linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39
  40#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  41
  42static struct vfsmount *shm_mnt;
  43
  44#ifdef CONFIG_SHMEM
  45/*
  46 * This virtual memory filesystem is heavily based on the ramfs. It
  47 * extends ramfs by the ability to use swap and honor resource limits
  48 * which makes it a completely usable filesystem.
  49 */
  50
  51#include <linux/xattr.h>
  52#include <linux/exportfs.h>
  53#include <linux/posix_acl.h>
  54#include <linux/posix_acl_xattr.h>
  55#include <linux/mman.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58#include <linux/backing-dev.h>
  59#include <linux/shmem_fs.h>
  60#include <linux/writeback.h>
  61#include <linux/blkdev.h>
  62#include <linux/pagevec.h>
  63#include <linux/percpu_counter.h>
  64#include <linux/falloc.h>
  65#include <linux/splice.h>
  66#include <linux/security.h>
  67#include <linux/swapops.h>
  68#include <linux/mempolicy.h>
  69#include <linux/namei.h>
  70#include <linux/ctype.h>
  71#include <linux/migrate.h>
  72#include <linux/highmem.h>
  73#include <linux/seq_file.h>
  74#include <linux/magic.h>
  75#include <linux/syscalls.h>
  76#include <linux/fcntl.h>
  77#include <uapi/linux/memfd.h>
  78#include <linux/userfaultfd_k.h>
  79#include <linux/rmap.h>
  80#include <linux/uuid.h>
  81
  82#include <linux/uaccess.h>
  83#include <asm/pgtable.h>
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_mutex making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103        pgoff_t start;          /* start of range currently being fallocated */
 104        pgoff_t next;           /* the next page offset to be fallocated */
 105        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
 106        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112        return totalram_pages() / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117        unsigned long nr_pages = totalram_pages();
 118
 119        return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 120}
 121#endif
 122
 123static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 124static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 125                                struct shmem_inode_info *info, pgoff_t index);
 126static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 127                struct page **pagep, enum sgp_type sgp,
 128                gfp_t gfp, struct vm_area_struct *vma,
 129                struct vm_fault *vmf, vm_fault_t *fault_type);
 130
 131int shmem_getpage(struct inode *inode, pgoff_t index,
 132                struct page **pagep, enum sgp_type sgp)
 133{
 134        return shmem_getpage_gfp(inode, index, pagep, sgp,
 135                mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 136}
 137
 138static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 139{
 140        return sb->s_fs_info;
 141}
 142
 143/*
 144 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 145 * for shared memory and for shared anonymous (/dev/zero) mappings
 146 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 147 * consistent with the pre-accounting of private mappings ...
 148 */
 149static inline int shmem_acct_size(unsigned long flags, loff_t size)
 150{
 151        return (flags & VM_NORESERVE) ?
 152                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 153}
 154
 155static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 156{
 157        if (!(flags & VM_NORESERVE))
 158                vm_unacct_memory(VM_ACCT(size));
 159}
 160
 161static inline int shmem_reacct_size(unsigned long flags,
 162                loff_t oldsize, loff_t newsize)
 163{
 164        if (!(flags & VM_NORESERVE)) {
 165                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 166                        return security_vm_enough_memory_mm(current->mm,
 167                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 168                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 169                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 170        }
 171        return 0;
 172}
 173
 174/*
 175 * ... whereas tmpfs objects are accounted incrementally as
 176 * pages are allocated, in order to allow large sparse files.
 177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 179 */
 180static inline int shmem_acct_block(unsigned long flags, long pages)
 181{
 182        if (!(flags & VM_NORESERVE))
 183                return 0;
 184
 185        return security_vm_enough_memory_mm(current->mm,
 186                        pages * VM_ACCT(PAGE_SIZE));
 187}
 188
 189static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 190{
 191        if (flags & VM_NORESERVE)
 192                vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 196{
 197        struct shmem_inode_info *info = SHMEM_I(inode);
 198        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 199
 200        if (shmem_acct_block(info->flags, pages))
 201                return false;
 202
 203        if (sbinfo->max_blocks) {
 204                if (percpu_counter_compare(&sbinfo->used_blocks,
 205                                           sbinfo->max_blocks - pages) > 0)
 206                        goto unacct;
 207                percpu_counter_add(&sbinfo->used_blocks, pages);
 208        }
 209
 210        return true;
 211
 212unacct:
 213        shmem_unacct_blocks(info->flags, pages);
 214        return false;
 215}
 216
 217static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 218{
 219        struct shmem_inode_info *info = SHMEM_I(inode);
 220        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 221
 222        if (sbinfo->max_blocks)
 223                percpu_counter_sub(&sbinfo->used_blocks, pages);
 224        shmem_unacct_blocks(info->flags, pages);
 225}
 226
 227static const struct super_operations shmem_ops;
 228static const struct address_space_operations shmem_aops;
 229static const struct file_operations shmem_file_operations;
 230static const struct inode_operations shmem_inode_operations;
 231static const struct inode_operations shmem_dir_inode_operations;
 232static const struct inode_operations shmem_special_inode_operations;
 233static const struct vm_operations_struct shmem_vm_ops;
 234static struct file_system_type shmem_fs_type;
 235
 236bool vma_is_shmem(struct vm_area_struct *vma)
 237{
 238        return vma->vm_ops == &shmem_vm_ops;
 239}
 240
 241static LIST_HEAD(shmem_swaplist);
 242static DEFINE_MUTEX(shmem_swaplist_mutex);
 243
 244static int shmem_reserve_inode(struct super_block *sb)
 245{
 246        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 247        if (sbinfo->max_inodes) {
 248                spin_lock(&sbinfo->stat_lock);
 249                if (!sbinfo->free_inodes) {
 250                        spin_unlock(&sbinfo->stat_lock);
 251                        return -ENOSPC;
 252                }
 253                sbinfo->free_inodes--;
 254                spin_unlock(&sbinfo->stat_lock);
 255        }
 256        return 0;
 257}
 258
 259static void shmem_free_inode(struct super_block *sb)
 260{
 261        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 262        if (sbinfo->max_inodes) {
 263                spin_lock(&sbinfo->stat_lock);
 264                sbinfo->free_inodes++;
 265                spin_unlock(&sbinfo->stat_lock);
 266        }
 267}
 268
 269/**
 270 * shmem_recalc_inode - recalculate the block usage of an inode
 271 * @inode: inode to recalc
 272 *
 273 * We have to calculate the free blocks since the mm can drop
 274 * undirtied hole pages behind our back.
 275 *
 276 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 278 *
 279 * It has to be called with the spinlock held.
 280 */
 281static void shmem_recalc_inode(struct inode *inode)
 282{
 283        struct shmem_inode_info *info = SHMEM_I(inode);
 284        long freed;
 285
 286        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 287        if (freed > 0) {
 288                info->alloced -= freed;
 289                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 290                shmem_inode_unacct_blocks(inode, freed);
 291        }
 292}
 293
 294bool shmem_charge(struct inode *inode, long pages)
 295{
 296        struct shmem_inode_info *info = SHMEM_I(inode);
 297        unsigned long flags;
 298
 299        if (!shmem_inode_acct_block(inode, pages))
 300                return false;
 301
 302        /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 303        inode->i_mapping->nrpages += pages;
 304
 305        spin_lock_irqsave(&info->lock, flags);
 306        info->alloced += pages;
 307        inode->i_blocks += pages * BLOCKS_PER_PAGE;
 308        shmem_recalc_inode(inode);
 309        spin_unlock_irqrestore(&info->lock, flags);
 310
 311        return true;
 312}
 313
 314void shmem_uncharge(struct inode *inode, long pages)
 315{
 316        struct shmem_inode_info *info = SHMEM_I(inode);
 317        unsigned long flags;
 318
 319        /* nrpages adjustment done by __delete_from_page_cache() or caller */
 320
 321        spin_lock_irqsave(&info->lock, flags);
 322        info->alloced -= pages;
 323        inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 324        shmem_recalc_inode(inode);
 325        spin_unlock_irqrestore(&info->lock, flags);
 326
 327        shmem_inode_unacct_blocks(inode, pages);
 328}
 329
 330/*
 331 * Replace item expected in xarray by a new item, while holding xa_lock.
 332 */
 333static int shmem_replace_entry(struct address_space *mapping,
 334                        pgoff_t index, void *expected, void *replacement)
 335{
 336        XA_STATE(xas, &mapping->i_pages, index);
 337        void *item;
 338
 339        VM_BUG_ON(!expected);
 340        VM_BUG_ON(!replacement);
 341        item = xas_load(&xas);
 342        if (item != expected)
 343                return -ENOENT;
 344        xas_store(&xas, replacement);
 345        return 0;
 346}
 347
 348/*
 349 * Sometimes, before we decide whether to proceed or to fail, we must check
 350 * that an entry was not already brought back from swap by a racing thread.
 351 *
 352 * Checking page is not enough: by the time a SwapCache page is locked, it
 353 * might be reused, and again be SwapCache, using the same swap as before.
 354 */
 355static bool shmem_confirm_swap(struct address_space *mapping,
 356                               pgoff_t index, swp_entry_t swap)
 357{
 358        return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 359}
 360
 361/*
 362 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 363 *
 364 * SHMEM_HUGE_NEVER:
 365 *      disables huge pages for the mount;
 366 * SHMEM_HUGE_ALWAYS:
 367 *      enables huge pages for the mount;
 368 * SHMEM_HUGE_WITHIN_SIZE:
 369 *      only allocate huge pages if the page will be fully within i_size,
 370 *      also respect fadvise()/madvise() hints;
 371 * SHMEM_HUGE_ADVISE:
 372 *      only allocate huge pages if requested with fadvise()/madvise();
 373 */
 374
 375#define SHMEM_HUGE_NEVER        0
 376#define SHMEM_HUGE_ALWAYS       1
 377#define SHMEM_HUGE_WITHIN_SIZE  2
 378#define SHMEM_HUGE_ADVISE       3
 379
 380/*
 381 * Special values.
 382 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 383 *
 384 * SHMEM_HUGE_DENY:
 385 *      disables huge on shm_mnt and all mounts, for emergency use;
 386 * SHMEM_HUGE_FORCE:
 387 *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 388 *
 389 */
 390#define SHMEM_HUGE_DENY         (-1)
 391#define SHMEM_HUGE_FORCE        (-2)
 392
 393#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 394/* ifdef here to avoid bloating shmem.o when not necessary */
 395
 396static int shmem_huge __read_mostly;
 397
 398#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 399static int shmem_parse_huge(const char *str)
 400{
 401        if (!strcmp(str, "never"))
 402                return SHMEM_HUGE_NEVER;
 403        if (!strcmp(str, "always"))
 404                return SHMEM_HUGE_ALWAYS;
 405        if (!strcmp(str, "within_size"))
 406                return SHMEM_HUGE_WITHIN_SIZE;
 407        if (!strcmp(str, "advise"))
 408                return SHMEM_HUGE_ADVISE;
 409        if (!strcmp(str, "deny"))
 410                return SHMEM_HUGE_DENY;
 411        if (!strcmp(str, "force"))
 412                return SHMEM_HUGE_FORCE;
 413        return -EINVAL;
 414}
 415
 416static const char *shmem_format_huge(int huge)
 417{
 418        switch (huge) {
 419        case SHMEM_HUGE_NEVER:
 420                return "never";
 421        case SHMEM_HUGE_ALWAYS:
 422                return "always";
 423        case SHMEM_HUGE_WITHIN_SIZE:
 424                return "within_size";
 425        case SHMEM_HUGE_ADVISE:
 426                return "advise";
 427        case SHMEM_HUGE_DENY:
 428                return "deny";
 429        case SHMEM_HUGE_FORCE:
 430                return "force";
 431        default:
 432                VM_BUG_ON(1);
 433                return "bad_val";
 434        }
 435}
 436#endif
 437
 438static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 439                struct shrink_control *sc, unsigned long nr_to_split)
 440{
 441        LIST_HEAD(list), *pos, *next;
 442        LIST_HEAD(to_remove);
 443        struct inode *inode;
 444        struct shmem_inode_info *info;
 445        struct page *page;
 446        unsigned long batch = sc ? sc->nr_to_scan : 128;
 447        int removed = 0, split = 0;
 448
 449        if (list_empty(&sbinfo->shrinklist))
 450                return SHRINK_STOP;
 451
 452        spin_lock(&sbinfo->shrinklist_lock);
 453        list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 454                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 455
 456                /* pin the inode */
 457                inode = igrab(&info->vfs_inode);
 458
 459                /* inode is about to be evicted */
 460                if (!inode) {
 461                        list_del_init(&info->shrinklist);
 462                        removed++;
 463                        goto next;
 464                }
 465
 466                /* Check if there's anything to gain */
 467                if (round_up(inode->i_size, PAGE_SIZE) ==
 468                                round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 469                        list_move(&info->shrinklist, &to_remove);
 470                        removed++;
 471                        goto next;
 472                }
 473
 474                list_move(&info->shrinklist, &list);
 475next:
 476                if (!--batch)
 477                        break;
 478        }
 479        spin_unlock(&sbinfo->shrinklist_lock);
 480
 481        list_for_each_safe(pos, next, &to_remove) {
 482                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 483                inode = &info->vfs_inode;
 484                list_del_init(&info->shrinklist);
 485                iput(inode);
 486        }
 487
 488        list_for_each_safe(pos, next, &list) {
 489                int ret;
 490
 491                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 492                inode = &info->vfs_inode;
 493
 494                if (nr_to_split && split >= nr_to_split)
 495                        goto leave;
 496
 497                page = find_get_page(inode->i_mapping,
 498                                (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 499                if (!page)
 500                        goto drop;
 501
 502                /* No huge page at the end of the file: nothing to split */
 503                if (!PageTransHuge(page)) {
 504                        put_page(page);
 505                        goto drop;
 506                }
 507
 508                /*
 509                 * Leave the inode on the list if we failed to lock
 510                 * the page at this time.
