer_page *bpage;
1312        struct page *page;
1313        int ret;
1314
1315        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1316                                  GFP_KERNEL, cpu_to_node(cpu));
1317        if (!cpu_buffer)
1318                return NULL;
1319
1320        cpu_buffer->cpu = cpu;
1321        cpu_buffer->buffer = buffer;
1322        raw_spin_lock_init(&cpu_buffer->reader_lock);
1323        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1324        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1325        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1326        init_completion(&cpu_buffer->update_done);
1327        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1328        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1329        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1330
1331        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1332                            GFP_KERNEL, cpu_to_node(cpu));
1333        if (!bpage)
1334                goto fail_free_buffer;
1335
1336        rb_check_bpage(cpu_buffer, bpage);
1337
1338        cpu_buffer->reader_page = bpage;
1339        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1340        if (!page)
1341                goto fail_free_reader;
1342        bpage->page = page_address(page);
1343        rb_init_page(bpage->page);
1344
1345        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1346        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1347
1348        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1349        if (ret < 0)
1350                goto fail_free_reader;
1351
1352        cpu_buffer->head_page
1353                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1354        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1355
1356        rb_head_page_activate(cpu_buffer);
1357
1358        return cpu_buffer;
1359
1360 fail_free_reader:
1361        free_buffer_page(cpu_buffer->reader_page);
1362
1363 fail_free_buffer:
1364        kfree(cpu_buffer);
1365        return NULL;
1366}
1367
1368static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1369{
1370        struct list_head *head = cpu_buffer->pages;
1371        struct buffer_page *bpage, *tmp;
1372
1373        free_buffer_page(cpu_buffer->reader_page);
1374
1375        rb_head_page_deactivate(cpu_buffer);
1376
1377        if (head) {
1378                list_for_each_entry_safe(bpage, tmp, head, list) {
1379                        list_del_init(&bpage->list);
1380                        free_buffer_page(bpage);
1381                }
1382                bpage = list_entry(head, struct buffer_page, list);
1383                free_buffer_page(bpage);
1384        }
1385
1386        kfree(cpu_buffer);
1387}
1388
1389/**
1390 * __ring_buffer_alloc - allocate a new ring_buffer
1391 * @size: the size in bytes per cpu that is needed.
1392 * @flags: attributes to set for the ring buffer.
1393 *
1394 * Currently the only flag that is available is the RB_FL_OVERWRITE
1395 * flag. This flag means that the buffer will overwrite old data
1396 * when the buffer wraps. If this flag is not set, the buffer will
1397 * drop data when the tail hits the head.
1398 */
1399struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1400                                        struct lock_class_key *key)
1401{
1402        struct ring_buffer *buffer;
1403        long nr_pages;
1404        int bsize;
1405        int cpu;
1406        int ret;
1407
1408        /* keep it in its own cache line */
1409        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1410                         GFP_KERNEL);
1411        if (!buffer)
1412                return NULL;
1413
1414        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1415                goto fail_free_buffer;
1416
1417        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1418        buffer->flags = flags;
1419        buffer->clock = trace_clock_local;
1420        buffer->reader_lock_key = key;
1421
1422        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1423        init_waitqueue_head(&buffer->irq_work.waiters);
1424
1425        /* need at least two pages */
1426        if (nr_pages < 2)
1427                nr_pages = 2;
1428
1429        buffer->cpus = nr_cpu_ids;
1430
1431        bsize = sizeof(void *) * nr_cpu_ids;
1432        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1433                                  GFP_KERNEL);
1434        if (!buffer->buffers)
1435                goto fail_free_cpumask;
1436
1437        cpu = raw_smp_processor_id();
1438        cpumask_set_cpu(cpu, buffer->cpumask);
1439        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1440        if (!buffer->buffers[cpu])
1441                goto fail_free_buffers;
1442
1443        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1444        if (ret < 0)
1445                goto fail_free_buffers;
1446
1447        mutex_init(&buffer->mutex);
1448
1449        return buffer;
1450
1451 fail_free_buffers:
1452        for_each_buffer_cpu(buffer, cpu) {
1453                if (buffer->buffers[cpu])
1454                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1455        }
1456        kfree(buffer->buffers);
1457
1458 fail_free_cpumask:
1459        free_cpumask_var(buffer->cpumask);
1460
1461 fail_free_buffer:
1462        kfree(buffer);
1463        return NULL;
1464}
1465EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1466
1467/**
1468 * ring_buffer_free - free a ring buffer.
1469 * @buffer: the buffer to free.
1470 */
1471void
1472ring_buffer_free(struct ring_buffer *buffer)
1473{
1474        int cpu;
1475
1476        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1477
1478        for_each_buffer_cpu(buffer, cpu)
1479                rb_free_cpu_buffer(buffer->buffers[cpu]);
1480
1481        kfree(buffer->buffers);
1482        free_cpumask_var(buffer->cpumask);
1483
1484        kfree(buffer);
1485}
1486EXPORT_SYMBOL_GPL(ring_buffer_free);
1487
1488void ring_buffer_set_clock(struct ring_buffer *buffer,
1489                           u64 (*clock)(void))
1490{
1491        buffer->clock = clock;
1492}
1493
1494void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1495{
1496        buffer->time_stamp_abs = abs;
1497}
1498
1499bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1500{
1501        return buffer->time_stamp_abs;
1502}
1503
1504static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1505
1506static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1507{
1508        return local_read(&bpage->entries) & RB_WRITE_MASK;
1509}
1510
1511static inline unsigned long rb_page_write(struct buffer_page *bpage)
1512{
1513        return local_read(&bpage->write) & RB_WRITE_MASK;
1514}
1515
1516static int
1517rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1518{
1519        struct list_head *tail_page, *to_remove, *next_page;
1520        struct buffer_page *to_remove_page, *tmp_iter_page;
1521        struct buffer_page *last_page, *first_page;
1522        unsigned long nr_removed;
1523        unsigned long head_bit;
1524        int page_entries;
1525
1526        head_bit = 0;
1527
1528        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1529        atomic_inc(&cpu_buffer->record_disabled);
1530        /*
1531         * We don't race with the readers since we have acquired the reader
1532         * lock. We also don't race with writers after disabling recording.
1533         * This makes it easy to figure out the first and the last page to be
1534         * removed from the list. We unlink all the pages in between including
1535         * the first and last pages. This is done in a busy loop so that we
1536         * lose the least number of traces.
1537         * The pages are freed after we restart recording and unlock readers.
1538         */
1539        tail_page = &cpu_buffer->tail_page->list;
1540
1541        /*
1542         * tail page might be on reader page, we remove the next page
1543         * from the ring buffer
1544         */
1545        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1546                tail_page = rb_list_head(tail_page->next);
1547        to_remove = tail_page;
1548
1549        /* start of pages to remove */
1550        first_page = list_entry(rb_list_head(to_remove->next),
1551                                struct buffer_page, list);
1552
1553        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1554                to_remove = rb_list_head(to_remove)->next;
1555                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1556        }
1557
1558        next_page = rb_list_head(to_remove)->next;
1559
1560        /*
1561         * Now we remove all pages between tail_page and next_page.
1562         * Make sure that we have head_bit value preserved for the
1563         * next page
1564         */
1565        tail_page->next = (struct list_head *)((unsigned long)next_page |
1566                                                head_bit);
1567        next_page = rb_list_head(next_page);
1568        next_page->prev = tail_page;
1569
1570        /* make sure pages points to a valid page in the ring buffer */
1571        cpu_buffer->pages = next_page;
1572
1573        /* update head page */
1574        if (head_bit)
1575                cpu_buffer->head_page = list_entry(next_page,
1576                                                struct buffer_page, list);
1577
1578        /*
1579         * change read pointer to make sure any read iterators reset
1580         * themselves
1581         */
1582        cpu_buffer->read = 0;
1583
1584        /* pages are removed, resume tracing and then free the pages */
1585        atomic_dec(&cpu_buffer->record_disabled);
1586        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1587
1588        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1589
1590        /* last buffer page to remove */
1591        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1592                                list);
1593        tmp_iter_page = first_page;
1594
1595        do {
1596                cond_resched();
1597
1598                to_remove_page = tmp_iter_page;
1599                rb_inc_page(cpu_buffer, &tmp_iter_page);
1600
1601                /* update the counters */
1602                page_entries = rb_page_entries(to_remove_page);
1603                if (page_entries) {
1604                        /*
1605                         * If something was added to this page, it was full
1606                         * since it is not the tail page. So we deduct the
1607                         * bytes consumed in ring buffer from here.
1608                         * Increment overrun to account for the lost events.
1609                         */
1610                        local_add(page_entries, &cpu_buffer->overrun);
1611                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1612                }
1613
1614                /*
1615                 * We have already removed references to this list item, just
1616                 * free up the buffer_page and its page
1617                 */
1618                free_buffer_page(to_remove_page);
1619                nr_removed--;
1620
1621        } while (to_remove_page != last_page);
1622
1623        RB_WARN_ON(cpu_buffer, nr_removed);
1624
1625        return nr_removed == 0;
1626}
1627
1628static int
1629rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1630{
1631        struct list_head *pages = &cpu_buffer->new_pages;
1632        int retries, success;
1633
1634        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1635        /*
1636         * We are holding the reader lock, so the reader page won't be swapped
1637         * in the ring buffer. Now we are racing with the writer trying to
1638         * move head page and the tail page.
1639         * We are going to adapt the reader page update process where:
1640         * 1. We first splice the start and end of list of new pages between
1641         *    the head page and its previous page.
1642         * 2. We cmpxchg the prev_page->next to point from head page to the
1643         *    start of new pages list.
1644         * 3. Finally, we update the head->prev to the end of new list.
1645         *
1646         * We will try this process 10 times, to make sure that we don't keep
1647         * spinning.
1648         */
1649        retries = 10;
1650        success = 0;
1651        while (retries--) {
1652                struct list_head *head_page, *prev_page, *r;
1653                struct list_head *last_page, *first_page;
1654                struct list_head *head_page_with_bit;
1655
1656                head_page = &rb_set_head_page(cpu_buffer)->list;
1657                if (!head_page)
1658                        break;
1659                prev_page = head_page->prev;
1660
1661                first_page = pages->next;
1662                last_page  = pages->prev;
1663
1664                head_page_with_bit = (struct list_head *)
1665                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1666
1667                last_page->next = head_page_with_bit;
1668                first_page->prev = prev_page;
1669
1670                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1671
1672                if (r == head_page_with_bit) {
1673                        /*
1674                         * yay, we replaced the page pointer to our new list,
1675                         * now, we just have to update to head page's prev
1676                         * pointer to point to end of list
1677                         */
1678                        head_page->prev = last_page;
1679                        success = 1;
1680                        break;
1681                }
1682        }
1683
1684        if (success)
1685                INIT_LIST_HEAD(pages);
1686        /*
1687         * If we weren't successful in adding in new pages, warn and stop
1688         * tracing
1689         */
1690        RB_WARN_ON(cpu_buffer, !success);
1691        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1692
1693        /* free pages if they weren't inserted */
1694        if (!success) {
1695                struct buffer_page *bpage, *tmp;
1696                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1697                                         list) {
1698                        list_del_init(&bpage->list);
1699                        free_buffer_page(bpage);
1700                }
1701        }
1702        return success;
1703}
1704
1705static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1706{
1707        int success;
1708
1709        if (cpu_buffer->nr_pages_to_update > 0)
1710                success = rb_insert_pages(cpu_buffer);
1711        else
1712                success = rb_remove_pages(cpu_buffer,
1713                                        -cpu_buffer->nr_pages_to_update);
1714
1715        if (success)
1716                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1717}
1718
1719static void update_pages_handler(struct work_struct *work)
1720{
1721        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1722                        struct ring_buffer_per_cpu, update_pages_work);
1723        rb_update_pages(cpu_buffer);
1724        complete(&cpu_buffer->update_done);
1725}
1726
1727/**
1728 * ring_buffer_resize - resize the ring buffer
1729 * @buffer: the buffer to resize.
1730 * @size: the new size.
1731 * @cpu_id: the cpu buffer to resize
1732 *
1733 * Minimum size is 2 * BUF_PAGE_SIZE.
1734 *
1735 * Returns 0 on success and < 0 on failure.
1736 */
1737int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1738                        int cpu_id)
1739{
1740        struct ring_buffer_per_cpu *cpu_buffer;
1741        unsigned long nr_pages;
1742        int cpu, err = 0;
1743
1744        /*
1745         * Always succeed at resizing a non-existent buffer:
1746         */
1747        if (!buffer)
1748                return size;
1749
1750        /* Make sure the requested buffer exists */
1751        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1752            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1753                return size;
1754
1755        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1756
1757        /* we need a minimum of two pages */
1758        if (nr_pages < 2)
1759                nr_pages = 2;
1760
1761        size = nr_pages * BUF_PAGE_SIZE;
1762
1763        /*
1764         * Don't succeed if resizing is disabled, as a reader might be
1765         * manipulating the ring buffer and is expecting a sane state while
1766         * this is true.
1767         */
1768        if (atomic_read(&buffer->resize_disabled))
1769                return -EBUSY;
1770
1771        /* prevent another thread from changing buffer sizes */
1772        mutex_lock(&buffer->mutex);
1773
1774        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1775                /* calculate the pages to update */
1776                for_each_buffer_cpu(buffer, cpu) {
1777                        cpu_buffer = buffer->buffers[cpu];
1778
1779                        cpu_buffer->nr_pages_to_update = nr_pages -
1780                                                        cpu_buffer->nr_pages;
1781                        /*
1782                         * nothing more to do for removing pages or no update
1783                         */
1784                        if (cpu_buffer->nr_pages_to_update <= 0)
1785                                continue;
1786                        /*
1787                         * to add pages, make sure all new pages can be
1788                         * allocated without receiving ENOMEM
1789                         */
1790                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1791                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1792                                                &cpu_buffer->new_pages, cpu)) {
1793                                /* not enough memory for new pages */
1794                                err = -ENOMEM;
1795                                goto out_err;
1796                        }
1797                }
1798
1799                get_online_cpus();
1800                /*
1801                 * Fire off all the required work handlers
1802                 * We can't schedule on offline CPUs, but it's not necessary
1803                 * since we can change their buffer sizes without any race.
