linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72
  73#include <asm/io.h>
  74#include <asm/mmu_context.h>
  75#include <asm/pgalloc.h>
  76#include <linux/uaccess.h>
  77#include <asm/tlb.h>
  78#include <asm/tlbflush.h>
  79#include <asm/pgtable.h>
  80
  81#include "internal.h"
  82
  83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  85#endif
  86
  87#ifndef CONFIG_NEED_MULTIPLE_NODES
  88/* use the per-pgdat data instead for discontigmem - mbligh */
  89unsigned long max_mapnr;
  90EXPORT_SYMBOL(max_mapnr);
  91
  92struct page *mem_map;
  93EXPORT_SYMBOL(mem_map);
  94#endif
  95
  96/*
  97 * A number of key systems in x86 including ioremap() rely on the assumption
  98 * that high_memory defines the upper bound on direct map memory, then end
  99 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 101 * and ZONE_HIGHMEM.
 102 */
 103void *high_memory;
 104EXPORT_SYMBOL(high_memory);
 105
 106/*
 107 * Randomize the address space (stacks, mmaps, brk, etc.).
 108 *
 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 110 *   as ancient (libc5 based) binaries can segfault. )
 111 */
 112int randomize_va_space __read_mostly =
 113#ifdef CONFIG_COMPAT_BRK
 114                                        1;
 115#else
 116                                        2;
 117#endif
 118
 119static int __init disable_randmaps(char *s)
 120{
 121        randomize_va_space = 0;
 122        return 1;
 123}
 124__setup("norandmaps", disable_randmaps);
 125
 126unsigned long zero_pfn __read_mostly;
 127EXPORT_SYMBOL(zero_pfn);
 128
 129unsigned long highest_memmap_pfn __read_mostly;
 130
 131/*
 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 133 */
 134static int __init init_zero_pfn(void)
 135{
 136        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 137        return 0;
 138}
 139core_initcall(init_zero_pfn);
 140
 141
 142#if defined(SPLIT_RSS_COUNTING)
 143
 144void sync_mm_rss(struct mm_struct *mm)
 145{
 146        int i;
 147
 148        for (i = 0; i < NR_MM_COUNTERS; i++) {
 149                if (current->rss_stat.count[i]) {
 150                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 151                        current->rss_stat.count[i] = 0;
 152                }
 153        }
 154        current->rss_stat.events = 0;
 155}
 156
 157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 158{
 159        struct task_struct *task = current;
 160
 161        if (likely(task->mm == mm))
 162                task->rss_stat.count[member] += val;
 163        else
 164                add_mm_counter(mm, member, val);
 165}
 166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 168
 169/* sync counter once per 64 page faults */
 170#define TASK_RSS_EVENTS_THRESH  (64)
 171static void check_sync_rss_stat(struct task_struct *task)
 172{
 173        if (unlikely(task != current))
 174                return;
 175        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 176                sync_mm_rss(task->mm);
 177}
 178#else /* SPLIT_RSS_COUNTING */
 179
 180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 182
 183static void check_sync_rss_stat(struct task_struct *task)
 184{
 185}
 186
 187#endif /* SPLIT_RSS_COUNTING */
 188
 189/*
 190 * Note: this doesn't free the actual pages themselves. That
 191 * has been handled earlier when unmapping all the memory regions.
 192 */
 193static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 194                           unsigned long addr)
 195{
 196        pgtable_t token = pmd_pgtable(*pmd);
 197        pmd_clear(pmd);
 198        pte_free_tlb(tlb, token, addr);
 199        mm_dec_nr_ptes(tlb->mm);
 200}
 201
 202static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 203                                unsigned long addr, unsigned long end,
 204                                unsigned long floor, unsigned long ceiling)
 205{
 206        pmd_t *pmd;
 207        unsigned long next;
 208        unsigned long start;
 209
 210        start = addr;
 211        pmd = pmd_offset(pud, addr);
 212        do {
 213                next = pmd_addr_end(addr, end);
 214                if (pmd_none_or_clear_bad(pmd))
 215                        continue;
 216                free_pte_range(tlb, pmd, addr);
 217        } while (pmd++, addr = next, addr != end);
 218
 219        start &= PUD_MASK;
 220        if (start < floor)
 221                return;
 222        if (ceiling) {
 223                ceiling &= PUD_MASK;
 224                if (!ceiling)
 225                        return;
 226        }
 227        if (end - 1 > ceiling - 1)
 228                return;
 229
 230        pmd = pmd_offset(pud, start);
 231        pud_clear(pud);
 232        pmd_free_tlb(tlb, pmd, start);
 233        mm_dec_nr_pmds(tlb->mm);
 234}
 235
 236static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 237                                unsigned long addr, unsigned long end,
 238                                unsigned long floor, unsigned long ceiling)
 239{
 240        pud_t *pud;
 241        unsigned long next;
 242        unsigned long start;
 243
 244        start = addr;
 245        pud = pud_offset(p4d, addr);
 246        do {
 247                next = pud_addr_end(addr, end);
 248                if (pud_none_or_clear_bad(pud))
 249                        continue;
 250                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 251        } while (pud++, addr = next, addr != end);
 252
 253        start &= P4D_MASK;
 254        if (start < floor)
 255                return;
 256        if (ceiling) {
 257                ceiling &= P4D_MASK;
 258                if (!ceiling)
 259                        return;
 260        }
 261        if (end - 1 > ceiling - 1)
 262                return;
 263
 264        pud = pud_offset(p4d, start);
 265        p4d_clear(p4d);
 266        pud_free_tlb(tlb, pud, start);
 267        mm_dec_nr_puds(tlb->mm);
 268}
 269
 270static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 271                                unsigned long addr, unsigned long end,
 272                                unsigned long floor, unsigned long ceiling)
 273{
 274        p4d_t *p4d;
 275        unsigned long next;
 276        unsigned long start;
 277
 278        start = addr;
 279        p4d = p4d_offset(pgd, addr);
 280        do {
 281                next = p4d_addr_end(addr, end);
 282                if (p4d_none_or_clear_bad(p4d))
 283                        continue;
 284                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 285        } while (p4d++, addr = next, addr != end);
 286
 287        start &= PGDIR_MASK;
 288        if (start < floor)
 289                return;
 290        if (ceiling) {
 291                ceiling &= PGDIR_MASK;
 292                if (!ceiling)
 293                        return;
 294        }
 295        if (end - 1 > ceiling - 1)
 296                return;
 297
 298        p4d = p4d_offset(pgd, start);
 299        pgd_clear(pgd);
 300        p4d_free_tlb(tlb, p4d, start);
 301}
 302
 303/*
 304 * This function frees user-level page tables of a process.
 305 */
 306void free_pgd_range(struct mmu_gather *tlb,
 307                        unsigned long addr, unsigned long end,
 308                        unsigned long floor, unsigned long ceiling)
 309{
 310        pgd_t *pgd;
 311        unsigned long next;
 312
 313        /*
 314         * The next few lines have given us lots of grief...
 315         *
 316         * Why are we testing PMD* at this top level?  Because often
 317         * there will be no work to do at all, and we'd prefer not to
 318         * go all the way down to the bottom just to discover that.
 319         *
 320         * Why all these "- 1"s?  Because 0 represents both the bottom
 321         * of the address space and the top of it (using -1 for the
 322         * top wouldn't help much: the masks would do the wrong thing).
 323         * The rule is that addr 0 and floor 0 refer to the bottom of
 324         * the address space, but end 0 and ceiling 0 refer to the top
 325         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 326         * that end 0 case should be mythical).
 327         *
 328         * Wherever addr is brought up or ceiling brought down, we must
 329         * be careful to reject "the opposite 0" before it confuses the
 330         * subsequent tests.  But what about where end is brought down
 331         * by PMD_SIZE below? no, end can't go down to 0 there.
 332         *
 333         * Whereas we round start (addr) and ceiling down, by different
 334         * masks at different levels, in order to test whether a table
 335         * now has no other vmas using it, so can be freed, we don't
 336         * bother to round floor or end up - the tests don't need that.
 337         */
 338
 339        addr &= PMD_MASK;
 340        if (addr < floor) {
 341                addr += PMD_SIZE;
 342                if (!addr)
 343                        return;
 344        }
 345        if (ceiling) {
 346                ceiling &= PMD_MASK;
 347                if (!ceiling)
 348                        return;
 349        }
 350        if (end - 1 > ceiling - 1)
 351                end -= PMD_SIZE;
 352        if (addr > end - 1)
 353                return;
 354        /*
 355         * We add page table cache pages with PAGE_SIZE,
 356         * (see pte_free_tlb()), flush the tlb if we need
 357         */
 358        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 359        pgd = pgd_offset(tlb->mm, addr);
 360        do {
 361                next = pgd_addr_end(addr, end);
 362                if (pgd_none_or_clear_bad(pgd))
 363                        continue;
 364                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 365        } while (pgd++, addr = next, addr != end);
 366}
 367
 368void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 369                unsigned long floor, unsigned long ceiling)
 370{
 371        while (vma) {
 372                struct vm_area_struct *next = vma->vm_next;
 373                unsigned long addr = vma->vm_start;
 374
 375                /*
 376                 * Hide vma from rmap and truncate_pagecache before freeing
 377                 * pgtables
 378                 */
 379                unlink_anon_vmas(vma);
 380                unlink_file_vma(vma);
 381
 382                if (is_vm_hugetlb_page(vma)) {
 383                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 384                                floor, next ? next->vm_start : ceiling);
 385                } else {
 386                        /*
 387                         * Optimization: gather nearby vmas into one call down
 388                         */
 389                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 390                               && !is_vm_hugetlb_page(next)) {
 391                                vma = next;
 392                                next = vma->vm_next;
 393                                unlink_anon_vmas(vma);
 394                                unlink_file_vma(vma);
 395                        }
 396                        free_pgd_range(tlb, addr, vma->vm_end,
 397                                floor, next ? next->vm_start : ceiling);
 398                }
 399                vma = next;
 400        }
 401}
 402
 403int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 404{
 405        spinlock_t *ptl;
 406        pgtable_t new = pte_alloc_one(mm);
 407        if (!new)
 408                return -ENOMEM;
 409
 410        /*
 411         * Ensure all pte setup (eg. pte page lock and page clearing) are
 412         * visible before the pte is made visible to other CPUs by being
 413         * put into page tables.
 414         *
 415         * The other side of the story is the pointer chasing in the page
 416         * table walking code (when walking the page table without locking;
 417         * ie. most of the time). Fortunately, these data accesses consist
 418         * of a chain of data-dependent loads, meaning most CPUs (alpha
 419         * being the notable exception) will already guarantee loads are
 420         * seen in-order. See the alpha page table accessors for the
 421         * smp_read_barrier_depends() barriers in page table walking code.
 422         */
 423        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 424
 425        ptl = pmd_lock(mm, pmd);
 426        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 427                mm_inc_nr_ptes(mm);
 428                pmd_populate(mm, pmd, new);
 429                new = NULL;
 430        }
 431        spin_unlock(ptl);
 432        if (new)
 433                pte_free(mm, new);
 434        return 0;
 435}
 436
 437int __pte_alloc_kernel(pmd_t *pmd)
 438{
 439        pte_t *new = pte_alloc_one_kernel(&init_mm);
 440        if (!new)
 441                return -ENOMEM;
 442
 443        smp_wmb(); /* See comment in __pte_alloc */
 444
 445        spin_lock(&init_mm.page_table_lock);
 446        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 447                pmd_populate_kernel(&init_mm, pmd, new);
 448                new = NULL;
 449        }
 450        spin_unlock(&init_mm.page_table_lock);
 451        if (new)
 452                pte_free_kernel(&init_mm, new);
 453        return 0;
 454}
 455
 456static inline void init_rss_vec(int *rss)
 457{
 458        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 459}
 460
 461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 462{
 463        int i;
 464
 465        if (current->mm == mm)
 466                sync_mm_rss(mm);
 467        for (i = 0; i < NR_MM_COUNTERS; i++)
 468                if (rss[i])
 469                        add_mm_counter(mm, i, rss[i]);
 470}
 471
 472/*
 473 * This function is called to print an error when a bad pte
 474 * is found. For example, we might have a PFN-mapped pte in
 475 * a region that doesn't allow it.
 476 *
 477 * The calling function must still handle the error.
 478 */
 479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 480                          pte_t pte, struct page *page)
 481{
 482        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 483        p4d_t *p4d = p4d_offset(pgd, addr);
 484        pud_t *pud = pud_offset(p4d, addr);
 485        pmd_t *pmd = pmd_offset(pud, addr);
 486        struct address_space *mapping;
 487        pgoff_t index;
 488        static unsigned long resume;
 489        static unsigned long nr_shown;
 490        static unsigned long nr_unshown;
 491
 492        /*
 493         * Allow a burst of 60 reports, then keep quiet for that minute;
 494         * or allow a steady drip of one report per second.
 495         */
 496        if (nr_shown == 60) {
 497                if (time_before(jiffies, resume)) {
 498                        nr_unshown++;
 499                        return;
 500                }
 501                if (nr_unshown) {
 502                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 503                                 nr_unshown);
 504                        nr_unshown = 0;
 505                }
 506                nr_shown = 0;
 507        }
 508        if (nr_shown++ == 0)
 509                resume = jiffies + 60 * HZ;
 510
 511        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 512        index = linear_page_index(vma, addr);
 513
 514        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 515                 current->comm,
 516                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 517        if (page)
 518                dump_page(page, "bad pte");
 519        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 520                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 521        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 522                 vma->vm_file,
 523                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 524                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 525                 mapping ? mapping->a_ops->readpage : NULL);
 526        dump_stack();
 527        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 528}
 529
 530/*
 531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 532 *
 533 * "Special" mappings do not wish to be associated with a "struct page" (either
 534 * it doesn't exist, or it exists but they don't want to touch it). In this
 535 * case, NULL is returned here. "Normal" mappings do have a struct page.
 536 *
 537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 538 * pte bit, in which case this function is trivial. Secondly, an architecture
 539 * may not have a spare pte bit, which requires a more complicated scheme,
 540 * described below.
 541 *
 542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 543 * special mapping (even if there are underlying and valid "struct pages").
 544 * COWed pages of a VM_PFNMAP are always normal.
 545 *
 546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 549 * mapping will always honor the rule
 550 *
 551 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 552 *
 553 * And for normal mappings this is false.
 554 *
 555 * This restricts such mappings to be a linear translation from virtual address
 556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 557 * as the vma is not a COW mapping; in that case, we know that all ptes are
 558 * special (because none can have been COWed).
 559 *
 560 *
 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 562 *
 563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 564 * page" backing, however the difference is that _all_ pages with a struct
 565 * page (that is, those where pfn_valid is true) are refcounted and considered
 566 * normal pages by the VM. The disadvantage is that pages are refcounted
 567 * (which can be slower and simply not an option for some PFNMAP users). The
 568 * advantage is that we don't have to follow the strict linearity rule of
 569 * PFNMAP mappings in order to support COWable mappings.
 570 *
 571 */
 572struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 573                             pte_t pte, bool with_public_device)
 574{
 575        unsigned long pfn = pte_pfn(pte);
 576
 577        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 578                if (likely(!pte_special(pte)))
 579                        goto check_pfn;
 580                if (vma->vm_ops && vma->vm_ops->find_special_page)
 581                        return vma->vm_ops->find_special_page(vma, addr);
 582                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 583                        return NULL;
 584                if (is_zero_pfn(pfn))
 585                        return NULL;
 586
 587                /*
 588                 * Device public pages are special pages (they are ZONE_DEVICE
 589                 * pages but different from persistent memory). They behave
 590                 * allmost like normal pages. The difference is that they are
 591                 * not on the lru and thus should never be involve with any-
 592                 * thing that involve lru manipulation (mlock, numa balancing,
 593                 * ...).
 594                 *
 595                 * This is why we still want to return NULL for such page from
 596                 * vm_normal_page() so that we do not have to special case all
 597                 * call site of vm_normal_page().
 598                 */
 599                if (likely(pfn <= highest_memmap_pfn)) {
 600                        struct page *page = pfn_to_page(pfn);
 601
 602                        if (is_device_public_page(page)) {
 603                                if (with_public_device)
 604                                        return page;
 605                                return NULL;
 606                        }
 607                }
 608
 609                if (pte_devmap(pte))
 610                        return NULL;
 611
 612                print_bad_pte(vma, addr, pte, NULL);
 613                return NULL;
 614        }
 615
 616        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 617
 618        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 619                if (vma->vm_flags & VM_MIXEDMAP) {
 620                        if (!pfn_valid(pfn))
 621                                return NULL;
 622                        goto out;
 623                } else {
 624                        unsigned long off;
 625                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 626                        if (pfn == vma->vm_pgoff + off)
 627                                return NULL;
 628                        if (!is_cow_mapping(vma->vm_flags))
 629                                return NULL;
 630                }
 631        }
 632
 633        if (is_zero_pfn(pfn))
 634                return NULL;
 635
 636check_pfn:
 637        if (unlikely(pfn > highest_memmap_pfn)) {
 638                print_bad_pte(vma, addr, pte, NULL);
 639                return NULL;
 640        }
 641
 642        /*
 643         * NOTE! We still have PageReserved() pages in the page tables.