 511                 *
 512                 * Waiting for the lock may lead to deadlock in the
 513                 * reclaim path.
 514                 */
 515                if (!trylock_page(page)) {
 516                        put_page(page);
 517                        goto leave;
 518                }
 519
 520                ret = split_huge_page(page);
 521                unlock_page(page);
 522                put_page(page);
 523
 524                /* If split failed leave the inode on the list */
 525                if (ret)
 526                        goto leave;
 527
 528                split++;
 529drop:
 530                list_del_init(&info->shrinklist);
 531                removed++;
 532leave:
 533                iput(inode);
 534        }
 535
 536        spin_lock(&sbinfo->shrinklist_lock);
 537        list_splice_tail(&list, &sbinfo->shrinklist);
 538        sbinfo->shrinklist_len -= removed;
 539        spin_unlock(&sbinfo->shrinklist_lock);
 540
 541        return split;
 542}
 543
 544static long shmem_unused_huge_scan(struct super_block *sb,
 545                struct shrink_control *sc)
 546{
 547        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 548
 549        if (!READ_ONCE(sbinfo->shrinklist_len))
 550                return SHRINK_STOP;
 551
 552        return shmem_unused_huge_shrink(sbinfo, sc, 0);
 553}
 554
 555static long shmem_unused_huge_count(struct super_block *sb,
 556                struct shrink_control *sc)
 557{
 558        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 559        return READ_ONCE(sbinfo->shrinklist_len);
 560}
 561#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 562
 563#define shmem_huge SHMEM_HUGE_DENY
 564
 565static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 566                struct shrink_control *sc, unsigned long nr_to_split)
 567{
 568        return 0;
 569}
 570#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 571
 572static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 573{
 574        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
 575            (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 576            shmem_huge != SHMEM_HUGE_DENY)
 577                return true;
 578        return false;
 579}
 580
 581/*
 582 * Like add_to_page_cache_locked, but error if expected item has gone.
 583 */
 584static int shmem_add_to_page_cache(struct page *page,
 585                                   struct address_space *mapping,
 586                                   pgoff_t index, void *expected, gfp_t gfp)
 587{
 588        XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 589        unsigned long i = 0;
 590        unsigned long nr = 1UL << compound_order(page);
 591
 592        VM_BUG_ON_PAGE(PageTail(page), page);
 593        VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 594        VM_BUG_ON_PAGE(!PageLocked(page), page);
 595        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 596        VM_BUG_ON(expected && PageTransHuge(page));
 597
 598        page_ref_add(page, nr);
 599        page->mapping = mapping;
 600        page->index = index;
 601
 602        do {
 603                void *entry;
 604                xas_lock_irq(&xas);
 605                entry = xas_find_conflict(&xas);
 606                if (entry != expected)
 607                        xas_set_err(&xas, -EEXIST);
 608                xas_create_range(&xas);
 609                if (xas_error(&xas))
 610                        goto unlock;
 611next:
 612                xas_store(&xas, page + i);
 613                if (++i < nr) {
 614                        xas_next(&xas);
 615                        goto next;
 616                }
 617                if (PageTransHuge(page)) {
 618                        count_vm_event(THP_FILE_ALLOC);
 619                        __inc_node_page_state(page, NR_SHMEM_THPS);
 620                }
 621                mapping->nrpages += nr;
 622                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 623                __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 624unlock:
 625                xas_unlock_irq(&xas);
 626        } while (xas_nomem(&xas, gfp));
 627
 628        if (xas_error(&xas)) {
 629                page->mapping = NULL;
 630                page_ref_sub(page, nr);
 631                return xas_error(&xas);
 632        }
 633
 634        return 0;
 635}
 636
 637/*
 638 * Like delete_from_page_cache, but substitutes swap for page.
 639 */
 640static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 641{
 642        struct address_space *mapping = page->mapping;
 643        int error;
 644
 645        VM_BUG_ON_PAGE(PageCompound(page), page);
 646
 647        xa_lock_irq(&mapping->i_pages);
 648        error = shmem_replace_entry(mapping, page->index, page, radswap);
 649        page->mapping = NULL;
 650        mapping->nrpages--;
 651        __dec_node_page_state(page, NR_FILE_PAGES);
 652        __dec_node_page_state(page, NR_SHMEM);
 653        xa_unlock_irq(&mapping->i_pages);
 654        put_page(page);
 655        BUG_ON(error);
 656}
 657
 658/*
 659 * Remove swap entry from page cache, free the swap and its page cache.
 660 */
 661static int shmem_free_swap(struct address_space *mapping,
 662                           pgoff_t index, void *radswap)
 663{
 664        void *old;
 665
 666        old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 667        if (old != radswap)
 668                return -ENOENT;
 669        free_swap_and_cache(radix_to_swp_entry(radswap));
 670        return 0;
 671}
 672
 673/*
 674 * Determine (in bytes) how many of the shmem object's pages mapped by the
 675 * given offsets are swapped out.
 676 *
 677 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 678 * as long as the inode doesn't go away and racy results are not a problem.
 679 */
 680unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 681                                                pgoff_t start, pgoff_t end)
 682{
 683        XA_STATE(xas, &mapping->i_pages, start);
 684        struct page *page;
 685        unsigned long swapped = 0;
 686
 687        rcu_read_lock();
 688        xas_for_each(&xas, page, end - 1) {
 689                if (xas_retry(&xas, page))
 690                        continue;
 691                if (xa_is_value(page))
 692                        swapped++;
 693
 694                if (need_resched()) {
 695                        xas_pause(&xas);
 696                        cond_resched_rcu();
 697                }
 698        }
 699
 700        rcu_read_unlock();
 701
 702        return swapped << PAGE_SHIFT;
 703}
 704
 705/*
 706 * Determine (in bytes) how many of the shmem object's pages mapped by the
 707 * given vma is swapped out.
 708 *
 709 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 710 * as long as the inode doesn't go away and racy results are not a problem.
 711 */
 712unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 713{
 714        struct inode *inode = file_inode(vma->vm_file);
 715        struct shmem_inode_info *info = SHMEM_I(inode);
 716        struct address_space *mapping = inode->i_mapping;
 717        unsigned long swapped;
 718
 719        /* Be careful as we don't hold info->lock */
 720        swapped = READ_ONCE(info->swapped);
 721
 722        /*
 723         * The easier cases are when the shmem object has nothing in swap, or
 724         * the vma maps it whole. Then we can simply use the stats that we
 725         * already track.
 726         */
 727        if (!swapped)
 728                return 0;
 729
 730        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 731                return swapped << PAGE_SHIFT;
 732
 733        /* Here comes the more involved part */
 734        return shmem_partial_swap_usage(mapping,
 735                        linear_page_index(vma, vma->vm_start),
 736                        linear_page_index(vma, vma->vm_end));
 737}
 738
 739/*
 740 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 741 */
 742void shmem_unlock_mapping(struct address_space *mapping)
 743{
 744        struct pagevec pvec;
 745        pgoff_t indices[PAGEVEC_SIZE];
 746        pgoff_t index = 0;
 747
 748        pagevec_init(&pvec);
 749        /*
 750         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 751         */
 752        while (!mapping_unevictable(mapping)) {
 753                /*
 754                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 755                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 756                 */
 757                pvec.nr = find_get_entries(mapping, index,
 758                                           PAGEVEC_SIZE, pvec.pages, indices);
 759                if (!pvec.nr)
 760                        break;
 761                index = indices[pvec.nr - 1] + 1;
 762                pagevec_remove_exceptionals(&pvec);
 763                check_move_unevictable_pages(&pvec);
 764                pagevec_release(&pvec);
 765                cond_resched();
 766        }
 767}
 768
 769/*
 770 * Remove range of pages and swap entries from page cache, and free them.
 771 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 772 */
 773static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 774                                                                 bool unfalloc)
 775{
 776        struct address_space *mapping = inode->i_mapping;
 777        struct shmem_inode_info *info = SHMEM_I(inode);
 778        pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 779        pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 780        unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 781        unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 782        struct pagevec pvec;
 783        pgoff_t indices[PAGEVEC_SIZE];
 784        long nr_swaps_freed = 0;
 785        pgoff_t index;
 786        int i;
 787
 788        if (lend == -1)
 789                end = -1;       /* unsigned, so actually very big */
 790
 791        pagevec_init(&pvec);
 792        index = start;
 793        while (index < end) {
 794                pvec.nr = find_get_entries(mapping, index,
 795                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 796                        pvec.pages, indices);
 797                if (!pvec.nr)
 798                        break;
 799                for (i = 0; i < pagevec_count(&pvec); i++) {
 800                        struct page *page = pvec.pages[i];
 801
 802                        index = indices[i];
 803                        if (index >= end)
 804                                break;
 805
 806                        if (xa_is_value(page)) {
 807                                if (unfalloc)
 808                                        continue;
 809                                nr_swaps_freed += !shmem_free_swap(mapping,
 810                                                                index, page);
 811                                continue;
 812                        }
 813
 814                        VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 815
 816                        if (!trylock_page(page))
 817                                continue;
 818
 819                        if (PageTransTail(page)) {
 820                                /* Middle of THP: zero out the page */
 821                                clear_highpage(page);
 822                                unlock_page(page);
 823                                continue;
 824                        } else if (PageTransHuge(page)) {
 825                                if (index == round_down(end, HPAGE_PMD_NR)) {
 826                                        /*
 827                                         * Range ends in the middle of THP:
 828                                         * zero out the page
 829                                         */
 830                                        clear_highpage(page);
 831                                        unlock_page(page);
 832                                        continue;
 833                                }
 834                                index += HPAGE_PMD_NR - 1;
 835                                i += HPAGE_PMD_NR - 1;
 836                        }
 837
 838                        if (!unfalloc || !PageUptodate(page)) {
 839                                VM_BUG_ON_PAGE(PageTail(page), page);
 840                                if (page_mapping(page) == mapping) {
 841                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 842                                        truncate_inode_page(mapping, page);
 843                                }
 844                        }
 845                        unlock_page(page);
 846                }
 847                pagevec_remove_exceptionals(&pvec);
 848                pagevec_release(&pvec);
 849                cond_resched();
 850                index++;
 851        }
 852
 853        if (partial_start) {
 854                struct page *page = NULL;
 855                shmem_getpage(inode, start - 1, &page, SGP_READ);
 856                if (page) {
 857                        unsigned int top = PAGE_SIZE;
 858                        if (start > end) {
 859                                top = partial_end;
 860                                partial_end = 0;
 861                        }
 862                        zero_user_segment(page, partial_start, top);
 863                        set_page_dirty(page);
 864                        unlock_page(page);
 865                        put_page(page);
 866                }
 867        }
 868        if (partial_end) {
 869                struct page *page = NULL;
 870                shmem_getpage(inode, end, &page, SGP_READ);
 871                if (page) {
 872                        zero_user_segment(page, 0, partial_end);
 873                        set_page_dirty(page);
 874                        unlock_page(page);
 875                        put_page(page);
 876                }
 877        }
 878        if (start >= end)
 879                return;
 880
 881        index = start;
 882        while (index < end) {
 883                cond_resched();
 884
 885                pvec.nr = find_get_entries(mapping, index,
 886                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 887                                pvec.pages, indices);
 888                if (!pvec.nr) {
 889                        /* If all gone or hole-punch or unfalloc, we're done */
 890                        if (index == start || end != -1)
 891                                break;
 892                        /* But if truncating, restart to make sure all gone */
 893                        index = start;
 894                        continue;
 895                }
 896                for (i = 0; i < pagevec_count(&pvec); i++) {
 897                        struct page *page = pvec.pages[i];
 898
 899                        index = indices[i];
 900                        if (index >= end)
 901                                break;
 902
 903                        if (xa_is_value(page)) {
 904                                if (unfalloc)
 905                                        continue;
 906                                if (shmem_free_swap(mapping, index, page)) {
 907                                        /* Swap was replaced by page: retry */
 908                                        index--;
 909                                        break;
 910                                }
 911                                nr_swaps_freed++;
 912                                continue;
 913                        }
 914
 915                        lock_page(page);
 916
 917                        if (PageTransTail(page)) {
 918                                /* Middle of THP: zero out the page */
 919                                clear_highpage(page);
 920                                unlock_page(page);
 921                                /*
 922                                 * Partial thp truncate due 'start' in middle
 923                                 * of THP: don't need to look on these pages
 924                                 * again on !pvec.nr restart.