1804                 */
1805                for_each_buffer_cpu(buffer, cpu) {
1806                        cpu_buffer = buffer->buffers[cpu];
1807                        if (!cpu_buffer->nr_pages_to_update)
1808                                continue;
1809
1810                        /* Can't run something on an offline CPU. */
1811                        if (!cpu_online(cpu)) {
1812                                rb_update_pages(cpu_buffer);
1813                                cpu_buffer->nr_pages_to_update = 0;
1814                        } else {
1815                                schedule_work_on(cpu,
1816                                                &cpu_buffer->update_pages_work);
1817                        }
1818                }
1819
1820                /* wait for all the updates to complete */
1821                for_each_buffer_cpu(buffer, cpu) {
1822                        cpu_buffer = buffer->buffers[cpu];
1823                        if (!cpu_buffer->nr_pages_to_update)
1824                                continue;
1825
1826                        if (cpu_online(cpu))
1827                                wait_for_completion(&cpu_buffer->update_done);
1828                        cpu_buffer->nr_pages_to_update = 0;
1829                }
1830
1831                put_online_cpus();
1832        } else {
1833                /* Make sure this CPU has been initialized */
1834                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1835                        goto out;
1836
1837                cpu_buffer = buffer->buffers[cpu_id];
1838
1839                if (nr_pages == cpu_buffer->nr_pages)
1840                        goto out;
1841
1842                cpu_buffer->nr_pages_to_update = nr_pages -
1843                                                cpu_buffer->nr_pages;
1844
1845                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1846                if (cpu_buffer->nr_pages_to_update > 0 &&
1847                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1848                                            &cpu_buffer->new_pages, cpu_id)) {
1849                        err = -ENOMEM;
1850                        goto out_err;
1851                }
1852
1853                get_online_cpus();
1854
1855                /* Can't run something on an offline CPU. */
1856                if (!cpu_online(cpu_id))
1857                        rb_update_pages(cpu_buffer);
1858                else {
1859                        schedule_work_on(cpu_id,
1860                                         &cpu_buffer->update_pages_work);
1861                        wait_for_completion(&cpu_buffer->update_done);
1862                }
1863
1864                cpu_buffer->nr_pages_to_update = 0;
1865                put_online_cpus();
1866        }
1867
1868 out:
1869        /*
1870         * The ring buffer resize can happen with the ring buffer
1871         * enabled, so that the update disturbs the tracing as little
1872         * as possible. But if the buffer is disabled, we do not need
1873         * to worry about that, and we can take the time to verify
1874         * that the buffer is not corrupt.
1875         */
1876        if (atomic_read(&buffer->record_disabled)) {
1877                atomic_inc(&buffer->record_disabled);
1878                /*
1879                 * Even though the buffer was disabled, we must make sure
1880                 * that it is truly disabled before calling rb_check_pages.
1881                 * There could have been a race between checking
1882                 * record_disable and incrementing it.
1883                 */
1884                synchronize_rcu();
1885                for_each_buffer_cpu(buffer, cpu) {
1886                        cpu_buffer = buffer->buffers[cpu];
1887                        rb_check_pages(cpu_buffer);
1888                }
1889                atomic_dec(&buffer->record_disabled);
1890        }
1891
1892        mutex_unlock(&buffer->mutex);
1893        return size;
1894
1895 out_err:
1896        for_each_buffer_cpu(buffer, cpu) {
1897                struct buffer_page *bpage, *tmp;
1898
1899                cpu_buffer = buffer->buffers[cpu];
1900                cpu_buffer->nr_pages_to_update = 0;
1901
1902                if (list_empty(&cpu_buffer->new_pages))
1903                        continue;
1904
1905                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1906                                        list) {
1907                        list_del_init(&bpage->list);
1908                        free_buffer_page(bpage);
1909                }
1910        }
1911        mutex_unlock(&buffer->mutex);
1912        return err;
1913}
1914EXPORT_SYMBOL_GPL(ring_buffer_resize);
1915
1916void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1917{
1918        mutex_lock(&buffer->mutex);
1919        if (val)
1920                buffer->flags |= RB_FL_OVERWRITE;
1921        else
1922                buffer->flags &= ~RB_FL_OVERWRITE;
1923        mutex_unlock(&buffer->mutex);
1924}
1925EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1926
1927static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1928{
1929        return bpage->page->data + index;
1930}
1931
1932static __always_inline struct ring_buffer_event *
1933rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1934{
1935        return __rb_page_index(cpu_buffer->reader_page,
1936                               cpu_buffer->reader_page->read);
1937}
1938
1939static __always_inline struct ring_buffer_event *
1940rb_iter_head_event(struct ring_buffer_iter *iter)
1941{
1942        return __rb_page_index(iter->head_page, iter->head);
1943}
1944
1945static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1946{
1947        return local_read(&bpage->page->commit);
1948}
1949
1950/* Size is determined by what has been committed */
1951static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1952{
1953        return rb_page_commit(bpage);
1954}
1955
1956static __always_inline unsigned
1957rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1958{
1959        return rb_page_commit(cpu_buffer->commit_page);
1960}
1961
1962static __always_inline unsigned
1963rb_event_index(struct ring_buffer_event *event)
1964{
1965        unsigned long addr = (unsigned long)event;
1966
1967        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1968}
1969
1970static void rb_inc_iter(struct ring_buffer_iter *iter)
1971{
1972        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1973
1974        /*
1975         * The iterator could be on the reader page (it starts there).
1976         * But the head could have moved, since the reader was
1977         * found. Check for this case and assign the iterator
1978         * to the head page instead of next.
1979         */
1980        if (iter->head_page == cpu_buffer->reader_page)
1981                iter->head_page = rb_set_head_page(cpu_buffer);
1982        else
1983                rb_inc_page(cpu_buffer, &iter->head_page);
1984
1985        iter->read_stamp = iter->head_page->page->time_stamp;
1986        iter->head = 0;
1987}
1988
1989/*
1990 * rb_handle_head_page - writer hit the head page
1991 *
1992 * Returns: +1 to retry page
1993 *           0 to continue
1994 *          -1 on error
1995 */
1996static int
1997rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1998                    struct buffer_page *tail_page,
1999                    struct buffer_page *next_page)
2000{
2001        struct buffer_page *new_head;
2002        int entries;
2003        int type;
2004        int ret;
2005
2006        entries = rb_page_entries(next_page);
2007
2008        /*
2009         * The hard part is here. We need to move the head
2010         * forward, and protect against both readers on
2011         * other CPUs and writers coming in via interrupts.
2012         */
2013        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2014                                       RB_PAGE_HEAD);
2015
2016        /*
2017         * type can be one of four:
2018         *  NORMAL - an interrupt already moved it for us
2019         *  HEAD   - we are the first to get here.
2020         *  UPDATE - we are the interrupt interrupting
2021         *           a current move.
2022         *  MOVED  - a reader on another CPU moved the next
2023         *           pointer to its reader page. Give up
2024         *           and try again.
2025         */
2026
2027        switch (type) {
2028        case RB_PAGE_HEAD:
2029                /*
2030                 * We changed the head to UPDATE, thus
2031                 * it is our responsibility to update
2032                 * the counters.
2033                 */
2034                local_add(entries, &cpu_buffer->overrun);
2035                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2036
2037                /*
2038                 * The entries will be zeroed out when we move the
2039                 * tail page.
2040                 */
2041
2042                /* still more to do */
2043                break;
2044
2045        case RB_PAGE_UPDATE:
2046                /*
2047                 * This is an interrupt that interrupt the
2048                 * previous update. Still more to do.
2049                 */
2050                break;
2051        case RB_PAGE_NORMAL:
2052                /*
2053                 * An interrupt came in before the update
2054                 * and processed this for us.
2055                 * Nothing left to do.
2056                 */
2057                return 1;
2058        case RB_PAGE_MOVED:
2059                /*
2060                 * The reader is on another CPU and just did
2061                 * a swap with our next_page.
2062                 * Try again.
2063                 */
2064                return 1;
2065        default:
2066                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2067                return -1;
2068        }
2069
2070        /*
2071         * Now that we are here, the old head pointer is
2072         * set to UPDATE. This will keep the reader from
2073         * swapping the head page with the reader page.
2074         * The reader (on another CPU) will spin till
2075         * we are finished.
2076         *
2077         * We just need to protect against interrupts
2078         * doing the job. We will set the next pointer
2079         * to HEAD. After that, we set the old pointer
2080         * to NORMAL, but only if it was HEAD before.
2081         * otherwise we are an interrupt, and only
2082         * want the outer most commit to reset it.
2083         */
2084        new_head = next_page;
2085        rb_inc_page(cpu_buffer, &new_head);
2086
2087        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2088                                    RB_PAGE_NORMAL);
2089
2090        /*
2091         * Valid returns are:
2092         *  HEAD   - an interrupt came in and already set it.
2093         *  NORMAL - One of two things:
2094         *            1) We really set it.
2095         *            2) A bunch of interrupts came in and moved
2096         *               the page forward again.
2097         */
2098        switch (ret) {
2099        case RB_PAGE_HEAD:
2100        case RB_PAGE_NORMAL:
2101                /* OK */
2102                break;
2103        default:
2104                RB_WARN_ON(cpu_buffer, 1);
2105                return -1;
2106        }
2107
2108        /*
2109         * It is possible that an interrupt came in,
2110         * set the head up, then more interrupts came in
2111         * and moved it again. When we get back here,
2112         * the page would have been set to NORMAL but we
2113         * just set it back to HEAD.
2114         *
2115         * How do you detect this? Well, if that happened
2116         * the tail page would have moved.
2117         */
2118        if (ret == RB_PAGE_NORMAL) {
2119                struct buffer_page *buffer_tail_page;
2120
2121                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2122                /*
2123                 * If the tail had moved passed next, then we need
2124                 * to reset the pointer.
2125                 */
2126                if (buffer_tail_page != tail_page &&
2127                    buffer_tail_page != next_page)
2128                        rb_head_page_set_normal(cpu_buffer, new_head,
2129                                                next_page,
2130                                                RB_PAGE_HEAD);
2131        }
2132
2133        /*
2134         * If this was the outer most commit (the one that
2135         * changed the original pointer from HEAD to UPDATE),
2136         * then it is up to us to reset it to NORMAL.
2137         */
2138        if (type == RB_PAGE_HEAD) {
2139                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2140                                              tail_page,
2141                                              RB_PAGE_UPDATE);
2142                if (RB_WARN_ON(cpu_buffer,
2143                               ret != RB_PAGE_UPDATE))
2144                        return -1;
2145        }
2146
2147        return 0;
2148}
2149
2150static inline void
2151rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2152              unsigned long tail, struct rb_event_info *info)
2153{
2154        struct buffer_page *tail_page = info->tail_page;
2155        struct ring_buffer_event *event;
2156        unsigned long length = info->length;
2157
2158        /*
2159         * Only the event that crossed the page boundary
2160         * must fill the old tail_page with padding.
2161         */
2162        if (tail >= BUF_PAGE_SIZE) {
2163                /*
2164                 * If the page was filled, then we still need
2165                 * to update the real_end. Reset it to zero
2166                 * and the reader will ignore it.
2167                 */
2168                if (tail == BUF_PAGE_SIZE)
2169                        tail_page->real_end = 0;
2170
2171                local_sub(length, &tail_page->write);
2172                return;
2173        }
2174
2175        event = __rb_page_index(tail_page, tail);
2176
2177        /* account for padding bytes */
2178        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2179
2180        /*
2181         * Save the original length to the meta data.
2182         * This will be used by the reader to add lost event
2183         * counter.
2184         */
2185        tail_page->real_end = tail;
2186
2187        /*
2188         * If this event is bigger than the minimum size, then
2189         * we need to be careful that we don't subtract the
2190         * write counter enough to allow another writer to slip
2191         * in on this page.
2192         * We put in a discarded commit instead, to make sure
2193         * that this space is not used again.
2194         *
2195         * If we are less than the minimum size, we don't need to
2196         * worry about it.
2197         */
2198        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2199                /* No room for any events */
2200
2201                /* Mark the rest of the page with padding */
2202                rb_event_set_padding(event);
2203
2204                /* Set the write back to the previous setting */
2205                local_sub(length, &tail_page->write);
2206                return;
2207        }
2208
2209        /* Put in a discarded event */
2210        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2211        event->type_len = RINGBUF_TYPE_PADDING;
2212        /* time delta must be non zero */
2213        event->time_delta = 1;
2214
2215        /* Set write to end of buffer */
2216        length = (tail + length) - BUF_PAGE_SIZE;
2217        local_sub(length, &tail_page->write);
2218}
2219
2220static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2221
2222/*
2223 * This is the slow path, force gcc not to inline it.
2224 */
2225static noinline struct ring_buffer_event *
2226rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2227             unsigned long tail, struct rb_event_info *info)
2228{
2229        struct buffer_page *tail_page = info->tail_page;
2230        struct buffer_page *commit_page = cpu_buffer->commit_page;
2231        struct ring_buffer *buffer = cpu_buffer->buffer;
2232        struct buffer_page *next_page;
2233        int ret;
2234
2235        next_page = tail_page;
2236
2237        rb_inc_page(cpu_buffer, &next_page);
2238
2239        /*
2240         * If for some reason, we had an interrupt storm that made
2241         * it all the way around the buffer, bail, and warn
2242         * about it.
2243         */
2244        if (unlikely(next_page == commit_page)) {
2245                local_inc(&cpu_buffer->commit_overrun);
2246                goto out_reset;
2247        }
2248
2249        /*
2250         * This is where the fun begins!
2251         *
2252         * We are fighting against races between a reader that
2253         * could be on another CPU trying to swap its reader
2254         * page with the buffer head.
2255         *
2256         * We are also fighting against interrupts coming in and
2257         * moving the head or tail on us as well.
2258         *
2259         * If the next page is the head page then we have filled
2260         * the buffer, unless the commit page is still on the
2261         * reader page.
2262         */
2263        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2264
2265                /*
2266                 * If the commit is not on the reader page, then
2267                 * move the header page.
2268                 */
2269                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2270                        /*
2271                         * If we are not in overwrite mode,
2272                         * this is easy, just stop here.
2273                         */
2274                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2275                                local_inc(&cpu_buffer->dropped_events);
2276                                goto out_reset;
2277                        }
2278
2279                        ret = rb_handle_head_page(cpu_buffer,
2280                                                  tail_page,
2281                                                  next_page);
2282                        if (ret < 0)
2283                                goto out_reset;
2284                        if (ret)
2285                                goto out_again;
2286                } else {
2287                        /*
2288                         * We need to be careful here too. The
2289                         * commit page could still be on the reader
2290                         * page. We could have a small buffer, and
2291                         * have filled up the buffer with events
2292                         * from interrupts and such, and wrapped.
2293                         *
2294                         * Note, if the tail page is also the on the
2295                         * reader_page, we let it move out.