 644         * eg. VDSO mappings can cause them to exist.
 645         */
 646out:
 647        return pfn_to_page(pfn);
 648}
 649
 650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 652                                pmd_t pmd)
 653{
 654        unsigned long pfn = pmd_pfn(pmd);
 655
 656        /*
 657         * There is no pmd_special() but there may be special pmds, e.g.
 658         * in a direct-access (dax) mapping, so let's just replicate the
 659         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 660         */
 661        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 662                if (vma->vm_flags & VM_MIXEDMAP) {
 663                        if (!pfn_valid(pfn))
 664                                return NULL;
 665                        goto out;
 666                } else {
 667                        unsigned long off;
 668                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 669                        if (pfn == vma->vm_pgoff + off)
 670                                return NULL;
 671                        if (!is_cow_mapping(vma->vm_flags))
 672                                return NULL;
 673                }
 674        }
 675
 676        if (pmd_devmap(pmd))
 677                return NULL;
 678        if (is_zero_pfn(pfn))
 679                return NULL;
 680        if (unlikely(pfn > highest_memmap_pfn))
 681                return NULL;
 682
 683        /*
 684         * NOTE! We still have PageReserved() pages in the page tables.
 685         * eg. VDSO mappings can cause them to exist.
 686         */
 687out:
 688        return pfn_to_page(pfn);
 689}
 690#endif
 691
 692/*
 693 * copy one vm_area from one task to the other. Assumes the page tables
 694 * already present in the new task to be cleared in the whole range
 695 * covered by this vma.
 696 */
 697
 698static inline unsigned long
 699copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 700                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 701                unsigned long addr, int *rss)
 702{
 703        unsigned long vm_flags = vma->vm_flags;
 704        pte_t pte = *src_pte;
 705        struct page *page;
 706
 707        /* pte contains position in swap or file, so copy. */
 708        if (unlikely(!pte_present(pte))) {
 709                swp_entry_t entry = pte_to_swp_entry(pte);
 710
 711                if (likely(!non_swap_entry(entry))) {
 712                        if (swap_duplicate(entry) < 0)
 713                                return entry.val;
 714
 715                        /* make sure dst_mm is on swapoff's mmlist. */
 716                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 717                                spin_lock(&mmlist_lock);
 718                                if (list_empty(&dst_mm->mmlist))
 719                                        list_add(&dst_mm->mmlist,
 720                                                        &src_mm->mmlist);
 721                                spin_unlock(&mmlist_lock);
 722                        }
 723                        rss[MM_SWAPENTS]++;
 724                } else if (is_migration_entry(entry)) {
 725                        page = migration_entry_to_page(entry);
 726
 727                        rss[mm_counter(page)]++;
 728
 729                        if (is_write_migration_entry(entry) &&
 730                                        is_cow_mapping(vm_flags)) {
 731                                /*
 732                                 * COW mappings require pages in both
 733                                 * parent and child to be set to read.
 734                                 */
 735                                make_migration_entry_read(&entry);
 736                                pte = swp_entry_to_pte(entry);
 737                                if (pte_swp_soft_dirty(*src_pte))
 738                                        pte = pte_swp_mksoft_dirty(pte);
 739                                set_pte_at(src_mm, addr, src_pte, pte);
 740                        }
 741                } else if (is_device_private_entry(entry)) {
 742                        page = device_private_entry_to_page(entry);
 743
 744                        /*
 745                         * Update rss count even for unaddressable pages, as
 746                         * they should treated just like normal pages in this
 747                         * respect.
 748                         *
 749                         * We will likely want to have some new rss counters
 750                         * for unaddressable pages, at some point. But for now
 751                         * keep things as they are.
 752                         */
 753                        get_page(page);
 754                        rss[mm_counter(page)]++;
 755                        page_dup_rmap(page, false);
 756
 757                        /*
 758                         * We do not preserve soft-dirty information, because so
 759                         * far, checkpoint/restore is the only feature that
 760                         * requires that. And checkpoint/restore does not work
 761                         * when a device driver is involved (you cannot easily
 762                         * save and restore device driver state).
 763                         */
 764                        if (is_write_device_private_entry(entry) &&
 765                            is_cow_mapping(vm_flags)) {
 766                                make_device_private_entry_read(&entry);
 767                                pte = swp_entry_to_pte(entry);
 768                                set_pte_at(src_mm, addr, src_pte, pte);
 769                        }
 770                }
 771                goto out_set_pte;
 772        }
 773
 774        /*
 775         * If it's a COW mapping, write protect it both
 776         * in the parent and the child
 777         */
 778        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 779                ptep_set_wrprotect(src_mm, addr, src_pte);
 780                pte = pte_wrprotect(pte);
 781        }
 782
 783        /*
 784         * If it's a shared mapping, mark it clean in
 785         * the child
 786         */
 787        if (vm_flags & VM_SHARED)
 788                pte = pte_mkclean(pte);
 789        pte = pte_mkold(pte);
 790
 791        page = vm_normal_page(vma, addr, pte);
 792        if (page) {
 793                get_page(page);
 794                page_dup_rmap(page, false);
 795                rss[mm_counter(page)]++;
 796        } else if (pte_devmap(pte)) {
 797                page = pte_page(pte);
 798
 799                /*
 800                 * Cache coherent device memory behave like regular page and
 801                 * not like persistent memory page. For more informations see
 802                 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
 803                 */
 804                if (is_device_public_page(page)) {
 805                        get_page(page);
 806                        page_dup_rmap(page, false);
 807                        rss[mm_counter(page)]++;
 808                }
 809        }
 810
 811out_set_pte:
 812        set_pte_at(dst_mm, addr, dst_pte, pte);
 813        return 0;
 814}
 815
 816static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 817                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 818                   unsigned long addr, unsigned long end)
 819{
 820        pte_t *orig_src_pte, *orig_dst_pte;
 821        pte_t *src_pte, *dst_pte;
 822        spinlock_t *src_ptl, *dst_ptl;
 823        int progress = 0;
 824        int rss[NR_MM_COUNTERS];
 825        swp_entry_t entry = (swp_entry_t){0};
 826
 827again:
 828        init_rss_vec(rss);
 829
 830        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 831        if (!dst_pte)
 832                return -ENOMEM;
 833        src_pte = pte_offset_map(src_pmd, addr);
 834        src_ptl = pte_lockptr(src_mm, src_pmd);
 835        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 836        orig_src_pte = src_pte;
 837        orig_dst_pte = dst_pte;
 838        arch_enter_lazy_mmu_mode();
 839
 840        do {
 841                /*
 842                 * We are holding two locks at this point - either of them
 843                 * could generate latencies in another task on another CPU.
 844                 */
 845                if (progress >= 32) {
 846                        progress = 0;
 847                        if (need_resched() ||
 848                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 849                                break;
 850                }
 851                if (pte_none(*src_pte)) {
 852                        progress++;
 853                        continue;
 854                }
 855                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 856                                                        vma, addr, rss);
 857                if (entry.val)
 858                        break;
 859                progress += 8;
 860        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 861
 862        arch_leave_lazy_mmu_mode();
 863        spin_unlock(src_ptl);
 864        pte_unmap(orig_src_pte);
 865        add_mm_rss_vec(dst_mm, rss);
 866        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 867        cond_resched();
 868
 869        if (entry.val) {
 870                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 871                        return -ENOMEM;
 872                progress = 0;
 873        }
 874        if (addr != end)
 875                goto again;
 876        return 0;
 877}
 878
 879static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 880                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 881                unsigned long addr, unsigned long end)
 882{
 883        pmd_t *src_pmd, *dst_pmd;
 884        unsigned long next;
 885
 886        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 887        if (!dst_pmd)
 888                return -ENOMEM;
 889        src_pmd = pmd_offset(src_pud, addr);
 890        do {
 891                next = pmd_addr_end(addr, end);
 892                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 893                        || pmd_devmap(*src_pmd)) {
 894                        int err;
 895                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 896                        err = copy_huge_pmd(dst_mm, src_mm,
 897                                            dst_pmd, src_pmd, addr, vma);
 898                        if (err == -ENOMEM)
 899                                return -ENOMEM;
 900                        if (!err)
 901                                continue;
 902                        /* fall through */
 903                }
 904                if (pmd_none_or_clear_bad(src_pmd))
 905                        continue;
 906                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 907                                                vma, addr, next))
 908                        return -ENOMEM;
 909        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 910        return 0;
 911}
 912
 913static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 914                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 915                unsigned long addr, unsigned long end)
 916{
 917        pud_t *src_pud, *dst_pud;
 918        unsigned long next;
 919
 920        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 921        if (!dst_pud)
 922                return -ENOMEM;
 923        src_pud = pud_offset(src_p4d, addr);
 924        do {
 925                next = pud_addr_end(addr, end);
 926                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 927                        int err;
 928
 929                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 930                        err = copy_huge_pud(dst_mm, src_mm,
 931                                            dst_pud, src_pud, addr, vma);
 932                        if (err == -ENOMEM)
 933                                return -ENOMEM;
 934                        if (!err)
 935                                continue;
 936                        /* fall through */
 937                }
 938                if (pud_none_or_clear_bad(src_pud))
 939                        continue;
 940                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 941                                                vma, addr, next))
 942                        return -ENOMEM;
 943        } while (dst_pud++, src_pud++, addr = next, addr != end);
 944        return 0;
 945}
 946
 947static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 948                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 949                unsigned long addr, unsigned long end)
 950{
 951        p4d_t *src_p4d, *dst_p4d;
 952        unsigned long next;
 953
 954        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 955        if (!dst_p4d)
 956                return -ENOMEM;
 957        src_p4d = p4d_offset(src_pgd, addr);
 958        do {
 959                next = p4d_addr_end(addr, end);
 960                if (p4d_none_or_clear_bad(src_p4d))
 961                        continue;
 962                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 963                                                vma, addr, next))
 964                        return -ENOMEM;
 965        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
 966        return 0;
 967}
 968
 969int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 970                struct vm_area_struct *vma)
 971{
 972        pgd_t *src_pgd, *dst_pgd;
 973        unsigned long next;
 974        unsigned long addr = vma->vm_start;
 975        unsigned long end = vma->vm_end;
 976        struct mmu_notifier_range range;
 977        bool is_cow;
 978        int ret;
 979
 980        /*
 981         * Don't copy ptes where a page fault will fill them correctly.
 982         * Fork becomes much lighter when there are big shared or private
 983         * readonly mappings. The tradeoff is that copy_page_range is more
 984         * efficient than faulting.
 985         */
 986        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 987                        !vma->anon_vma)
 988                return 0;
 989
 990        if (is_vm_hugetlb_page(vma))
 991                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 992
 993        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 994                /*
 995                 * We do not free on error cases below as remove_vma
 996                 * gets called on error from higher level routine
 997                 */
 998                ret = track_pfn_copy(vma);
 999                if (ret)
1000                        return ret;
1001        }
1002
1003        /*
1004         * We need to invalidate the secondary MMU mappings only when
1005         * there could be a permission downgrade on the ptes of the
1006         * parent mm. And a permission downgrade will only happen if
1007         * is_cow_mapping() returns true.
1008         */
1009        is_cow = is_cow_mapping(vma->vm_flags);
1010
1011        if (is_cow) {
1012                mmu_notifier_range_init(&range, src_mm, addr, end);
1013                mmu_notifier_invalidate_range_start(&range);
1014        }
1015
1016        ret = 0;
1017        dst_pgd = pgd_offset(dst_mm, addr);
1018        src_pgd = pgd_offset(src_mm, addr);
1019        do {
1020                next = pgd_addr_end(addr, end);
1021                if (pgd_none_or_clear_bad(src_pgd))
1022                        continue;
1023                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024                                            vma, addr, next))) {
1025                        ret = -ENOMEM;
1026                        break;
1027                }
1028        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029
1030        if (is_cow)
1031                mmu_notifier_invalidate_range_end(&range);
1032        return ret;
1033}
1034
1035static unsigned long zap_pte_range(struct mmu_gather *tlb,
1036                                struct vm_area_struct *vma, pmd_t *pmd,
1037                                unsigned long addr, unsigned long end,
1038                                struct zap_details *details)
1039{
1040        struct mm_struct *mm = tlb->mm;
1041        int force_flush = 0;
1042        int rss[NR_MM_COUNTERS];
1043        spinlock_t *ptl;
1044        pte_t *start_pte;
1045        pte_t *pte;
1046        swp_entry_t entry;
1047
1048        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1049again:
1050        init_rss_vec(rss);
1051        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1052        pte = start_pte;
1053        flush_tlb_batched_pending(mm);
1054        arch_enter_lazy_mmu_mode();
1055        do {
1056                pte_t ptent = *pte;
1057                if (pte_none(ptent))
1058                        continue;
1059
1060                if (pte_present(ptent)) {
1061                        struct page *page;
1062
1063                        page = _vm_normal_page(vma, addr, ptent, true);
1064                        if (unlikely(details) && page) {
1065                                /*
1066                                 * unmap_shared_mapping_pages() wants to
1067                                 * invalidate cache without truncating:
1068                                 * unmap shared but keep private pages.
1069                                 */
1070                                if (details->check_mapping &&
1071                                    details->check_mapping != page_rmapping(page))
1072                                        continue;
1073                        }
1074                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1075                                                        tlb->fullmm);
1076                        tlb_remove_tlb_entry(tlb, pte, addr);
1077                        if (unlikely(!page))
1078                                continue;
1079
1080                        if (!PageAnon(page)) {
1081                                if (pte_dirty(ptent)) {
1082                                        force_flush = 1;
1083                                        set_page_dirty(page);
1084                                }
1085                                if (pte_young(ptent) &&
1086                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1087                                        mark_page_accessed(page);
1088                        }
1089                        rss[mm_counter(page)]--;
1090                        page_remove_rmap(page, false);
1091                        if (unlikely(page_mapcount(page) < 0))
1092                                print_bad_pte(vma, addr, ptent, page);
1093                        if (unlikely(__tlb_remove_page(tlb, page))) {
1094                                force_flush = 1;
1095                                addr += PAGE_SIZE;
1096                                break;
1097                        }
1098                        continue;
1099                }
1100
1101                entry = pte_to_swp_entry(ptent);
1102                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103                        struct page *page = device_private_entry_to_page(entry);
1104
1105                        if (unlikely(details && details->check_mapping)) {
1106                                /*
1107                                 * unmap_shared_mapping_pages() wants to
1108                                 * invalidate cache without truncating:
1109                                 * unmap shared but keep private pages.
1110                                 */
1111                                if (details->check_mapping !=
1112                                    page_rmapping(page))
1113                                        continue;
1114                        }
1115
1116                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117                        rss[mm_counter(page)]--;
1118                        page_remove_rmap(page, false);
1119                        put_page(page);
1120                        continue;
1121                }
1122
1123                /* If details->check_mapping, we leave swap entries. */
1124                if (unlikely(details))
1125                        continue;
1126
1127                entry = pte_to_swp_entry(ptent);
1128                if (!non_swap_entry(entry))
1129                        rss[MM_SWAPENTS]--;
1130                else if (is_migration_entry(entry)) {
1131                        struct page *page;
1132
1133                        page = migration_entry_to_page(entry);
1134                        rss[mm_counter(page)]--;
1135                }
1136                if (unlikely(!free_swap_and_cache(entry)))
1137                        print_bad_pte(vma, addr, ptent, NULL);
1138                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139        } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141        add_mm_rss_vec(mm, rss);
1142        arch_leave_lazy_mmu_mode();
1143
1144        /* Do the actual TLB flush before dropping ptl */
1145        if (force_flush)
1146                tlb_flush_mmu_tlbonly(tlb);
1147        pte_unmap_unlock(start_pte, ptl);
1148
1149        /*
1150         * If we forced a TLB flush (either due to running out of
1151         * batch buffers or because we needed to flush dirty TLB
1152         * entries before releasing the ptl), free the batched
1153         * memory too. Restart if we didn't do everything.
1154         */
1155        if (force_flush) {
1156                force_flush = 0;
1157                tlb_flush_mmu_free(tlb);
1158                if (addr != end)
1159                        goto again;
1160        }
1161
1162        return addr;
1163}
1164
1165static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1166                                struct vm_area_struct *vma, pud_t *pud,
1167                                unsigned long addr, unsigned long end,
1168                                struct zap_details *details)
1169{
1170        pmd_t *pmd;
1171        unsigned long next;
1172
1173        pmd = pmd_offset(pud, addr);
1174        do {
1175                next = pmd_addr_end(addr, end);
1176                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177                        if (next - addr != HPAGE_PMD_SIZE)
1178                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1179                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1180                                goto next;
1181                        /* fall through */
1182                }
1183                /*
1184                 * Here there can be other concurrent MADV_DONTNEED or
1185                 * trans huge page faults running, and if the pmd is
1186                 * none or trans huge it can change under us. This is
1187                 * because MADV_DONTNEED holds the mmap_sem in read
1188                 * mode.