 925                                 */
 926                                if (index != round_down(end, HPAGE_PMD_NR))
 927                                        start++;
 928                                continue;
 929                        } else if (PageTransHuge(page)) {
 930                                if (index == round_down(end, HPAGE_PMD_NR)) {
 931                                        /*
 932                                         * Range ends in the middle of THP:
 933                                         * zero out the page
 934                                         */
 935                                        clear_highpage(page);
 936                                        unlock_page(page);
 937                                        continue;
 938                                }
 939                                index += HPAGE_PMD_NR - 1;
 940                                i += HPAGE_PMD_NR - 1;
 941                        }
 942
 943                        if (!unfalloc || !PageUptodate(page)) {
 944                                VM_BUG_ON_PAGE(PageTail(page), page);
 945                                if (page_mapping(page) == mapping) {
 946                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 947                                        truncate_inode_page(mapping, page);
 948                                } else {
 949                                        /* Page was replaced by swap: retry */
 950                                        unlock_page(page);
 951                                        index--;
 952                                        break;
 953                                }
 954                        }
 955                        unlock_page(page);
 956                }
 957                pagevec_remove_exceptionals(&pvec);
 958                pagevec_release(&pvec);
 959                index++;
 960        }
 961
 962        spin_lock_irq(&info->lock);
 963        info->swapped -= nr_swaps_freed;
 964        shmem_recalc_inode(inode);
 965        spin_unlock_irq(&info->lock);
 966}
 967
 968void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 969{
 970        shmem_undo_range(inode, lstart, lend, false);
 971        inode->i_ctime = inode->i_mtime = current_time(inode);
 972}
 973EXPORT_SYMBOL_GPL(shmem_truncate_range);
 974
 975static int shmem_getattr(const struct path *path, struct kstat *stat,
 976                         u32 request_mask, unsigned int query_flags)
 977{
 978        struct inode *inode = path->dentry->d_inode;
 979        struct shmem_inode_info *info = SHMEM_I(inode);
 980        struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
 981
 982        if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 983                spin_lock_irq(&info->lock);
 984                shmem_recalc_inode(inode);
 985                spin_unlock_irq(&info->lock);
 986        }
 987        generic_fillattr(inode, stat);
 988
 989        if (is_huge_enabled(sb_info))
 990                stat->blksize = HPAGE_PMD_SIZE;
 991
 992        return 0;
 993}
 994
 995static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 996{
 997        struct inode *inode = d_inode(dentry);
 998        struct shmem_inode_info *info = SHMEM_I(inode);
 999        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1000        int error;
1001
1002        error = setattr_prepare(dentry, attr);
1003        if (error)
1004                return error;
1005
1006        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1007                loff_t oldsize = inode->i_size;
1008                loff_t newsize = attr->ia_size;
1009
1010                /* protected by i_mutex */
1011                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1012                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1013                        return -EPERM;
1014
1015                if (newsize != oldsize) {
1016                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
1017                                        oldsize, newsize);
1018                        if (error)
1019                                return error;
1020                        i_size_write(inode, newsize);
1021                        inode->i_ctime = inode->i_mtime = current_time(inode);
1022                }
1023                if (newsize <= oldsize) {
1024                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
1025                        if (oldsize > holebegin)
1026                                unmap_mapping_range(inode->i_mapping,
1027                                                        holebegin, 0, 1);
1028                        if (info->alloced)
1029                                shmem_truncate_range(inode,
1030                                                        newsize, (loff_t)-1);
1031                        /* unmap again to remove racily COWed private pages */
1032                        if (oldsize > holebegin)
1033                                unmap_mapping_range(inode->i_mapping,
1034                                                        holebegin, 0, 1);
1035
1036                        /*
1037                         * Part of the huge page can be beyond i_size: subject
1038                         * to shrink under memory pressure.
1039                         */
1040                        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1041                                spin_lock(&sbinfo->shrinklist_lock);
1042                                /*
1043                                 * _careful to defend against unlocked access to
1044                                 * ->shrink_list in shmem_unused_huge_shrink()
1045                                 */
1046                                if (list_empty_careful(&info->shrinklist)) {
1047                                        list_add_tail(&info->shrinklist,
1048                                                        &sbinfo->shrinklist);
1049                                        sbinfo->shrinklist_len++;
1050                                }
1051                                spin_unlock(&sbinfo->shrinklist_lock);
1052                        }
1053                }
1054        }
1055
1056        setattr_copy(inode, attr);
1057        if (attr->ia_valid & ATTR_MODE)
1058                error = posix_acl_chmod(inode, inode->i_mode);
1059        return error;
1060}
1061
1062static void shmem_evict_inode(struct inode *inode)
1063{
1064        struct shmem_inode_info *info = SHMEM_I(inode);
1065        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1066
1067        if (inode->i_mapping->a_ops == &shmem_aops) {
1068                shmem_unacct_size(info->flags, inode->i_size);
1069                inode->i_size = 0;
1070                shmem_truncate_range(inode, 0, (loff_t)-1);
1071                if (!list_empty(&info->shrinklist)) {
1072                        spin_lock(&sbinfo->shrinklist_lock);
1073                        if (!list_empty(&info->shrinklist)) {
1074                                list_del_init(&info->shrinklist);
1075                                sbinfo->shrinklist_len--;
1076                        }
1077                        spin_unlock(&sbinfo->shrinklist_lock);
1078                }
1079                if (!list_empty(&info->swaplist)) {
1080                        mutex_lock(&shmem_swaplist_mutex);
1081                        list_del_init(&info->swaplist);
1082                        mutex_unlock(&shmem_swaplist_mutex);
1083                }
1084        }
1085
1086        simple_xattrs_free(&info->xattrs);
1087        WARN_ON(inode->i_blocks);
1088        shmem_free_inode(inode->i_sb);
1089        clear_inode(inode);
1090}
1091
1092static unsigned long find_swap_entry(struct xarray *xa, void *item)
1093{
1094        XA_STATE(xas, xa, 0);
1095        unsigned int checked = 0;
1096        void *entry;
1097
1098        rcu_read_lock();
1099        xas_for_each(&xas, entry, ULONG_MAX) {
1100                if (xas_retry(&xas, entry))
1101                        continue;
1102                if (entry == item)
1103                        break;
1104                checked++;
1105                if ((checked % XA_CHECK_SCHED) != 0)
1106                        continue;
1107                xas_pause(&xas);
1108                cond_resched_rcu();
1109        }
1110        rcu_read_unlock();
1111
1112        return entry ? xas.xa_index : -1;
1113}
1114
1115/*
1116 * If swap found in inode, free it and move page from swapcache to filecache.
1117 */
1118static int shmem_unuse_inode(struct shmem_inode_info *info,
1119                             swp_entry_t swap, struct page **pagep)
1120{
1121        struct address_space *mapping = info->vfs_inode.i_mapping;
1122        void *radswap;
1123        pgoff_t index;
1124        gfp_t gfp;
1125        int error = 0;
1126
1127        radswap = swp_to_radix_entry(swap);
1128        index = find_swap_entry(&mapping->i_pages, radswap);
1129        if (index == -1)
1130                return -EAGAIN; /* tell shmem_unuse we found nothing */
1131
1132        /*
1133         * Move _head_ to start search for next from here.
1134         * But be careful: shmem_evict_inode checks list_empty without taking
1135         * mutex, and there's an instant in list_move_tail when info->swaplist
1136         * would appear empty, if it were the only one on shmem_swaplist.
1137         */
1138        if (shmem_swaplist.next != &info->swaplist)
1139                list_move_tail(&shmem_swaplist, &info->swaplist);
1140
1141        gfp = mapping_gfp_mask(mapping);
1142        if (shmem_should_replace_page(*pagep, gfp)) {
1143                mutex_unlock(&shmem_swaplist_mutex);
1144                error = shmem_replace_page(pagep, gfp, info, index);
1145                mutex_lock(&shmem_swaplist_mutex);
1146                /*
1147                 * We needed to drop mutex to make that restrictive page
1148                 * allocation, but the inode might have been freed while we
1149                 * dropped it: although a racing shmem_evict_inode() cannot
1150                 * complete without emptying the page cache, our page lock
1151                 * on this swapcache page is not enough to prevent that -
1152                 * free_swap_and_cache() of our swap entry will only
1153                 * trylock_page(), removing swap from page cache whatever.
1154                 *
1155                 * We must not proceed to shmem_add_to_page_cache() if the
1156                 * inode has been freed, but of course we cannot rely on
1157                 * inode or mapping or info to check that.  However, we can
1158                 * safely check if our swap entry is still in use (and here
1159                 * it can't have got reused for another page): if it's still
1160                 * in use, then the inode cannot have been freed yet, and we
1161                 * can safely proceed (if it's no longer in use, that tells
1162                 * nothing about the inode, but we don't need to unuse swap).
1163                 */
1164                if (!page_swapcount(*pagep))
1165                        error = -ENOENT;
1166        }
1167
1168        /*
1169         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1170         * but also to hold up shmem_evict_inode(): so inode cannot be freed
1171         * beneath us (pagelock doesn't help until the page is in pagecache).
1172         */
1173        if (!error)
1174                error = shmem_add_to_page_cache(*pagep, mapping, index,
1175                                                radswap, gfp);
1176        if (error != -ENOMEM) {
1177                /*
1178                 * Truncation and eviction use free_swap_and_cache(), which
1179                 * only does trylock page: if we raced, best clean up here.
1180                 */
1181                delete_from_swap_cache(*pagep);
1182                set_page_dirty(*pagep);
1183                if (!error) {
1184                        spin_lock_irq(&info->lock);
1185                        info->swapped--;
1186                        spin_unlock_irq(&info->lock);
1187                        swap_free(swap);
1188                }
1189        }
1190        return error;
1191}
1192
1193/*
1194 * Search through swapped inodes to find and replace swap by page.
1195 */
1196int shmem_unuse(swp_entry_t swap, struct page *page)
1197{
1198        struct list_head *this, *next;
1199        struct shmem_inode_info *info;
1200        struct mem_cgroup *memcg;
1201        int error = 0;
1202
1203        /*
1204         * There's a faint possibility that swap page was replaced before
1205         * caller locked it: caller will come back later with the right page.
1206         */
1207        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1208                goto out;
1209
1210        /*
1211         * Charge page using GFP_KERNEL while we can wait, before taking
1212         * the shmem_swaplist_mutex which might hold up shmem_writepage().
1213         * Charged back to the user (not to caller) when swap account is used.
1214         */
1215        error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1216                                            &memcg, false);
1217        if (error)
1218                goto out;
1219        /* No memory allocation: swap entry occupies the slot for the page */
1220        error = -EAGAIN;
1221
1222        mutex_lock(&shmem_swaplist_mutex);
1223        list_for_each_safe(this, next, &shmem_swaplist) {
1224                info = list_entry(this, struct shmem_inode_info, swaplist);
1225                if (info->swapped)
1226                        error = shmem_unuse_inode(info, swap, &page);
1227                else
1228                        list_del_init(&info->swaplist);
1229                cond_resched();
1230                if (error != -EAGAIN)
1231                        break;
1232                /* found nothing in this: move on to search the next */
1233        }
1234        mutex_unlock(&shmem_swaplist_mutex);
1235
1236        if (error) {
1237                if (error != -ENOMEM)
1238                        error = 0;
1239                mem_cgroup_cancel_charge(page, memcg, false);
1240        } else
1241                mem_cgroup_commit_charge(page, memcg, true, false);
1242out:
1243        unlock_page(page);
1244        put_page(page);
1245        return error;
1246}
1247
1248/*
1249 * Move the page from the page cache to the swap cache.
1250 */
1251static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1252{
1253        struct shmem_inode_info *info;
1254        struct address_space *mapping;
1255        struct inode *inode;
1256        swp_entry_t swap;
1257        pgoff_t index;
1258
1259        VM_BUG_ON_PAGE(PageCompound(page), page);
1260        BUG_ON(!PageLocked(page));
1261        mapping = page->mapping;
1262        index = page->index;
1263        inode = mapping->host;
1264        info = SHMEM_I(inode);
1265        if (info->flags & VM_LOCKED)
1266                goto redirty;
1267        if (!total_swap_pages)
1268                goto redirty;
1269
1270        /*
1271         * Our capabilities prevent regular writeback or sync from ever calling
1272         * shmem_writepage; but a stacking filesystem might use ->writepage of
1273         * its underlying filesystem, in which case tmpfs should write out to
1274         * swap only in response to memory pressure, and not for the writeback
1275         * threads or sync.
1276         */
1277        if (!wbc->for_reclaim) {
1278                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1279                goto redirty;
1280        }
1281
1282        /*
1283         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1284         * value into swapfile.c, the only way we can correctly account for a
1285         * fallocated page arriving here is now to initialize it and write it.
1286         *
1287         * That's okay for a page already fallocated earlier, but if we have
1288         * not yet completed the fallocation, then (a) we want to keep track
1289         * of this page in case we have to undo it, and (b) it may not be a
1290         * good idea to continue anyway, once we're pushing into swap.  So
1291         * reactivate the page, and let shmem_fallocate() quit when too many.
1292         */
1293        if (!PageUptodate(page)) {
1294                if (inode->i_private) {
1295                        struct shmem_falloc *shmem_falloc;
1296                        spin_lock(&inode->i_lock);
1297                        shmem_falloc = inode->i_private;
1298                        if (shmem_falloc &&
1299                            !shmem_falloc->waitq &&
1300                            index >= shmem_falloc->start &&
1301                            index < shmem_falloc->next)
1302                                shmem_falloc->nr_unswapped++;
1303                        else
1304                                shmem_falloc = NULL;
1305                        spin_unlock(&inode->i_lock);
1306                        if (shmem_falloc)
1307                                goto redirty;
1308                }
1309                clear_highpage(page);
1310                flush_dcache_page(page);
1311                SetPageUptodate(page);
1312        }
1313
1314        swap = get_swap_page(page);
1315        if (!swap.val)
1316                goto redirty;
1317
1318        /*
1319         * Add inode to shmem_unuse()'s list of swapped-out inodes,
1320         * if it's not already there.  Do it now before the page is
1321         * moved to swap cache, when its pagelock no longer protects
1322         * the inode from eviction.  But don't unlock the mutex until
1323         * we've incremented swapped, because shmem_unuse_inode() will
1324         * prune a !swapped inode from the swaplist under this mutex.