2296                         */
2297                        if (unlikely((cpu_buffer->commit_page !=
2298                                      cpu_buffer->tail_page) &&
2299                                     (cpu_buffer->commit_page ==
2300                                      cpu_buffer->reader_page))) {
2301                                local_inc(&cpu_buffer->commit_overrun);
2302                                goto out_reset;
2303                        }
2304                }
2305        }
2306
2307        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2308
2309 out_again:
2310
2311        rb_reset_tail(cpu_buffer, tail, info);
2312
2313        /* Commit what we have for now. */
2314        rb_end_commit(cpu_buffer);
2315        /* rb_end_commit() decs committing */
2316        local_inc(&cpu_buffer->committing);
2317
2318        /* fail and let the caller try again */
2319        return ERR_PTR(-EAGAIN);
2320
2321 out_reset:
2322        /* reset write */
2323        rb_reset_tail(cpu_buffer, tail, info);
2324
2325        return NULL;
2326}
2327
2328/* Slow path, do not inline */
2329static noinline struct ring_buffer_event *
2330rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2331{
2332        if (abs)
2333                event->type_len = RINGBUF_TYPE_TIME_STAMP;
2334        else
2335                event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2336
2337        /* Not the first event on the page, or not delta? */
2338        if (abs || rb_event_index(event)) {
2339                event->time_delta = delta & TS_MASK;
2340                event->array[0] = delta >> TS_SHIFT;
2341        } else {
2342                /* nope, just zero it */
2343                event->time_delta = 0;
2344                event->array[0] = 0;
2345        }
2346
2347        return skip_time_extend(event);
2348}
2349
2350static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2351                                     struct ring_buffer_event *event);
2352
2353/**
2354 * rb_update_event - update event type and data
2355 * @event: the event to update
2356 * @type: the type of event
2357 * @length: the size of the event field in the ring buffer
2358 *
2359 * Update the type and data fields of the event. The length
2360 * is the actual size that is written to the ring buffer,
2361 * and with this, we can determine what to place into the
2362 * data field.
2363 */
2364static void
2365rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2366                struct ring_buffer_event *event,
2367                struct rb_event_info *info)
2368{
2369        unsigned length = info->length;
2370        u64 delta = info->delta;
2371
2372        /* Only a commit updates the timestamp */
2373        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2374                delta = 0;
2375
2376        /*
2377         * If we need to add a timestamp, then we
2378         * add it to the start of the reserved space.
2379         */
2380        if (unlikely(info->add_timestamp)) {
2381                bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2382
2383                event = rb_add_time_stamp(event, info->delta, abs);
2384                length -= RB_LEN_TIME_EXTEND;
2385                delta = 0;
2386        }
2387
2388        event->time_delta = delta;
2389        length -= RB_EVNT_HDR_SIZE;
2390        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2391                event->type_len = 0;
2392                event->array[0] = length;
2393        } else
2394                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2395}
2396
2397static unsigned rb_calculate_event_length(unsigned length)
2398{
2399        struct ring_buffer_event event; /* Used only for sizeof array */
2400
2401        /* zero length can cause confusions */
2402        if (!length)
2403                length++;
2404
2405        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2406                length += sizeof(event.array[0]);
2407
2408        length += RB_EVNT_HDR_SIZE;
2409        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2410
2411        /*
2412         * In case the time delta is larger than the 27 bits for it
2413         * in the header, we need to add a timestamp. If another
2414         * event comes in when trying to discard this one to increase
2415         * the length, then the timestamp will be added in the allocated
2416         * space of this event. If length is bigger than the size needed
2417         * for the TIME_EXTEND, then padding has to be used. The events
2418         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2419         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2420         * As length is a multiple of 4, we only need to worry if it
2421         * is 12 (RB_LEN_TIME_EXTEND + 4).
2422         */
2423        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2424                length += RB_ALIGNMENT;
2425
2426        return length;
2427}
2428
2429#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2430static inline bool sched_clock_stable(void)
2431{
2432        return true;
2433}
2434#endif
2435
2436static inline int
2437rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438                  struct ring_buffer_event *event)
2439{
2440        unsigned long new_index, old_index;
2441        struct buffer_page *bpage;
2442        unsigned long index;
2443        unsigned long addr;
2444
2445        new_index = rb_event_index(event);
2446        old_index = new_index + rb_event_ts_length(event);
2447        addr = (unsigned long)event;
2448        addr &= PAGE_MASK;
2449
2450        bpage = READ_ONCE(cpu_buffer->tail_page);
2451
2452        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453                unsigned long write_mask =
2454                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2455                unsigned long event_length = rb_event_length(event);
2456                /*
2457                 * This is on the tail page. It is possible that
2458                 * a write could come in and move the tail page
2459                 * and write to the next page. That is fine
2460                 * because we just shorten what is on this page.
2461                 */
2462                old_index += write_mask;
2463                new_index += write_mask;
2464                index = local_cmpxchg(&bpage->write, old_index, new_index);
2465                if (index == old_index) {
2466                        /* update counters */
2467                        local_sub(event_length, &cpu_buffer->entries_bytes);
2468                        return 1;
2469                }
2470        }
2471
2472        /* could not discard */
2473        return 0;
2474}
2475
2476static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477{
2478        local_inc(&cpu_buffer->committing);
2479        local_inc(&cpu_buffer->commits);
2480}
2481
2482static __always_inline void
2483rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2484{
2485        unsigned long max_count;
2486
2487        /*
2488         * We only race with interrupts and NMIs on this CPU.
2489         * If we own the commit event, then we can commit
2490         * all others that interrupted us, since the interruptions
2491         * are in stack format (they finish before they come
2492         * back to us). This allows us to do a simple loop to
2493         * assign the commit to the tail.
2494         */
2495 again:
2496        max_count = cpu_buffer->nr_pages * 100;
2497
2498        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2499                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2500                        return;
2501                if (RB_WARN_ON(cpu_buffer,
2502                               rb_is_reader_page(cpu_buffer->tail_page)))
2503                        return;
2504                local_set(&cpu_buffer->commit_page->page->commit,
2505                          rb_page_write(cpu_buffer->commit_page));
2506                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2507                /* Only update the write stamp if the page has an event */
2508                if (rb_page_write(cpu_buffer->commit_page))
2509                        cpu_buffer->write_stamp =
2510                                cpu_buffer->commit_page->page->time_stamp;
2511                /* add barrier to keep gcc from optimizing too much */
2512                barrier();
2513        }
2514        while (rb_commit_index(cpu_buffer) !=
2515               rb_page_write(cpu_buffer->commit_page)) {
2516
2517                local_set(&cpu_buffer->commit_page->page->commit,
2518                          rb_page_write(cpu_buffer->commit_page));
2519                RB_WARN_ON(cpu_buffer,
2520                           local_read(&cpu_buffer->commit_page->page->commit) &
2521                           ~RB_WRITE_MASK);
2522                barrier();
2523        }
2524
2525        /* again, keep gcc from optimizing */
2526        barrier();
2527
2528        /*
2529         * If an interrupt came in just after the first while loop
2530         * and pushed the tail page forward, we will be left with
2531         * a dangling commit that will never go forward.
2532         */
2533        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2534                goto again;
2535}
2536
2537static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2538{
2539        unsigned long commits;
2540
2541        if (RB_WARN_ON(cpu_buffer,
2542                       !local_read(&cpu_buffer->committing)))
2543                return;
2544
2545 again:
2546        commits = local_read(&cpu_buffer->commits);
2547        /* synchronize with interrupts */
2548        barrier();
2549        if (local_read(&cpu_buffer->committing) == 1)
2550                rb_set_commit_to_write(cpu_buffer);
2551
2552        local_dec(&cpu_buffer->committing);
2553
2554        /* synchronize with interrupts */
2555        barrier();
2556
2557        /*
2558         * Need to account for interrupts coming in between the
2559         * updating of the commit page and the clearing of the
2560         * committing counter.
2561         */
2562        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2563            !local_read(&cpu_buffer->committing)) {
2564                local_inc(&cpu_buffer->committing);
2565                goto again;
2566        }
2567}
2568
2569static inline void rb_event_discard(struct ring_buffer_event *event)
2570{
2571        if (extended_time(event))
2572                event = skip_time_extend(event);
2573
2574        /* array[0] holds the actual length for the discarded event */
2575        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2576        event->type_len = RINGBUF_TYPE_PADDING;
2577        /* time delta must be non zero */
2578        if (!event->time_delta)
2579                event->time_delta = 1;
2580}
2581
2582static __always_inline bool
2583rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2584                   struct ring_buffer_event *event)
2585{
2586        unsigned long addr = (unsigned long)event;
2587        unsigned long index;
2588
2589        index = rb_event_index(event);
2590        addr &= PAGE_MASK;
2591
2592        return cpu_buffer->commit_page->page == (void *)addr &&
2593                rb_commit_index(cpu_buffer) == index;
2594}
2595
2596static __always_inline void
2597rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2598                      struct ring_buffer_event *event)
2599{
2600        u64 delta;
2601
2602        /*
2603         * The event first in the commit queue updates the
2604         * time stamp.
2605         */
2606        if (rb_event_is_commit(cpu_buffer, event)) {
2607                /*
2608                 * A commit event that is first on a page
2609                 * updates the write timestamp with the page stamp
2610                 */
2611                if (!rb_event_index(event))
2612                        cpu_buffer->write_stamp =
2613                                cpu_buffer->commit_page->page->time_stamp;
2614                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2615                        delta = ring_buffer_event_time_stamp(event);
2616                        cpu_buffer->write_stamp += delta;
2617                } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2618                        delta = ring_buffer_event_time_stamp(event);
2619                        cpu_buffer->write_stamp = delta;
2620                } else
2621                        cpu_buffer->write_stamp += event->time_delta;
2622        }
2623}
2624
2625static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2626                      struct ring_buffer_event *event)
2627{
2628        local_inc(&cpu_buffer->entries);
2629        rb_update_write_stamp(cpu_buffer, event);
2630        rb_end_commit(cpu_buffer);
2631}
2632
2633static __always_inline void
2634rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2635{
2636        size_t nr_pages;
2637        size_t dirty;
2638        size_t full;
2639
2640        if (buffer->irq_work.waiters_pending) {
2641                buffer->irq_work.waiters_pending = false;
2642                /* irq_work_queue() supplies it's own memory barriers */
2643                irq_work_queue(&buffer->irq_work.work);
2644        }
2645
2646        if (cpu_buffer->irq_work.waiters_pending) {
2647                cpu_buffer->irq_work.waiters_pending = false;
2648                /* irq_work_queue() supplies it's own memory barriers */
2649                irq_work_queue(&cpu_buffer->irq_work.work);
2650        }
2651
2652        if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2653                return;
2654
2655        if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2656                return;
2657
2658        if (!cpu_buffer->irq_work.full_waiters_pending)
2659                return;
2660
2661        cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2662
2663        full = cpu_buffer->shortest_full;
2664        nr_pages = cpu_buffer->nr_pages;
2665        dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2666        if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2667                return;
2668
2669        cpu_buffer->irq_work.wakeup_full = true;
2670        cpu_buffer->irq_work.full_waiters_pending = false;
2671        /* irq_work_queue() supplies it's own memory barriers */
2672        irq_work_queue(&cpu_buffer->irq_work.work);
2673}
2674
2675/*
2676 * The lock and unlock are done within a preempt disable section.
2677 * The current_context per_cpu variable can only be modified
2678 * by the current task between lock and unlock. But it can
2679 * be modified more than once via an interrupt. To pass this
2680 * information from the lock to the unlock without having to
2681 * access the 'in_interrupt()' functions again (which do show
2682 * a bit of overhead in something as critical as function tracing,
2683 * we use a bitmask trick.
2684 *
2685 *  bit 0 =  NMI context
2686 *  bit 1 =  IRQ context
2687 *  bit 2 =  SoftIRQ context
2688 *  bit 3 =  normal context.
2689 *
2690 * This works because this is the order of contexts that can
2691 * preempt other contexts. A SoftIRQ never preempts an IRQ
2692 * context.
2693 *
2694 * When the context is determined, the corresponding bit is
2695 * checked and set (if it was set, then a recursion of that context
2696 * happened).
2697 *
2698 * On unlock, we need to clear this bit. To do so, just subtract
2699 * 1 from the current_context and AND it to itself.
2700 *
2701 * (binary)
2702 *  101 - 1 = 100
2703 *  101 & 100 = 100 (clearing bit zero)
2704 *
2705 *  1010 - 1 = 1001
2706 *  1010 & 1001 = 1000 (clearing bit 1)
2707 *
2708 * The least significant bit can be cleared this way, and it
2709 * just so happens that it is the same bit corresponding to
2710 * the current context.
2711 */
2712
2713static __always_inline int
2714trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2715{
2716        unsigned int val = cpu_buffer->current_context;
2717        unsigned long pc = preempt_count();
2718        int bit;
2719
2720        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2721                bit = RB_CTX_NORMAL;
2722        else
2723                bit = pc & NMI_MASK ? RB_CTX_NMI :
2724                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2725
2726        if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2727                return 1;
2728
2729        val |= (1 << (bit + cpu_buffer->nest));
2730        cpu_buffer->current_context = val;
2731
2732        return 0;
2733}
2734
2735static __always_inline void
2736trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2737{
2738        cpu_buffer->current_context &=
2739                cpu_buffer->current_context - (1 << cpu_buffer->nest);
2740}
2741
2742/* The recursive locking above uses 4 bits */
2743#define NESTED_BITS 4
2744
2745/**
2746 * ring_buffer_nest_start - Allow to trace while nested
2747 * @buffer: The ring buffer to modify
2748 *
2749 * The ring buffer has a safety mechanism to prevent recursion.
2750 * But there may be a case where a trace needs to be done while
2751 * tracing something else. In this case, calling this function
2752 * will allow this function to nest within a currently active
2753 * ring_buffer_lock_reserve().
2754 *
2755 * Call this function before calling another ring_buffer_lock_reserve() and
2756 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2757 */
2758void ring_buffer_nest_start(struct ring_buffer *buffer)
2759{
2760        struct ring_buffer_per_cpu *cpu_buffer;
2761        int cpu;
2762
2763        /* Enabled by ring_buffer_nest_end() */
2764        preempt_disable_notrace();
2765        cpu = raw_smp_processor_id();
2766        cpu_buffer = buffer->buffers[cpu];
2767        /* This is the shift value for the above recursive locking */
2768        cpu_buffer->nest += NESTED_BITS;
2769}
2770
2771/**
2772 * ring_buffer_nest_end - Allow to trace while nested
2773 * @buffer: The ring buffer to modify
2774 *
2775 * Must be called after ring_buffer_nest_start() and after the
2776 * ring_buffer_unlock_commit().