1189                 */
1190                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1191                        goto next;
1192                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1193next:
1194                cond_resched();
1195        } while (pmd++, addr = next, addr != end);
1196
1197        return addr;
1198}
1199
1200static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1201                                struct vm_area_struct *vma, p4d_t *p4d,
1202                                unsigned long addr, unsigned long end,
1203                                struct zap_details *details)
1204{
1205        pud_t *pud;
1206        unsigned long next;
1207
1208        pud = pud_offset(p4d, addr);
1209        do {
1210                next = pud_addr_end(addr, end);
1211                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1212                        if (next - addr != HPAGE_PUD_SIZE) {
1213                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1214                                split_huge_pud(vma, pud, addr);
1215                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1216                                goto next;
1217                        /* fall through */
1218                }
1219                if (pud_none_or_clear_bad(pud))
1220                        continue;
1221                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1222next:
1223                cond_resched();
1224        } while (pud++, addr = next, addr != end);
1225
1226        return addr;
1227}
1228
1229static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1230                                struct vm_area_struct *vma, pgd_t *pgd,
1231                                unsigned long addr, unsigned long end,
1232                                struct zap_details *details)
1233{
1234        p4d_t *p4d;
1235        unsigned long next;
1236
1237        p4d = p4d_offset(pgd, addr);
1238        do {
1239                next = p4d_addr_end(addr, end);
1240                if (p4d_none_or_clear_bad(p4d))
1241                        continue;
1242                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1243        } while (p4d++, addr = next, addr != end);
1244
1245        return addr;
1246}
1247
1248void unmap_page_range(struct mmu_gather *tlb,
1249                             struct vm_area_struct *vma,
1250                             unsigned long addr, unsigned long end,
1251                             struct zap_details *details)
1252{
1253        pgd_t *pgd;
1254        unsigned long next;
1255
1256        BUG_ON(addr >= end);
1257        tlb_start_vma(tlb, vma);
1258        pgd = pgd_offset(vma->vm_mm, addr);
1259        do {
1260                next = pgd_addr_end(addr, end);
1261                if (pgd_none_or_clear_bad(pgd))
1262                        continue;
1263                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1264        } while (pgd++, addr = next, addr != end);
1265        tlb_end_vma(tlb, vma);
1266}
1267
1268
1269static void unmap_single_vma(struct mmu_gather *tlb,
1270                struct vm_area_struct *vma, unsigned long start_addr,
1271                unsigned long end_addr,
1272                struct zap_details *details)
1273{
1274        unsigned long start = max(vma->vm_start, start_addr);
1275        unsigned long end;
1276
1277        if (start >= vma->vm_end)
1278                return;
1279        end = min(vma->vm_end, end_addr);
1280        if (end <= vma->vm_start)
1281                return;
1282
1283        if (vma->vm_file)
1284                uprobe_munmap(vma, start, end);
1285
1286        if (unlikely(vma->vm_flags & VM_PFNMAP))
1287                untrack_pfn(vma, 0, 0);
1288
1289        if (start != end) {
1290                if (unlikely(is_vm_hugetlb_page(vma))) {
1291                        /*
1292                         * It is undesirable to test vma->vm_file as it
1293                         * should be non-null for valid hugetlb area.
1294                         * However, vm_file will be NULL in the error
1295                         * cleanup path of mmap_region. When
1296                         * hugetlbfs ->mmap method fails,
1297                         * mmap_region() nullifies vma->vm_file
1298                         * before calling this function to clean up.
1299                         * Since no pte has actually been setup, it is
1300                         * safe to do nothing in this case.
1301                         */
1302                        if (vma->vm_file) {
1303                                i_mmap_lock_write(vma->vm_file->f_mapping);
1304                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1305                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1306                        }
1307                } else
1308                        unmap_page_range(tlb, vma, start, end, details);
1309        }
1310}
1311
1312/**
1313 * unmap_vmas - unmap a range of memory covered by a list of vma's
1314 * @tlb: address of the caller's struct mmu_gather
1315 * @vma: the starting vma
1316 * @start_addr: virtual address at which to start unmapping
1317 * @end_addr: virtual address at which to end unmapping
1318 *
1319 * Unmap all pages in the vma list.
1320 *
1321 * Only addresses between `start' and `end' will be unmapped.
1322 *
1323 * The VMA list must be sorted in ascending virtual address order.
1324 *
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns.  So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1329 */
1330void unmap_vmas(struct mmu_gather *tlb,
1331                struct vm_area_struct *vma, unsigned long start_addr,
1332                unsigned long end_addr)
1333{
1334        struct mmu_notifier_range range;
1335
1336        mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1337        mmu_notifier_invalidate_range_start(&range);
1338        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340        mmu_notifier_invalidate_range_end(&range);
1341}
1342
1343/**
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
1346 * @start: starting address of pages to zap
1347 * @size: number of bytes to zap
1348 *
1349 * Caller must protect the VMA list
1350 */
1351void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352                unsigned long size)
1353{
1354        struct mmu_notifier_range range;
1355        struct mmu_gather tlb;
1356
1357        lru_add_drain();
1358        mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1359        tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1360        update_hiwater_rss(vma->vm_mm);
1361        mmu_notifier_invalidate_range_start(&range);
1362        for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1363                unmap_single_vma(&tlb, vma, start, range.end, NULL);
1364        mmu_notifier_invalidate_range_end(&range);
1365        tlb_finish_mmu(&tlb, start, range.end);
1366}
1367
1368/**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1374 *
1375 * The range must fit into one VMA.
1376 */
1377static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378                unsigned long size, struct zap_details *details)
1379{
1380        struct mmu_notifier_range range;
1381        struct mmu_gather tlb;
1382
1383        lru_add_drain();
1384        mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1385        tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1386        update_hiwater_rss(vma->vm_mm);
1387        mmu_notifier_invalidate_range_start(&range);
1388        unmap_single_vma(&tlb, vma, address, range.end, details);
1389        mmu_notifier_invalidate_range_end(&range);
1390        tlb_finish_mmu(&tlb, address, range.end);
1391}
1392
1393/**
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 *
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400 *
1401 * The entire address range must be fully contained within the vma.
1402 *
1403 */
1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405                unsigned long size)
1406{
1407        if (address < vma->vm_start || address + size > vma->vm_end ||
1408                        !(vma->vm_flags & VM_PFNMAP))
1409                return;
1410
1411        zap_page_range_single(vma, address, size, NULL);
1412}
1413EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
1415pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416                        spinlock_t **ptl)
1417{
1418        pgd_t *pgd;
1419        p4d_t *p4d;
1420        pud_t *pud;
1421        pmd_t *pmd;
1422
1423        pgd = pgd_offset(mm, addr);
1424        p4d = p4d_alloc(mm, pgd, addr);
1425        if (!p4d)
1426                return NULL;
1427        pud = pud_alloc(mm, p4d, addr);
1428        if (!pud)
1429                return NULL;
1430        pmd = pmd_alloc(mm, pud, addr);
1431        if (!pmd)
1432                return NULL;
1433
1434        VM_BUG_ON(pmd_trans_huge(*pmd));
1435        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436}
1437
1438/*
1439 * This is the old fallback for page remapping.
1440 *
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1444 */
1445static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446                        struct page *page, pgprot_t prot)
1447{
1448        struct mm_struct *mm = vma->vm_mm;
1449        int retval;
1450        pte_t *pte;
1451        spinlock_t *ptl;
1452
1453        retval = -EINVAL;
1454        if (PageAnon(page))
1455                goto out;
1456        retval = -ENOMEM;
1457        flush_dcache_page(page);
1458        pte = get_locked_pte(mm, addr, &ptl);
1459        if (!pte)
1460                goto out;
1461        retval = -EBUSY;
1462        if (!pte_none(*pte))
1463                goto out_unlock;
1464
1465        /* Ok, finally just insert the thing.. */
1466        get_page(page);
1467        inc_mm_counter_fast(mm, mm_counter_file(page));
1468        page_add_file_rmap(page, false);
1469        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471        retval = 0;
1472        pte_unmap_unlock(pte, ptl);
1473        return retval;
1474out_unlock:
1475        pte_unmap_unlock(pte, ptl);
1476out:
1477        return retval;
1478}
1479
1480/**
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1485 *
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1488 *
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
1492 * (see split_page()).
1493 *
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1499 *
1500 * The page does not need to be reserved.
1501 *
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
1506 */
1507int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508                        struct page *page)
1509{
1510        if (addr < vma->vm_start || addr >= vma->vm_end)
1511                return -EFAULT;
1512        if (!page_count(page))
1513                return -EINVAL;
1514        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516                BUG_ON(vma->vm_flags & VM_PFNMAP);
1517                vma->vm_flags |= VM_MIXEDMAP;
1518        }
1519        return insert_page(vma, addr, page, vma->vm_page_prot);
1520}
1521EXPORT_SYMBOL(vm_insert_page);
1522
1523static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1525{
1526        struct mm_struct *mm = vma->vm_mm;
1527        pte_t *pte, entry;
1528        spinlock_t *ptl;
1529
1530        pte = get_locked_pte(mm, addr, &ptl);
1531        if (!pte)
1532                return VM_FAULT_OOM;
1533        if (!pte_none(*pte)) {
1534                if (mkwrite) {
1535                        /*
1536                         * For read faults on private mappings the PFN passed
1537                         * in may not match the PFN we have mapped if the
1538                         * mapped PFN is a writeable COW page.  In the mkwrite
1539                         * case we are creating a writable PTE for a shared
1540                         * mapping and we expect the PFNs to match. If they
1541                         * don't match, we are likely racing with block
1542                         * allocation and mapping invalidation so just skip the
1543                         * update.
1544                         */
1545                        if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1546                                WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1547                                goto out_unlock;
1548                        }
1549                        entry = *pte;
1550                        goto out_mkwrite;
1551                } else
1552                        goto out_unlock;
1553        }
1554
1555        /* Ok, finally just insert the thing.. */
1556        if (pfn_t_devmap(pfn))
1557                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1558        else
1559                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1560
1561out_mkwrite:
1562        if (mkwrite) {
1563                entry = pte_mkyoung(entry);
1564                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1565        }
1566
1567        set_pte_at(mm, addr, pte, entry);
1568        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1569
1570out_unlock:
1571        pte_unmap_unlock(pte, ptl);
1572        return VM_FAULT_NOPAGE;
1573}
1574
1575/**
1576 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 * @pgprot: pgprot flags for the inserted page
1581 *
1582 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1583 * to override pgprot on a per-page basis.
1584 *
1585 * This only makes sense for IO mappings, and it makes no sense for
1586 * COW mappings.  In general, using multiple vmas is preferable;
1587 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1588 * impractical.
1589 *
1590 * Context: Process context.  May allocate using %GFP_KERNEL.
1591 * Return: vm_fault_t value.
1592 */
1593vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1594                        unsigned long pfn, pgprot_t pgprot)
1595{
1596        /*
1597         * Technically, architectures with pte_special can avoid all these
1598         * restrictions (same for remap_pfn_range).  However we would like
1599         * consistency in testing and feature parity among all, so we should
1600         * try to keep these invariants in place for everybody.
1601         */
1602        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1603        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1604                                                (VM_PFNMAP|VM_MIXEDMAP));
1605        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1606        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1607
1608        if (addr < vma->vm_start || addr >= vma->vm_end)
1609                return VM_FAULT_SIGBUS;
1610
1611        if (!pfn_modify_allowed(pfn, pgprot))
1612                return VM_FAULT_SIGBUS;
1613
1614        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1615
1616        return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1617                        false);
1618}
1619EXPORT_SYMBOL(vmf_insert_pfn_prot);
1620
1621/**
1622 * vmf_insert_pfn - insert single pfn into user vma
1623 * @vma: user vma to map to
1624 * @addr: target user address of this page
1625 * @pfn: source kernel pfn
1626 *
1627 * Similar to vm_insert_page, this allows drivers to insert individual pages
1628 * they've allocated into a user vma. Same comments apply.
1629 *
1630 * This function should only be called from a vm_ops->fault handler, and
1631 * in that case the handler should return the result of this function.
1632 *
1633 * vma cannot be a COW mapping.
1634 *
1635 * As this is called only for pages that do not currently exist, we
1636 * do not need to flush old virtual caches or the TLB.
1637 *
1638 * Context: Process context.  May allocate using %GFP_KERNEL.
1639 * Return: vm_fault_t value.
1640 */
1641vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642                        unsigned long pfn)
1643{
1644        return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1645}
1646EXPORT_SYMBOL(vmf_insert_pfn);
1647
1648static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1649{
1650        /* these checks mirror the abort conditions in vm_normal_page */
1651        if (vma->vm_flags & VM_MIXEDMAP)
1652                return true;
1653        if (pfn_t_devmap(pfn))
1654                return true;
1655        if (pfn_t_special(pfn))
1656                return true;
1657        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1658                return true;
1659        return false;
1660}
1661
1662static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1663                unsigned long addr, pfn_t pfn, bool mkwrite)
1664{
1665        pgprot_t pgprot = vma->vm_page_prot;
1666        int err;
1667
1668        BUG_ON(!vm_mixed_ok(vma, pfn));
1669
1670        if (addr < vma->vm_start || addr >= vma->vm_end)
1671                return VM_FAULT_SIGBUS;
1672
1673        track_pfn_insert(vma, &pgprot, pfn);
1674
1675        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1676                return VM_FAULT_SIGBUS;
1677
1678        /*
1679         * If we don't have pte special, then we have to use the pfn_valid()
1680         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1681         * refcount the page if pfn_valid is true (hence insert_page rather
1682         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1683         * without pte special, it would there be refcounted as a normal page.
1684         */
1685        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1686            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1687                struct page *page;
1688
1689                /*
1690                 * At this point we are committed to insert_page()
1691                 * regardless of whether the caller specified flags that
1692                 * result in pfn_t_has_page() == false.
1693                 */
1694                page = pfn_to_page(pfn_t_to_pfn(pfn));
1695                err = insert_page(vma, addr, page, pgprot);
1696        } else {
1697                return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1698        }
1699
1700        if (err == -ENOMEM)
1701                return VM_FAULT_OOM;
1702        if (err < 0 && err != -EBUSY)
1703                return VM_FAULT_SIGBUS;
1704
1705        return VM_FAULT_NOPAGE;
1706}
1707
1708vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1709                pfn_t pfn)
1710{
1711        return __vm_insert_mixed(vma, addr, pfn, false);
1712}
1713EXPORT_SYMBOL(vmf_insert_mixed);
1714
1715/*
1716 *  If the insertion of PTE failed because someone else already added a
1717 *  different entry in the mean time, we treat that as success as we assume
1718 *  the same entry was actually inserted.
1719 */
1720vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1721                unsigned long addr, pfn_t pfn)
1722{
1723        return __vm_insert_mixed(vma, addr, pfn, true);
1724}
1725EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1726
1727/*
1728 * maps a range of physical memory into the requested pages. the old
1729 * mappings are removed. any references to nonexistent pages results
1730 * in null mappings (currently treated as "copy-on-access")
1731 */
1732static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1733                        unsigned long addr, unsigned long end,
1734                        unsigned long pfn, pgprot_t prot)
1735{
1736        pte_t *pte;
1737        spinlock_t *ptl;
1738        int err = 0;
1739
1740        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1741        if (!pte)
1742                return -ENOMEM;
1743        arch_enter_lazy_mmu_mode();
1744        do {
1745                BUG_ON(!pte_none(*pte));
1746                if (!pfn_modify_allowed(pfn, prot)) {
1747                        err = -EACCES;
1748                        break;
1749                }
1750                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1751                pfn++;
1752        } while (pte++, addr += PAGE_SIZE, addr != end);
1753        arch_leave_lazy_mmu_mode();
1754        pte_unmap_unlock(pte - 1, ptl);
1755        return err;
1756}
1757
1758static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1759                        unsigned long addr, unsigned long end,
1760                        unsigned long pfn, pgprot_t prot)
1761{
1762        pmd_t *pmd;
1763        unsigned long next;
1764        int err;
1765
1766        pfn -= addr >> PAGE_SHIFT;
1767        pmd = pmd_alloc(mm, pud, addr);
1768        if (!pmd)
1769                return -ENOMEM;
1770        VM_BUG_ON(pmd_trans_huge(*pmd));
1771        do {
1772                next = pmd_addr_end(addr, end);
1773                err = remap_pte_range(mm, pmd, addr, next,
1774                                pfn + (addr >> PAGE_SHIFT), prot);
1775                if (err)
1776                        return err;
1777        } while (pmd++, addr = next, addr != end);
1778        return 0;
1779}
1780
1781static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1782                        unsigned long addr, unsigned long end,
1783                        unsigned long pfn, pgprot_t prot)
1784{
1785        pud_t *pud;
1786        unsigned long next;
1787        int err;
1788
1789        pfn -= addr >> PAGE_SHIFT;
1790        pud = pud_alloc(mm, p4d, addr);
1791        if (!pud)
1792                return -ENOMEM;
1793        do {
1794                next = pud_addr_end(addr, end);
1795                err = remap_pmd_range(mm, pud, addr, next,
1796                                pfn + (addr >> PAGE_SHIFT), prot);
1797                if (err)
1798                        return err;
1799        } while (pud++, addr = next, addr != end);
1800        return 0;
1801}
1802
1803static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1804                        unsigned long addr, unsigned long end,
1805                        unsigned long pfn, pgprot_t prot)
1806{
1807        p4d_t *p4d;
1808        unsigned long next;
1809        int err;
1810
1811        pfn -= addr >> PAGE_SHIFT;
1812        p4d = p4d_alloc(mm, pgd, addr);
1813        if (!p4d)
1814                return -ENOMEM;
1815        do {
1816                next = p4d_addr_end(addr, end);
1817                err = remap_pud_range(mm, p4d, addr, next,
1818                                pfn + (addr >> PAGE_SHIFT), prot);
1819                if (err)
1820                        return err;
1821        } while (p4d++, addr = next, addr != end);
1822        return 0;
1823}
1824
1825/**
1826 * remap_pfn_range - remap kernel memory to userspace
1827 * @vma: user vma to map to
1828 * @addr: target user address to start at
1829 * @pfn: physical address of kernel memory
1830 * @size: size of map area
1831 * @prot: page protection flags for this mapping
1832 *
1833 *  Note: this is only safe if the mm semaphore is held when called.