1325         */
1326        mutex_lock(&shmem_swaplist_mutex);
1327        if (list_empty(&info->swaplist))
1328                list_add_tail(&info->swaplist, &shmem_swaplist);
1329
1330        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1331                spin_lock_irq(&info->lock);
1332                shmem_recalc_inode(inode);
1333                info->swapped++;
1334                spin_unlock_irq(&info->lock);
1335
1336                swap_shmem_alloc(swap);
1337                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1338
1339                mutex_unlock(&shmem_swaplist_mutex);
1340                BUG_ON(page_mapped(page));
1341                swap_writepage(page, wbc);
1342                return 0;
1343        }
1344
1345        mutex_unlock(&shmem_swaplist_mutex);
1346        put_swap_page(page, swap);
1347redirty:
1348        set_page_dirty(page);
1349        if (wbc->for_reclaim)
1350                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1351        unlock_page(page);
1352        return 0;
1353}
1354
1355#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1356static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1357{
1358        char buffer[64];
1359
1360        if (!mpol || mpol->mode == MPOL_DEFAULT)
1361                return;         /* show nothing */
1362
1363        mpol_to_str(buffer, sizeof(buffer), mpol);
1364
1365        seq_printf(seq, ",mpol=%s", buffer);
1366}
1367
1368static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1369{
1370        struct mempolicy *mpol = NULL;
1371        if (sbinfo->mpol) {
1372                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1373                mpol = sbinfo->mpol;
1374                mpol_get(mpol);
1375                spin_unlock(&sbinfo->stat_lock);
1376        }
1377        return mpol;
1378}
1379#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1380static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1381{
1382}
1383static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384{
1385        return NULL;
1386}
1387#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1388#ifndef CONFIG_NUMA
1389#define vm_policy vm_private_data
1390#endif
1391
1392static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1393                struct shmem_inode_info *info, pgoff_t index)
1394{
1395        /* Create a pseudo vma that just contains the policy */
1396        vma_init(vma, NULL);
1397        /* Bias interleave by inode number to distribute better across nodes */
1398        vma->vm_pgoff = index + info->vfs_inode.i_ino;
1399        vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1400}
1401
1402static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1403{
1404        /* Drop reference taken by mpol_shared_policy_lookup() */
1405        mpol_cond_put(vma->vm_policy);
1406}
1407
1408static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1409                        struct shmem_inode_info *info, pgoff_t index)
1410{
1411        struct vm_area_struct pvma;
1412        struct page *page;
1413        struct vm_fault vmf;
1414
1415        shmem_pseudo_vma_init(&pvma, info, index);
1416        vmf.vma = &pvma;
1417        vmf.address = 0;
1418        page = swap_cluster_readahead(swap, gfp, &vmf);
1419        shmem_pseudo_vma_destroy(&pvma);
1420
1421        return page;
1422}
1423
1424static struct page *shmem_alloc_hugepage(gfp_t gfp,
1425                struct shmem_inode_info *info, pgoff_t index)
1426{
1427        struct vm_area_struct pvma;
1428        struct address_space *mapping = info->vfs_inode.i_mapping;
1429        pgoff_t hindex;
1430        struct page *page;
1431
1432        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1433                return NULL;
1434
1435        hindex = round_down(index, HPAGE_PMD_NR);
1436        if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1437                                                                XA_PRESENT))
1438                return NULL;
1439
1440        shmem_pseudo_vma_init(&pvma, info, hindex);
1441        page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1442                        HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1443        shmem_pseudo_vma_destroy(&pvma);
1444        if (page)
1445                prep_transhuge_page(page);
1446        return page;
1447}
1448
1449static struct page *shmem_alloc_page(gfp_t gfp,
1450                        struct shmem_inode_info *info, pgoff_t index)
1451{
1452        struct vm_area_struct pvma;
1453        struct page *page;
1454
1455        shmem_pseudo_vma_init(&pvma, info, index);
1456        page = alloc_page_vma(gfp, &pvma, 0);
1457        shmem_pseudo_vma_destroy(&pvma);
1458
1459        return page;
1460}
1461
1462static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1463                struct inode *inode,
1464                pgoff_t index, bool huge)
1465{
1466        struct shmem_inode_info *info = SHMEM_I(inode);
1467        struct page *page;
1468        int nr;
1469        int err = -ENOSPC;
1470
1471        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1472                huge = false;
1473        nr = huge ? HPAGE_PMD_NR : 1;
1474
1475        if (!shmem_inode_acct_block(inode, nr))
1476                goto failed;
1477
1478        if (huge)
1479                page = shmem_alloc_hugepage(gfp, info, index);
1480        else
1481                page = shmem_alloc_page(gfp, info, index);
1482        if (page) {
1483                __SetPageLocked(page);
1484                __SetPageSwapBacked(page);
1485                return page;
1486        }
1487
1488        err = -ENOMEM;
1489        shmem_inode_unacct_blocks(inode, nr);
1490failed:
1491        return ERR_PTR(err);
1492}
1493
1494/*
1495 * When a page is moved from swapcache to shmem filecache (either by the
1496 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1497 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1498 * ignorance of the mapping it belongs to.  If that mapping has special
1499 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1500 * we may need to copy to a suitable page before moving to filecache.
1501 *
1502 * In a future release, this may well be extended to respect cpuset and
1503 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1504 * but for now it is a simple matter of zone.
1505 */
1506static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1507{
1508        return page_zonenum(page) > gfp_zone(gfp);
1509}
1510
1511static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1512                                struct shmem_inode_info *info, pgoff_t index)
1513{
1514        struct page *oldpage, *newpage;
1515        struct address_space *swap_mapping;
1516        swp_entry_t entry;
1517        pgoff_t swap_index;
1518        int error;
1519
1520        oldpage = *pagep;
1521        entry.val = page_private(oldpage);
1522        swap_index = swp_offset(entry);
1523        swap_mapping = page_mapping(oldpage);
1524
1525        /*
1526         * We have arrived here because our zones are constrained, so don't
1527         * limit chance of success by further cpuset and node constraints.
1528         */
1529        gfp &= ~GFP_CONSTRAINT_MASK;
1530        newpage = shmem_alloc_page(gfp, info, index);
1531        if (!newpage)
1532                return -ENOMEM;
1533
1534        get_page(newpage);
1535        copy_highpage(newpage, oldpage);
1536        flush_dcache_page(newpage);
1537
1538        __SetPageLocked(newpage);
1539        __SetPageSwapBacked(newpage);
1540        SetPageUptodate(newpage);
1541        set_page_private(newpage, entry.val);
1542        SetPageSwapCache(newpage);
1543
1544        /*
1545         * Our caller will very soon move newpage out of swapcache, but it's
1546         * a nice clean interface for us to replace oldpage by newpage there.
1547         */
1548        xa_lock_irq(&swap_mapping->i_pages);
1549        error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1550        if (!error) {
1551                __inc_node_page_state(newpage, NR_FILE_PAGES);
1552                __dec_node_page_state(oldpage, NR_FILE_PAGES);
1553        }
1554        xa_unlock_irq(&swap_mapping->i_pages);
1555
1556        if (unlikely(error)) {
1557                /*
1558                 * Is this possible?  I think not, now that our callers check
1559                 * both PageSwapCache and page_private after getting page lock;
1560                 * but be defensive.  Reverse old to newpage for clear and free.
1561                 */
1562                oldpage = newpage;
1563        } else {
1564                mem_cgroup_migrate(oldpage, newpage);
1565                lru_cache_add_anon(newpage);
1566                *pagep = newpage;
1567        }
1568
1569        ClearPageSwapCache(oldpage);
1570        set_page_private(oldpage, 0);
1571
1572        unlock_page(oldpage);
1573        put_page(oldpage);
1574        put_page(oldpage);
1575        return error;
1576}
1577
1578/*
1579 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1580 *
1581 * If we allocate a new one we do not mark it dirty. That's up to the
1582 * vm. If we swap it in we mark it dirty since we also free the swap
1583 * entry since a page cannot live in both the swap and page cache.
1584 *
1585 * fault_mm and fault_type are only supplied by shmem_fault:
1586 * otherwise they are NULL.
1587 */
1588static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1589        struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1590        struct vm_area_struct *vma, struct vm_fault *vmf,
1591                        vm_fault_t *fault_type)
1592{
1593        struct address_space *mapping = inode->i_mapping;
1594        struct shmem_inode_info *info = SHMEM_I(inode);
1595        struct shmem_sb_info *sbinfo;
1596        struct mm_struct *charge_mm;
1597        struct mem_cgroup *memcg;
1598        struct page *page;
1599        swp_entry_t swap;
1600        enum sgp_type sgp_huge = sgp;
1601        pgoff_t hindex = index;
1602        int error;
1603        int once = 0;
1604        int alloced = 0;
1605
1606        if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1607                return -EFBIG;
1608        if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1609                sgp = SGP_CACHE;
1610repeat:
1611        swap.val = 0;
1612        page = find_lock_entry(mapping, index);
1613        if (xa_is_value(page)) {
1614                swap = radix_to_swp_entry(page);
1615                page = NULL;
1616        }
1617
1618        if (sgp <= SGP_CACHE &&
1619            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1620                error = -EINVAL;
1621                goto unlock;
1622        }
1623
1624        if (page && sgp == SGP_WRITE)
1625                mark_page_accessed(page);
1626
1627        /* fallocated page? */
1628        if (page && !PageUptodate(page)) {
1629                if (sgp != SGP_READ)
1630                        goto clear;
1631                unlock_page(page);
1632                put_page(page);
1633                page = NULL;
1634        }
1635        if (page || (sgp == SGP_READ && !swap.val)) {
1636                *pagep = page;
1637                return 0;
1638        }
1639
1640        /*
1641         * Fast cache lookup did not find it:
1642         * bring it back from swap or allocate.
1643         */
1644        sbinfo = SHMEM_SB(inode->i_sb);
1645        charge_mm = vma ? vma->vm_mm : current->mm;
1646
1647        if (swap.val) {
1648                /* Look it up and read it in.. */
1649                page = lookup_swap_cache(swap, NULL, 0);
1650                if (!page) {
1651                        /* Or update major stats only when swapin succeeds?? */
1652                        if (fault_type) {
1653                                *fault_type |= VM_FAULT_MAJOR;
1654                                count_vm_event(PGMAJFAULT);
1655                                count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656                        }
1657                        /* Here we actually start the io */
1658                        page = shmem_swapin(swap, gfp, info, index);
1659                        if (!page) {
1660                                error = -ENOMEM;
1661                                goto failed;
1662                        }
1663                }
1664
1665                /* We have to do this with page locked to prevent races */
1666                lock_page(page);
1667                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668                    !shmem_confirm_swap(mapping, index, swap)) {
1669                        error = -EEXIST;        /* try again */
1670                        goto unlock;
1671                }
1672                if (!PageUptodate(page)) {
1673                        error = -EIO;
1674                        goto failed;
1675                }
1676                wait_on_page_writeback(page);
1677
1678                if (shmem_should_replace_page(page, gfp)) {
1679                        error = shmem_replace_page(&page, gfp, info, index);
1680                        if (error)
1681                                goto failed;
1682                }
1683
1684                error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685                                false);
1686                if (!error) {
1687                        error = shmem_add_to_page_cache(page, mapping, index,
1688                                                swp_to_radix_entry(swap), gfp);
1689                        /*
1690                         * We already confirmed swap under page lock, and make
1691                         * no memory allocation here, so usually no possibility
1692                         * of error; but free_swap_and_cache() only trylocks a
1693                         * page, so it is just possible that the entry has been
1694                         * truncated or holepunched since swap was confirmed.
1695                         * shmem_undo_range() will have done some of the
1696                         * unaccounting, now delete_from_swap_cache() will do
1697                         * the rest.
1698                         * Reset swap.val? No, leave it so "failed" goes back to
1699                         * "repeat": reading a hole and writing should succeed.
1700                         */
1701                        if (error) {
1702                                mem_cgroup_cancel_charge(page, memcg, false);
1703                                delete_from_swap_cache(page);
1704                        }
1705                }
1706                if (error)
1707                        goto failed;
1708
1709                mem_cgroup_commit_charge(page, memcg, true, false);
1710
1711                spin_lock_irq(&info->lock);
1712                info->swapped--;
1713                shmem_recalc_inode(inode);
1714                spin_unlock_irq(&info->lock);
1715
1716                if (sgp == SGP_WRITE)
1717                        mark_page_accessed(page);
1718
1719                delete_from_swap_cache(page);
1720                set_page_dirty(page);
1721                swap_free(swap);
1722
1723        } else {
1724                if (vma && userfaultfd_missing(vma)) {
1725                        *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1726                        return 0;
1727                }
1728
1729                /* shmem_symlink() */
1730                if (mapping->a_ops != &shmem_aops)
1731                        goto alloc_nohuge;
1732                if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1733                        goto alloc_nohuge;
1734                if (shmem_huge == SHMEM_HUGE_FORCE)
1735                        goto alloc_huge;
1736                switch (sbinfo->huge) {
1737                        loff_t i_size;
1738                        pgoff_t off;
1739                case SHMEM_HUGE_NEVER:
1740                        goto alloc_nohuge;
1741                case SHMEM_HUGE_WITHIN_SIZE:
1742                        off = round_up(index, HPAGE_PMD_NR);
1743                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
1744                        if (i_size >= HPAGE_PMD_SIZE &&
1745                                        i_size >> PAGE_SHIFT >= off)
1746                                goto alloc_huge;
1747                        /* fallthrough */
1748                case SHMEM_HUGE_ADVISE:
1749                        if (sgp_huge == SGP_HUGE)
1750                                goto alloc_huge;
1751                        /* TODO: implement fadvise() hints */
1752                        goto alloc_nohuge;
1753                }
1754
1755alloc_huge:
1756                page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1757                if (IS_ERR(page)) {
1758alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1759                                        index, false);
1760                }
1761                if (IS_ERR(page)) {
1762                        int retry = 5;
1763                        error = PTR_ERR(page);
1764                        page = NULL;
1765                        if (error != -ENOSPC)
1766                                goto failed;
1767                        /*
1768                         * Try to reclaim some spece by splitting a huge page
1769                         * beyond i_size on the filesystem.