2777 */
2778void ring_buffer_nest_end(struct ring_buffer *buffer)
2779{
2780        struct ring_buffer_per_cpu *cpu_buffer;
2781        int cpu;
2782
2783        /* disabled by ring_buffer_nest_start() */
2784        cpu = raw_smp_processor_id();
2785        cpu_buffer = buffer->buffers[cpu];
2786        /* This is the shift value for the above recursive locking */
2787        cpu_buffer->nest -= NESTED_BITS;
2788        preempt_enable_notrace();
2789}
2790
2791/**
2792 * ring_buffer_unlock_commit - commit a reserved
2793 * @buffer: The buffer to commit to
2794 * @event: The event pointer to commit.
2795 *
2796 * This commits the data to the ring buffer, and releases any locks held.
2797 *
2798 * Must be paired with ring_buffer_lock_reserve.
2799 */
2800int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2801                              struct ring_buffer_event *event)
2802{
2803        struct ring_buffer_per_cpu *cpu_buffer;
2804        int cpu = raw_smp_processor_id();
2805
2806        cpu_buffer = buffer->buffers[cpu];
2807
2808        rb_commit(cpu_buffer, event);
2809
2810        rb_wakeups(buffer, cpu_buffer);
2811
2812        trace_recursive_unlock(cpu_buffer);
2813
2814        preempt_enable_notrace();
2815
2816        return 0;
2817}
2818EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2819
2820static noinline void
2821rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2822                    struct rb_event_info *info)
2823{
2824        WARN_ONCE(info->delta > (1ULL << 59),
2825                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2826                  (unsigned long long)info->delta,
2827                  (unsigned long long)info->ts,
2828                  (unsigned long long)cpu_buffer->write_stamp,
2829                  sched_clock_stable() ? "" :
2830                  "If you just came from a suspend/resume,\n"
2831                  "please switch to the trace global clock:\n"
2832                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2833                  "or add trace_clock=global to the kernel command line\n");
2834        info->add_timestamp = 1;
2835}
2836
2837static struct ring_buffer_event *
2838__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2839                  struct rb_event_info *info)
2840{
2841        struct ring_buffer_event *event;
2842        struct buffer_page *tail_page;
2843        unsigned long tail, write;
2844
2845        /*
2846         * If the time delta since the last event is too big to
2847         * hold in the time field of the event, then we append a
2848         * TIME EXTEND event ahead of the data event.
2849         */
2850        if (unlikely(info->add_timestamp))
2851                info->length += RB_LEN_TIME_EXTEND;
2852
2853        /* Don't let the compiler play games with cpu_buffer->tail_page */
2854        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2855        write = local_add_return(info->length, &tail_page->write);
2856
2857        /* set write to only the index of the write */
2858        write &= RB_WRITE_MASK;
2859        tail = write - info->length;
2860
2861        /*
2862         * If this is the first commit on the page, then it has the same
2863         * timestamp as the page itself.
2864         */
2865        if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2866                info->delta = 0;
2867
2868        /* See if we shot pass the end of this buffer page */
2869        if (unlikely(write > BUF_PAGE_SIZE))
2870                return rb_move_tail(cpu_buffer, tail, info);
2871
2872        /* We reserved something on the buffer */
2873
2874        event = __rb_page_index(tail_page, tail);
2875        rb_update_event(cpu_buffer, event, info);
2876
2877        local_inc(&tail_page->entries);
2878
2879        /*
2880         * If this is the first commit on the page, then update
2881         * its timestamp.
2882         */
2883        if (!tail)
2884                tail_page->page->time_stamp = info->ts;
2885
2886        /* account for these added bytes */
2887        local_add(info->length, &cpu_buffer->entries_bytes);
2888
2889        return event;
2890}
2891
2892static __always_inline struct ring_buffer_event *
2893rb_reserve_next_event(struct ring_buffer *buffer,
2894                      struct ring_buffer_per_cpu *cpu_buffer,
2895                      unsigned long length)
2896{
2897        struct ring_buffer_event *event;
2898        struct rb_event_info info;
2899        int nr_loops = 0;
2900        u64 diff;
2901
2902        rb_start_commit(cpu_buffer);
2903
2904#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2905        /*
2906         * Due to the ability to swap a cpu buffer from a buffer
2907         * it is possible it was swapped before we committed.
2908         * (committing stops a swap). We check for it here and
2909         * if it happened, we have to fail the write.
2910         */
2911        barrier();
2912        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2913                local_dec(&cpu_buffer->committing);
2914                local_dec(&cpu_buffer->commits);
2915                return NULL;
2916        }
2917#endif
2918
2919        info.length = rb_calculate_event_length(length);
2920 again:
2921        info.add_timestamp = 0;
2922        info.delta = 0;
2923
2924        /*
2925         * We allow for interrupts to reenter here and do a trace.
2926         * If one does, it will cause this original code to loop
2927         * back here. Even with heavy interrupts happening, this
2928         * should only happen a few times in a row. If this happens
2929         * 1000 times in a row, there must be either an interrupt
2930         * storm or we have something buggy.
2931         * Bail!
2932         */
2933        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2934                goto out_fail;
2935
2936        info.ts = rb_time_stamp(cpu_buffer->buffer);
2937        diff = info.ts - cpu_buffer->write_stamp;
2938
2939        /* make sure this diff is calculated here */
2940        barrier();
2941
2942        if (ring_buffer_time_stamp_abs(buffer)) {
2943                info.delta = info.ts;
2944                rb_handle_timestamp(cpu_buffer, &info);
2945        } else /* Did the write stamp get updated already? */
2946                if (likely(info.ts >= cpu_buffer->write_stamp)) {
2947                info.delta = diff;
2948                if (unlikely(test_time_stamp(info.delta)))
2949                        rb_handle_timestamp(cpu_buffer, &info);
2950        }
2951
2952        event = __rb_reserve_next(cpu_buffer, &info);
2953
2954        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2955                if (info.add_timestamp)
2956                        info.length -= RB_LEN_TIME_EXTEND;
2957                goto again;
2958        }
2959
2960        if (!event)
2961                goto out_fail;
2962
2963        return event;
2964
2965 out_fail:
2966        rb_end_commit(cpu_buffer);
2967        return NULL;
2968}
2969
2970/**
2971 * ring_buffer_lock_reserve - reserve a part of the buffer
2972 * @buffer: the ring buffer to reserve from
2973 * @length: the length of the data to reserve (excluding event header)
2974 *
2975 * Returns a reserved event on the ring buffer to copy directly to.
2976 * The user of this interface will need to get the body to write into
2977 * and can use the ring_buffer_event_data() interface.
2978 *
2979 * The length is the length of the data needed, not the event length
2980 * which also includes the event header.
2981 *
2982 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2983 * If NULL is returned, then nothing has been allocated or locked.
2984 */
2985struct ring_buffer_event *
2986ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2987{
2988        struct ring_buffer_per_cpu *cpu_buffer;
2989        struct ring_buffer_event *event;
2990        int cpu;
2991
2992        /* If we are tracing schedule, we don't want to recurse */
2993        preempt_disable_notrace();
2994
2995        if (unlikely(atomic_read(&buffer->record_disabled)))
2996                goto out;
2997
2998        cpu = raw_smp_processor_id();
2999
3000        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3001                goto out;
3002
3003        cpu_buffer = buffer->buffers[cpu];
3004
3005        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3006                goto out;
3007
3008        if (unlikely(length > BUF_MAX_DATA_SIZE))
3009                goto out;
3010
3011        if (unlikely(trace_recursive_lock(cpu_buffer)))
3012                goto out;
3013
3014        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3015        if (!event)
3016                goto out_unlock;
3017
3018        return event;
3019
3020 out_unlock:
3021        trace_recursive_unlock(cpu_buffer);
3022 out:
3023        preempt_enable_notrace();
3024        return NULL;
3025}
3026EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3027
3028/*
3029 * Decrement the entries to the page that an event is on.
3030 * The event does not even need to exist, only the pointer
3031 * to the page it is on. This may only be called before the commit
3032 * takes place.
3033 */
3034static inline void
3035rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3036                   struct ring_buffer_event *event)
3037{
3038        unsigned long addr = (unsigned long)event;
3039        struct buffer_page *bpage = cpu_buffer->commit_page;
3040        struct buffer_page *start;
3041
3042        addr &= PAGE_MASK;
3043
3044        /* Do the likely case first */
3045        if (likely(bpage->page == (void *)addr)) {
3046                local_dec(&bpage->entries);
3047                return;
3048        }
3049
3050        /*
3051         * Because the commit page may be on the reader page we
3052         * start with the next page and check the end loop there.
3053         */
3054        rb_inc_page(cpu_buffer, &bpage);
3055        start = bpage;
3056        do {
3057                if (bpage->page == (void *)addr) {
3058                        local_dec(&bpage->entries);
3059                        return;
3060                }
3061                rb_inc_page(cpu_buffer, &bpage);
3062        } while (bpage != start);
3063
3064        /* commit not part of this buffer?? */
3065        RB_WARN_ON(cpu_buffer, 1);
3066}
3067
3068/**
3069 * ring_buffer_commit_discard - discard an event that has not been committed
3070 * @buffer: the ring buffer
3071 * @event: non committed event to discard
3072 *
3073 * Sometimes an event that is in the ring buffer needs to be ignored.
3074 * This function lets the user discard an event in the ring buffer
3075 * and then that event will not be read later.
3076 *
3077 * This function only works if it is called before the item has been
3078 * committed. It will try to free the event from the ring buffer
3079 * if another event has not been added behind it.
3080 *
3081 * If another event has been added behind it, it will set the event
3082 * up as discarded, and perform the commit.
3083 *
3084 * If this function is called, do not call ring_buffer_unlock_commit on
3085 * the event.
3086 */
3087void ring_buffer_discard_commit(struct ring_buffer *buffer,
3088                                struct ring_buffer_event *event)
3089{
3090        struct ring_buffer_per_cpu *cpu_buffer;
3091        int cpu;
3092
3093        /* The event is discarded regardless */
3094        rb_event_discard(event);
3095
3096        cpu = smp_processor_id();
3097        cpu_buffer = buffer->buffers[cpu];
3098
3099        /*
3100         * This must only be called if the event has not been
3101         * committed yet. Thus we can assume that preemption
3102         * is still disabled.
3103         */
3104        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3105
3106        rb_decrement_entry(cpu_buffer, event);
3107        if (rb_try_to_discard(cpu_buffer, event))
3108                goto out;
3109
3110        /*
3111         * The commit is still visible by the reader, so we
3112         * must still update the timestamp.
3113         */
3114        rb_update_write_stamp(cpu_buffer, event);
3115 out:
3116        rb_end_commit(cpu_buffer);
3117
3118        trace_recursive_unlock(cpu_buffer);
3119
3120        preempt_enable_notrace();
3121
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3124
3125/**
3126 * ring_buffer_write - write data to the buffer without reserving
3127 * @buffer: The ring buffer to write to.
3128 * @length: The length of the data being written (excluding the event header)
3129 * @data: The data to write to the buffer.
3130 *
3131 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3132 * one function. If you already have the data to write to the buffer, it
3133 * may be easier to simply call this function.
3134 *
3135 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3136 * and not the length of the event which would hold the header.
3137 */
3138int ring_buffer_write(struct ring_buffer *buffer,
3139                      unsigned long length,
3140                      void *data)
3141{
3142        struct ring_buffer_per_cpu *cpu_buffer;
3143        struct ring_buffer_event *event;
3144        void *body;
3145        int ret = -EBUSY;
3146        int cpu;
3147
3148        preempt_disable_notrace();
3149
3150        if (atomic_read(&buffer->record_disabled))
3151                goto out;
3152
3153        cpu = raw_smp_processor_id();
3154
3155        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156                goto out;
3157
3158        cpu_buffer = buffer->buffers[cpu];
3159
3160        if (atomic_read(&cpu_buffer->record_disabled))
3161                goto out;
3162
3163        if (length > BUF_MAX_DATA_SIZE)
3164                goto out;
3165
3166        if (unlikely(trace_recursive_lock(cpu_buffer)))
3167                goto out;
3168
3169        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3170        if (!event)
3171                goto out_unlock;
3172
3173        body = rb_event_data(event);
3174
3175        memcpy(body, data, length);
3176
3177        rb_commit(cpu_buffer, event);
3178
3179        rb_wakeups(buffer, cpu_buffer);
3180
3181        ret = 0;
3182
3183 out_unlock:
3184        trace_recursive_unlock(cpu_buffer);
3185
3186 out:
3187        preempt_enable_notrace();
3188
3189        return ret;
3190}
3191EXPORT_SYMBOL_GPL(ring_buffer_write);
3192
3193static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3194{
3195        struct buffer_page *reader = cpu_buffer->reader_page;
3196        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3197        struct buffer_page *commit = cpu_buffer->commit_page;
3198
3199        /* In case of error, head will be NULL */
3200        if (unlikely(!head))
3201                return true;
3202
3203        return reader->read == rb_page_commit(reader) &&
3204                (commit == reader ||
3205                 (commit == head &&
3206                  head->read == rb_page_commit(commit)));
3207}
3208
3209/**
3210 * ring_buffer_record_disable - stop all writes into the buffer
3211 * @buffer: The ring buffer to stop writes to.
3212 *
3213 * This prevents all writes to the buffer. Any attempt to write
3214 * to the buffer after this will fail and return NULL.
3215 *
3216 * The caller should call synchronize_rcu() after this.
3217 */
3218void ring_buffer_record_disable(struct ring_buffer *buffer)
3219{
3220        atomic_inc(&buffer->record_disabled);
3221}
3222EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3223
3224/**
3225 * ring_buffer_record_enable - enable writes to the buffer
3226 * @buffer: The ring buffer to enable writes
3227 *
3228 * Note, multiple disables will need the same number of enables
3229 * to truly enable the writing (much like preempt_disable).
3230 */
3231void ring_buffer_record_enable(struct ring_buffer *buffer)
3232{
3233        atomic_dec(&buffer->record_disabled);
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3236
3237/**
3238 * ring_buffer_record_off - stop all writes into the buffer
3239 * @buffer: The ring buffer to stop writes to.
3240 *
3241 * This prevents all writes to the buffer. Any attempt to write
3242 * to the buffer after this will fail and return NULL.
3243 *
3244 * This is different than ring_buffer_record_disable() as
3245 * it works like an on/off switch, where as the disable() version
3246 * must be paired with a enable().
3247 */
3248void ring_buffer_record_off(struct ring_buffer *buffer)
3249{
3250        unsigned int rd;
3251        unsigned int new_rd;
3252
3253        do {
3254                rd = atomic_read(&buffer->record_disabled);
3255                new_rd = rd | RB_BUFFER_OFF;
3256        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3259
3260/**
3261 * ring_buffer_record_on - restart writes into the buffer
3262 * @buffer: The ring buffer to start writes to.
3263 *
3264 * This enables all writes to the buffer that was disabled by
3265 * ring_buffer_record_off().
3266 *
3267 * This is different than ring_buffer_record_enable() as
3268 * it works like an on/off switch, where as the enable() version
3269 * must be paired with a disable().