1834 */
1835int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1836                    unsigned long pfn, unsigned long size, pgprot_t prot)
1837{
1838        pgd_t *pgd;
1839        unsigned long next;
1840        unsigned long end = addr + PAGE_ALIGN(size);
1841        struct mm_struct *mm = vma->vm_mm;
1842        unsigned long remap_pfn = pfn;
1843        int err;
1844
1845        /*
1846         * Physically remapped pages are special. Tell the
1847         * rest of the world about it:
1848         *   VM_IO tells people not to look at these pages
1849         *      (accesses can have side effects).
1850         *   VM_PFNMAP tells the core MM that the base pages are just
1851         *      raw PFN mappings, and do not have a "struct page" associated
1852         *      with them.
1853         *   VM_DONTEXPAND
1854         *      Disable vma merging and expanding with mremap().
1855         *   VM_DONTDUMP
1856         *      Omit vma from core dump, even when VM_IO turned off.
1857         *
1858         * There's a horrible special case to handle copy-on-write
1859         * behaviour that some programs depend on. We mark the "original"
1860         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1861         * See vm_normal_page() for details.
1862         */
1863        if (is_cow_mapping(vma->vm_flags)) {
1864                if (addr != vma->vm_start || end != vma->vm_end)
1865                        return -EINVAL;
1866                vma->vm_pgoff = pfn;
1867        }
1868
1869        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1870        if (err)
1871                return -EINVAL;
1872
1873        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1874
1875        BUG_ON(addr >= end);
1876        pfn -= addr >> PAGE_SHIFT;
1877        pgd = pgd_offset(mm, addr);
1878        flush_cache_range(vma, addr, end);
1879        do {
1880                next = pgd_addr_end(addr, end);
1881                err = remap_p4d_range(mm, pgd, addr, next,
1882                                pfn + (addr >> PAGE_SHIFT), prot);
1883                if (err)
1884                        break;
1885        } while (pgd++, addr = next, addr != end);
1886
1887        if (err)
1888                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1889
1890        return err;
1891}
1892EXPORT_SYMBOL(remap_pfn_range);
1893
1894/**
1895 * vm_iomap_memory - remap memory to userspace
1896 * @vma: user vma to map to
1897 * @start: start of area
1898 * @len: size of area
1899 *
1900 * This is a simplified io_remap_pfn_range() for common driver use. The
1901 * driver just needs to give us the physical memory range to be mapped,
1902 * we'll figure out the rest from the vma information.
1903 *
1904 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1905 * whatever write-combining details or similar.
1906 */
1907int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1908{
1909        unsigned long vm_len, pfn, pages;
1910
1911        /* Check that the physical memory area passed in looks valid */
1912        if (start + len < start)
1913                return -EINVAL;
1914        /*
1915         * You *really* shouldn't map things that aren't page-aligned,
1916         * but we've historically allowed it because IO memory might
1917         * just have smaller alignment.
1918         */
1919        len += start & ~PAGE_MASK;
1920        pfn = start >> PAGE_SHIFT;
1921        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1922        if (pfn + pages < pfn)
1923                return -EINVAL;
1924
1925        /* We start the mapping 'vm_pgoff' pages into the area */
1926        if (vma->vm_pgoff > pages)
1927                return -EINVAL;
1928        pfn += vma->vm_pgoff;
1929        pages -= vma->vm_pgoff;
1930
1931        /* Can we fit all of the mapping? */
1932        vm_len = vma->vm_end - vma->vm_start;
1933        if (vm_len >> PAGE_SHIFT > pages)
1934                return -EINVAL;
1935
1936        /* Ok, let it rip */
1937        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1938}
1939EXPORT_SYMBOL(vm_iomap_memory);
1940
1941static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1942                                     unsigned long addr, unsigned long end,
1943                                     pte_fn_t fn, void *data)
1944{
1945        pte_t *pte;
1946        int err;
1947        pgtable_t token;
1948        spinlock_t *uninitialized_var(ptl);
1949
1950        pte = (mm == &init_mm) ?
1951                pte_alloc_kernel(pmd, addr) :
1952                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1953        if (!pte)
1954                return -ENOMEM;
1955
1956        BUG_ON(pmd_huge(*pmd));
1957
1958        arch_enter_lazy_mmu_mode();
1959
1960        token = pmd_pgtable(*pmd);
1961
1962        do {
1963                err = fn(pte++, token, addr, data);
1964                if (err)
1965                        break;
1966        } while (addr += PAGE_SIZE, addr != end);
1967
1968        arch_leave_lazy_mmu_mode();
1969
1970        if (mm != &init_mm)
1971                pte_unmap_unlock(pte-1, ptl);
1972        return err;
1973}
1974
1975static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1976                                     unsigned long addr, unsigned long end,
1977                                     pte_fn_t fn, void *data)
1978{
1979        pmd_t *pmd;
1980        unsigned long next;
1981        int err;
1982
1983        BUG_ON(pud_huge(*pud));
1984
1985        pmd = pmd_alloc(mm, pud, addr);
1986        if (!pmd)
1987                return -ENOMEM;
1988        do {
1989                next = pmd_addr_end(addr, end);
1990                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1991                if (err)
1992                        break;
1993        } while (pmd++, addr = next, addr != end);
1994        return err;
1995}
1996
1997static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1998                                     unsigned long addr, unsigned long end,
1999                                     pte_fn_t fn, void *data)
2000{
2001        pud_t *pud;
2002        unsigned long next;
2003        int err;
2004
2005        pud = pud_alloc(mm, p4d, addr);
2006        if (!pud)
2007                return -ENOMEM;
2008        do {
2009                next = pud_addr_end(addr, end);
2010                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2011                if (err)
2012                        break;
2013        } while (pud++, addr = next, addr != end);
2014        return err;
2015}
2016
2017static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2018                                     unsigned long addr, unsigned long end,
2019                                     pte_fn_t fn, void *data)
2020{
2021        p4d_t *p4d;
2022        unsigned long next;
2023        int err;
2024
2025        p4d = p4d_alloc(mm, pgd, addr);
2026        if (!p4d)
2027                return -ENOMEM;
2028        do {
2029                next = p4d_addr_end(addr, end);
2030                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2031                if (err)
2032                        break;
2033        } while (p4d++, addr = next, addr != end);
2034        return err;
2035}
2036
2037/*
2038 * Scan a region of virtual memory, filling in page tables as necessary
2039 * and calling a provided function on each leaf page table.
2040 */
2041int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2042                        unsigned long size, pte_fn_t fn, void *data)
2043{
2044        pgd_t *pgd;
2045        unsigned long next;
2046        unsigned long end = addr + size;
2047        int err;
2048
2049        if (WARN_ON(addr >= end))
2050                return -EINVAL;
2051
2052        pgd = pgd_offset(mm, addr);
2053        do {
2054                next = pgd_addr_end(addr, end);
2055                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2056                if (err)
2057                        break;
2058        } while (pgd++, addr = next, addr != end);
2059
2060        return err;
2061}
2062EXPORT_SYMBOL_GPL(apply_to_page_range);
2063
2064/*
2065 * handle_pte_fault chooses page fault handler according to an entry which was
2066 * read non-atomically.  Before making any commitment, on those architectures
2067 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2068 * parts, do_swap_page must check under lock before unmapping the pte and
2069 * proceeding (but do_wp_page is only called after already making such a check;
2070 * and do_anonymous_page can safely check later on).
2071 */
2072static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2073                                pte_t *page_table, pte_t orig_pte)
2074{
2075        int same = 1;
2076#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2077        if (sizeof(pte_t) > sizeof(unsigned long)) {
2078                spinlock_t *ptl = pte_lockptr(mm, pmd);
2079                spin_lock(ptl);
2080                same = pte_same(*page_table, orig_pte);
2081                spin_unlock(ptl);
2082        }
2083#endif
2084        pte_unmap(page_table);
2085        return same;
2086}
2087
2088static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2089{
2090        debug_dma_assert_idle(src);
2091
2092        /*
2093         * If the source page was a PFN mapping, we don't have
2094         * a "struct page" for it. We do a best-effort copy by
2095         * just copying from the original user address. If that
2096         * fails, we just zero-fill it. Live with it.
2097         */
2098        if (unlikely(!src)) {
2099                void *kaddr = kmap_atomic(dst);
2100                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2101
2102                /*
2103                 * This really shouldn't fail, because the page is there
2104                 * in the page tables. But it might just be unreadable,
2105                 * in which case we just give up and fill the result with
2106                 * zeroes.
2107                 */
2108                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2109                        clear_page(kaddr);
2110                kunmap_atomic(kaddr);
2111                flush_dcache_page(dst);
2112        } else
2113                copy_user_highpage(dst, src, va, vma);
2114}
2115
2116static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2117{
2118        struct file *vm_file = vma->vm_file;
2119
2120        if (vm_file)
2121                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2122
2123        /*
2124         * Special mappings (e.g. VDSO) do not have any file so fake
2125         * a default GFP_KERNEL for them.
2126         */
2127        return GFP_KERNEL;
2128}
2129
2130/*
2131 * Notify the address space that the page is about to become writable so that
2132 * it can prohibit this or wait for the page to get into an appropriate state.
2133 *
2134 * We do this without the lock held, so that it can sleep if it needs to.
2135 */
2136static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2137{
2138        vm_fault_t ret;
2139        struct page *page = vmf->page;
2140        unsigned int old_flags = vmf->flags;
2141
2142        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2143
2144        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2145        /* Restore original flags so that caller is not surprised */
2146        vmf->flags = old_flags;
2147        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2148                return ret;
2149        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2150                lock_page(page);
2151                if (!page->mapping) {
2152                        unlock_page(page);
2153                        return 0; /* retry */
2154                }
2155                ret |= VM_FAULT_LOCKED;
2156        } else
2157                VM_BUG_ON_PAGE(!PageLocked(page), page);
2158        return ret;
2159}
2160
2161/*
2162 * Handle dirtying of a page in shared file mapping on a write fault.
2163 *
2164 * The function expects the page to be locked and unlocks it.
2165 */
2166static void fault_dirty_shared_page(struct vm_area_struct *vma,
2167                                    struct page *page)
2168{
2169        struct address_space *mapping;
2170        bool dirtied;
2171        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2172
2173        dirtied = set_page_dirty(page);
2174        VM_BUG_ON_PAGE(PageAnon(page), page);
2175        /*
2176         * Take a local copy of the address_space - page.mapping may be zeroed
2177         * by truncate after unlock_page().   The address_space itself remains
2178         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2179         * release semantics to prevent the compiler from undoing this copying.
2180         */
2181        mapping = page_rmapping(page);
2182        unlock_page(page);
2183
2184        if ((dirtied || page_mkwrite) && mapping) {
2185                /*
2186                 * Some device drivers do not set page.mapping
2187                 * but still dirty their pages
2188                 */
2189                balance_dirty_pages_ratelimited(mapping);
2190        }
2191
2192        if (!page_mkwrite)
2193                file_update_time(vma->vm_file);
2194}
2195
2196/*
2197 * Handle write page faults for pages that can be reused in the current vma
2198 *
2199 * This can happen either due to the mapping being with the VM_SHARED flag,
2200 * or due to us being the last reference standing to the page. In either
2201 * case, all we need to do here is to mark the page as writable and update
2202 * any related book-keeping.
2203 */
2204static inline void wp_page_reuse(struct vm_fault *vmf)
2205        __releases(vmf->ptl)
2206{
2207        struct vm_area_struct *vma = vmf->vma;
2208        struct page *page = vmf->page;
2209        pte_t entry;
2210        /*
2211         * Clear the pages cpupid information as the existing
2212         * information potentially belongs to a now completely
2213         * unrelated process.
2214         */
2215        if (page)
2216                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2217
2218        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2219        entry = pte_mkyoung(vmf->orig_pte);
2220        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2221        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2222                update_mmu_cache(vma, vmf->address, vmf->pte);
2223        pte_unmap_unlock(vmf->pte, vmf->ptl);
2224}
2225
2226/*
2227 * Handle the case of a page which we actually need to copy to a new page.
2228 *
2229 * Called with mmap_sem locked and the old page referenced, but
2230 * without the ptl held.
2231 *
2232 * High level logic flow:
2233 *
2234 * - Allocate a page, copy the content of the old page to the new one.
2235 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2236 * - Take the PTL. If the pte changed, bail out and release the allocated page
2237 * - If the pte is still the way we remember it, update the page table and all
2238 *   relevant references. This includes dropping the reference the page-table
2239 *   held to the old page, as well as updating the rmap.
2240 * - In any case, unlock the PTL and drop the reference we took to the old page.
2241 */
2242static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2243{
2244        struct vm_area_struct *vma = vmf->vma;
2245        struct mm_struct *mm = vma->vm_mm;
2246        struct page *old_page = vmf->page;
2247        struct page *new_page = NULL;
2248        pte_t entry;
2249        int page_copied = 0;
2250        struct mem_cgroup *memcg;
2251        struct mmu_notifier_range range;
2252
2253        if (unlikely(anon_vma_prepare(vma)))
2254                goto oom;
2255
2256        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2257                new_page = alloc_zeroed_user_highpage_movable(vma,
2258                                                              vmf->address);
2259                if (!new_page)
2260                        goto oom;
2261        } else {
2262                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2263                                vmf->address);
2264                if (!new_page)
2265                        goto oom;
2266                cow_user_page(new_page, old_page, vmf->address, vma);
2267        }
2268
2269        if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2270                goto oom_free_new;
2271
2272        __SetPageUptodate(new_page);
2273
2274        mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2275                                (vmf->address & PAGE_MASK) + PAGE_SIZE);
2276        mmu_notifier_invalidate_range_start(&range);
2277
2278        /*
2279         * Re-check the pte - we dropped the lock
2280         */
2281        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2282        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2283                if (old_page) {
2284                        if (!PageAnon(old_page)) {
2285                                dec_mm_counter_fast(mm,
2286                                                mm_counter_file(old_page));
2287                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2288                        }
2289                } else {
2290                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2291                }
2292                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2293                entry = mk_pte(new_page, vma->vm_page_prot);
2294                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2295                /*
2296                 * Clear the pte entry and flush it first, before updating the
2297                 * pte with the new entry. This will avoid a race condition
2298                 * seen in the presence of one thread doing SMC and another
2299                 * thread doing COW.
2300                 */
2301                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2302                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2303                mem_cgroup_commit_charge(new_page, memcg, false, false);
2304                lru_cache_add_active_or_unevictable(new_page, vma);
2305                /*
2306                 * We call the notify macro here because, when using secondary
2307                 * mmu page tables (such as kvm shadow page tables), we want the
2308                 * new page to be mapped directly into the secondary page table.
2309                 */
2310                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2311                update_mmu_cache(vma, vmf->address, vmf->pte);
2312                if (old_page) {
2313                        /*
2314                         * Only after switching the pte to the new page may
2315                         * we remove the mapcount here. Otherwise another
2316                         * process may come and find the rmap count decremented
2317                         * before the pte is switched to the new page, and
2318                         * "reuse" the old page writing into it while our pte
2319                         * here still points into it and can be read by other
2320                         * threads.
2321                         *
2322                         * The critical issue is to order this
2323                         * page_remove_rmap with the ptp_clear_flush above.
2324                         * Those stores are ordered by (if nothing else,)
2325                         * the barrier present in the atomic_add_negative
2326                         * in page_remove_rmap.
2327                         *
2328                         * Then the TLB flush in ptep_clear_flush ensures that
2329                         * no process can access the old page before the
2330                         * decremented mapcount is visible. And the old page
2331                         * cannot be reused until after the decremented
2332                         * mapcount is visible. So transitively, TLBs to
2333                         * old page will be flushed before it can be reused.