1770                         */
1771                        while (retry--) {
1772                                int ret;
1773                                ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1774                                if (ret == SHRINK_STOP)
1775                                        break;
1776                                if (ret)
1777                                        goto alloc_nohuge;
1778                        }
1779                        goto failed;
1780                }
1781
1782                if (PageTransHuge(page))
1783                        hindex = round_down(index, HPAGE_PMD_NR);
1784                else
1785                        hindex = index;
1786
1787                if (sgp == SGP_WRITE)
1788                        __SetPageReferenced(page);
1789
1790                error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1791                                PageTransHuge(page));
1792                if (error)
1793                        goto unacct;
1794                error = shmem_add_to_page_cache(page, mapping, hindex,
1795                                                NULL, gfp & GFP_RECLAIM_MASK);
1796                if (error) {
1797                        mem_cgroup_cancel_charge(page, memcg,
1798                                        PageTransHuge(page));
1799                        goto unacct;
1800                }
1801                mem_cgroup_commit_charge(page, memcg, false,
1802                                PageTransHuge(page));
1803                lru_cache_add_anon(page);
1804
1805                spin_lock_irq(&info->lock);
1806                info->alloced += 1 << compound_order(page);
1807                inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1808                shmem_recalc_inode(inode);
1809                spin_unlock_irq(&info->lock);
1810                alloced = true;
1811
1812                if (PageTransHuge(page) &&
1813                                DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814                                hindex + HPAGE_PMD_NR - 1) {
1815                        /*
1816                         * Part of the huge page is beyond i_size: subject
1817                         * to shrink under memory pressure.
1818                         */
1819                        spin_lock(&sbinfo->shrinklist_lock);
1820                        /*
1821                         * _careful to defend against unlocked access to
1822                         * ->shrink_list in shmem_unused_huge_shrink()
1823                         */
1824                        if (list_empty_careful(&info->shrinklist)) {
1825                                list_add_tail(&info->shrinklist,
1826                                                &sbinfo->shrinklist);
1827                                sbinfo->shrinklist_len++;
1828                        }
1829                        spin_unlock(&sbinfo->shrinklist_lock);
1830                }
1831
1832                /*
1833                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1834                 */
1835                if (sgp == SGP_FALLOC)
1836                        sgp = SGP_WRITE;
1837clear:
1838                /*
1839                 * Let SGP_WRITE caller clear ends if write does not fill page;
1840                 * but SGP_FALLOC on a page fallocated earlier must initialize
1841                 * it now, lest undo on failure cancel our earlier guarantee.
1842                 */
1843                if (sgp != SGP_WRITE && !PageUptodate(page)) {
1844                        struct page *head = compound_head(page);
1845                        int i;
1846
1847                        for (i = 0; i < (1 << compound_order(head)); i++) {
1848                                clear_highpage(head + i);
1849                                flush_dcache_page(head + i);
1850                        }
1851                        SetPageUptodate(head);
1852                }
1853        }
1854
1855        /* Perhaps the file has been truncated since we checked */
1856        if (sgp <= SGP_CACHE &&
1857            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1858                if (alloced) {
1859                        ClearPageDirty(page);
1860                        delete_from_page_cache(page);
1861                        spin_lock_irq(&info->lock);
1862                        shmem_recalc_inode(inode);
1863                        spin_unlock_irq(&info->lock);
1864                }
1865                error = -EINVAL;
1866                goto unlock;
1867        }
1868        *pagep = page + index - hindex;
1869        return 0;
1870
1871        /*
1872         * Error recovery.
1873         */
1874unacct:
1875        shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1876
1877        if (PageTransHuge(page)) {
1878                unlock_page(page);
1879                put_page(page);
1880                goto alloc_nohuge;
1881        }
1882failed:
1883        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1884                error = -EEXIST;
1885unlock:
1886        if (page) {
1887                unlock_page(page);
1888                put_page(page);
1889        }
1890        if (error == -ENOSPC && !once++) {
1891                spin_lock_irq(&info->lock);
1892                shmem_recalc_inode(inode);
1893                spin_unlock_irq(&info->lock);
1894                goto repeat;
1895        }
1896        if (error == -EEXIST)
1897                goto repeat;
1898        return error;
1899}
1900
1901/*
1902 * This is like autoremove_wake_function, but it removes the wait queue
1903 * entry unconditionally - even if something else had already woken the
1904 * target.
1905 */
1906static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1907{
1908        int ret = default_wake_function(wait, mode, sync, key);
1909        list_del_init(&wait->entry);
1910        return ret;
1911}
1912
1913static vm_fault_t shmem_fault(struct vm_fault *vmf)
1914{
1915        struct vm_area_struct *vma = vmf->vma;
1916        struct inode *inode = file_inode(vma->vm_file);
1917        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1918        enum sgp_type sgp;
1919        int err;
1920        vm_fault_t ret = VM_FAULT_LOCKED;
1921
1922        /*
1923         * Trinity finds that probing a hole which tmpfs is punching can
1924         * prevent the hole-punch from ever completing: which in turn
1925         * locks writers out with its hold on i_mutex.  So refrain from
1926         * faulting pages into the hole while it's being punched.  Although
1927         * shmem_undo_range() does remove the additions, it may be unable to
1928         * keep up, as each new page needs its own unmap_mapping_range() call,
1929         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1930         *
1931         * It does not matter if we sometimes reach this check just before the
1932         * hole-punch begins, so that one fault then races with the punch:
1933         * we just need to make racing faults a rare case.
1934         *
1935         * The implementation below would be much simpler if we just used a
1936         * standard mutex or completion: but we cannot take i_mutex in fault,
1937         * and bloating every shmem inode for this unlikely case would be sad.
1938         */
1939        if (unlikely(inode->i_private)) {
1940                struct shmem_falloc *shmem_falloc;
1941
1942                spin_lock(&inode->i_lock);
1943                shmem_falloc = inode->i_private;
1944                if (shmem_falloc &&
1945                    shmem_falloc->waitq &&
1946                    vmf->pgoff >= shmem_falloc->start &&
1947                    vmf->pgoff < shmem_falloc->next) {
1948                        wait_queue_head_t *shmem_falloc_waitq;
1949                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1950
1951                        ret = VM_FAULT_NOPAGE;
1952                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1953                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1954                                /* It's polite to up mmap_sem if we can */
1955                                up_read(&vma->vm_mm->mmap_sem);
1956                                ret = VM_FAULT_RETRY;
1957                        }
1958
1959                        shmem_falloc_waitq = shmem_falloc->waitq;
1960                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1961                                        TASK_UNINTERRUPTIBLE);
1962                        spin_unlock(&inode->i_lock);
1963                        schedule();
1964
1965                        /*
1966                         * shmem_falloc_waitq points into the shmem_fallocate()
1967                         * stack of the hole-punching task: shmem_falloc_waitq
1968                         * is usually invalid by the time we reach here, but
1969                         * finish_wait() does not dereference it in that case;
1970                         * though i_lock needed lest racing with wake_up_all().
1971                         */
1972                        spin_lock(&inode->i_lock);
1973                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1974                        spin_unlock(&inode->i_lock);
1975                        return ret;
1976                }
1977                spin_unlock(&inode->i_lock);
1978        }
1979
1980        sgp = SGP_CACHE;
1981
1982        if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1983            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1984                sgp = SGP_NOHUGE;
1985        else if (vma->vm_flags & VM_HUGEPAGE)
1986                sgp = SGP_HUGE;
1987
1988        err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1989                                  gfp, vma, vmf, &ret);
1990        if (err)
1991                return vmf_error(err);
1992        return ret;
1993}
1994
1995unsigned long shmem_get_unmapped_area(struct file *file,
1996                                      unsigned long uaddr, unsigned long len,
1997                                      unsigned long pgoff, unsigned long flags)
1998{
1999        unsigned long (*get_area)(struct file *,
2000                unsigned long, unsigned long, unsigned long, unsigned long);
2001        unsigned long addr;
2002        unsigned long offset;
2003        unsigned long inflated_len;
2004        unsigned long inflated_addr;
2005        unsigned long inflated_offset;
2006
2007        if (len > TASK_SIZE)
2008                return -ENOMEM;
2009
2010        get_area = current->mm->get_unmapped_area;
2011        addr = get_area(file, uaddr, len, pgoff, flags);
2012
2013        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2014                return addr;
2015        if (IS_ERR_VALUE(addr))
2016                return addr;
2017        if (addr & ~PAGE_MASK)
2018                return addr;
2019        if (addr > TASK_SIZE - len)
2020                return addr;
2021
2022        if (shmem_huge == SHMEM_HUGE_DENY)
2023                return addr;
2024        if (len < HPAGE_PMD_SIZE)
2025                return addr;
2026        if (flags & MAP_FIXED)
2027                return addr;
2028        /*
2029         * Our priority is to support MAP_SHARED mapped hugely;
2030         * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2031         * But if caller specified an address hint, respect that as before.
2032         */
2033        if (uaddr)
2034                return addr;
2035
2036        if (shmem_huge != SHMEM_HUGE_FORCE) {
2037                struct super_block *sb;
2038
2039                if (file) {
2040                        VM_BUG_ON(file->f_op != &shmem_file_operations);
2041                        sb = file_inode(file)->i_sb;
2042                } else {
2043                        /*
2044                         * Called directly from mm/mmap.c, or drivers/char/mem.c
2045                         * for "/dev/zero", to create a shared anonymous object.
2046                         */
2047                        if (IS_ERR(shm_mnt))
2048                                return addr;
2049                        sb = shm_mnt->mnt_sb;
2050                }
2051                if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2052                        return addr;
2053        }
2054
2055        offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2056        if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2057                return addr;
2058        if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2059                return addr;
2060
2061        inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2062        if (inflated_len > TASK_SIZE)
2063                return addr;
2064        if (inflated_len < len)
2065                return addr;
2066
2067        inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2068        if (IS_ERR_VALUE(inflated_addr))
2069                return addr;
2070        if (inflated_addr & ~PAGE_MASK)
2071                return addr;
2072
2073        inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2074        inflated_addr += offset - inflated_offset;
2075        if (inflated_offset > offset)
2076                inflated_addr += HPAGE_PMD_SIZE;
2077
2078        if (inflated_addr > TASK_SIZE - len)
2079                return addr;
2080        return inflated_addr;
2081}
2082
2083#ifdef CONFIG_NUMA
2084static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2085{
2086        struct inode *inode = file_inode(vma->vm_file);
2087        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2088}
2089
2090static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2091                                          unsigned long addr)
2092{
2093        struct inode *inode = file_inode(vma->vm_file);
2094        pgoff_t index;
2095
2096        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2097        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2098}
2099#endif
2100
2101int shmem_lock(struct file *file, int lock, struct user_struct *user)
2102{
2103        struct inode *inode = file_inode(file);
2104        struct shmem_inode_info *info = SHMEM_I(inode);
2105        int retval = -ENOMEM;
2106
2107        spin_lock_irq(&info->lock);
2108        if (lock && !(info->flags & VM_LOCKED)) {
2109                if (!user_shm_lock(inode->i_size, user))
2110                        goto out_nomem;
2111                info->flags |= VM_LOCKED;
2112                mapping_set_unevictable(file->f_mapping);
2113        }
2114        if (!lock && (info->flags & VM_LOCKED) && user) {
2115                user_shm_unlock(inode->i_size, user);
2116                info->flags &= ~VM_LOCKED;
2117                mapping_clear_unevictable(file->f_mapping);
2118        }
2119        retval = 0;
2120
2121out_nomem:
2122        spin_unlock_irq(&info->lock);
2123        return retval;
2124}
2125
2126static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2127{
2128        file_accessed(file);
2129        vma->vm_ops = &shmem_vm_ops;
2130        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2131                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2132                        (vma->vm_end & HPAGE_PMD_MASK)) {
2133                khugepaged_enter(vma, vma->vm_flags);
2134        }
2135        return 0;
2136}
2137
2138static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2139                                     umode_t mode, dev_t dev, unsigned long flags)
2140{
2141        struct inode *inode;
2142        struct shmem_inode_info *info;
2143        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2144
2145        if (shmem_reserve_inode(sb))
2146                return NULL;
2147
2148        inode = new_inode(sb);
2149        if (inode) {
2150                inode->i_ino = get_next_ino();
2151                inode_init_owner(inode, dir, mode);
2152                inode->i_blocks = 0;
2153                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2154                inode->i_generation = prandom_u32();
2155                info = SHMEM_I(inode);
2156                memset(info, 0, (char *)inode - (char *)info);
2157                spin_lock_init(&info->lock);
2158                info->seals = F_SEAL_SEAL;
2159                info->flags = flags & VM_NORESERVE;
2160                INIT_LIST_HEAD(&info->shrinklist);
2161                INIT_LIST_HEAD(&info->swaplist);
2162                simple_xattrs_init(&info->xattrs);
2163                cache_no_acl(inode);
2164
2165                switch (mode & S_IFMT) {
2166                default:
2167                        inode->i_op = &shmem_special_inode_operations;
2168                        init_special_inode(inode, mode, dev);
2169                        break;
2170                case S_IFREG:
2171                        inode->i_mapping->a_ops = &shmem_aops;
2172                        inode->i_op = &shmem_inode_operations;
2173                        inode->i_fop = &shmem_file_operations;
2174                        mpol_shared_policy_init(&info->policy,
2175                                                 shmem_get_sbmpol(sbinfo));
2176                        break;
2177                case S_IFDIR:
2178                        inc_nlink(inode);
2179                        /* Some things misbehave if size == 0 on a directory */
2180                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
2181                        inode->i_op = &shmem_dir_inode_operations;
2182                        inode->i_fop = &simple_dir_operations;
2183                        break;
2184                case S_IFLNK:
2185                        /*
2186                         * Must not load anything in the rbtree,
2187                         * mpol_free_shared_policy will not be called.