3270 */
3271void ring_buffer_record_on(struct ring_buffer *buffer)
3272{
3273        unsigned int rd;
3274        unsigned int new_rd;
3275
3276        do {
3277                rd = atomic_read(&buffer->record_disabled);
3278                new_rd = rd & ~RB_BUFFER_OFF;
3279        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3280}
3281EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3282
3283/**
3284 * ring_buffer_record_is_on - return true if the ring buffer can write
3285 * @buffer: The ring buffer to see if write is enabled
3286 *
3287 * Returns true if the ring buffer is in a state that it accepts writes.
3288 */
3289bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3290{
3291        return !atomic_read(&buffer->record_disabled);
3292}
3293
3294/**
3295 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3296 * @buffer: The ring buffer to see if write is set enabled
3297 *
3298 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3299 * Note that this does NOT mean it is in a writable state.
3300 *
3301 * It may return true when the ring buffer has been disabled by
3302 * ring_buffer_record_disable(), as that is a temporary disabling of
3303 * the ring buffer.
3304 */
3305bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3306{
3307        return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3308}
3309
3310/**
3311 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3312 * @buffer: The ring buffer to stop writes to.
3313 * @cpu: The CPU buffer to stop
3314 *
3315 * This prevents all writes to the buffer. Any attempt to write
3316 * to the buffer after this will fail and return NULL.
3317 *
3318 * The caller should call synchronize_rcu() after this.
3319 */
3320void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3321{
3322        struct ring_buffer_per_cpu *cpu_buffer;
3323
3324        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3325                return;
3326
3327        cpu_buffer = buffer->buffers[cpu];
3328        atomic_inc(&cpu_buffer->record_disabled);
3329}
3330EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3331
3332/**
3333 * ring_buffer_record_enable_cpu - enable writes to the buffer
3334 * @buffer: The ring buffer to enable writes
3335 * @cpu: The CPU to enable.
3336 *
3337 * Note, multiple disables will need the same number of enables
3338 * to truly enable the writing (much like preempt_disable).
3339 */
3340void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3341{
3342        struct ring_buffer_per_cpu *cpu_buffer;
3343
3344        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345                return;
3346
3347        cpu_buffer = buffer->buffers[cpu];
3348        atomic_dec(&cpu_buffer->record_disabled);
3349}
3350EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3351
3352/*
3353 * The total entries in the ring buffer is the running counter
3354 * of entries entered into the ring buffer, minus the sum of
3355 * the entries read from the ring buffer and the number of
3356 * entries that were overwritten.
3357 */
3358static inline unsigned long
3359rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3360{
3361        return local_read(&cpu_buffer->entries) -
3362                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3363}
3364
3365/**
3366 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3367 * @buffer: The ring buffer
3368 * @cpu: The per CPU buffer to read from.
3369 */
3370u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3371{
3372        unsigned long flags;
3373        struct ring_buffer_per_cpu *cpu_buffer;
3374        struct buffer_page *bpage;
3375        u64 ret = 0;
3376
3377        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3378                return 0;
3379
3380        cpu_buffer = buffer->buffers[cpu];
3381        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3382        /*
3383         * if the tail is on reader_page, oldest time stamp is on the reader
3384         * page
3385         */
3386        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3387                bpage = cpu_buffer->reader_page;
3388        else
3389                bpage = rb_set_head_page(cpu_buffer);
3390        if (bpage)
3391                ret = bpage->page->time_stamp;
3392        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3393
3394        return ret;
3395}
3396EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3397
3398/**
3399 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3400 * @buffer: The ring buffer
3401 * @cpu: The per CPU buffer to read from.
3402 */
3403unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3404{
3405        struct ring_buffer_per_cpu *cpu_buffer;
3406        unsigned long ret;
3407
3408        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409                return 0;
3410
3411        cpu_buffer = buffer->buffers[cpu];
3412        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3413
3414        return ret;
3415}
3416EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3417
3418/**
3419 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3420 * @buffer: The ring buffer
3421 * @cpu: The per CPU buffer to get the entries from.
3422 */
3423unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3424{
3425        struct ring_buffer_per_cpu *cpu_buffer;
3426
3427        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3428                return 0;
3429
3430        cpu_buffer = buffer->buffers[cpu];
3431
3432        return rb_num_of_entries(cpu_buffer);
3433}
3434EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3435
3436/**
3437 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3438 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3439 * @buffer: The ring buffer
3440 * @cpu: The per CPU buffer to get the number of overruns from
3441 */
3442unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443{
3444        struct ring_buffer_per_cpu *cpu_buffer;
3445        unsigned long ret;
3446
3447        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448                return 0;
3449
3450        cpu_buffer = buffer->buffers[cpu];
3451        ret = local_read(&cpu_buffer->overrun);
3452
3453        return ret;
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3456
3457/**
3458 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3459 * commits failing due to the buffer wrapping around while there are uncommitted
3460 * events, such as during an interrupt storm.
3461 * @buffer: The ring buffer
3462 * @cpu: The per CPU buffer to get the number of overruns from
3463 */
3464unsigned long
3465ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3466{
3467        struct ring_buffer_per_cpu *cpu_buffer;
3468        unsigned long ret;
3469
3470        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3471                return 0;
3472
3473        cpu_buffer = buffer->buffers[cpu];
3474        ret = local_read(&cpu_buffer->commit_overrun);
3475
3476        return ret;
3477}
3478EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3479
3480/**
3481 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3482 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3483 * @buffer: The ring buffer
3484 * @cpu: The per CPU buffer to get the number of overruns from
3485 */
3486unsigned long
3487ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3488{
3489        struct ring_buffer_per_cpu *cpu_buffer;
3490        unsigned long ret;
3491
3492        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3493                return 0;
3494
3495        cpu_buffer = buffer->buffers[cpu];
3496        ret = local_read(&cpu_buffer->dropped_events);
3497
3498        return ret;
3499}
3500EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3501
3502/**
3503 * ring_buffer_read_events_cpu - get the number of events successfully read
3504 * @buffer: The ring buffer
3505 * @cpu: The per CPU buffer to get the number of events read
3506 */
3507unsigned long
3508ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3509{
3510        struct ring_buffer_per_cpu *cpu_buffer;
3511
3512        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3513                return 0;
3514
3515        cpu_buffer = buffer->buffers[cpu];
3516        return cpu_buffer->read;
3517}
3518EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3519
3520/**
3521 * ring_buffer_entries - get the number of entries in a buffer
3522 * @buffer: The ring buffer
3523 *
3524 * Returns the total number of entries in the ring buffer
3525 * (all CPU entries)
3526 */
3527unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3528{
3529        struct ring_buffer_per_cpu *cpu_buffer;
3530        unsigned long entries = 0;
3531        int cpu;
3532
3533        /* if you care about this being correct, lock the buffer */
3534        for_each_buffer_cpu(buffer, cpu) {
3535                cpu_buffer = buffer->buffers[cpu];
3536                entries += rb_num_of_entries(cpu_buffer);
3537        }
3538
3539        return entries;
3540}
3541EXPORT_SYMBOL_GPL(ring_buffer_entries);
3542
3543/**
3544 * ring_buffer_overruns - get the number of overruns in buffer
3545 * @buffer: The ring buffer
3546 *
3547 * Returns the total number of overruns in the ring buffer
3548 * (all CPU entries)
3549 */
3550unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3551{
3552        struct ring_buffer_per_cpu *cpu_buffer;
3553        unsigned long overruns = 0;
3554        int cpu;
3555
3556        /* if you care about this being correct, lock the buffer */
3557        for_each_buffer_cpu(buffer, cpu) {
3558                cpu_buffer = buffer->buffers[cpu];
3559                overruns += local_read(&cpu_buffer->overrun);
3560        }
3561
3562        return overruns;
3563}
3564EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3565
3566static void rb_iter_reset(struct ring_buffer_iter *iter)
3567{
3568        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3569
3570        /* Iterator usage is expected to have record disabled */
3571        iter->head_page = cpu_buffer->reader_page;
3572        iter->head = cpu_buffer->reader_page->read;
3573
3574        iter->cache_reader_page = iter->head_page;
3575        iter->cache_read = cpu_buffer->read;
3576
3577        if (iter->head)
3578                iter->read_stamp = cpu_buffer->read_stamp;
3579        else
3580                iter->read_stamp = iter->head_page->page->time_stamp;
3581}
3582
3583/**
3584 * ring_buffer_iter_reset - reset an iterator
3585 * @iter: The iterator to reset
3586 *
3587 * Resets the iterator, so that it will start from the beginning
3588 * again.
3589 */
3590void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3591{
3592        struct ring_buffer_per_cpu *cpu_buffer;
3593        unsigned long flags;
3594
3595        if (!iter)
3596                return;
3597
3598        cpu_buffer = iter->cpu_buffer;
3599
3600        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3601        rb_iter_reset(iter);
3602        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3603}
3604EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3605
3606/**
3607 * ring_buffer_iter_empty - check if an iterator has no more to read
3608 * @iter: The iterator to check
3609 */
3610int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3611{
3612        struct ring_buffer_per_cpu *cpu_buffer;
3613        struct buffer_page *reader;
3614        struct buffer_page *head_page;
3615        struct buffer_page *commit_page;
3616        unsigned commit;
3617
3618        cpu_buffer = iter->cpu_buffer;
3619
3620        /* Remember, trace recording is off when iterator is in use */
3621        reader = cpu_buffer->reader_page;
3622        head_page = cpu_buffer->head_page;
3623        commit_page = cpu_buffer->commit_page;
3624        commit = rb_page_commit(commit_page);
3625
3626        return ((iter->head_page == commit_page && iter->head == commit) ||
3627                (iter->head_page == reader && commit_page == head_page &&
3628                 head_page->read == commit &&
3629                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3630}
3631EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3632
3633static void
3634rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3635                     struct ring_buffer_event *event)
3636{
3637        u64 delta;
3638
3639        switch (event->type_len) {
3640        case RINGBUF_TYPE_PADDING:
3641                return;
3642
3643        case RINGBUF_TYPE_TIME_EXTEND:
3644                delta = ring_buffer_event_time_stamp(event);
3645                cpu_buffer->read_stamp += delta;
3646                return;
3647
3648        case RINGBUF_TYPE_TIME_STAMP:
3649                delta = ring_buffer_event_time_stamp(event);
3650                cpu_buffer->read_stamp = delta;
3651                return;
3652
3653        case RINGBUF_TYPE_DATA:
3654                cpu_buffer->read_stamp += event->time_delta;
3655                return;
3656
3657        default:
3658                BUG();
3659        }
3660        return;
3661}
3662
3663static void
3664rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3665                          struct ring_buffer_event *event)
3666{
3667        u64 delta;
3668
3669        switch (event->type_len) {
3670        case RINGBUF_TYPE_PADDING:
3671                return;
3672
3673        case RINGBUF_TYPE_TIME_EXTEND:
3674                delta = ring_buffer_event_time_stamp(event);
3675                iter->read_stamp += delta;
3676                return;
3677
3678        case RINGBUF_TYPE_TIME_STAMP:
3679                delta = ring_buffer_event_time_stamp(event);
3680                iter->read_stamp = delta;
3681                return;
3682
3683        case RINGBUF_TYPE_DATA:
3684                iter->read_stamp += event->time_delta;
3685                return;
3686
3687        default:
3688                BUG();
3689        }
3690        return;
3691}
3692
3693static struct buffer_page *
3694rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3695{
3696        struct buffer_page *reader = NULL;
3697        unsigned long overwrite;
3698        unsigned long flags;
3699        int nr_loops = 0;
3700        int ret;
3701
3702        local_irq_save(flags);
3703        arch_spin_lock(&cpu_buffer->lock);
3704
3705 again:
3706        /*
3707         * This should normally only loop twice. But because the
3708         * start of the reader inserts an empty page, it causes
3709         * a case where we will loop three times. There should be no
3710         * reason to loop four times (that I know of).
3711         */
3712        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3713                reader = NULL;
3714                goto out;
3715        }
3716
3717        reader = cpu_buffer->reader_page;
3718
3719        /* If there's more to read, return this page */
3720        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3721                goto out;
3722
3723        /* Never should we have an index greater than the size */
3724        if (RB_WARN_ON(cpu_buffer,
3725                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3726                goto out;
3727
3728        /* check if we caught up to the tail */
3729        reader = NULL;
3730        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3731                goto out;
3732
3733        /* Don't bother swapping if the ring buffer is empty */
3734        if (rb_num_of_entries(cpu_buffer) == 0)
3735                goto out;
3736
3737        /*
3738         * Reset the reader page to size zero.
3739         */
3740        local_set(&cpu_buffer->reader_page->write, 0);
3741        local_set(&cpu_buffer->reader_page->entries, 0);
3742        local_set(&cpu_buffer->reader_page->page->commit, 0);
3743        cpu_buffer->reader_page->real_end = 0;
3744
3745 spin:
3746        /*
3747         * Splice the empty reader page into the list around the head.
3748         */
3749        reader = rb_set_head_page(cpu_buffer);
3750        if (!reader)
3751                goto out;
3752        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3753        cpu_buffer->reader_page->list.prev = reader->list.prev;
3754
3755        /*
3756         * cpu_buffer->pages just needs to point to the buffer, it
3757         *  has no specific buffer page to point to. Lets move it out
3758         *  of our way so we don't accidentally swap it.
3759         */
3760        cpu_buffer->pages = reader->list.prev;
3761
3762        /* The reader page will be pointing to the new head */
3763        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3764
3765        /*
3766         * We want to make sure we read the overruns after we set up our
3767         * pointers to the next object. The writer side does a
3768         * cmpxchg to cross pages which acts as the mb on the writer
3769         * side. Note, the reader will constantly fail the swap
3770         * while the writer is updating the pointers, so this
3771         * guarantees that the overwrite recorded here is the one we
3772         * want to compare with the last_overrun.
3773         */
3774        smp_mb();
3775        overwrite = local_read(&(cpu_buffer->overrun));
3776
3777        /*
3778         * Here's the tricky part.
3779         *
3780         * We need to move the pointer past the header page.
3781         * But we can only do that if a writer is not currently
3782         * moving it. The page before the header page has the
3783         * flag bit '1' set if it is pointing to the page we want.
3784         * but if the writer is in the process of moving it
3785         * than it will be '2' or already moved '0'.
3786         */
3787
3788        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3789
3790        /*
3791         * If we did not convert it, then we must try again.
3792         */
3793        if (!ret)
3794                goto spin;
3795
3796        /*
3797         * Yay! We succeeded in replacing the page.
3798         *
3799         * Now make the new head point back to the reader page.