2334                         */
2335                        page_remove_rmap(old_page, false);
2336                }
2337
2338                /* Free the old page.. */
2339                new_page = old_page;
2340                page_copied = 1;
2341        } else {
2342                mem_cgroup_cancel_charge(new_page, memcg, false);
2343        }
2344
2345        if (new_page)
2346                put_page(new_page);
2347
2348        pte_unmap_unlock(vmf->pte, vmf->ptl);
2349        /*
2350         * No need to double call mmu_notifier->invalidate_range() callback as
2351         * the above ptep_clear_flush_notify() did already call it.
2352         */
2353        mmu_notifier_invalidate_range_only_end(&range);
2354        if (old_page) {
2355                /*
2356                 * Don't let another task, with possibly unlocked vma,
2357                 * keep the mlocked page.
2358                 */
2359                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2360                        lock_page(old_page);    /* LRU manipulation */
2361                        if (PageMlocked(old_page))
2362                                munlock_vma_page(old_page);
2363                        unlock_page(old_page);
2364                }
2365                put_page(old_page);
2366        }
2367        return page_copied ? VM_FAULT_WRITE : 0;
2368oom_free_new:
2369        put_page(new_page);
2370oom:
2371        if (old_page)
2372                put_page(old_page);
2373        return VM_FAULT_OOM;
2374}
2375
2376/**
2377 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2378 *                        writeable once the page is prepared
2379 *
2380 * @vmf: structure describing the fault
2381 *
2382 * This function handles all that is needed to finish a write page fault in a
2383 * shared mapping due to PTE being read-only once the mapped page is prepared.
2384 * It handles locking of PTE and modifying it. The function returns
2385 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2386 * lock.
2387 *
2388 * The function expects the page to be locked or other protection against
2389 * concurrent faults / writeback (such as DAX radix tree locks).
2390 */
2391vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2392{
2393        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2394        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2395                                       &vmf->ptl);
2396        /*
2397         * We might have raced with another page fault while we released the
2398         * pte_offset_map_lock.
2399         */
2400        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2401                pte_unmap_unlock(vmf->pte, vmf->ptl);
2402                return VM_FAULT_NOPAGE;
2403        }
2404        wp_page_reuse(vmf);
2405        return 0;
2406}
2407
2408/*
2409 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2410 * mapping
2411 */
2412static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2413{
2414        struct vm_area_struct *vma = vmf->vma;
2415
2416        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2417                vm_fault_t ret;
2418
2419                pte_unmap_unlock(vmf->pte, vmf->ptl);
2420                vmf->flags |= FAULT_FLAG_MKWRITE;
2421                ret = vma->vm_ops->pfn_mkwrite(vmf);
2422                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2423                        return ret;
2424                return finish_mkwrite_fault(vmf);
2425        }
2426        wp_page_reuse(vmf);
2427        return VM_FAULT_WRITE;
2428}
2429
2430static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2431        __releases(vmf->ptl)
2432{
2433        struct vm_area_struct *vma = vmf->vma;
2434
2435        get_page(vmf->page);
2436
2437        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2438                vm_fault_t tmp;
2439
2440                pte_unmap_unlock(vmf->pte, vmf->ptl);
2441                tmp = do_page_mkwrite(vmf);
2442                if (unlikely(!tmp || (tmp &
2443                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2444                        put_page(vmf->page);
2445                        return tmp;
2446                }
2447                tmp = finish_mkwrite_fault(vmf);
2448                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2449                        unlock_page(vmf->page);
2450                        put_page(vmf->page);
2451                        return tmp;
2452                }
2453        } else {
2454                wp_page_reuse(vmf);
2455                lock_page(vmf->page);
2456        }
2457        fault_dirty_shared_page(vma, vmf->page);
2458        put_page(vmf->page);
2459
2460        return VM_FAULT_WRITE;
2461}
2462
2463/*
2464 * This routine handles present pages, when users try to write
2465 * to a shared page. It is done by copying the page to a new address
2466 * and decrementing the shared-page counter for the old page.
2467 *
2468 * Note that this routine assumes that the protection checks have been
2469 * done by the caller (the low-level page fault routine in most cases).
2470 * Thus we can safely just mark it writable once we've done any necessary
2471 * COW.
2472 *
2473 * We also mark the page dirty at this point even though the page will
2474 * change only once the write actually happens. This avoids a few races,
2475 * and potentially makes it more efficient.
2476 *
2477 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2478 * but allow concurrent faults), with pte both mapped and locked.
2479 * We return with mmap_sem still held, but pte unmapped and unlocked.
2480 */
2481static vm_fault_t do_wp_page(struct vm_fault *vmf)
2482        __releases(vmf->ptl)
2483{
2484        struct vm_area_struct *vma = vmf->vma;
2485
2486        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2487        if (!vmf->page) {
2488                /*
2489                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2490                 * VM_PFNMAP VMA.
2491                 *
2492                 * We should not cow pages in a shared writeable mapping.
2493                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2494                 */
2495                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2496                                     (VM_WRITE|VM_SHARED))
2497                        return wp_pfn_shared(vmf);
2498
2499                pte_unmap_unlock(vmf->pte, vmf->ptl);
2500                return wp_page_copy(vmf);
2501        }
2502
2503        /*
2504         * Take out anonymous pages first, anonymous shared vmas are
2505         * not dirty accountable.
2506         */
2507        if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2508                int total_map_swapcount;
2509                if (!trylock_page(vmf->page)) {
2510                        get_page(vmf->page);
2511                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2512                        lock_page(vmf->page);
2513                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2514                                        vmf->address, &vmf->ptl);
2515                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2516                                unlock_page(vmf->page);
2517                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2518                                put_page(vmf->page);
2519                                return 0;
2520                        }
2521                        put_page(vmf->page);
2522                }
2523                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2524                        if (total_map_swapcount == 1) {
2525                                /*
2526                                 * The page is all ours. Move it to
2527                                 * our anon_vma so the rmap code will
2528                                 * not search our parent or siblings.
2529                                 * Protected against the rmap code by
2530                                 * the page lock.
2531                                 */
2532                                page_move_anon_rmap(vmf->page, vma);
2533                        }
2534                        unlock_page(vmf->page);
2535                        wp_page_reuse(vmf);
2536                        return VM_FAULT_WRITE;
2537                }
2538                unlock_page(vmf->page);
2539        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2540                                        (VM_WRITE|VM_SHARED))) {
2541                return wp_page_shared(vmf);
2542        }
2543
2544        /*
2545         * Ok, we need to copy. Oh, well..
2546         */
2547        get_page(vmf->page);
2548
2549        pte_unmap_unlock(vmf->pte, vmf->ptl);
2550        return wp_page_copy(vmf);
2551}
2552
2553static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2554                unsigned long start_addr, unsigned long end_addr,
2555                struct zap_details *details)
2556{
2557        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2558}
2559
2560static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2561                                            struct zap_details *details)
2562{
2563        struct vm_area_struct *vma;
2564        pgoff_t vba, vea, zba, zea;
2565
2566        vma_interval_tree_foreach(vma, root,
2567                        details->first_index, details->last_index) {
2568
2569                vba = vma->vm_pgoff;
2570                vea = vba + vma_pages(vma) - 1;
2571                zba = details->first_index;
2572                if (zba < vba)
2573                        zba = vba;
2574                zea = details->last_index;
2575                if (zea > vea)
2576                        zea = vea;
2577
2578                unmap_mapping_range_vma(vma,
2579                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2580                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2581                                details);
2582        }
2583}
2584
2585/**
2586 * unmap_mapping_pages() - Unmap pages from processes.
2587 * @mapping: The address space containing pages to be unmapped.
2588 * @start: Index of first page to be unmapped.
2589 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2590 * @even_cows: Whether to unmap even private COWed pages.
2591 *
2592 * Unmap the pages in this address space from any userspace process which
2593 * has them mmaped.  Generally, you want to remove COWed pages as well when
2594 * a file is being truncated, but not when invalidating pages from the page
2595 * cache.
2596 */
2597void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2598                pgoff_t nr, bool even_cows)
2599{
2600        struct zap_details details = { };
2601
2602        details.check_mapping = even_cows ? NULL : mapping;
2603        details.first_index = start;
2604        details.last_index = start + nr - 1;
2605        if (details.last_index < details.first_index)
2606                details.last_index = ULONG_MAX;
2607
2608        i_mmap_lock_write(mapping);
2609        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2610                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2611        i_mmap_unlock_write(mapping);
2612}
2613
2614/**
2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2616 * address_space corresponding to the specified byte range in the underlying
2617 * file.
2618 *
2619 * @mapping: the address space containing mmaps to be unmapped.
2620 * @holebegin: byte in first page to unmap, relative to the start of
2621 * the underlying file.  This will be rounded down to a PAGE_SIZE
2622 * boundary.  Note that this is different from truncate_pagecache(), which
2623 * must keep the partial page.  In contrast, we must get rid of
2624 * partial pages.
2625 * @holelen: size of prospective hole in bytes.  This will be rounded
2626 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2627 * end of the file.
2628 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2629 * but 0 when invalidating pagecache, don't throw away private data.
2630 */
2631void unmap_mapping_range(struct address_space *mapping,
2632                loff_t const holebegin, loff_t const holelen, int even_cows)
2633{
2634        pgoff_t hba = holebegin >> PAGE_SHIFT;
2635        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2636
2637        /* Check for overflow. */
2638        if (sizeof(holelen) > sizeof(hlen)) {
2639                long long holeend =
2640                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2641                if (holeend & ~(long long)ULONG_MAX)
2642                        hlen = ULONG_MAX - hba + 1;
2643        }
2644
2645        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2646}
2647EXPORT_SYMBOL(unmap_mapping_range);
2648
2649/*
2650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2651 * but allow concurrent faults), and pte mapped but not yet locked.
2652 * We return with pte unmapped and unlocked.
2653 *
2654 * We return with the mmap_sem locked or unlocked in the same cases
2655 * as does filemap_fault().
2656 */
2657vm_fault_t do_swap_page(struct vm_fault *vmf)
2658{
2659        struct vm_area_struct *vma = vmf->vma;
2660        struct page *page = NULL, *swapcache;
2661        struct mem_cgroup *memcg;
2662        swp_entry_t entry;
2663        pte_t pte;
2664        int locked;
2665        int exclusive = 0;
2666        vm_fault_t ret = 0;
2667
2668        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2669                goto out;
2670
2671        entry = pte_to_swp_entry(vmf->orig_pte);
2672        if (unlikely(non_swap_entry(entry))) {
2673                if (is_migration_entry(entry)) {
2674                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2675                                             vmf->address);
2676                } else if (is_device_private_entry(entry)) {
2677                        /*
2678                         * For un-addressable device memory we call the pgmap
2679                         * fault handler callback. The callback must migrate
2680                         * the page back to some CPU accessible page.
2681                         */
2682                        ret = device_private_entry_fault(vma, vmf->address, entry,
2683                                                 vmf->flags, vmf->pmd);
2684                } else if (is_hwpoison_entry(entry)) {
2685                        ret = VM_FAULT_HWPOISON;
2686                } else {
2687                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2688                        ret = VM_FAULT_SIGBUS;
2689                }
2690                goto out;
2691        }
2692
2693
2694        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2695        page = lookup_swap_cache(entry, vma, vmf->address);
2696        swapcache = page;
2697
2698        if (!page) {
2699                struct swap_info_struct *si = swp_swap_info(entry);
2700
2701                if (si->flags & SWP_SYNCHRONOUS_IO &&
2702                                __swap_count(si, entry) == 1) {
2703                        /* skip swapcache */
2704                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2705                                                        vmf->address);
2706                        if (page) {
2707                                __SetPageLocked(page);
2708                                __SetPageSwapBacked(page);
2709                                set_page_private(page, entry.val);
2710                                lru_cache_add_anon(page);
2711                                swap_readpage(page, true);
2712                        }
2713                } else {
2714                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2715                                                vmf);
2716                        swapcache = page;
2717                }
2718
2719                if (!page) {
2720                        /*
2721                         * Back out if somebody else faulted in this pte
2722                         * while we released the pte lock.
2723                         */
2724                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2725                                        vmf->address, &vmf->ptl);
2726                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2727                                ret = VM_FAULT_OOM;
2728                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2729                        goto unlock;
2730                }
2731
2732                /* Had to read the page from swap area: Major fault */
2733                ret = VM_FAULT_MAJOR;
2734                count_vm_event(PGMAJFAULT);
2735                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2736        } else if (PageHWPoison(page)) {
2737                /*
2738                 * hwpoisoned dirty swapcache pages are kept for killing
2739                 * owner processes (which may be unknown at hwpoison time)
2740                 */
2741                ret = VM_FAULT_HWPOISON;
2742                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743                goto out_release;
2744        }
2745
2746        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2747
2748        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2749        if (!locked) {
2750                ret |= VM_FAULT_RETRY;
2751                goto out_release;
2752        }
2753
2754        /*
2755         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2756         * release the swapcache from under us.  The page pin, and pte_same
2757         * test below, are not enough to exclude that.  Even if it is still
2758         * swapcache, we need to check that the page's swap has not changed.
2759         */
2760        if (unlikely((!PageSwapCache(page) ||
2761                        page_private(page) != entry.val)) && swapcache)
2762                goto out_page;
2763
2764        page = ksm_might_need_to_copy(page, vma, vmf->address);
2765        if (unlikely(!page)) {
2766                ret = VM_FAULT_OOM;
2767                page = swapcache;
2768                goto out_page;
2769        }
2770
2771        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2772                                        &memcg, false)) {
2773                ret = VM_FAULT_OOM;
2774                goto out_page;
2775        }
2776
2777        /*
2778         * Back out if somebody else already faulted in this pte.
2779         */
2780        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2781                        &vmf->ptl);
2782        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2783                goto out_nomap;
2784
2785        if (unlikely(!PageUptodate(page))) {
2786                ret = VM_FAULT_SIGBUS;
2787                goto out_nomap;
2788        }
2789
2790        /*
2791         * The page isn't present yet, go ahead with the fault.
2792         *
2793         * Be careful about the sequence of operations here.
2794         * To get its accounting right, reuse_swap_page() must be called
2795         * while the page is counted on swap but not yet in mapcount i.e.
2796         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2797         * must be called after the swap_free(), or it will never succeed.
2798         */
2799
2800        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2801        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2802        pte = mk_pte(page, vma->vm_page_prot);
2803        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2804                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2805                vmf->flags &= ~FAULT_FLAG_WRITE;
2806                ret |= VM_FAULT_WRITE;
2807                exclusive = RMAP_EXCLUSIVE;
2808        }
2809        flush_icache_page(vma, page);
2810        if (pte_swp_soft_dirty(vmf->orig_pte))
2811                pte = pte_mksoft_dirty(pte);
2812        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2813        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2814        vmf->orig_pte = pte;
2815
2816        /* ksm created a completely new copy */
2817        if (unlikely(page != swapcache && swapcache)) {
2818                page_add_new_anon_rmap(page, vma, vmf->address, false);
2819                mem_cgroup_commit_charge(page, memcg, false, false);
2820                lru_cache_add_active_or_unevictable(page, vma);
2821        } else {
2822                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2823                mem_cgroup_commit_charge(page, memcg, true, false);
2824                activate_page(page);
2825        }
2826
2827        swap_free(entry);
2828        if (mem_cgroup_swap_full(page) ||
2829            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2830                try_to_free_swap(page);
2831        unlock_page(page);
2832        if (page != swapcache && swapcache) {
2833                /*
2834                 * Hold the lock to avoid the swap entry to be reused
2835                 * until we take the PT lock for the pte_same() check
2836                 * (to avoid false positives from pte_same). For
2837                 * further safety release the lock after the swap_free
2838                 * so that the swap count won't change under a
2839                 * parallel locked swapcache.
2840                 */
2841                unlock_page(swapcache);
2842                put_page(swapcache);
2843        }
2844
2845        if (vmf->flags & FAULT_FLAG_WRITE) {
2846                ret |= do_wp_page(vmf);
2847                if (ret & VM_FAULT_ERROR)
2848                        ret &= VM_FAULT_ERROR;
2849                goto out;
2850        }
2851
2852        /* No need to invalidate - it was non-present before */
2853        update_mmu_cache(vma, vmf->address, vmf->pte);
2854unlock:
2855        pte_unmap_unlock(vmf->pte, vmf->ptl);
2856out:
2857        return ret;
2858out_nomap:
2859        mem_cgroup_cancel_charge(page, memcg, false);
2860        pte_unmap_unlock(vmf->pte, vmf->ptl);
2861out_page:
2862        unlock_page(page);
2863out_release:
2864        put_page(page);
2865        if (page != swapcache && swapcache) {
2866                unlock_page(swapcache);
2867                put_page(swapcache);
2868        }
2869        return ret;
2870}
2871
2872/*
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2876 */
2877static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2878{
2879        struct vm_area_struct *vma = vmf->vma;
2880        struct mem_cgroup *memcg;
2881        struct page *page;
2882        vm_fault_t ret = 0;
2883        pte_t entry;
2884
2885        /* File mapping without ->vm_ops ? */
2886        if (vma->vm_flags & VM_SHARED)
2887                return VM_FAULT_SIGBUS;
2888
2889        /*
2890         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2891         * pte_offset_map() on pmds where a huge pmd might be created
2892         * from a different thread.