2188                         */
2189                        mpol_shared_policy_init(&info->policy, NULL);
2190                        break;
2191                }
2192
2193                lockdep_annotate_inode_mutex_key(inode);
2194        } else
2195                shmem_free_inode(sb);
2196        return inode;
2197}
2198
2199bool shmem_mapping(struct address_space *mapping)
2200{
2201        return mapping->a_ops == &shmem_aops;
2202}
2203
2204static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2205                                  pmd_t *dst_pmd,
2206                                  struct vm_area_struct *dst_vma,
2207                                  unsigned long dst_addr,
2208                                  unsigned long src_addr,
2209                                  bool zeropage,
2210                                  struct page **pagep)
2211{
2212        struct inode *inode = file_inode(dst_vma->vm_file);
2213        struct shmem_inode_info *info = SHMEM_I(inode);
2214        struct address_space *mapping = inode->i_mapping;
2215        gfp_t gfp = mapping_gfp_mask(mapping);
2216        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2217        struct mem_cgroup *memcg;
2218        spinlock_t *ptl;
2219        void *page_kaddr;
2220        struct page *page;
2221        pte_t _dst_pte, *dst_pte;
2222        int ret;
2223        pgoff_t offset, max_off;
2224
2225        ret = -ENOMEM;
2226        if (!shmem_inode_acct_block(inode, 1))
2227                goto out;
2228
2229        if (!*pagep) {
2230                page = shmem_alloc_page(gfp, info, pgoff);
2231                if (!page)
2232                        goto out_unacct_blocks;
2233
2234                if (!zeropage) {        /* mcopy_atomic */
2235                        page_kaddr = kmap_atomic(page);
2236                        ret = copy_from_user(page_kaddr,
2237                                             (const void __user *)src_addr,
2238                                             PAGE_SIZE);
2239                        kunmap_atomic(page_kaddr);
2240
2241                        /* fallback to copy_from_user outside mmap_sem */
2242                        if (unlikely(ret)) {
2243                                *pagep = page;
2244                                shmem_inode_unacct_blocks(inode, 1);
2245                                /* don't free the page */
2246                                return -ENOENT;
2247                        }
2248                } else {                /* mfill_zeropage_atomic */
2249                        clear_highpage(page);
2250                }
2251        } else {
2252                page = *pagep;
2253                *pagep = NULL;
2254        }
2255
2256        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2257        __SetPageLocked(page);
2258        __SetPageSwapBacked(page);
2259        __SetPageUptodate(page);
2260
2261        ret = -EFAULT;
2262        offset = linear_page_index(dst_vma, dst_addr);
2263        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2264        if (unlikely(offset >= max_off))
2265                goto out_release;
2266
2267        ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2268        if (ret)
2269                goto out_release;
2270
2271        ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2272                                                gfp & GFP_RECLAIM_MASK);
2273        if (ret)
2274                goto out_release_uncharge;
2275
2276        mem_cgroup_commit_charge(page, memcg, false, false);
2277
2278        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2279        if (dst_vma->vm_flags & VM_WRITE)
2280                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2281        else {
2282                /*
2283                 * We don't set the pte dirty if the vma has no
2284                 * VM_WRITE permission, so mark the page dirty or it
2285                 * could be freed from under us. We could do it
2286                 * unconditionally before unlock_page(), but doing it
2287                 * only if VM_WRITE is not set is faster.
2288                 */
2289                set_page_dirty(page);
2290        }
2291
2292        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2293
2294        ret = -EFAULT;
2295        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2296        if (unlikely(offset >= max_off))
2297                goto out_release_uncharge_unlock;
2298
2299        ret = -EEXIST;
2300        if (!pte_none(*dst_pte))
2301                goto out_release_uncharge_unlock;
2302
2303        lru_cache_add_anon(page);
2304
2305        spin_lock(&info->lock);
2306        info->alloced++;
2307        inode->i_blocks += BLOCKS_PER_PAGE;
2308        shmem_recalc_inode(inode);
2309        spin_unlock(&info->lock);
2310
2311        inc_mm_counter(dst_mm, mm_counter_file(page));
2312        page_add_file_rmap(page, false);
2313        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2314
2315        /* No need to invalidate - it was non-present before */
2316        update_mmu_cache(dst_vma, dst_addr, dst_pte);
2317        pte_unmap_unlock(dst_pte, ptl);
2318        unlock_page(page);
2319        ret = 0;
2320out:
2321        return ret;
2322out_release_uncharge_unlock:
2323        pte_unmap_unlock(dst_pte, ptl);
2324        ClearPageDirty(page);
2325        delete_from_page_cache(page);
2326out_release_uncharge:
2327        mem_cgroup_cancel_charge(page, memcg, false);
2328out_release:
2329        unlock_page(page);
2330        put_page(page);
2331out_unacct_blocks:
2332        shmem_inode_unacct_blocks(inode, 1);
2333        goto out;
2334}
2335
2336int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2337                           pmd_t *dst_pmd,
2338                           struct vm_area_struct *dst_vma,
2339                           unsigned long dst_addr,
2340                           unsigned long src_addr,
2341                           struct page **pagep)
2342{
2343        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2344                                      dst_addr, src_addr, false, pagep);
2345}
2346
2347int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2348                             pmd_t *dst_pmd,
2349                             struct vm_area_struct *dst_vma,
2350                             unsigned long dst_addr)
2351{
2352        struct page *page = NULL;
2353
2354        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2355                                      dst_addr, 0, true, &page);
2356}
2357
2358#ifdef CONFIG_TMPFS
2359static const struct inode_operations shmem_symlink_inode_operations;
2360static const struct inode_operations shmem_short_symlink_operations;
2361
2362#ifdef CONFIG_TMPFS_XATTR
2363static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2364#else
2365#define shmem_initxattrs NULL
2366#endif
2367
2368static int
2369shmem_write_begin(struct file *file, struct address_space *mapping,
2370                        loff_t pos, unsigned len, unsigned flags,
2371                        struct page **pagep, void **fsdata)
2372{
2373        struct inode *inode = mapping->host;
2374        struct shmem_inode_info *info = SHMEM_I(inode);
2375        pgoff_t index = pos >> PAGE_SHIFT;
2376
2377        /* i_mutex is held by caller */
2378        if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2379                if (info->seals & F_SEAL_WRITE)
2380                        return -EPERM;
2381                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2382                        return -EPERM;
2383        }
2384
2385        return shmem_getpage(inode, index, pagep, SGP_WRITE);
2386}
2387
2388static int
2389shmem_write_end(struct file *file, struct address_space *mapping,
2390                        loff_t pos, unsigned len, unsigned copied,
2391                        struct page *page, void *fsdata)
2392{
2393        struct inode *inode = mapping->host;
2394
2395        if (pos + copied > inode->i_size)
2396                i_size_write(inode, pos + copied);
2397
2398        if (!PageUptodate(page)) {
2399                struct page *head = compound_head(page);
2400                if (PageTransCompound(page)) {
2401                        int i;
2402
2403                        for (i = 0; i < HPAGE_PMD_NR; i++) {
2404                                if (head + i == page)
2405                                        continue;
2406                                clear_highpage(head + i);
2407                                flush_dcache_page(head + i);
2408                        }
2409                }
2410                if (copied < PAGE_SIZE) {
2411                        unsigned from = pos & (PAGE_SIZE - 1);
2412                        zero_user_segments(page, 0, from,
2413                                        from + copied, PAGE_SIZE);
2414                }
2415                SetPageUptodate(head);
2416        }
2417        set_page_dirty(page);
2418        unlock_page(page);
2419        put_page(page);
2420
2421        return copied;
2422}
2423
2424static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2425{
2426        struct file *file = iocb->ki_filp;
2427        struct inode *inode = file_inode(file);
2428        struct address_space *mapping = inode->i_mapping;
2429        pgoff_t index;
2430        unsigned long offset;
2431        enum sgp_type sgp = SGP_READ;
2432        int error = 0;
2433        ssize_t retval = 0;
2434        loff_t *ppos = &iocb->ki_pos;
2435
2436        /*
2437         * Might this read be for a stacking filesystem?  Then when reading
2438         * holes of a sparse file, we actually need to allocate those pages,
2439         * and even mark them dirty, so it cannot exceed the max_blocks limit.
2440         */
2441        if (!iter_is_iovec(to))
2442                sgp = SGP_CACHE;
2443
2444        index = *ppos >> PAGE_SHIFT;
2445        offset = *ppos & ~PAGE_MASK;
2446
2447        for (;;) {
2448                struct page *page = NULL;
2449                pgoff_t end_index;
2450                unsigned long nr, ret;
2451                loff_t i_size = i_size_read(inode);
2452
2453                end_index = i_size >> PAGE_SHIFT;
2454                if (index > end_index)
2455                        break;
2456                if (index == end_index) {
2457                        nr = i_size & ~PAGE_MASK;
2458                        if (nr <= offset)
2459                                break;
2460                }
2461
2462                error = shmem_getpage(inode, index, &page, sgp);
2463                if (error) {
2464                        if (error == -EINVAL)
2465                                error = 0;
2466                        break;
2467                }
2468                if (page) {
2469                        if (sgp == SGP_CACHE)
2470                                set_page_dirty(page);
2471                        unlock_page(page);
2472                }
2473
2474                /*
2475                 * We must evaluate after, since reads (unlike writes)
2476                 * are called without i_mutex protection against truncate
2477                 */
2478                nr = PAGE_SIZE;
2479                i_size = i_size_read(inode);
2480                end_index = i_size >> PAGE_SHIFT;
2481                if (index == end_index) {
2482                        nr = i_size & ~PAGE_MASK;
2483                        if (nr <= offset) {
2484                                if (page)
2485                                        put_page(page);
2486                                break;
2487                        }
2488                }
2489                nr -= offset;
2490
2491                if (page) {
2492                        /*
2493                         * If users can be writing to this page using arbitrary
2494                         * virtual addresses, take care about potential aliasing
2495                         * before reading the page on the kernel side.
2496                         */
2497                        if (mapping_writably_mapped(mapping))
2498                                flush_dcache_page(page);
2499                        /*
2500                         * Mark the page accessed if we read the beginning.
2501                         */
2502                        if (!offset)
2503                                mark_page_accessed(page);
2504                } else {
2505                        page = ZERO_PAGE(0);
2506                        get_page(page);
2507                }
2508
2509                /*
2510                 * Ok, we have the page, and it's up-to-date, so
2511                 * now we can copy it to user space...