3800         */
3801        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3802        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3803
3804        local_inc(&cpu_buffer->pages_read);
3805
3806        /* Finally update the reader page to the new head */
3807        cpu_buffer->reader_page = reader;
3808        cpu_buffer->reader_page->read = 0;
3809
3810        if (overwrite != cpu_buffer->last_overrun) {
3811                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3812                cpu_buffer->last_overrun = overwrite;
3813        }
3814
3815        goto again;
3816
3817 out:
3818        /* Update the read_stamp on the first event */
3819        if (reader && reader->read == 0)
3820                cpu_buffer->read_stamp = reader->page->time_stamp;
3821
3822        arch_spin_unlock(&cpu_buffer->lock);
3823        local_irq_restore(flags);
3824
3825        return reader;
3826}
3827
3828static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3829{
3830        struct ring_buffer_event *event;
3831        struct buffer_page *reader;
3832        unsigned length;
3833
3834        reader = rb_get_reader_page(cpu_buffer);
3835
3836        /* This function should not be called when buffer is empty */
3837        if (RB_WARN_ON(cpu_buffer, !reader))
3838                return;
3839
3840        event = rb_reader_event(cpu_buffer);
3841
3842        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3843                cpu_buffer->read++;
3844
3845        rb_update_read_stamp(cpu_buffer, event);
3846
3847        length = rb_event_length(event);
3848        cpu_buffer->reader_page->read += length;
3849}
3850
3851static void rb_advance_iter(struct ring_buffer_iter *iter)
3852{
3853        struct ring_buffer_per_cpu *cpu_buffer;
3854        struct ring_buffer_event *event;
3855        unsigned length;
3856
3857        cpu_buffer = iter->cpu_buffer;
3858
3859        /*
3860         * Check if we are at the end of the buffer.
3861         */
3862        if (iter->head >= rb_page_size(iter->head_page)) {
3863                /* discarded commits can make the page empty */
3864                if (iter->head_page == cpu_buffer->commit_page)
3865                        return;
3866                rb_inc_iter(iter);
3867                return;
3868        }
3869
3870        event = rb_iter_head_event(iter);
3871
3872        length = rb_event_length(event);
3873
3874        /*
3875         * This should not be called to advance the header if we are
3876         * at the tail of the buffer.
3877         */
3878        if (RB_WARN_ON(cpu_buffer,
3879                       (iter->head_page == cpu_buffer->commit_page) &&
3880                       (iter->head + length > rb_commit_index(cpu_buffer))))
3881                return;
3882
3883        rb_update_iter_read_stamp(iter, event);
3884
3885        iter->head += length;
3886
3887        /* check for end of page padding */
3888        if ((iter->head >= rb_page_size(iter->head_page)) &&
3889            (iter->head_page != cpu_buffer->commit_page))
3890                rb_inc_iter(iter);
3891}
3892
3893static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3894{
3895        return cpu_buffer->lost_events;
3896}
3897
3898static struct ring_buffer_event *
3899rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3900               unsigned long *lost_events)
3901{
3902        struct ring_buffer_event *event;
3903        struct buffer_page *reader;
3904        int nr_loops = 0;
3905
3906        if (ts)
3907                *ts = 0;
3908 again:
3909        /*
3910         * We repeat when a time extend is encountered.
3911         * Since the time extend is always attached to a data event,
3912         * we should never loop more than once.
3913         * (We never hit the following condition more than twice).
3914         */
3915        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3916                return NULL;
3917
3918        reader = rb_get_reader_page(cpu_buffer);
3919        if (!reader)
3920                return NULL;
3921
3922        event = rb_reader_event(cpu_buffer);
3923
3924        switch (event->type_len) {
3925        case RINGBUF_TYPE_PADDING:
3926                if (rb_null_event(event))
3927                        RB_WARN_ON(cpu_buffer, 1);
3928                /*
3929                 * Because the writer could be discarding every
3930                 * event it creates (which would probably be bad)
3931                 * if we were to go back to "again" then we may never
3932                 * catch up, and will trigger the warn on, or lock
3933                 * the box. Return the padding, and we will release
3934                 * the current locks, and try again.
3935                 */
3936                return event;
3937
3938        case RINGBUF_TYPE_TIME_EXTEND:
3939                /* Internal data, OK to advance */
3940                rb_advance_reader(cpu_buffer);
3941                goto again;
3942
3943        case RINGBUF_TYPE_TIME_STAMP:
3944                if (ts) {
3945                        *ts = ring_buffer_event_time_stamp(event);
3946                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3947                                                         cpu_buffer->cpu, ts);
3948                }
3949                /* Internal data, OK to advance */
3950                rb_advance_reader(cpu_buffer);
3951                goto again;
3952
3953        case RINGBUF_TYPE_DATA:
3954                if (ts && !(*ts)) {
3955                        *ts = cpu_buffer->read_stamp + event->time_delta;
3956                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3957                                                         cpu_buffer->cpu, ts);
3958                }
3959                if (lost_events)
3960                        *lost_events = rb_lost_events(cpu_buffer);
3961                return event;
3962
3963        default:
3964                BUG();
3965        }
3966
3967        return NULL;
3968}
3969EXPORT_SYMBOL_GPL(ring_buffer_peek);
3970
3971static struct ring_buffer_event *
3972rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3973{
3974        struct ring_buffer *buffer;
3975        struct ring_buffer_per_cpu *cpu_buffer;
3976        struct ring_buffer_event *event;
3977        int nr_loops = 0;
3978
3979        if (ts)
3980                *ts = 0;
3981
3982        cpu_buffer = iter->cpu_buffer;
3983        buffer = cpu_buffer->buffer;
3984
3985        /*
3986         * Check if someone performed a consuming read to
3987         * the buffer. A consuming read invalidates the iterator
3988         * and we need to reset the iterator in this case.
3989         */
3990        if (unlikely(iter->cache_read != cpu_buffer->read ||
3991                     iter->cache_reader_page != cpu_buffer->reader_page))
3992                rb_iter_reset(iter);
3993
3994 again:
3995        if (ring_buffer_iter_empty(iter))
3996                return NULL;
3997
3998        /*
3999         * We repeat when a time extend is encountered or we hit
4000         * the end of the page. Since the time extend is always attached
4001         * to a data event, we should never loop more than three times.
4002         * Once for going to next page, once on time extend, and
4003         * finally once to get the event.
4004         * (We never hit the following condition more than thrice).
4005         */
4006        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
4007                return NULL;
4008
4009        if (rb_per_cpu_empty(cpu_buffer))
4010                return NULL;
4011
4012        if (iter->head >= rb_page_size(iter->head_page)) {
4013                rb_inc_iter(iter);
4014                goto again;
4015        }
4016
4017        event = rb_iter_head_event(iter);
4018
4019        switch (event->type_len) {
4020        case RINGBUF_TYPE_PADDING:
4021                if (rb_null_event(event)) {
4022                        rb_inc_iter(iter);
4023                        goto again;
4024                }
4025                rb_advance_iter(iter);
4026                return event;
4027
4028        case RINGBUF_TYPE_TIME_EXTEND:
4029                /* Internal data, OK to advance */
4030                rb_advance_iter(iter);
4031                goto again;
4032
4033        case RINGBUF_TYPE_TIME_STAMP:
4034                if (ts) {
4035                        *ts = ring_buffer_event_time_stamp(event);
4036                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4037                                                         cpu_buffer->cpu, ts);
4038                }
4039                /* Internal data, OK to advance */
4040                rb_advance_iter(iter);
4041                goto again;
4042
4043        case RINGBUF_TYPE_DATA:
4044                if (ts && !(*ts)) {
4045                        *ts = iter->read_stamp + event->time_delta;
4046                        ring_buffer_normalize_time_stamp(buffer,
4047                                                         cpu_buffer->cpu, ts);
4048                }
4049                return event;
4050
4051        default:
4052                BUG();
4053        }
4054
4055        return NULL;
4056}
4057EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4058
4059static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4060{
4061        if (likely(!in_nmi())) {
4062                raw_spin_lock(&cpu_buffer->reader_lock);
4063                return true;
4064        }
4065
4066        /*
4067         * If an NMI die dumps out the content of the ring buffer
4068         * trylock must be used to prevent a deadlock if the NMI
4069         * preempted a task that holds the ring buffer locks. If
4070         * we get the lock then all is fine, if not, then continue
4071         * to do the read, but this can corrupt the ring buffer,
4072         * so it must be permanently disabled from future writes.
4073         * Reading from NMI is a oneshot deal.
4074         */
4075        if (raw_spin_trylock(&cpu_buffer->reader_lock))
4076                return true;
4077
4078        /* Continue without locking, but disable the ring buffer */
4079        atomic_inc(&cpu_buffer->record_disabled);
4080        return false;
4081}
4082
4083static inline void
4084rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4085{
4086        if (likely(locked))
4087                raw_spin_unlock(&cpu_buffer->reader_lock);
4088        return;
4089}
4090
4091/**
4092 * ring_buffer_peek - peek at the next event to be read
4093 * @buffer: The ring buffer to read
4094 * @cpu: The cpu to peak at
4095 * @ts: The timestamp counter of this event.
4096 * @lost_events: a variable to store if events were lost (may be NULL)
4097 *
4098 * This will return the event that will be read next, but does
4099 * not consume the data.
4100 */
4101struct ring_buffer_event *
4102ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4103                 unsigned long *lost_events)
4104{
4105        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4106        struct ring_buffer_event *event;
4107        unsigned long flags;
4108        bool dolock;
4109
4110        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111                return NULL;
4112
4113 again:
4114        local_irq_save(flags);
4115        dolock = rb_reader_lock(cpu_buffer);
4116        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4117        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4118                rb_advance_reader(cpu_buffer);
4119        rb_reader_unlock(cpu_buffer, dolock);
4120        local_irq_restore(flags);
4121
4122        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4123                goto again;
4124
4125        return event;
4126}
4127
4128/**
4129 * ring_buffer_iter_peek - peek at the next event to be read
4130 * @iter: The ring buffer iterator
4131 * @ts: The timestamp counter of this event.
4132 *
4133 * This will return the event that will be read next, but does
4134 * not increment the iterator.
4135 */
4136struct ring_buffer_event *
4137ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4138{
4139        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4140        struct ring_buffer_event *event;
4141        unsigned long flags;
4142
4143 again:
4144        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4145        event = rb_iter_peek(iter, ts);
4146        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4147
4148        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4149                goto again;
4150
4151        return event;
4152}
4153
4154/**
4155 * ring_buffer_consume - return an event and consume it
4156 * @buffer: The ring buffer to get the next event from
4157 * @cpu: the cpu to read the buffer from
4158 * @ts: a variable to store the timestamp (may be NULL)
4159 * @lost_events: a variable to store if events were lost (may be NULL)
4160 *
4161 * Returns the next event in the ring buffer, and that event is consumed.
4162 * Meaning, that sequential reads will keep returning a different event,
4163 * and eventually empty the ring buffer if the producer is slower.
4164 */
4165struct ring_buffer_event *
4166ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4167                    unsigned long *lost_events)
4168{
4169        struct ring_buffer_per_cpu *cpu_buffer;
4170        struct ring_buffer_event *event = NULL;
4171        unsigned long flags;
4172        bool dolock;
4173
4174 again:
4175        /* might be called in atomic */
4176        preempt_disable();
4177
4178        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4179                goto out;
4180
4181        cpu_buffer = buffer->buffers[cpu];
4182        local_irq_save(flags);
4183        dolock = rb_reader_lock(cpu_buffer);
4184
4185        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4186        if (event) {
4187                cpu_buffer->lost_events = 0;
4188                rb_advance_reader(cpu_buffer);
4189        }
4190
4191        rb_reader_unlock(cpu_buffer, dolock);
4192        local_irq_restore(flags);
4193
4194 out:
4195        preempt_enable();
4196
4197        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4198                goto again;
4199
4200        return event;
4201}
4202EXPORT_SYMBOL_GPL(ring_buffer_consume);
4203
4204/**
4205 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4206 * @buffer: The ring buffer to read from
4207 * @cpu: The cpu buffer to iterate over
4208 *
4209 * This performs the initial preparations necessary to iterate
4210 * through the buffer.  Memory is allocated, buffer recording
4211 * is disabled, and the iterator pointer is returned to the caller.
4212 *
4213 * Disabling buffer recording prevents the reading from being
4214 * corrupted. This is not a consuming read, so a producer is not
4215 * expected.
4216 *
4217 * After a sequence of ring_buffer_read_prepare calls, the user is
4218 * expected to make at least one call to ring_buffer_read_prepare_sync.
4219 * Afterwards, ring_buffer_read_start is invoked to get things going
4220 * for real.
4221 *
4222 * This overall must be paired with ring_buffer_read_finish.
4223 */
4224struct ring_buffer_iter *
4225ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4226{
4227        struct ring_buffer_per_cpu *cpu_buffer;
4228        struct ring_buffer_iter *iter;
4229
4230        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4231                return NULL;
4232
4233        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4234        if (!iter)
4235                return NULL;
4236
4237        cpu_buffer = buffer->buffers[cpu];
4238
4239        iter->cpu_buffer = cpu_buffer;
4240
4241        atomic_inc(&buffer->resize_disabled);
4242        atomic_inc(&cpu_buffer->record_disabled);
4243
4244        return iter;
4245}
4246EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4247
4248/**
4249 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4250 *
4251 * All previously invoked ring_buffer_read_prepare calls to prepare
4252 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4253 * calls on those iterators are allowed.
4254 */
4255void
4256ring_buffer_read_prepare_sync(void)
4257{
4258        synchronize_rcu();
4259}
4260EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4261
4262/**
4263 * ring_buffer_read_start - start a non consuming read of the buffer
4264 * @iter: The iterator returned by ring_buffer_read_prepare
4265 *
4266 * This finalizes the startup of an iteration through the buffer.
4267 * The iterator comes from a call to ring_buffer_read_prepare and
4268 * an intervening ring_buffer_read_prepare_sync must have been
4269 * performed.
4270 *
4271 * Must be paired with ring_buffer_read_finish.
4272 */
4273void
4274ring_buffer_read_start(struct ring_buffer_iter *iter)
4275{
4276        struct ring_buffer_per_cpu *cpu_buffer;
4277        unsigned long flags;
4278
4279        if (!iter)
4280                return;
4281
4282        cpu_buffer = iter->cpu_buffer;
4283
4284        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4285        arch_spin_lock(&cpu_buffer->lock);
4286        rb_iter_reset(iter);
4287        arch_spin_unlock(&cpu_buffer->lock);
4288        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4289}
4290EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4291
4292/**
4293 * ring_buffer_read_finish - finish reading the iterator of the buffer
4294 * @iter: The iterator retrieved by ring_buffer_start
4295 *
4296 * This re-enables the recording to the buffer, and frees the
4297 * iterator.