2893         *
2894         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2895         * parallel threads are excluded by other means.
2896         *
2897         * Here we only have down_read(mmap_sem).
2898         */
2899        if (pte_alloc(vma->vm_mm, vmf->pmd))
2900                return VM_FAULT_OOM;
2901
2902        /* See the comment in pte_alloc_one_map() */
2903        if (unlikely(pmd_trans_unstable(vmf->pmd)))
2904                return 0;
2905
2906        /* Use the zero-page for reads */
2907        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2908                        !mm_forbids_zeropage(vma->vm_mm)) {
2909                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2910                                                vma->vm_page_prot));
2911                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2912                                vmf->address, &vmf->ptl);
2913                if (!pte_none(*vmf->pte))
2914                        goto unlock;
2915                ret = check_stable_address_space(vma->vm_mm);
2916                if (ret)
2917                        goto unlock;
2918                /* Deliver the page fault to userland, check inside PT lock */
2919                if (userfaultfd_missing(vma)) {
2920                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2921                        return handle_userfault(vmf, VM_UFFD_MISSING);
2922                }
2923                goto setpte;
2924        }
2925
2926        /* Allocate our own private page. */
2927        if (unlikely(anon_vma_prepare(vma)))
2928                goto oom;
2929        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2930        if (!page)
2931                goto oom;
2932
2933        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2934                                        false))
2935                goto oom_free_page;
2936
2937        /*
2938         * The memory barrier inside __SetPageUptodate makes sure that
2939         * preceeding stores to the page contents become visible before
2940         * the set_pte_at() write.
2941         */
2942        __SetPageUptodate(page);
2943
2944        entry = mk_pte(page, vma->vm_page_prot);
2945        if (vma->vm_flags & VM_WRITE)
2946                entry = pte_mkwrite(pte_mkdirty(entry));
2947
2948        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2949                        &vmf->ptl);
2950        if (!pte_none(*vmf->pte))
2951                goto release;
2952
2953        ret = check_stable_address_space(vma->vm_mm);
2954        if (ret)
2955                goto release;
2956
2957        /* Deliver the page fault to userland, check inside PT lock */
2958        if (userfaultfd_missing(vma)) {
2959                pte_unmap_unlock(vmf->pte, vmf->ptl);
2960                mem_cgroup_cancel_charge(page, memcg, false);
2961                put_page(page);
2962                return handle_userfault(vmf, VM_UFFD_MISSING);
2963        }
2964
2965        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2966        page_add_new_anon_rmap(page, vma, vmf->address, false);
2967        mem_cgroup_commit_charge(page, memcg, false, false);
2968        lru_cache_add_active_or_unevictable(page, vma);
2969setpte:
2970        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2971
2972        /* No need to invalidate - it was non-present before */
2973        update_mmu_cache(vma, vmf->address, vmf->pte);
2974unlock:
2975        pte_unmap_unlock(vmf->pte, vmf->ptl);
2976        return ret;
2977release:
2978        mem_cgroup_cancel_charge(page, memcg, false);
2979        put_page(page);
2980        goto unlock;
2981oom_free_page:
2982        put_page(page);
2983oom:
2984        return VM_FAULT_OOM;
2985}
2986
2987/*
2988 * The mmap_sem must have been held on entry, and may have been
2989 * released depending on flags and vma->vm_ops->fault() return value.
2990 * See filemap_fault() and __lock_page_retry().
2991 */
2992static vm_fault_t __do_fault(struct vm_fault *vmf)
2993{
2994        struct vm_area_struct *vma = vmf->vma;
2995        vm_fault_t ret;
2996
2997        /*
2998         * Preallocate pte before we take page_lock because this might lead to
2999         * deadlocks for memcg reclaim which waits for pages under writeback:
3000         *                              lock_page(A)
3001         *                              SetPageWriteback(A)
3002         *                              unlock_page(A)
3003         * lock_page(B)
3004         *                              lock_page(B)
3005         * pte_alloc_pne
3006         *   shrink_page_list
3007         *     wait_on_page_writeback(A)
3008         *                              SetPageWriteback(B)
3009         *                              unlock_page(B)
3010         *                              # flush A, B to clear the writeback
3011         */
3012        if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3013                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3014                if (!vmf->prealloc_pte)
3015                        return VM_FAULT_OOM;
3016                smp_wmb(); /* See comment in __pte_alloc() */
3017        }
3018
3019        ret = vma->vm_ops->fault(vmf);
3020        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3021                            VM_FAULT_DONE_COW)))
3022                return ret;
3023
3024        if (unlikely(PageHWPoison(vmf->page))) {
3025                if (ret & VM_FAULT_LOCKED)
3026                        unlock_page(vmf->page);
3027                put_page(vmf->page);
3028                vmf->page = NULL;
3029                return VM_FAULT_HWPOISON;
3030        }
3031
3032        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3033                lock_page(vmf->page);
3034        else
3035                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3036
3037        return ret;
3038}
3039
3040/*
3041 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3042 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3043 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3044 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3045 */
3046static int pmd_devmap_trans_unstable(pmd_t *pmd)
3047{
3048        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3049}
3050
3051static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3052{
3053        struct vm_area_struct *vma = vmf->vma;
3054
3055        if (!pmd_none(*vmf->pmd))
3056                goto map_pte;
3057        if (vmf->prealloc_pte) {
3058                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3059                if (unlikely(!pmd_none(*vmf->pmd))) {
3060                        spin_unlock(vmf->ptl);
3061                        goto map_pte;
3062                }
3063
3064                mm_inc_nr_ptes(vma->vm_mm);
3065                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3066                spin_unlock(vmf->ptl);
3067                vmf->prealloc_pte = NULL;
3068        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3069                return VM_FAULT_OOM;
3070        }
3071map_pte:
3072        /*
3073         * If a huge pmd materialized under us just retry later.  Use
3074         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3075         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3076         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3077         * running immediately after a huge pmd fault in a different thread of
3078         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3079         * All we have to ensure is that it is a regular pmd that we can walk
3080         * with pte_offset_map() and we can do that through an atomic read in
3081         * C, which is what pmd_trans_unstable() provides.
3082         */
3083        if (pmd_devmap_trans_unstable(vmf->pmd))
3084                return VM_FAULT_NOPAGE;
3085
3086        /*
3087         * At this point we know that our vmf->pmd points to a page of ptes
3088         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3089         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3090         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3091         * be valid and we will re-check to make sure the vmf->pte isn't
3092         * pte_none() under vmf->ptl protection when we return to
3093         * alloc_set_pte().
3094         */
3095        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096                        &vmf->ptl);
3097        return 0;
3098}
3099
3100#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3101
3102#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3103static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3104                unsigned long haddr)
3105{
3106        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3107                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3108                return false;
3109        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3110                return false;
3111        return true;
3112}
3113
3114static void deposit_prealloc_pte(struct vm_fault *vmf)
3115{
3116        struct vm_area_struct *vma = vmf->vma;
3117
3118        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3119        /*
3120         * We are going to consume the prealloc table,
3121         * count that as nr_ptes.
3122         */
3123        mm_inc_nr_ptes(vma->vm_mm);
3124        vmf->prealloc_pte = NULL;
3125}
3126
3127static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3128{
3129        struct vm_area_struct *vma = vmf->vma;
3130        bool write = vmf->flags & FAULT_FLAG_WRITE;
3131        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3132        pmd_t entry;
3133        int i;
3134        vm_fault_t ret;
3135
3136        if (!transhuge_vma_suitable(vma, haddr))
3137                return VM_FAULT_FALLBACK;
3138
3139        ret = VM_FAULT_FALLBACK;
3140        page = compound_head(page);
3141
3142        /*
3143         * Archs like ppc64 need additonal space to store information
3144         * related to pte entry. Use the preallocated table for that.
3145         */
3146        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3147                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3148                if (!vmf->prealloc_pte)
3149                        return VM_FAULT_OOM;
3150                smp_wmb(); /* See comment in __pte_alloc() */
3151        }
3152
3153        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3154        if (unlikely(!pmd_none(*vmf->pmd)))
3155                goto out;
3156
3157        for (i = 0; i < HPAGE_PMD_NR; i++)
3158                flush_icache_page(vma, page + i);
3159
3160        entry = mk_huge_pmd(page, vma->vm_page_prot);
3161        if (write)
3162                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3163
3164        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3165        page_add_file_rmap(page, true);
3166        /*
3167         * deposit and withdraw with pmd lock held
3168         */
3169        if (arch_needs_pgtable_deposit())
3170                deposit_prealloc_pte(vmf);
3171
3172        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3173
3174        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3175
3176        /* fault is handled */
3177        ret = 0;
3178        count_vm_event(THP_FILE_MAPPED);
3179out:
3180        spin_unlock(vmf->ptl);
3181        return ret;
3182}
3183#else
3184static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3185{
3186        BUILD_BUG();
3187        return 0;
3188}
3189#endif
3190
3191/**
3192 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3193 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3194 *
3195 * @vmf: fault environment
3196 * @memcg: memcg to charge page (only for private mappings)
3197 * @page: page to map
3198 *
3199 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3200 * return.
3201 *
3202 * Target users are page handler itself and implementations of
3203 * vm_ops->map_pages.
3204 */
3205vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3206                struct page *page)
3207{
3208        struct vm_area_struct *vma = vmf->vma;
3209        bool write = vmf->flags & FAULT_FLAG_WRITE;
3210        pte_t entry;
3211        vm_fault_t ret;
3212
3213        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3214                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3215                /* THP on COW? */
3216                VM_BUG_ON_PAGE(memcg, page);
3217
3218                ret = do_set_pmd(vmf, page);
3219                if (ret != VM_FAULT_FALLBACK)
3220                        return ret;
3221        }
3222
3223        if (!vmf->pte) {
3224                ret = pte_alloc_one_map(vmf);
3225                if (ret)
3226                        return ret;
3227        }
3228
3229        /* Re-check under ptl */
3230        if (unlikely(!pte_none(*vmf->pte)))
3231                return VM_FAULT_NOPAGE;
3232
3233        flush_icache_page(vma, page);
3234        entry = mk_pte(page, vma->vm_page_prot);
3235        if (write)
3236                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3237        /* copy-on-write page */
3238        if (write && !(vma->vm_flags & VM_SHARED)) {
3239                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3240                page_add_new_anon_rmap(page, vma, vmf->address, false);
3241                mem_cgroup_commit_charge(page, memcg, false, false);
3242                lru_cache_add_active_or_unevictable(page, vma);
3243        } else {
3244                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3245                page_add_file_rmap(page, false);
3246        }
3247        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3248
3249        /* no need to invalidate: a not-present page won't be cached */
3250        update_mmu_cache(vma, vmf->address, vmf->pte);
3251
3252        return 0;
3253}
3254
3255
3256/**
3257 * finish_fault - finish page fault once we have prepared the page to fault
3258 *
3259 * @vmf: structure describing the fault
3260 *
3261 * This function handles all that is needed to finish a page fault once the
3262 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3263 * given page, adds reverse page mapping, handles memcg charges and LRU
3264 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3265 * error.
3266 *
3267 * The function expects the page to be locked and on success it consumes a
3268 * reference of a page being mapped (for the PTE which maps it).
3269 */
3270vm_fault_t finish_fault(struct vm_fault *vmf)
3271{
3272        struct page *page;
3273        vm_fault_t ret = 0;
3274
3275        /* Did we COW the page? */
3276        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3277            !(vmf->vma->vm_flags & VM_SHARED))
3278                page = vmf->cow_page;
3279        else
3280                page = vmf->page;
3281
3282        /*
3283         * check even for read faults because we might have lost our CoWed
3284         * page
3285         */
3286        if (!(vmf->vma->vm_flags & VM_SHARED))
3287                ret = check_stable_address_space(vmf->vma->vm_mm);
3288        if (!ret)
3289                ret = alloc_set_pte(vmf, vmf->memcg, page);
3290        if (vmf->pte)
3291                pte_unmap_unlock(vmf->pte, vmf->ptl);
3292        return ret;
3293}
3294
3295static unsigned long fault_around_bytes __read_mostly =
3296        rounddown_pow_of_two(65536);
3297
3298#ifdef CONFIG_DEBUG_FS
3299static int fault_around_bytes_get(void *data, u64 *val)
3300{
3301        *val = fault_around_bytes;
3302        return 0;
3303}
3304
3305/*
3306 * fault_around_bytes must be rounded down to the nearest page order as it's
3307 * what do_fault_around() expects to see.
3308 */
3309static int fault_around_bytes_set(void *data, u64 val)
3310{
3311        if (val / PAGE_SIZE > PTRS_PER_PTE)
3312                return -EINVAL;
3313        if (val > PAGE_SIZE)
3314                fault_around_bytes = rounddown_pow_of_two(val);
3315        else
3316                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3317        return 0;
3318}
3319DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3320                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3321
3322static int __init fault_around_debugfs(void)
3323{
3324        void *ret;
3325
3326        ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3327                        &fault_around_bytes_fops);
3328        if (!ret)
3329                pr_warn("Failed to create fault_around_bytes in debugfs");
3330        return 0;
3331}
3332late_initcall(fault_around_debugfs);
3333#endif
3334
3335/*
3336 * do_fault_around() tries to map few pages around the fault address. The hope
3337 * is that the pages will be needed soon and this will lower the number of
3338 * faults to handle.
3339 *
3340 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3341 * not ready to be mapped: not up-to-date, locked, etc.
3342 *
3343 * This function is called with the page table lock taken. In the split ptlock
3344 * case the page table lock only protects only those entries which belong to
3345 * the page table corresponding to the fault address.
3346 *
3347 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3348 * only once.
3349 *
3350 * fault_around_bytes defines how many bytes we'll try to map.
3351 * do_fault_around() expects it to be set to a power of two less than or equal
3352 * to PTRS_PER_PTE.
3353 *
3354 * The virtual address of the area that we map is naturally aligned to
3355 * fault_around_bytes rounded down to the machine page size
3356 * (and therefore to page order).  This way it's easier to guarantee
3357 * that we don't cross page table boundaries.
3358 */
3359static vm_fault_t do_fault_around(struct vm_fault *vmf)
3360{
3361        unsigned long address = vmf->address, nr_pages, mask;
3362        pgoff_t start_pgoff = vmf->pgoff;
3363        pgoff_t end_pgoff;
3364        int off;
3365        vm_fault_t ret = 0;
3366
3367        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3368        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3369
3370        vmf->address = max(address & mask, vmf->vma->vm_start);
3371        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3372        start_pgoff -= off;
3373
3374        /*
3375         *  end_pgoff is either the end of the page table, the end of
3376         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3377         */
3378        end_pgoff = start_pgoff -
3379                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3380                PTRS_PER_PTE - 1;
3381        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3382                        start_pgoff + nr_pages - 1);
3383
3384        if (pmd_none(*vmf->pmd)) {
3385                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3386                if (!vmf->prealloc_pte)
3387                        goto out;
3388                smp_wmb(); /* See comment in __pte_alloc() */
3389        }
3390
3391        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3392
3393        /* Huge page is mapped? Page fault is solved */
3394        if (pmd_trans_huge(*vmf->pmd)) {
3395                ret = VM_FAULT_NOPAGE;
3396                goto out;
3397        }
3398
3399        /* ->map_pages() haven't done anything useful. Cold page cache? */
3400        if (!vmf->pte)
3401                goto out;
3402
3403        /* check if the page fault is solved */
3404        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3405        if (!pte_none(*vmf->pte))
3406                ret = VM_FAULT_NOPAGE;
3407        pte_unmap_unlock(vmf->pte, vmf->ptl);
3408out:
3409        vmf->address = address;
3410        vmf->pte = NULL;
3411        return ret;
3412}
3413
3414static vm_fault_t do_read_fault(struct vm_fault *vmf)
3415{
3416        struct vm_area_struct *vma = vmf->vma;
3417        vm_fault_t ret = 0;
3418
3419        /*
3420         * Let's call ->map_pages() first and use ->fault() as fallback
3421         * if page by the offset is not ready to be mapped (cold cache or
3422         * something).