2512                 */
2513                ret = copy_page_to_iter(page, offset, nr, to);
2514                retval += ret;
2515                offset += ret;
2516                index += offset >> PAGE_SHIFT;
2517                offset &= ~PAGE_MASK;
2518
2519                put_page(page);
2520                if (!iov_iter_count(to))
2521                        break;
2522                if (ret < nr) {
2523                        error = -EFAULT;
2524                        break;
2525                }
2526                cond_resched();
2527        }
2528
2529        *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2530        file_accessed(file);
2531        return retval ? retval : error;
2532}
2533
2534/*
2535 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2536 */
2537static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2538                                    pgoff_t index, pgoff_t end, int whence)
2539{
2540        struct page *page;
2541        struct pagevec pvec;
2542        pgoff_t indices[PAGEVEC_SIZE];
2543        bool done = false;
2544        int i;
2545
2546        pagevec_init(&pvec);
2547        pvec.nr = 1;            /* start small: we may be there already */
2548        while (!done) {
2549                pvec.nr = find_get_entries(mapping, index,
2550                                        pvec.nr, pvec.pages, indices);
2551                if (!pvec.nr) {
2552                        if (whence == SEEK_DATA)
2553                                index = end;
2554                        break;
2555                }
2556                for (i = 0; i < pvec.nr; i++, index++) {
2557                        if (index < indices[i]) {
2558                                if (whence == SEEK_HOLE) {
2559                                        done = true;
2560                                        break;
2561                                }
2562                                index = indices[i];
2563                        }
2564                        page = pvec.pages[i];
2565                        if (page && !xa_is_value(page)) {
2566                                if (!PageUptodate(page))
2567                                        page = NULL;
2568                        }
2569                        if (index >= end ||
2570                            (page && whence == SEEK_DATA) ||
2571                            (!page && whence == SEEK_HOLE)) {
2572                                done = true;
2573                                break;
2574                        }
2575                }
2576                pagevec_remove_exceptionals(&pvec);
2577                pagevec_release(&pvec);
2578                pvec.nr = PAGEVEC_SIZE;
2579                cond_resched();
2580        }
2581        return index;
2582}
2583
2584static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2585{
2586        struct address_space *mapping = file->f_mapping;
2587        struct inode *inode = mapping->host;
2588        pgoff_t start, end;
2589        loff_t new_offset;
2590
2591        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2592                return generic_file_llseek_size(file, offset, whence,
2593                                        MAX_LFS_FILESIZE, i_size_read(inode));
2594        inode_lock(inode);
2595        /* We're holding i_mutex so we can access i_size directly */
2596
2597        if (offset < 0 || offset >= inode->i_size)
2598                offset = -ENXIO;
2599        else {
2600                start = offset >> PAGE_SHIFT;
2601                end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2602                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2603                new_offset <<= PAGE_SHIFT;
2604                if (new_offset > offset) {
2605                        if (new_offset < inode->i_size)
2606                                offset = new_offset;
2607                        else if (whence == SEEK_DATA)
2608                                offset = -ENXIO;
2609                        else
2610                                offset = inode->i_size;
2611                }
2612        }
2613
2614        if (offset >= 0)
2615                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2616        inode_unlock(inode);
2617        return offset;
2618}
2619
2620static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2621                                                         loff_t len)
2622{
2623        struct inode *inode = file_inode(file);
2624        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2625        struct shmem_inode_info *info = SHMEM_I(inode);
2626        struct shmem_falloc shmem_falloc;
2627        pgoff_t start, index, end;
2628        int error;
2629
2630        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2631                return -EOPNOTSUPP;
2632
2633        inode_lock(inode);
2634
2635        if (mode & FALLOC_FL_PUNCH_HOLE) {
2636                struct address_space *mapping = file->f_mapping;
2637                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2638                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2639                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2640
2641                /* protected by i_mutex */
2642                if (info->seals & F_SEAL_WRITE) {
2643                        error = -EPERM;
2644                        goto out;
2645                }
2646
2647                shmem_falloc.waitq = &shmem_falloc_waitq;
2648                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2649                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2650                spin_lock(&inode->i_lock);
2651                inode->i_private = &shmem_falloc;
2652                spin_unlock(&inode->i_lock);
2653
2654                if ((u64)unmap_end > (u64)unmap_start)
2655                        unmap_mapping_range(mapping, unmap_start,
2656                                            1 + unmap_end - unmap_start, 0);
2657                shmem_truncate_range(inode, offset, offset + len - 1);
2658                /* No need to unmap again: hole-punching leaves COWed pages */
2659
2660                spin_lock(&inode->i_lock);
2661                inode->i_private = NULL;
2662                wake_up_all(&shmem_falloc_waitq);
2663                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2664                spin_unlock(&inode->i_lock);
2665                error = 0;
2666                goto out;
2667        }
2668
2669        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2670        error = inode_newsize_ok(inode, offset + len);
2671        if (error)
2672                goto out;
2673
2674        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2675                error = -EPERM;
2676                goto out;
2677        }
2678
2679        start = offset >> PAGE_SHIFT;
2680        end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2681        /* Try to avoid a swapstorm if len is impossible to satisfy */
2682        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2683                error = -ENOSPC;
2684                goto out;
2685        }
2686
2687        shmem_falloc.waitq = NULL;
2688        shmem_falloc.start = start;
2689        shmem_falloc.next  = start;
2690        shmem_falloc.nr_falloced = 0;
2691        shmem_falloc.nr_unswapped = 0;
2692        spin_lock(&inode->i_lock);
2693        inode->i_private = &shmem_falloc;
2694        spin_unlock(&inode->i_lock);
2695
2696        for (index = start; index < end; index++) {
2697                struct page *page;
2698
2699                /*
2700                 * Good, the fallocate(2) manpage permits EINTR: we may have
2701                 * been interrupted because we are using up too much memory.
2702                 */
2703                if (signal_pending(current))
2704                        error = -EINTR;
2705                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2706                        error = -ENOMEM;
2707                else
2708                        error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2709                if (error) {
2710                        /* Remove the !PageUptodate pages we added */
2711                        if (index > start) {
2712                                shmem_undo_range(inode,
2713                                    (loff_t)start << PAGE_SHIFT,
2714                                    ((loff_t)index << PAGE_SHIFT) - 1, true);
2715                        }
2716                        goto undone;
2717                }
2718
2719                /*
2720                 * Inform shmem_writepage() how far we have reached.
2721                 * No need for lock or barrier: we have the page lock.
2722                 */
2723                shmem_falloc.next++;
2724                if (!PageUptodate(page))
2725                        shmem_falloc.nr_falloced++;
2726
2727                /*
2728                 * If !PageUptodate, leave it that way so that freeable pages
2729                 * can be recognized if we need to rollback on error later.
2730                 * But set_page_dirty so that memory pressure will swap rather
2731                 * than free the pages we are allocating (and SGP_CACHE pages
2732                 * might still be clean: we now need to mark those dirty too).
2733                 */
2734                set_page_dirty(page);
2735                unlock_page(page);
2736                put_page(page);
2737                cond_resched();
2738        }
2739
2740        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2741                i_size_write(inode, offset + len);
2742        inode->i_ctime = current_time(inode);
2743undone:
2744        spin_lock(&inode->i_lock);
2745        inode->i_private = NULL;
2746        spin_unlock(&inode->i_lock);
2747out:
2748        inode_unlock(inode);
2749        return error;
2750}
2751
2752static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2753{
2754        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2755
2756        buf->f_type = TMPFS_MAGIC;
2757        buf->f_bsize = PAGE_SIZE;
2758        buf->f_namelen = NAME_MAX;
2759        if (sbinfo->max_blocks) {
2760                buf->f_blocks = sbinfo->max_blocks;
2761                buf->f_bavail =
2762                buf->f_bfree  = sbinfo->max_blocks -
2763                                percpu_counter_sum(&sbinfo->used_blocks);
2764        }
2765        if (sbinfo->max_inodes) {
2766                buf->f_files = sbinfo->max_inodes;
2767                buf->f_ffree = sbinfo->free_inodes;
2768        }
2769        /* else leave those fields 0 like simple_statfs */
2770        return 0;
2771}
2772
2773/*
2774 * File creation. Allocate an inode, and we're done..
2775 */
2776static int
2777shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2778{
2779        struct inode *inode;
2780        int error = -ENOSPC;
2781
2782        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2783        if (inode) {
2784                error = simple_acl_create(dir, inode);
2785                if (error)
2786                        goto out_iput;
2787                error = security_inode_init_security(inode, dir,
2788                                                     &dentry->d_name,
2789                                                     shmem_initxattrs, NULL);
2790                if (error && error != -EOPNOTSUPP)
2791                        goto out_iput;
2792
2793                error = 0;
2794                dir->i_size += BOGO_DIRENT_SIZE;
2795                dir->i_ctime = dir->i_mtime = current_time(dir);
2796                d_instantiate(dentry, inode);
2797                dget(dentry); /* Extra count - pin the dentry in core */
2798        }
2799        return error;
2800out_iput:
2801        iput(inode);
2802        return error;
2803}
2804
2805static int
2806shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2807{
2808        struct inode *inode;
2809        int error = -ENOSPC;
2810
2811        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2812        if (inode) {
2813                error = security_inode_init_security(inode, dir,
2814                                                     NULL,
2815                                                     shmem_initxattrs, NULL);
2816                if (error && error != -EOPNOTSUPP)
2817                        goto out_iput;
2818                error = simple_acl_create(dir, inode);
2819                if (error)
2820                        goto out_iput;
2821                d_tmpfile(dentry, inode);
2822        }
2823        return error;
2824out_iput:
2825        iput(inode);
2826        return error;
2827}
2828
2829static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2830{
2831        int error;
2832
2833        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2834                return error;
2835        inc_nlink(dir);
2836        return 0;
2837}
2838
2839static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2840                bool excl)
2841{
2842        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2843}
2844
2845/*
2846 * Link a file..
2847 */
2848static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2849{
2850        struct inode *inode = d_inode(old_dentry);
2851        int ret = 0;
2852
2853        /*
2854         * No ordinary (disk based) filesystem counts links as inodes;
2855         * but each new link needs a new dentry, pinning lowmem, and
2856         * tmpfs dentries cannot be pruned until they are unlinked.
2857         * But if an O_TMPFILE file is linked into the tmpfs, the
2858         * first link must skip that, to get the accounting right.
2859         */
2860        if (inode->i_nlink) {
2861                ret = shmem_reserve_inode(inode->i_sb);
2862                if (ret)
2863                        goto out;
2864        }
2865
2866        dir->i_size += BOGO_DIRENT_SIZE;
2867        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2868        inc_nlink(inode);
2869        ihold(inode);   /* New dentry reference */
2870        dget(dentry);           /* Extra pinning count for the created dentry */
2871        d_instantiate(dentry, inode);
2872out:
2873        return ret;
2874}
2875
2876static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2877{
2878        struct inode *inode = d_inode(dentry);
2879
2880        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2881                shmem_free_inode(inode->i_sb);
2882
2883        dir->i_size -= BOGO_DIRENT_SIZE;
2884        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2885        drop_nlink(inode);
2886        dput(dentry);   /* Undo the count from "create" - this does all the work */
2887        return 0;
2888}
2889
2890static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2891{
2892        if (!simple_empty(dentry))
2893                return -ENOTEMPTY;
2894
2895        drop_nlink(d_inode(dentry));
2896        drop_nlink(dir);
2897        return shmem_unlink(dir, dentry);
2898}
2899
2900static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2901{
2902        bool old_is_dir = d_is_dir(old_dentry);
2903        bool new_is_dir = d_is_dir(new_dentry);
2904
2905        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2906                if (old_is_dir) {
2907                        drop_nlink(old_dir);
2908                        inc_nlink(new_dir);
2909                } else {
2910                        drop_nlink(new_dir);
2911                        inc_nlink(old_dir);
2912                }
2913        }
2914        old_dir->i_ctime = old_dir->i_mtime =
2915        new_dir->i_ctime = new_dir->i_mtime =
2916        d_inode(old_dentry)->i_ctime =
2917        d_inode(new_dentry)->i_ctime = current_time(old_dir);
2918
2919        return 0;
2920}
2921
2922static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2923{
2924        struct dentry *whiteout;
2925        int error;
2926
2927        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2928        if (!whiteout)
2929                return -ENOMEM;
2930
2931        error = shmem_mknod(old_dir, whiteout,
2932                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2933        dput(whiteout);
2934        if (error)
2935                return error;
2936
2937        /*
2938         * Cheat and hash the whiteout while the old dentry is still in
2939         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2940         *
2941         * d_lookup() will consistently find one of them at this point,
2942         * not sure which one, but that isn't even important.
2943         */
2944        d_rehash(whiteout);
2945        return 0;
2946}
2947
2948/*
2949 * The VFS layer already does all the dentry stuff for rename,
2950 * we just have to decrement the usage count for the target if
2951 * it exists so that the VFS layer correctly free's it when it
2952 * gets overwritten.
2953 */
2954static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2955{
2956        struct inode *inode = d_inode(old_dentry);
2957        int they_are_dirs = S_ISDIR(inode->i_mode);
2958
2959        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2960                return -EINVAL;
2961
2962        if (flags & RENAME_EXCHANGE)
2963                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2964
2965        if (!simple_empty(new_dentry))
2966                return -ENOTEMPTY;
2967
2968        if (flags & RENAME_WHITEOUT) {
2969                int error;
2970
2971                error = shmem_whiteout(old_dir, old_dentry);
2972                if (error)
2973                        return error;
2974        }
2975
2976        if (d_really_is_positive(new_dentry)) {
2977                (void) shmem_unlink(new_dir, new_dentry);
2978                if (they_are_dirs) {
2979                        drop_nlink(d_inode(new_dentry));
2980                        drop_nlink(old_dir);
2981                }
2982        } else if (they_are_dirs) {
2983                drop_nlink(old_dir);
2984                inc_nlink(new_dir);
2985        }
2986
2987        old_dir->i_size -= BOGO_DIRENT_SIZE;
2988        new_dir->i_size += BOGO_DIRENT_SIZE;
2989        old_dir->i_ctime = old_dir->i_mtime =
2990        new_dir->i_ctime = new_dir->i_mtime =
2991        inode->i_ctime = current_time(old_dir);
2992        return 0;
2993}
2994
2995static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2996{
2997        int error;
2998        int len;
2999        struct inode *inode;
3000        struct page *page;
3001
3002        len = strlen(symname) + 1;
3003        if (len > PAGE_SIZE)
3004                return -ENAMETOOLONG;
3005
3006        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3007                                VM_NORESERVE);
3008        if (!inode)
3009                return -ENOSPC;
3010
3011        error = security_inode_init_security(inode, dir, &dentry->d_name,
3012                                             shmem_initxattrs, NULL);
3013        if (error) {
3014                if (error != -EOPNOTSUPP) {
3015                        iput(inode);
3016                        return error;
3017                }
3018                error = 0;
3019        }
3020
3021        inode->i_size = len-1;
3022        if (len <= SHORT_SYMLINK_LEN) {
3023                inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3024                if (!inode->i_link) {
3025                        iput(inode);
3026                        return -ENOMEM;
3027                }
3028                inode->i_op = &shmem_short_symlink_operations;
3029        } else {
3030                inode_nohighmem(inode);
3031                error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3032                if (error) {
3033                        iput(inode);
3034                        return error;
3035                }
3036                inode->i_mapping->a_ops = &shmem_aops;
3037                inode->i_op = &shmem_symlink_inode_operations;
3038                memcpy(page_address(page), symname, len);
3039                SetPageUptodate(page);
3040                set_page_dirty(page);
3041                unlock_page(page);
3042                put_page(page);
3043        }
3044        dir->i_size += BOGO_DIRENT_SIZE;
3045        dir->i_ctime = dir->i_mtime = current_time(dir);
3046        d_instantiate(dentry, inode);
3047        dget(dentry);
3048        return 0;
3049}
3050
3051static void shmem_put_link(void *arg)
3052{
3053        mark_page_accessed(arg);
3054        put_page(arg);
3055}
3056
3057static const char *shmem_get_link(struct dentry *dentry,
3058                                  struct inode *inode,
3059                                  struct delayed_call *done)
3060{
3061        struct page *page = NULL;
3062        int error;
3063        if (!dentry) {
3064                page = find_get_page(inode->i_mapping, 0);
3065                if (!page)
3066                        return ERR_PTR(-ECHILD);
3067                if (!PageUptodate(page)) {
3068                        put_page(page);
3069                        return ERR_PTR(-ECHILD);
3070                }
3071        } else {
3072                error = shmem_getpage(inode, 0, &page, SGP_READ);
3073                if (error)
3074                        return ERR_PTR(error);
3075                unlock_page(page);
3076        }
3077        set_delayed_call(done, shmem_put_link, page);
3078        return page_address(page);
3079}
3080
3081#ifdef CONFIG_TMPFS_XATTR
3082/*
3083 * Superblocks without xattr inode operations may get some security.* xattr
3084 * support from the LSM "for free". As soon as we have any other xattrs
3085 * like ACLs, we also need to implement the security.* handlers at
3086 * filesystem level, though.