4298 */
4299void
4300ring_buffer_read_finish(struct ring_buffer_iter *iter)
4301{
4302        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4303        unsigned long flags;
4304
4305        /*
4306         * Ring buffer is disabled from recording, here's a good place
4307         * to check the integrity of the ring buffer.
4308         * Must prevent readers from trying to read, as the check
4309         * clears the HEAD page and readers require it.
4310         */
4311        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4312        rb_check_pages(cpu_buffer);
4313        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4314
4315        atomic_dec(&cpu_buffer->record_disabled);
4316        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4317        kfree(iter);
4318}
4319EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4320
4321/**
4322 * ring_buffer_read - read the next item in the ring buffer by the iterator
4323 * @iter: The ring buffer iterator
4324 * @ts: The time stamp of the event read.
4325 *
4326 * This reads the next event in the ring buffer and increments the iterator.
4327 */
4328struct ring_buffer_event *
4329ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4330{
4331        struct ring_buffer_event *event;
4332        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4333        unsigned long flags;
4334
4335        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4336 again:
4337        event = rb_iter_peek(iter, ts);
4338        if (!event)
4339                goto out;
4340
4341        if (event->type_len == RINGBUF_TYPE_PADDING)
4342                goto again;
4343
4344        rb_advance_iter(iter);
4345 out:
4346        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4347
4348        return event;
4349}
4350EXPORT_SYMBOL_GPL(ring_buffer_read);
4351
4352/**
4353 * ring_buffer_size - return the size of the ring buffer (in bytes)
4354 * @buffer: The ring buffer.
4355 */
4356unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4357{
4358        /*
4359         * Earlier, this method returned
4360         *      BUF_PAGE_SIZE * buffer->nr_pages
4361         * Since the nr_pages field is now removed, we have converted this to
4362         * return the per cpu buffer value.
4363         */
4364        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4365                return 0;
4366
4367        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4368}
4369EXPORT_SYMBOL_GPL(ring_buffer_size);
4370
4371static void
4372rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4373{
4374        rb_head_page_deactivate(cpu_buffer);
4375
4376        cpu_buffer->head_page
4377                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4378        local_set(&cpu_buffer->head_page->write, 0);
4379        local_set(&cpu_buffer->head_page->entries, 0);
4380        local_set(&cpu_buffer->head_page->page->commit, 0);
4381
4382        cpu_buffer->head_page->read = 0;
4383
4384        cpu_buffer->tail_page = cpu_buffer->head_page;
4385        cpu_buffer->commit_page = cpu_buffer->head_page;
4386
4387        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4388        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4389        local_set(&cpu_buffer->reader_page->write, 0);
4390        local_set(&cpu_buffer->reader_page->entries, 0);
4391        local_set(&cpu_buffer->reader_page->page->commit, 0);
4392        cpu_buffer->reader_page->read = 0;
4393
4394        local_set(&cpu_buffer->entries_bytes, 0);
4395        local_set(&cpu_buffer->overrun, 0);
4396        local_set(&cpu_buffer->commit_overrun, 0);
4397        local_set(&cpu_buffer->dropped_events, 0);
4398        local_set(&cpu_buffer->entries, 0);
4399        local_set(&cpu_buffer->committing, 0);
4400        local_set(&cpu_buffer->commits, 0);
4401        local_set(&cpu_buffer->pages_touched, 0);
4402        local_set(&cpu_buffer->pages_read, 0);
4403        cpu_buffer->last_pages_touch = 0;
4404        cpu_buffer->shortest_full = 0;
4405        cpu_buffer->read = 0;
4406        cpu_buffer->read_bytes = 0;
4407
4408        cpu_buffer->write_stamp = 0;
4409        cpu_buffer->read_stamp = 0;
4410
4411        cpu_buffer->lost_events = 0;
4412        cpu_buffer->last_overrun = 0;
4413
4414        rb_head_page_activate(cpu_buffer);
4415}
4416
4417/**
4418 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4419 * @buffer: The ring buffer to reset a per cpu buffer of
4420 * @cpu: The CPU buffer to be reset
4421 */
4422void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4423{
4424        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4425        unsigned long flags;
4426
4427        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4428                return;
4429
4430        atomic_inc(&buffer->resize_disabled);
4431        atomic_inc(&cpu_buffer->record_disabled);
4432
4433        /* Make sure all commits have finished */
4434        synchronize_rcu();
4435
4436        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4437
4438        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4439                goto out;
4440
4441        arch_spin_lock(&cpu_buffer->lock);
4442
4443        rb_reset_cpu(cpu_buffer);
4444
4445        arch_spin_unlock(&cpu_buffer->lock);
4446
4447 out:
4448        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4449
4450        atomic_dec(&cpu_buffer->record_disabled);
4451        atomic_dec(&buffer->resize_disabled);
4452}
4453EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4454
4455/**
4456 * ring_buffer_reset - reset a ring buffer
4457 * @buffer: The ring buffer to reset all cpu buffers
4458 */
4459void ring_buffer_reset(struct ring_buffer *buffer)
4460{
4461        int cpu;
4462
4463        for_each_buffer_cpu(buffer, cpu)
4464                ring_buffer_reset_cpu(buffer, cpu);
4465}
4466EXPORT_SYMBOL_GPL(ring_buffer_reset);
4467
4468/**
4469 * rind_buffer_empty - is the ring buffer empty?
4470 * @buffer: The ring buffer to test
4471 */
4472bool ring_buffer_empty(struct ring_buffer *buffer)
4473{
4474        struct ring_buffer_per_cpu *cpu_buffer;
4475        unsigned long flags;
4476        bool dolock;
4477        int cpu;
4478        int ret;
4479
4480        /* yes this is racy, but if you don't like the race, lock the buffer */
4481        for_each_buffer_cpu(buffer, cpu) {
4482                cpu_buffer = buffer->buffers[cpu];
4483                local_irq_save(flags);
4484                dolock = rb_reader_lock(cpu_buffer);
4485                ret = rb_per_cpu_empty(cpu_buffer);
4486                rb_reader_unlock(cpu_buffer, dolock);
4487                local_irq_restore(flags);
4488
4489                if (!ret)
4490                        return false;
4491        }
4492
4493        return true;
4494}
4495EXPORT_SYMBOL_GPL(ring_buffer_empty);
4496
4497/**
4498 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4499 * @buffer: The ring buffer
4500 * @cpu: The CPU buffer to test
4501 */
4502bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4503{
4504        struct ring_buffer_per_cpu *cpu_buffer;
4505        unsigned long flags;
4506        bool dolock;
4507        int ret;
4508
4509        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4510                return true;
4511
4512        cpu_buffer = buffer->buffers[cpu];
4513        local_irq_save(flags);
4514        dolock = rb_reader_lock(cpu_buffer);
4515        ret = rb_per_cpu_empty(cpu_buffer);
4516        rb_reader_unlock(cpu_buffer, dolock);
4517        local_irq_restore(flags);
4518
4519        return ret;
4520}
4521EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4522
4523#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4524/**
4525 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4526 * @buffer_a: One buffer to swap with
4527 * @buffer_b: The other buffer to swap with
4528 *
4529 * This function is useful for tracers that want to take a "snapshot"
4530 * of a CPU buffer and has another back up buffer lying around.
4531 * it is expected that the tracer handles the cpu buffer not being
4532 * used at the moment.
4533 */
4534int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4535                         struct ring_buffer *buffer_b, int cpu)
4536{
4537        struct ring_buffer_per_cpu *cpu_buffer_a;
4538        struct ring_buffer_per_cpu *cpu_buffer_b;
4539        int ret = -EINVAL;
4540
4541        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4542            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4543                goto out;
4544
4545        cpu_buffer_a = buffer_a->buffers[cpu];
4546        cpu_buffer_b = buffer_b->buffers[cpu];
4547
4548        /* At least make sure the two buffers are somewhat the same */
4549        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4550                goto out;
4551
4552        ret = -EAGAIN;
4553
4554        if (atomic_read(&buffer_a->record_disabled))
4555                goto out;
4556
4557        if (atomic_read(&buffer_b->record_disabled))
4558                goto out;
4559
4560        if (atomic_read(&cpu_buffer_a->record_disabled))
4561                goto out;
4562
4563        if (atomic_read(&cpu_buffer_b->record_disabled))
4564                goto out;
4565
4566        /*
4567         * We can't do a synchronize_rcu here because this
4568         * function can be called in atomic context.
4569         * Normally this will be called from the same CPU as cpu.
4570         * If not it's up to the caller to protect this.
4571         */
4572        atomic_inc(&cpu_buffer_a->record_disabled);
4573        atomic_inc(&cpu_buffer_b->record_disabled);
4574
4575        ret = -EBUSY;
4576        if (local_read(&cpu_buffer_a->committing))
4577                goto out_dec;
4578        if (local_read(&cpu_buffer_b->committing))
4579                goto out_dec;
4580
4581        buffer_a->buffers[cpu] = cpu_buffer_b;
4582        buffer_b->buffers[cpu] = cpu_buffer_a;
4583
4584        cpu_buffer_b->buffer = buffer_a;
4585        cpu_buffer_a->buffer = buffer_b;
4586
4587        ret = 0;
4588
4589out_dec:
4590        atomic_dec(&cpu_buffer_a->record_disabled);
4591        atomic_dec(&cpu_buffer_b->record_disabled);
4592out:
4593        return ret;
4594}
4595EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4596#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4597
4598/**
4599 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4600 * @buffer: the buffer to allocate for.
4601 * @cpu: the cpu buffer to allocate.
4602 *
4603 * This function is used in conjunction with ring_buffer_read_page.
4604 * When reading a full page from the ring buffer, these functions
4605 * can be used to speed up the process. The calling function should
4606 * allocate a few pages first with this function. Then when it
4607 * needs to get pages from the ring buffer, it passes the result
4608 * of this function into ring_buffer_read_page, which will swap
4609 * the page that was allocated, with the read page of the buffer.
4610 *
4611 * Returns:
4612 *  The page allocated, or ERR_PTR
4613 */
4614void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4615{
4616        struct ring_buffer_per_cpu *cpu_buffer;
4617        struct buffer_data_page *bpage = NULL;
4618        unsigned long flags;
4619        struct page *page;
4620
4621        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4622                return ERR_PTR(-ENODEV);
4623
4624        cpu_buffer = buffer->buffers[cpu];
4625        local_irq_save(flags);
4626        arch_spin_lock(&cpu_buffer->lock);
4627
4628        if (cpu_buffer->free_page) {
4629                bpage = cpu_buffer->free_page;
4630                cpu_buffer->free_page = NULL;
4631        }
4632
4633        arch_spin_unlock(&cpu_buffer->lock);
4634        local_irq_restore(flags);
4635
4636        if (bpage)
4637                goto out;
4638
4639        page = alloc_pages_node(cpu_to_node(cpu),
4640                                GFP_KERNEL | __GFP_NORETRY, 0);
4641        if (!page)
4642                return ERR_PTR(-ENOMEM);
4643
4644        bpage = page_address(page);
4645
4646 out:
4647        rb_init_page(bpage);
4648
4649        return bpage;
4650}
4651EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4652
4653/**
4654 * ring_buffer_free_read_page - free an allocated read page
4655 * @buffer: the buffer the page was allocate for
4656 * @cpu: the cpu buffer the page came from
4657 * @data: the page to free
4658 *
4659 * Free a page allocated from ring_buffer_alloc_read_page.
4660 */
4661void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4662{
4663        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4664        struct buffer_data_page *bpage = data;
4665        struct page *page = virt_to_page(bpage);
4666        unsigned long flags;
4667
4668        /* If the page is still in use someplace else, we can't reuse it */
4669        if (page_ref_count(page) > 1)
4670                goto out;
4671
4672        local_irq_save(flags);
4673        arch_spin_lock(&cpu_buffer->lock);
4674
4675        if (!cpu_buffer->free_page) {
4676                cpu_buffer->free_page = bpage;
4677                bpage = NULL;
4678        }
4679
4680        arch_spin_unlock(&cpu_buffer->lock);
4681        local_irq_restore(flags);
4682
4683 out:
4684        free_page((unsigned long)bpage);
4685}
4686EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4687
4688/**
4689 * ring_buffer_read_page - extract a page from the ring buffer
4690 * @buffer: buffer to extract from
4691 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4692 * @len: amount to extract
4693 * @cpu: the cpu of the buffer to extract
4694 * @full: should the extraction only happen when the page is full.
4695 *
4696 * This function will pull out a page from the ring buffer and consume it.
4697 * @data_page must be the address of the variable that was returned
4698 * from ring_buffer_alloc_read_page. This is because the page might be used
4699 * to swap with a page in the ring buffer.
4700 *
4701 * for example:
4702 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4703 *      if (IS_ERR(rpage))
4704 *              return PTR_ERR(rpage);
4705 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4706 *      if (ret >= 0)
4707 *              process_page(rpage, ret);
4708 *
4709 * When @full is set, the function will not return true unless
4710 * the writer is off the reader page.
4711 *
4712 * Note: it is up to the calling functions to handle sleeps and wakeups.
4713 *  The ring buffer can be used anywhere in the kernel and can not
4714 *  blindly call wake_up. The layer that uses the ring buffer must be
4715 *  responsible for that.
4716 *
4717 * Returns:
4718 *  >=0 if data has been transferred, returns the offset of consumed data.
4719 *  <0 if no data has been transferred.
4720 */
4721int ring_buffer_read_page(struct ring_buffer *buffer,
4722                          void **data_page, size_t len, int cpu, int full)
4723{
4724        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4725        struct ring_buffer_event *event;
4726        struct buffer_data_page *bpage;
4727        struct buffer_page *reader;
4728        unsigned long missed_events;
4729        unsigned long flags;
4730        unsigned int commit;
4731        unsigned int read;
4732        u64 save_timestamp;
4733        int ret = -1;
4734
4735        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4736                goto out;
4737
4738        /*
4739         * If len is not big enough to hold the page header, then
4740         * we can not copy anything.
4741         */
4742        if (len <= BUF_PAGE_HDR_SIZE)
4743                goto out;
4744
4745        len -= BUF_PAGE_HDR_SIZE;
4746
4747        if (!data_page)
4748                goto out;
4749
4750        bpage = *data_page;
4751        if (!bpage)
4752                goto out;
4753
4754        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4755
4756        reader = rb_get_reader_page(cpu_buffer);
4757        if (!reader)
4758                goto out_unlock;
4759
4760        event = rb_reader_event(cpu_buffer);
4761
4762        read = reader->read;
4763        commit = rb_page_commit(reader);
4764
4765        /* Check if any events were dropped */
4766        missed_events = cpu_buffer->lost_events;
4767
4768        /*
4769         * If this page has been partially read or
4770         * if len is not big enough to read the rest of the page or
4771         * a writer is still on the page, then
4772         * we must copy the data from the page to the buffer.