3423         */
3424        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3425                ret = do_fault_around(vmf);
3426                if (ret)
3427                        return ret;
3428        }
3429
3430        ret = __do_fault(vmf);
3431        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432                return ret;
3433
3434        ret |= finish_fault(vmf);
3435        unlock_page(vmf->page);
3436        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3437                put_page(vmf->page);
3438        return ret;
3439}
3440
3441static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3442{
3443        struct vm_area_struct *vma = vmf->vma;
3444        vm_fault_t ret;
3445
3446        if (unlikely(anon_vma_prepare(vma)))
3447                return VM_FAULT_OOM;
3448
3449        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3450        if (!vmf->cow_page)
3451                return VM_FAULT_OOM;
3452
3453        if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3454                                &vmf->memcg, false)) {
3455                put_page(vmf->cow_page);
3456                return VM_FAULT_OOM;
3457        }
3458
3459        ret = __do_fault(vmf);
3460        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3461                goto uncharge_out;
3462        if (ret & VM_FAULT_DONE_COW)
3463                return ret;
3464
3465        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3466        __SetPageUptodate(vmf->cow_page);
3467
3468        ret |= finish_fault(vmf);
3469        unlock_page(vmf->page);
3470        put_page(vmf->page);
3471        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3472                goto uncharge_out;
3473        return ret;
3474uncharge_out:
3475        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3476        put_page(vmf->cow_page);
3477        return ret;
3478}
3479
3480static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3481{
3482        struct vm_area_struct *vma = vmf->vma;
3483        vm_fault_t ret, tmp;
3484
3485        ret = __do_fault(vmf);
3486        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487                return ret;
3488
3489        /*
3490         * Check if the backing address space wants to know that the page is
3491         * about to become writable
3492         */
3493        if (vma->vm_ops->page_mkwrite) {
3494                unlock_page(vmf->page);
3495                tmp = do_page_mkwrite(vmf);
3496                if (unlikely(!tmp ||
3497                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3498                        put_page(vmf->page);
3499                        return tmp;
3500                }
3501        }
3502
3503        ret |= finish_fault(vmf);
3504        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3505                                        VM_FAULT_RETRY))) {
3506                unlock_page(vmf->page);
3507                put_page(vmf->page);
3508                return ret;
3509        }
3510
3511        fault_dirty_shared_page(vma, vmf->page);
3512        return ret;
3513}
3514
3515/*
3516 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3517 * but allow concurrent faults).
3518 * The mmap_sem may have been released depending on flags and our
3519 * return value.  See filemap_fault() and __lock_page_or_retry().
3520 */
3521static vm_fault_t do_fault(struct vm_fault *vmf)
3522{
3523        struct vm_area_struct *vma = vmf->vma;
3524        vm_fault_t ret;
3525
3526        /*
3527         * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3528         */
3529        if (!vma->vm_ops->fault) {
3530                /*
3531                 * If we find a migration pmd entry or a none pmd entry, which
3532                 * should never happen, return SIGBUS
3533                 */
3534                if (unlikely(!pmd_present(*vmf->pmd)))
3535                        ret = VM_FAULT_SIGBUS;
3536                else {
3537                        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3538                                                       vmf->pmd,
3539                                                       vmf->address,
3540                                                       &vmf->ptl);
3541                        /*
3542                         * Make sure this is not a temporary clearing of pte
3543                         * by holding ptl and checking again. A R/M/W update
3544                         * of pte involves: take ptl, clearing the pte so that
3545                         * we don't have concurrent modification by hardware
3546                         * followed by an update.
3547                         */
3548                        if (unlikely(pte_none(*vmf->pte)))
3549                                ret = VM_FAULT_SIGBUS;
3550                        else
3551                                ret = VM_FAULT_NOPAGE;
3552
3553                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3554                }
3555        } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3556                ret = do_read_fault(vmf);
3557        else if (!(vma->vm_flags & VM_SHARED))
3558                ret = do_cow_fault(vmf);
3559        else
3560                ret = do_shared_fault(vmf);
3561
3562        /* preallocated pagetable is unused: free it */
3563        if (vmf->prealloc_pte) {
3564                pte_free(vma->vm_mm, vmf->prealloc_pte);
3565                vmf->prealloc_pte = NULL;
3566        }
3567        return ret;
3568}
3569
3570static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3571                                unsigned long addr, int page_nid,
3572                                int *flags)
3573{
3574        get_page(page);
3575
3576        count_vm_numa_event(NUMA_HINT_FAULTS);
3577        if (page_nid == numa_node_id()) {
3578                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3579                *flags |= TNF_FAULT_LOCAL;
3580        }
3581
3582        return mpol_misplaced(page, vma, addr);
3583}
3584
3585static vm_fault_t do_numa_page(struct vm_fault *vmf)
3586{
3587        struct vm_area_struct *vma = vmf->vma;
3588        struct page *page = NULL;
3589        int page_nid = -1;
3590        int last_cpupid;
3591        int target_nid;
3592        bool migrated = false;
3593        pte_t pte;
3594        bool was_writable = pte_savedwrite(vmf->orig_pte);
3595        int flags = 0;
3596
3597        /*
3598         * The "pte" at this point cannot be used safely without
3599         * validation through pte_unmap_same(). It's of NUMA type but
3600         * the pfn may be screwed if the read is non atomic.
3601         */
3602        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3603        spin_lock(vmf->ptl);
3604        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3605                pte_unmap_unlock(vmf->pte, vmf->ptl);
3606                goto out;
3607        }
3608
3609        /*
3610         * Make it present again, Depending on how arch implementes non
3611         * accessible ptes, some can allow access by kernel mode.
3612         */
3613        pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3614        pte = pte_modify(pte, vma->vm_page_prot);
3615        pte = pte_mkyoung(pte);
3616        if (was_writable)
3617                pte = pte_mkwrite(pte);
3618        ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3619        update_mmu_cache(vma, vmf->address, vmf->pte);
3620
3621        page = vm_normal_page(vma, vmf->address, pte);
3622        if (!page) {
3623                pte_unmap_unlock(vmf->pte, vmf->ptl);
3624                return 0;
3625        }
3626
3627        /* TODO: handle PTE-mapped THP */
3628        if (PageCompound(page)) {
3629                pte_unmap_unlock(vmf->pte, vmf->ptl);
3630                return 0;
3631        }
3632
3633        /*
3634         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3635         * much anyway since they can be in shared cache state. This misses
3636         * the case where a mapping is writable but the process never writes
3637         * to it but pte_write gets cleared during protection updates and
3638         * pte_dirty has unpredictable behaviour between PTE scan updates,
3639         * background writeback, dirty balancing and application behaviour.
3640         */
3641        if (!pte_write(pte))
3642                flags |= TNF_NO_GROUP;
3643
3644        /*
3645         * Flag if the page is shared between multiple address spaces. This
3646         * is later used when determining whether to group tasks together
3647         */
3648        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3649                flags |= TNF_SHARED;
3650
3651        last_cpupid = page_cpupid_last(page);
3652        page_nid = page_to_nid(page);
3653        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3654                        &flags);
3655        pte_unmap_unlock(vmf->pte, vmf->ptl);
3656        if (target_nid == -1) {
3657                put_page(page);
3658                goto out;
3659        }
3660
3661        /* Migrate to the requested node */
3662        migrated = migrate_misplaced_page(page, vma, target_nid);
3663        if (migrated) {
3664                page_nid = target_nid;
3665                flags |= TNF_MIGRATED;
3666        } else
3667                flags |= TNF_MIGRATE_FAIL;
3668
3669out:
3670        if (page_nid != -1)
3671                task_numa_fault(last_cpupid, page_nid, 1, flags);
3672        return 0;
3673}
3674
3675static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3676{
3677        if (vma_is_anonymous(vmf->vma))
3678                return do_huge_pmd_anonymous_page(vmf);
3679        if (vmf->vma->vm_ops->huge_fault)
3680                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3681        return VM_FAULT_FALLBACK;
3682}
3683
3684/* `inline' is required to avoid gcc 4.1.2 build error */
3685static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3686{
3687        if (vma_is_anonymous(vmf->vma))
3688                return do_huge_pmd_wp_page(vmf, orig_pmd);
3689        if (vmf->vma->vm_ops->huge_fault)
3690                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3691
3692        /* COW handled on pte level: split pmd */
3693        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3694        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3695
3696        return VM_FAULT_FALLBACK;
3697}
3698
3699static inline bool vma_is_accessible(struct vm_area_struct *vma)
3700{
3701        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3702}
3703
3704static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3705{
3706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707        /* No support for anonymous transparent PUD pages yet */
3708        if (vma_is_anonymous(vmf->vma))
3709                return VM_FAULT_FALLBACK;
3710        if (vmf->vma->vm_ops->huge_fault)
3711                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3712#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713        return VM_FAULT_FALLBACK;
3714}
3715
3716static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3717{
3718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719        /* No support for anonymous transparent PUD pages yet */
3720        if (vma_is_anonymous(vmf->vma))
3721                return VM_FAULT_FALLBACK;
3722        if (vmf->vma->vm_ops->huge_fault)
3723                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3724#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725        return VM_FAULT_FALLBACK;
3726}
3727
3728/*
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures).  The early dirtying is also good on the i386.
3732 *
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3736 *
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738 * concurrent faults).
3739 *
3740 * The mmap_sem may have been released depending on flags and our return value.
3741 * See filemap_fault() and __lock_page_or_retry().
3742 */
3743static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3744{
3745        pte_t entry;
3746
3747        if (unlikely(pmd_none(*vmf->pmd))) {
3748                /*
3749                 * Leave __pte_alloc() until later: because vm_ops->fault may
3750                 * want to allocate huge page, and if we expose page table
3751                 * for an instant, it will be difficult to retract from
3752                 * concurrent faults and from rmap lookups.
3753                 */
3754                vmf->pte = NULL;
3755        } else {
3756                /* See comment in pte_alloc_one_map() */
3757                if (pmd_devmap_trans_unstable(vmf->pmd))
3758                        return 0;
3759                /*
3760                 * A regular pmd is established and it can't morph into a huge
3761                 * pmd from under us anymore at this point because we hold the
3762                 * mmap_sem read mode and khugepaged takes it in write mode.
3763                 * So now it's safe to run pte_offset_map().
3764                 */
3765                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3766                vmf->orig_pte = *vmf->pte;
3767
3768                /*
3769                 * some architectures can have larger ptes than wordsize,
3770                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3772                 * accesses.  The code below just needs a consistent view
3773                 * for the ifs and we later double check anyway with the
3774                 * ptl lock held. So here a barrier will do.
3775                 */
3776                barrier();
3777                if (pte_none(vmf->orig_pte)) {
3778                        pte_unmap(vmf->pte);
3779                        vmf->pte = NULL;
3780                }
3781        }
3782
3783        if (!vmf->pte) {
3784                if (vma_is_anonymous(vmf->vma))
3785                        return do_anonymous_page(vmf);
3786                else
3787                        return do_fault(vmf);
3788        }
3789
3790        if (!pte_present(vmf->orig_pte))
3791                return do_swap_page(vmf);
3792
3793        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3794                return do_numa_page(vmf);
3795
3796        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3797        spin_lock(vmf->ptl);
3798        entry = vmf->orig_pte;
3799        if (unlikely(!pte_same(*vmf->pte, entry)))
3800                goto unlock;
3801        if (vmf->flags & FAULT_FLAG_WRITE) {
3802                if (!pte_write(entry))
3803                        return do_wp_page(vmf);
3804                entry = pte_mkdirty(entry);
3805        }
3806        entry = pte_mkyoung(entry);
3807        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3808                                vmf->flags & FAULT_FLAG_WRITE)) {
3809                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3810        } else {
3811                /*
3812                 * This is needed only for protection faults but the arch code
3813                 * is not yet telling us if this is a protection fault or not.
3814                 * This still avoids useless tlb flushes for .text page faults
3815                 * with threads.
3816                 */
3817                if (vmf->flags & FAULT_FLAG_WRITE)
3818                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3819        }
3820unlock:
3821        pte_unmap_unlock(vmf->pte, vmf->ptl);
3822        return 0;
3823}
3824
3825/*
3826 * By the time we get here, we already hold the mm semaphore
3827 *
3828 * The mmap_sem may have been released depending on flags and our
3829 * return value.  See filemap_fault() and __lock_page_or_retry().
3830 */
3831static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3832                unsigned long address, unsigned int flags)
3833{
3834        struct vm_fault vmf = {
3835                .vma = vma,
3836                .address = address & PAGE_MASK,
3837                .flags = flags,
3838                .pgoff = linear_page_index(vma, address),
3839                .gfp_mask = __get_fault_gfp_mask(vma),
3840        };
3841        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3842        struct mm_struct *mm = vma->vm_mm;
3843        pgd_t *pgd;
3844        p4d_t *p4d;
3845        vm_fault_t ret;
3846
3847        pgd = pgd_offset(mm, address);
3848        p4d = p4d_alloc(mm, pgd, address);
3849        if (!p4d)
3850                return VM_FAULT_OOM;
3851
3852        vmf.pud = pud_alloc(mm, p4d, address);
3853        if (!vmf.pud)
3854                return VM_FAULT_OOM;
3855        if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3856                ret = create_huge_pud(&vmf);
3857                if (!(ret & VM_FAULT_FALLBACK))
3858                        return ret;
3859        } else {
3860                pud_t orig_pud = *vmf.pud;
3861
3862                barrier();
3863                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3864
3865                        /* NUMA case for anonymous PUDs would go here */
3866
3867                        if (dirty && !pud_write(orig_pud)) {
3868                                ret = wp_huge_pud(&vmf, orig_pud);
3869                                if (!(ret & VM_FAULT_FALLBACK))
3870                                        return ret;
3871                        } else {
3872                                huge_pud_set_accessed(&vmf, orig_pud);
3873                                return 0;
3874                        }
3875                }
3876        }
3877
3878        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3879        if (!vmf.pmd)
3880                return VM_FAULT_OOM;
3881        if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3882                ret = create_huge_pmd(&vmf);
3883                if (!(ret & VM_FAULT_FALLBACK))
3884                        return ret;
3885        } else {
3886                pmd_t orig_pmd = *vmf.pmd;
3887
3888                barrier();
3889                if (unlikely(is_swap_pmd(orig_pmd))) {
3890                        VM_BUG_ON(thp_migration_supported() &&
3891                                          !is_pmd_migration_entry(orig_pmd));
3892                        if (is_pmd_migration_entry(orig_pmd))
3893                                pmd_migration_entry_wait(mm, vmf.pmd);
3894                        return 0;
3895                }
3896                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3897                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3898                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
3899
3900                        if (dirty && !pmd_write(orig_pmd)) {
3901                                ret = wp_huge_pmd(&vmf, orig_pmd);
3902                                if (!(ret & VM_FAULT_FALLBACK))
3903                                        return ret;
3904                        } else {
3905                                huge_pmd_set_accessed(&vmf, orig_pmd);
3906                                return 0;
3907                        }
3908                }
3909        }
3910
3911        return handle_pte_fault(&vmf);
3912}
3913
3914/*
3915 * By the time we get here, we already hold the mm semaphore
3916 *
3917 * The mmap_sem may have been released depending on flags and our
3918 * return value.  See filemap_fault() and __lock_page_or_retry().
3919 */
3920vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3921                unsigned int flags)
3922{
3923        vm_fault_t ret;
3924
3925        __set_current_state(TASK_RUNNING);
3926
3927        count_vm_event(PGFAULT);
3928        count_memcg_event_mm(vma->vm_mm, PGFAULT);
3929
3930        /* do counter updates before entering really critical section. */
3931        check_sync_rss_stat(current);
3932
3933        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3934                                            flags & FAULT_FLAG_INSTRUCTION,
3935                                            flags & FAULT_FLAG_REMOTE))
3936                return VM_FAULT_SIGSEGV;
3937
3938        /*
3939         * Enable the memcg OOM handling for faults triggered in user
3940         * space.  Kernel faults are handled more gracefully.
3941         */
3942        if (flags & FAULT_FLAG_USER)
3943                mem_cgroup_enter_user_fault();
3944
3945        if (unlikely(is_vm_hugetlb_page(vma)))
3946                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3947        else
3948                ret = __handle_mm_fault(vma, address, flags);
3949
3950        if (flags & FAULT_FLAG_USER) {
3951                mem_cgroup_exit_user_fault();
3952                /*
3953                 * The task may have entered a memcg OOM situation but
3954                 * if the allocation error was handled gracefully (no
3955                 * VM_FAULT_OOM), there is no need to kill anything.
3956                 * Just clean up the OOM state peacefully.
3957                 */
3958                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3959                        mem_cgroup_oom_synchronize(false);
3960        }
3961
3962        return ret;
3963}
3964EXPORT_SYMBOL_GPL(handle_mm_fault);
3965
3966#ifndef __PAGETABLE_P4D_FOLDED
3967/*
3968 * Allocate p4d page table.
3969 * We've already handled the fast-path in-line.
3970 */
3971int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3972{
3973        p4d_t *new = p4d_alloc_one(mm, address);
3974        if (!new)
3975                return -ENOMEM;
3976
3977        smp_wmb(); /* See comment in __pte_alloc */
3978
3979        spin_lock(&mm->page_table_lock);
3980        if (pgd_present(*pgd))          /* Another has populated it */
3981                p4d_free(mm, new);
3982        else
3983                pgd_populate(mm, pgd, new);
3984        spin_unlock(&mm->page_table_lock);
3985        return 0;
3986}
3987#endif /* __PAGETABLE_P4D_FOLDED */
3988
3989#ifndef __PAGETABLE_PUD_FOLDED
3990/*
3991 * Allocate page upper directory.
3992 * We've already handled the fast-path in-line.