4773         * Otherwise, we can simply swap the page with the one passed in.
4774         */
4775        if (read || (len < (commit - read)) ||
4776            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4777                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4778                unsigned int rpos = read;
4779                unsigned int pos = 0;
4780                unsigned int size;
4781
4782                if (full)
4783                        goto out_unlock;
4784
4785                if (len > (commit - read))
4786                        len = (commit - read);
4787
4788                /* Always keep the time extend and data together */
4789                size = rb_event_ts_length(event);
4790
4791                if (len < size)
4792                        goto out_unlock;
4793
4794                /* save the current timestamp, since the user will need it */
4795                save_timestamp = cpu_buffer->read_stamp;
4796
4797                /* Need to copy one event at a time */
4798                do {
4799                        /* We need the size of one event, because
4800                         * rb_advance_reader only advances by one event,
4801                         * whereas rb_event_ts_length may include the size of
4802                         * one or two events.
4803                         * We have already ensured there's enough space if this
4804                         * is a time extend. */
4805                        size = rb_event_length(event);
4806                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4807
4808                        len -= size;
4809
4810                        rb_advance_reader(cpu_buffer);
4811                        rpos = reader->read;
4812                        pos += size;
4813
4814                        if (rpos >= commit)
4815                                break;
4816
4817                        event = rb_reader_event(cpu_buffer);
4818                        /* Always keep the time extend and data together */
4819                        size = rb_event_ts_length(event);
4820                } while (len >= size);
4821
4822                /* update bpage */
4823                local_set(&bpage->commit, pos);
4824                bpage->time_stamp = save_timestamp;
4825
4826                /* we copied everything to the beginning */
4827                read = 0;
4828        } else {
4829                /* update the entry counter */
4830                cpu_buffer->read += rb_page_entries(reader);
4831                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4832
4833                /* swap the pages */
4834                rb_init_page(bpage);
4835                bpage = reader->page;
4836                reader->page = *data_page;
4837                local_set(&reader->write, 0);
4838                local_set(&reader->entries, 0);
4839                reader->read = 0;
4840                *data_page = bpage;
4841
4842                /*
4843                 * Use the real_end for the data size,
4844                 * This gives us a chance to store the lost events
4845                 * on the page.
4846                 */
4847                if (reader->real_end)
4848                        local_set(&bpage->commit, reader->real_end);
4849        }
4850        ret = read;
4851
4852        cpu_buffer->lost_events = 0;
4853
4854        commit = local_read(&bpage->commit);
4855        /*
4856         * Set a flag in the commit field if we lost events
4857         */
4858        if (missed_events) {
4859                /* If there is room at the end of the page to save the
4860                 * missed events, then record it there.
4861                 */
4862                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4863                        memcpy(&bpage->data[commit], &missed_events,
4864                               sizeof(missed_events));
4865                        local_add(RB_MISSED_STORED, &bpage->commit);
4866                        commit += sizeof(missed_events);
4867                }
4868                local_add(RB_MISSED_EVENTS, &bpage->commit);
4869        }
4870
4871        /*
4872         * This page may be off to user land. Zero it out here.
4873         */
4874        if (commit < BUF_PAGE_SIZE)
4875                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4876
4877 out_unlock:
4878        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4879
4880 out:
4881        return ret;
4882}
4883EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4884
4885/*
4886 * We only allocate new buffers, never free them if the CPU goes down.
4887 * If we were to free the buffer, then the user would lose any trace that was in
4888 * the buffer.
4889 */
4890int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4891{
4892        struct ring_buffer *buffer;
4893        long nr_pages_same;
4894        int cpu_i;
4895        unsigned long nr_pages;
4896
4897        buffer = container_of(node, struct ring_buffer, node);
4898        if (cpumask_test_cpu(cpu, buffer->cpumask))
4899                return 0;
4900
4901        nr_pages = 0;
4902        nr_pages_same = 1;
4903        /* check if all cpu sizes are same */
4904        for_each_buffer_cpu(buffer, cpu_i) {
4905                /* fill in the size from first enabled cpu */
4906                if (nr_pages == 0)
4907                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4908                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4909                        nr_pages_same = 0;
4910                        break;
4911                }
4912        }
4913        /* allocate minimum pages, user can later expand it */
4914        if (!nr_pages_same)
4915                nr_pages = 2;
4916        buffer->buffers[cpu] =
4917                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4918        if (!buffer->buffers[cpu]) {
4919                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4920                     cpu);
4921                return -ENOMEM;
4922        }
4923        smp_wmb();
4924        cpumask_set_cpu(cpu, buffer->cpumask);
4925        return 0;
4926}
4927
4928#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4929/*
4930 * This is a basic integrity check of the ring buffer.
4931 * Late in the boot cycle this test will run when configured in.
4932 * It will kick off a thread per CPU that will go into a loop
4933 * writing to the per cpu ring buffer various sizes of data.
4934 * Some of the data will be large items, some small.
4935 *
4936 * Another thread is created that goes into a spin, sending out
4937 * IPIs to the other CPUs to also write into the ring buffer.
4938 * this is to test the nesting ability of the buffer.
4939 *
4940 * Basic stats are recorded and reported. If something in the
4941 * ring buffer should happen that's not expected, a big warning
4942 * is displayed and all ring buffers are disabled.
4943 */
4944static struct task_struct *rb_threads[NR_CPUS] __initdata;
4945
4946struct rb_test_data {
4947        struct ring_buffer      *buffer;
4948        unsigned long           events;
4949        unsigned long           bytes_written;
4950        unsigned long           bytes_alloc;
4951        unsigned long           bytes_dropped;
4952        unsigned long           events_nested;
4953        unsigned long           bytes_written_nested;
4954        unsigned long           bytes_alloc_nested;
4955        unsigned long           bytes_dropped_nested;
4956        int                     min_size_nested;
4957        int                     max_size_nested;
4958        int                     max_size;
4959        int                     min_size;
4960        int                     cpu;
4961        int                     cnt;
4962};
4963
4964static struct rb_test_data rb_data[NR_CPUS] __initdata;
4965
4966/* 1 meg per cpu */
4967#define RB_TEST_BUFFER_SIZE     1048576
4968
4969static char rb_string[] __initdata =
4970        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4971        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4972        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4973
4974static bool rb_test_started __initdata;
4975
4976struct rb_item {
4977        int size;
4978        char str[];
4979};
4980
4981static __init int rb_write_something(struct rb_test_data *data, bool nested)
4982{
4983        struct ring_buffer_event *event;
4984        struct rb_item *item;
4985        bool started;
4986        int event_len;
4987        int size;
4988        int len;
4989        int cnt;
4990
4991        /* Have nested writes different that what is written */
4992        cnt = data->cnt + (nested ? 27 : 0);
4993
4994        /* Multiply cnt by ~e, to make some unique increment */
4995        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4996
4997        len = size + sizeof(struct rb_item);
4998
4999        started = rb_test_started;
5000        /* read rb_test_started before checking buffer enabled */
5001        smp_rmb();
5002
5003        event = ring_buffer_lock_reserve(data->buffer, len);
5004        if (!event) {
5005                /* Ignore dropped events before test starts. */
5006                if (started) {
5007                        if (nested)
5008                                data->bytes_dropped += len;
5009                        else
5010                                data->bytes_dropped_nested += len;
5011                }
5012                return len;
5013        }
5014
5015        event_len = ring_buffer_event_length(event);
5016
5017        if (RB_WARN_ON(data->buffer, event_len < len))
5018                goto out;
5019
5020        item = ring_buffer_event_data(event);
5021        item->size = size;
5022        memcpy(item->str, rb_string, size);
5023
5024        if (nested) {
5025                data->bytes_alloc_nested += event_len;
5026                data->bytes_written_nested += len;
5027                data->events_nested++;
5028                if (!data->min_size_nested || len < data->min_size_nested)
5029                        data->min_size_nested = len;
5030                if (len > data->max_size_nested)
5031                        data->max_size_nested = len;
5032        } else {
5033                data->bytes_alloc += event_len;
5034                data->bytes_written += len;
5035                data->events++;
5036                if (!data->min_size || len < data->min_size)
5037                        data->max_size = len;
5038                if (len > data->max_size)
5039                        data->max_size = len;
5040        }
5041
5042 out:
5043        ring_buffer_unlock_commit(data->buffer, event);
5044
5045        return 0;
5046}
5047
5048static __init int rb_test(void *arg)
5049{
5050        struct rb_test_data *data = arg;
5051
5052        while (!kthread_should_stop()) {
5053                rb_write_something(data, false);
5054                data->cnt++;
5055
5056                set_current_state(TASK_INTERRUPTIBLE);
5057                /* Now sleep between a min of 100-300us and a max of 1ms */
5058                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5059        }
5060
5061        return 0;
5062}
5063
5064static __init void rb_ipi(void *ignore)
5065{
5066        struct rb_test_data *data;
5067        int cpu = smp_processor_id();
5068
5069        data = &rb_data[cpu];
5070        rb_write_something(data, true);
5071}
5072
5073static __init int rb_hammer_test(void *arg)
5074{
5075        while (!kthread_should_stop()) {
5076
5077                /* Send an IPI to all cpus to write data! */
5078                smp_call_function(rb_ipi, NULL, 1);
5079                /* No sleep, but for non preempt, let others run */
5080                schedule();
5081        }
5082
5083        return 0;
5084}
5085
5086static __init int test_ringbuffer(void)
5087{
5088        struct task_struct *rb_hammer;
5089        struct ring_buffer *buffer;
5090        int cpu;
5091        int ret = 0;
5092
5093        pr_info("Running ring buffer tests...\n");
5094
5095        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5096        if (WARN_ON(!buffer))
5097                return 0;
5098
5099        /* Disable buffer so that threads can't write to it yet */
5100        ring_buffer_record_off(buffer);
5101
5102        for_each_online_cpu(cpu) {
5103                rb_data[cpu].buffer = buffer;
5104                rb_data[cpu].cpu = cpu;
5105                rb_data[cpu].cnt = cpu;
5106                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5107                                                 "rbtester/%d", cpu);
5108                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5109                        pr_cont("FAILED\n");
5110                        ret = PTR_ERR(rb_threads[cpu]);
5111                        goto out_free;
5112                }
5113
5114                kthread_bind(rb_threads[cpu], cpu);
5115                wake_up_process(rb_threads[cpu]);
5116        }
5117
5118        /* Now create the rb hammer! */
5119        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5120        if (WARN_ON(IS_ERR(rb_hammer))) {
5121                pr_cont("FAILED\n");
5122                ret = PTR_ERR(rb_hammer);
5123                goto out_free;
5124        }
5125
5126        ring_buffer_record_on(buffer);
5127        /*
5128         * Show buffer is enabled before setting rb_test_started.
5129         * Yes there's a small race window where events could be
5130         * dropped and the thread wont catch it. But when a ring
5131         * buffer gets enabled, there will always be some kind of
5132         * delay before other CPUs see it. Thus, we don't care about
5133         * those dropped events. We care about events dropped after
5134         * the threads see that the buffer is active.
5135         */
5136        smp_wmb();
5137        rb_test_started = true;
5138
5139        set_current_state(TASK_INTERRUPTIBLE);
5140        /* Just run for 10 seconds */;
5141        schedule_timeout(10 * HZ);
5142
5143        kthread_stop(rb_hammer);
5144
5145 out_free:
5146        for_each_online_cpu(cpu) {
5147                if (!rb_threads[cpu])
5148                        break;
5149                kthread_stop(rb_threads[cpu]);
5150        }
5151        if (ret) {
5152                ring_buffer_free(buffer);
5153                return ret;
5154        }
5155
5156        /* Report! */
5157        pr_info("finished\n");
5158        for_each_online_cpu(cpu) {
5159                struct ring_buffer_event *event;
5160                struct rb_test_data *data = &rb_data[cpu];
5161                struct rb_item *item;
5162                unsigned long total_events;
5163                unsigned long total_dropped;
5164                unsigned long total_written;
5165                unsigned long total_alloc;
5166                unsigned long total_read = 0;
5167                unsigned long total_size = 0;
5168                unsigned long total_len = 0;
5169                unsigned long total_lost = 0;
5170                unsigned long lost;
5171                int big_event_size;
5172                int small_event_size;
5173
5174                ret = -1;
5175
5176                total_events = data->events + data->events_nested;
5177                total_written = data->bytes_written + data->bytes_written_nested;
5178                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5179                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5180
5181                big_event_size = data->max_size + data->max_size_nested;
5182                small_event_size = data->min_size + data->min_size_nested;
5183
5184                pr_info("CPU %d:\n", cpu);
5185                pr_info("              events:    %ld\n", total_events);
5186                pr_info("       dropped bytes:    %ld\n", total_dropped);
5187                pr_info("       alloced bytes:    %ld\n", total_alloc);
5188                pr_info("       written bytes:    %ld\n", total_written);
5189                pr_info("       biggest event:    %d\n", big_event_size);
5190                pr_info("      smallest event:    %d\n", small_event_size);
5191
5192                if (RB_WARN_ON(buffer, total_dropped))
5193                        break;
5194
5195                ret = 0;
5196
5197                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5198                        total_lost += lost;
5199                        item = ring_buffer_event_data(event);
5200                        total_len += ring_buffer_event_length(event);
5201                        total_size += item->size + sizeof(struct rb_item);
5202                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5203                                pr_info("FAILED!\n");
5204                                pr_info("buffer had: %.*s\n", item->size, item->str);
5205                                pr_info("expected:   %.*s\n", item->size, rb_string);
5206                                RB_WARN_ON(buffer, 1);
5207                                ret = -1;
5208                                break;
5209                        }
5210                        total_read++;
5211                }
5212                if (ret)
5213                        break;
5214
5215                ret = -1;
5216
5217                pr_info("         read events:   %ld\n", total_read);
5218                pr_info("         lost events:   %ld\n", total_lost);
5219                pr_info("        total events:   %ld\n", total_lost + total_read);
5220                pr_info("  recorded len bytes:   %ld\n", total_len);
5221                pr_info(" recorded size bytes:   %ld\n", total_size);
5222                if (total_lost)
5223                        pr_info(" With dropped events, record len and size may not match\n"
5224                                " alloced and written from above\n");
5225                if (!total_lost) {
5226                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
5227                                       total_size != total_written))
5228                                break;
5229                }
5230                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5231                        break;
5232
5233                ret = 0;
5234        }
5235        if (!ret)
5236                pr_info("Ring buffer PASSED!\n");
5237
5238        ring_buffer_free(buffer);
5239        return 0;
5240}
5241
5242late_initcall(test_ringbuffer);
5243#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5244