3993 */
3994int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3995{
3996        pud_t *new = pud_alloc_one(mm, address);
3997        if (!new)
3998                return -ENOMEM;
3999
4000        smp_wmb(); /* See comment in __pte_alloc */
4001
4002        spin_lock(&mm->page_table_lock);
4003#ifndef __ARCH_HAS_5LEVEL_HACK
4004        if (!p4d_present(*p4d)) {
4005                mm_inc_nr_puds(mm);
4006                p4d_populate(mm, p4d, new);
4007        } else  /* Another has populated it */
4008                pud_free(mm, new);
4009#else
4010        if (!pgd_present(*p4d)) {
4011                mm_inc_nr_puds(mm);
4012                pgd_populate(mm, p4d, new);
4013        } else  /* Another has populated it */
4014                pud_free(mm, new);
4015#endif /* __ARCH_HAS_5LEVEL_HACK */
4016        spin_unlock(&mm->page_table_lock);
4017        return 0;
4018}
4019#endif /* __PAGETABLE_PUD_FOLDED */
4020
4021#ifndef __PAGETABLE_PMD_FOLDED
4022/*
4023 * Allocate page middle directory.
4024 * We've already handled the fast-path in-line.
4025 */
4026int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4027{
4028        spinlock_t *ptl;
4029        pmd_t *new = pmd_alloc_one(mm, address);
4030        if (!new)
4031                return -ENOMEM;
4032
4033        smp_wmb(); /* See comment in __pte_alloc */
4034
4035        ptl = pud_lock(mm, pud);
4036#ifndef __ARCH_HAS_4LEVEL_HACK
4037        if (!pud_present(*pud)) {
4038                mm_inc_nr_pmds(mm);
4039                pud_populate(mm, pud, new);
4040        } else  /* Another has populated it */
4041                pmd_free(mm, new);
4042#else
4043        if (!pgd_present(*pud)) {
4044                mm_inc_nr_pmds(mm);
4045                pgd_populate(mm, pud, new);
4046        } else /* Another has populated it */
4047                pmd_free(mm, new);
4048#endif /* __ARCH_HAS_4LEVEL_HACK */
4049        spin_unlock(ptl);
4050        return 0;
4051}
4052#endif /* __PAGETABLE_PMD_FOLDED */
4053
4054static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4055                            struct mmu_notifier_range *range,
4056                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4057{
4058        pgd_t *pgd;
4059        p4d_t *p4d;
4060        pud_t *pud;
4061        pmd_t *pmd;
4062        pte_t *ptep;
4063
4064        pgd = pgd_offset(mm, address);
4065        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4066                goto out;
4067
4068        p4d = p4d_offset(pgd, address);
4069        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4070                goto out;
4071
4072        pud = pud_offset(p4d, address);
4073        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4074                goto out;
4075
4076        pmd = pmd_offset(pud, address);
4077        VM_BUG_ON(pmd_trans_huge(*pmd));
4078
4079        if (pmd_huge(*pmd)) {
4080                if (!pmdpp)
4081                        goto out;
4082
4083                if (range) {
4084                        mmu_notifier_range_init(range, mm, address & PMD_MASK,
4085                                             (address & PMD_MASK) + PMD_SIZE);
4086                        mmu_notifier_invalidate_range_start(range);
4087                }
4088                *ptlp = pmd_lock(mm, pmd);
4089                if (pmd_huge(*pmd)) {
4090                        *pmdpp = pmd;
4091                        return 0;
4092                }
4093                spin_unlock(*ptlp);
4094                if (range)
4095                        mmu_notifier_invalidate_range_end(range);
4096        }
4097
4098        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4099                goto out;
4100
4101        if (range) {
4102                mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4103                                     (address & PAGE_MASK) + PAGE_SIZE);
4104                mmu_notifier_invalidate_range_start(range);
4105        }
4106        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4107        if (!pte_present(*ptep))
4108                goto unlock;
4109        *ptepp = ptep;
4110        return 0;
4111unlock:
4112        pte_unmap_unlock(ptep, *ptlp);
4113        if (range)
4114                mmu_notifier_invalidate_range_end(range);
4115out:
4116        return -EINVAL;
4117}
4118
4119static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4120                             pte_t **ptepp, spinlock_t **ptlp)
4121{
4122        int res;
4123
4124        /* (void) is needed to make gcc happy */
4125        (void) __cond_lock(*ptlp,
4126                           !(res = __follow_pte_pmd(mm, address, NULL,
4127                                                    ptepp, NULL, ptlp)));
4128        return res;
4129}
4130
4131int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4132                   struct mmu_notifier_range *range,
4133                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4134{
4135        int res;
4136
4137        /* (void) is needed to make gcc happy */
4138        (void) __cond_lock(*ptlp,
4139                           !(res = __follow_pte_pmd(mm, address, range,
4140                                                    ptepp, pmdpp, ptlp)));
4141        return res;
4142}
4143EXPORT_SYMBOL(follow_pte_pmd);
4144
4145/**
4146 * follow_pfn - look up PFN at a user virtual address
4147 * @vma: memory mapping
4148 * @address: user virtual address
4149 * @pfn: location to store found PFN
4150 *
4151 * Only IO mappings and raw PFN mappings are allowed.
4152 *
4153 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4154 */
4155int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4156        unsigned long *pfn)
4157{
4158        int ret = -EINVAL;
4159        spinlock_t *ptl;
4160        pte_t *ptep;
4161
4162        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4163                return ret;
4164
4165        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4166        if (ret)
4167                return ret;
4168        *pfn = pte_pfn(*ptep);
4169        pte_unmap_unlock(ptep, ptl);
4170        return 0;
4171}
4172EXPORT_SYMBOL(follow_pfn);
4173
4174#ifdef CONFIG_HAVE_IOREMAP_PROT
4175int follow_phys(struct vm_area_struct *vma,
4176                unsigned long address, unsigned int flags,
4177                unsigned long *prot, resource_size_t *phys)
4178{
4179        int ret = -EINVAL;
4180        pte_t *ptep, pte;
4181        spinlock_t *ptl;
4182
4183        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4184                goto out;
4185
4186        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4187                goto out;
4188        pte = *ptep;
4189
4190        if ((flags & FOLL_WRITE) && !pte_write(pte))
4191                goto unlock;
4192
4193        *prot = pgprot_val(pte_pgprot(pte));
4194        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4195
4196        ret = 0;
4197unlock:
4198        pte_unmap_unlock(ptep, ptl);
4199out:
4200        return ret;
4201}
4202
4203int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4204                        void *buf, int len, int write)
4205{
4206        resource_size_t phys_addr;
4207        unsigned long prot = 0;
4208        void __iomem *maddr;
4209        int offset = addr & (PAGE_SIZE-1);
4210
4211        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4212                return -EINVAL;
4213
4214        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4215        if (!maddr)
4216                return -ENOMEM;
4217
4218        if (write)
4219                memcpy_toio(maddr + offset, buf, len);
4220        else
4221                memcpy_fromio(buf, maddr + offset, len);
4222        iounmap(maddr);
4223
4224        return len;
4225}
4226EXPORT_SYMBOL_GPL(generic_access_phys);
4227#endif
4228
4229/*
4230 * Access another process' address space as given in mm.  If non-NULL, use the
4231 * given task for page fault accounting.
4232 */
4233int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4234                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4235{
4236        struct vm_area_struct *vma;
4237        void *old_buf = buf;
4238        int write = gup_flags & FOLL_WRITE;
4239
4240        down_read(&mm->mmap_sem);
4241        /* ignore errors, just check how much was successfully transferred */
4242        while (len) {
4243                int bytes, ret, offset;
4244                void *maddr;
4245                struct page *page = NULL;
4246
4247                ret = get_user_pages_remote(tsk, mm, addr, 1,
4248                                gup_flags, &page, &vma, NULL);
4249                if (ret <= 0) {
4250#ifndef CONFIG_HAVE_IOREMAP_PROT
4251                        break;
4252#else
4253                        /*
4254                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4255                         * we can access using slightly different code.
4256                         */
4257                        vma = find_vma(mm, addr);
4258                        if (!vma || vma->vm_start > addr)
4259                                break;
4260                        if (vma->vm_ops && vma->vm_ops->access)
4261                                ret = vma->vm_ops->access(vma, addr, buf,
4262                                                          len, write);
4263                        if (ret <= 0)
4264                                break;
4265                        bytes = ret;
4266#endif
4267                } else {
4268                        bytes = len;
4269                        offset = addr & (PAGE_SIZE-1);
4270                        if (bytes > PAGE_SIZE-offset)
4271                                bytes = PAGE_SIZE-offset;
4272
4273                        maddr = kmap(page);
4274                        if (write) {
4275                                copy_to_user_page(vma, page, addr,
4276                                                  maddr + offset, buf, bytes);
4277                                set_page_dirty_lock(page);
4278                        } else {
4279                                copy_from_user_page(vma, page, addr,
4280                                                    buf, maddr + offset, bytes);
4281                        }
4282                        kunmap(page);
4283                        put_page(page);
4284                }
4285                len -= bytes;
4286                buf += bytes;
4287                addr += bytes;
4288        }
4289        up_read(&mm->mmap_sem);
4290
4291        return buf - old_buf;
4292}
4293
4294/**
4295 * access_remote_vm - access another process' address space
4296 * @mm:         the mm_struct of the target address space
4297 * @addr:       start address to access
4298 * @buf:        source or destination buffer
4299 * @len:        number of bytes to transfer
4300 * @gup_flags:  flags modifying lookup behaviour
4301 *
4302 * The caller must hold a reference on @mm.
4303 */
4304int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4305                void *buf, int len, unsigned int gup_flags)
4306{
4307        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4308}
4309
4310/*
4311 * Access another process' address space.
4312 * Source/target buffer must be kernel space,
4313 * Do not walk the page table directly, use get_user_pages
4314 */
4315int access_process_vm(struct task_struct *tsk, unsigned long addr,
4316                void *buf, int len, unsigned int gup_flags)
4317{
4318        struct mm_struct *mm;
4319        int ret;
4320
4321        mm = get_task_mm(tsk);
4322        if (!mm)
4323                return 0;
4324
4325        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4326
4327        mmput(mm);
4328
4329        return ret;
4330}
4331EXPORT_SYMBOL_GPL(access_process_vm);
4332
4333/*
4334 * Print the name of a VMA.
4335 */
4336void print_vma_addr(char *prefix, unsigned long ip)
4337{
4338        struct mm_struct *mm = current->mm;
4339        struct vm_area_struct *vma;
4340
4341        /*
4342         * we might be running from an atomic context so we cannot sleep
4343         */
4344        if (!down_read_trylock(&mm->mmap_sem))
4345                return;
4346
4347        vma = find_vma(mm, ip);
4348        if (vma && vma->vm_file) {
4349                struct file *f = vma->vm_file;
4350                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4351                if (buf) {
4352                        char *p;
4353
4354                        p = file_path(f, buf, PAGE_SIZE);
4355                        if (IS_ERR(p))
4356                                p = "?";
4357                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4358                                        vma->vm_start,
4359                                        vma->vm_end - vma->vm_start);
4360                        free_page((unsigned long)buf);
4361                }
4362        }
4363        up_read(&mm->mmap_sem);
4364}
4365
4366#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4367void __might_fault(const char *file, int line)
4368{
4369        /*
4370         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4371         * holding the mmap_sem, this is safe because kernel memory doesn't
4372         * get paged out, therefore we'll never actually fault, and the
4373         * below annotations will generate false positives.
4374         */
4375        if (uaccess_kernel())
4376                return;
4377        if (pagefault_disabled())
4378                return;
4379        __might_sleep(file, line, 0);
4380#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4381        if (current->mm)
4382                might_lock_read(&current->mm->mmap_sem);
4383#endif
4384}
4385EXPORT_SYMBOL(__might_fault);
4386#endif
4387
4388#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4389/*
4390 * Process all subpages of the specified huge page with the specified
4391 * operation.  The target subpage will be processed last to keep its
4392 * cache lines hot.
4393 */
4394static inline void process_huge_page(
4395        unsigned long addr_hint, unsigned int pages_per_huge_page,
4396        void (*process_subpage)(unsigned long addr, int idx, void *arg),
4397        void *arg)
4398{
4399        int i, n, base, l;
4400        unsigned long addr = addr_hint &
4401                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4402
4403        /* Process target subpage last to keep its cache lines hot */
4404        might_sleep();
4405        n = (addr_hint - addr) / PAGE_SIZE;
4406        if (2 * n <= pages_per_huge_page) {
4407                /* If target subpage in first half of huge page */
4408                base = 0;
4409                l = n;
4410                /* Process subpages at the end of huge page */
4411                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4412                        cond_resched();
4413                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4414                }
4415        } else {
4416                /* If target subpage in second half of huge page */
4417                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4418                l = pages_per_huge_page - n;
4419                /* Process subpages at the begin of huge page */
4420                for (i = 0; i < base; i++) {
4421                        cond_resched();
4422                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4423                }
4424        }
4425        /*
4426         * Process remaining subpages in left-right-left-right pattern
4427         * towards the target subpage
4428         */
4429        for (i = 0; i < l; i++) {
4430                int left_idx = base + i;
4431                int right_idx = base + 2 * l - 1 - i;
4432
4433                cond_resched();
4434                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4435                cond_resched();
4436                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4437        }
4438}
4439
4440static void clear_gigantic_page(struct page *page,
4441                                unsigned long addr,
4442                                unsigned int pages_per_huge_page)
4443{
4444        int i;
4445        struct page *p = page;
4446
4447        might_sleep();
4448        for (i = 0; i < pages_per_huge_page;
4449             i++, p = mem_map_next(p, page, i)) {
4450                cond_resched();
4451                clear_user_highpage(p, addr + i * PAGE_SIZE);
4452        }
4453}
4454
4455static void clear_subpage(unsigned long addr, int idx, void *arg)
4456{
4457        struct page *page = arg;
4458
4459        clear_user_highpage(page + idx, addr);
4460}
4461
4462void clear_huge_page(struct page *page,
4463                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4464{
4465        unsigned long addr = addr_hint &
4466                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4467
4468        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4469                clear_gigantic_page(page, addr, pages_per_huge_page);
4470                return;
4471        }
4472
4473        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4474}
4475
4476static void copy_user_gigantic_page(struct page *dst, struct page *src,
4477                                    unsigned long addr,
4478                                    struct vm_area_struct *vma,
4479                                    unsigned int pages_per_huge_page)
4480{
4481        int i;
4482        struct page *dst_base = dst;
4483        struct page *src_base = src;
4484
4485        for (i = 0; i < pages_per_huge_page; ) {
4486                cond_resched();
4487                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4488
4489                i++;
4490                dst = mem_map_next(dst, dst_base, i);
4491                src = mem_map_next(src, src_base, i);
4492        }
4493}
4494
4495struct copy_subpage_arg {
4496        struct page *dst;
4497        struct page *src;
4498        struct vm_area_struct *vma;
4499};
4500
4501static void copy_subpage(unsigned long addr, int idx, void *arg)
4502{
4503        struct copy_subpage_arg *copy_arg = arg;
4504
4505        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4506                           addr, copy_arg->vma);
4507}
4508
4509void copy_user_huge_page(struct page *dst, struct page *src,
4510                         unsigned long addr_hint, struct vm_area_struct *vma,
4511                         unsigned int pages_per_huge_page)
4512{
4513        unsigned long addr = addr_hint &
4514                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4515        struct copy_subpage_arg arg = {
4516                .dst = dst,
4517                .src = src,
4518                .vma = vma,
4519        };
4520
4521        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4522                copy_user_gigantic_page(dst, src, addr, vma,
4523                                        pages_per_huge_page);
4524                return;
4525        }
4526
4527        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4528}
4529
4530long copy_huge_page_from_user(struct page *dst_page,
4531                                const void __user *usr_src,
4532                                unsigned int pages_per_huge_page,
4533                                bool allow_pagefault)
4534{
4535        void *src = (void *)usr_src;
4536        void *page_kaddr;
4537        unsigned long i, rc = 0;
4538        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4539
4540        for (i = 0; i < pages_per_huge_page; i++) {
4541                if (allow_pagefault)
4542                        page_kaddr = kmap(dst_page + i);
4543                else
4544                        page_kaddr = kmap_atomic(dst_page + i);
4545                rc = copy_from_user(page_kaddr,
4546                                (const void __user *)(src + i * PAGE_SIZE),
4547                                PAGE_SIZE);
4548                if (allow_pagefault)
4549                        kunmap(dst_page + i);
4550                else
4551                        kunmap_atomic(page_kaddr);
4552
4553                ret_val -= (PAGE_SIZE - rc);
4554                if (rc)
4555                        break;
4556
4557                cond_resched();
4558        }
4559        return ret_val;
4560}
4561#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4562
4563#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4564
4565static struct kmem_cache *page_ptl_cachep;
4566
4567void __init ptlock_cache_init(void)
4568{
4569        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4570                        SLAB_PANIC, NULL);
4571}
4572
4573bool ptlock_alloc(struct page *page)
4574{
4575        spinlock_t *ptl;
4576
4577        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4578        if (!ptl)
4579                return false;
4580        page->ptl = ptl;
4581        return true;
4582}
4583
4584void ptlock_free(struct page *page)
4585{
4586        kmem_cache_free(page_ptl_cachep, page->ptl);
4587}
4588#endif
4589