3087 */
3088
3089/*
3090 * Callback for security_inode_init_security() for acquiring xattrs.
3091 */
3092static int shmem_initxattrs(struct inode *inode,
3093                            const struct xattr *xattr_array,
3094                            void *fs_info)
3095{
3096        struct shmem_inode_info *info = SHMEM_I(inode);
3097        const struct xattr *xattr;
3098        struct simple_xattr *new_xattr;
3099        size_t len;
3100
3101        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3102                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3103                if (!new_xattr)
3104                        return -ENOMEM;
3105
3106                len = strlen(xattr->name) + 1;
3107                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3108                                          GFP_KERNEL);
3109                if (!new_xattr->name) {
3110                        kfree(new_xattr);
3111                        return -ENOMEM;
3112                }
3113
3114                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3115                       XATTR_SECURITY_PREFIX_LEN);
3116                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3117                       xattr->name, len);
3118
3119                simple_xattr_list_add(&info->xattrs, new_xattr);
3120        }
3121
3122        return 0;
3123}
3124
3125static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3126                                   struct dentry *unused, struct inode *inode,
3127                                   const char *name, void *buffer, size_t size)
3128{
3129        struct shmem_inode_info *info = SHMEM_I(inode);
3130
3131        name = xattr_full_name(handler, name);
3132        return simple_xattr_get(&info->xattrs, name, buffer, size);
3133}
3134
3135static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3136                                   struct dentry *unused, struct inode *inode,
3137                                   const char *name, const void *value,
3138                                   size_t size, int flags)
3139{
3140        struct shmem_inode_info *info = SHMEM_I(inode);
3141
3142        name = xattr_full_name(handler, name);
3143        return simple_xattr_set(&info->xattrs, name, value, size, flags);
3144}
3145
3146static const struct xattr_handler shmem_security_xattr_handler = {
3147        .prefix = XATTR_SECURITY_PREFIX,
3148        .get = shmem_xattr_handler_get,
3149        .set = shmem_xattr_handler_set,
3150};
3151
3152static const struct xattr_handler shmem_trusted_xattr_handler = {
3153        .prefix = XATTR_TRUSTED_PREFIX,
3154        .get = shmem_xattr_handler_get,
3155        .set = shmem_xattr_handler_set,
3156};
3157
3158static const struct xattr_handler *shmem_xattr_handlers[] = {
3159#ifdef CONFIG_TMPFS_POSIX_ACL
3160        &posix_acl_access_xattr_handler,
3161        &posix_acl_default_xattr_handler,
3162#endif
3163        &shmem_security_xattr_handler,
3164        &shmem_trusted_xattr_handler,
3165        NULL
3166};
3167
3168static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3169{
3170        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3171        return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3172}
3173#endif /* CONFIG_TMPFS_XATTR */
3174
3175static const struct inode_operations shmem_short_symlink_operations = {
3176        .get_link       = simple_get_link,
3177#ifdef CONFIG_TMPFS_XATTR
3178        .listxattr      = shmem_listxattr,
3179#endif
3180};
3181
3182static const struct inode_operations shmem_symlink_inode_operations = {
3183        .get_link       = shmem_get_link,
3184#ifdef CONFIG_TMPFS_XATTR
3185        .listxattr      = shmem_listxattr,
3186#endif
3187};
3188
3189static struct dentry *shmem_get_parent(struct dentry *child)
3190{
3191        return ERR_PTR(-ESTALE);
3192}
3193
3194static int shmem_match(struct inode *ino, void *vfh)
3195{
3196        __u32 *fh = vfh;
3197        __u64 inum = fh[2];
3198        inum = (inum << 32) | fh[1];
3199        return ino->i_ino == inum && fh[0] == ino->i_generation;
3200}
3201
3202/* Find any alias of inode, but prefer a hashed alias */
3203static struct dentry *shmem_find_alias(struct inode *inode)
3204{
3205        struct dentry *alias = d_find_alias(inode);
3206
3207        return alias ?: d_find_any_alias(inode);
3208}
3209
3210
3211static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3212                struct fid *fid, int fh_len, int fh_type)
3213{
3214        struct inode *inode;
3215        struct dentry *dentry = NULL;
3216        u64 inum;
3217
3218        if (fh_len < 3)
3219                return NULL;
3220
3221        inum = fid->raw[2];
3222        inum = (inum << 32) | fid->raw[1];
3223
3224        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3225                        shmem_match, fid->raw);
3226        if (inode) {
3227                dentry = shmem_find_alias(inode);
3228                iput(inode);
3229        }
3230
3231        return dentry;
3232}
3233
3234static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3235                                struct inode *parent)
3236{
3237        if (*len < 3) {
3238                *len = 3;
3239                return FILEID_INVALID;
3240        }
3241
3242        if (inode_unhashed(inode)) {
3243                /* Unfortunately insert_inode_hash is not idempotent,
3244                 * so as we hash inodes here rather than at creation
3245                 * time, we need a lock to ensure we only try
3246                 * to do it once
3247                 */
3248                static DEFINE_SPINLOCK(lock);
3249                spin_lock(&lock);
3250                if (inode_unhashed(inode))
3251                        __insert_inode_hash(inode,
3252                                            inode->i_ino + inode->i_generation);
3253                spin_unlock(&lock);
3254        }
3255
3256        fh[0] = inode->i_generation;
3257        fh[1] = inode->i_ino;
3258        fh[2] = ((__u64)inode->i_ino) >> 32;
3259
3260        *len = 3;
3261        return 1;
3262}
3263
3264static const struct export_operations shmem_export_ops = {
3265        .get_parent     = shmem_get_parent,
3266        .encode_fh      = shmem_encode_fh,
3267        .fh_to_dentry   = shmem_fh_to_dentry,
3268};
3269
3270static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3271                               bool remount)
3272{
3273        char *this_char, *value, *rest;
3274        struct mempolicy *mpol = NULL;
3275        uid_t uid;
3276        gid_t gid;
3277
3278        while (options != NULL) {
3279                this_char = options;
3280                for (;;) {
3281                        /*
3282                         * NUL-terminate this option: unfortunately,
3283                         * mount options form a comma-separated list,
3284                         * but mpol's nodelist may also contain commas.
3285                         */
3286                        options = strchr(options, ',');
3287                        if (options == NULL)
3288                                break;
3289                        options++;
3290                        if (!isdigit(*options)) {
3291                                options[-1] = '\0';
3292                                break;
3293                        }
3294                }
3295                if (!*this_char)
3296                        continue;
3297                if ((value = strchr(this_char,'=')) != NULL) {
3298                        *value++ = 0;
3299                } else {
3300                        pr_err("tmpfs: No value for mount option '%s'\n",
3301                               this_char);
3302                        goto error;
3303                }
3304
3305                if (!strcmp(this_char,"size")) {
3306                        unsigned long long size;
3307                        size = memparse(value,&rest);
3308                        if (*rest == '%') {
3309                                size <<= PAGE_SHIFT;
3310                                size *= totalram_pages();
3311                                do_div(size, 100);
3312                                rest++;
3313                        }
3314                        if (*rest)
3315                                goto bad_val;
3316                        sbinfo->max_blocks =
3317                                DIV_ROUND_UP(size, PAGE_SIZE);
3318                } else if (!strcmp(this_char,"nr_blocks")) {
3319                        sbinfo->max_blocks = memparse(value, &rest);
3320                        if (*rest)
3321                                goto bad_val;
3322                } else if (!strcmp(this_char,"nr_inodes")) {
3323                        sbinfo->max_inodes = memparse(value, &rest);
3324                        if (*rest)
3325                                goto bad_val;
3326                } else if (!strcmp(this_char,"mode")) {
3327                        if (remount)
3328                                continue;
3329                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3330                        if (*rest)
3331                                goto bad_val;
3332                } else if (!strcmp(this_char,"uid")) {
3333                        if (remount)
3334                                continue;
3335                        uid = simple_strtoul(value, &rest, 0);
3336                        if (*rest)
3337                                goto bad_val;
3338                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3339                        if (!uid_valid(sbinfo->uid))
3340                                goto bad_val;
3341                } else if (!strcmp(this_char,"gid")) {
3342                        if (remount)
3343                                continue;
3344                        gid = simple_strtoul(value, &rest, 0);
3345                        if (*rest)
3346                                goto bad_val;
3347                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3348                        if (!gid_valid(sbinfo->gid))
3349                                goto bad_val;
3350#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3351                } else if (!strcmp(this_char, "huge")) {
3352                        int huge;
3353                        huge = shmem_parse_huge(value);
3354                        if (huge < 0)
3355                                goto bad_val;
3356                        if (!has_transparent_hugepage() &&
3357                                        huge != SHMEM_HUGE_NEVER)
3358                                goto bad_val;
3359                        sbinfo->huge = huge;
3360#endif
3361#ifdef CONFIG_NUMA
3362                } else if (!strcmp(this_char,"mpol")) {
3363                        mpol_put(mpol);
3364                        mpol = NULL;
3365                        if (mpol_parse_str(value, &mpol))
3366                                goto bad_val;
3367#endif
3368                } else {
3369                        pr_err("tmpfs: Bad mount option %s\n", this_char);
3370                        goto error;
3371                }
3372        }
3373        sbinfo->mpol = mpol;
3374        return 0;
3375
3376bad_val:
3377        pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3378               value, this_char);
3379error:
3380        mpol_put(mpol);
3381        return 1;
3382
3383}
3384
3385static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3386{
3387        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3388        struct shmem_sb_info config = *sbinfo;
3389        unsigned long inodes;
3390        int error = -EINVAL;
3391
3392        config.mpol = NULL;
3393        if (shmem_parse_options(data, &config, true))
3394                return error;
3395
3396        spin_lock(&sbinfo->stat_lock);
3397        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3398        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3399                goto out;
3400        if (config.max_inodes < inodes)
3401                goto out;
3402        /*
3403         * Those tests disallow limited->unlimited while any are in use;
3404         * but we must separately disallow unlimited->limited, because
3405         * in that case we have no record of how much is already in use.
3406         */
3407        if (config.max_blocks && !sbinfo->max_blocks)
3408                goto out;
3409        if (config.max_inodes && !sbinfo->max_inodes)
3410                goto out;
3411
3412        error = 0;
3413        sbinfo->huge = config.huge;
3414        sbinfo->max_blocks  = config.max_blocks;
3415        sbinfo->max_inodes  = config.max_inodes;
3416        sbinfo->free_inodes = config.max_inodes - inodes;
3417
3418        /*
3419         * Preserve previous mempolicy unless mpol remount option was specified.
3420         */
3421        if (config.mpol) {
3422                mpol_put(sbinfo->mpol);
3423                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3424        }
3425out:
3426        spin_unlock(&sbinfo->stat_lock);
3427        return error;
3428}
3429
3430static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3431{
3432        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3433
3434        if (sbinfo->max_blocks != shmem_default_max_blocks())
3435                seq_printf(seq, ",size=%luk",
3436                        sbinfo->max_blocks << (PAGE_SHIFT - 10));
3437        if (sbinfo->max_inodes != shmem_default_max_inodes())
3438                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3439        if (sbinfo->mode != (0777 | S_ISVTX))
3440                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3441        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3442                seq_printf(seq, ",uid=%u",
3443                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3444        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3445                seq_printf(seq, ",gid=%u",
3446                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3447#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3448        /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3449        if (sbinfo->huge)
3450                seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3451#endif
3452        shmem_show_mpol(seq, sbinfo->mpol);
3453        return 0;
3454}
3455
3456#endif /* CONFIG_TMPFS */
3457
3458static void shmem_put_super(struct super_block *sb)
3459{
3460        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3461
3462        percpu_counter_destroy(&sbinfo->used_blocks);
3463        mpol_put(sbinfo->mpol);
3464        kfree(sbinfo);
3465        sb->s_fs_info = NULL;
3466}
3467
3468int shmem_fill_super(struct super_block *sb, void *data, int silent)
3469{
3470        struct inode *inode;
3471        struct shmem_sb_info *sbinfo;
3472        int err = -ENOMEM;
3473
3474        /* Round up to L1_CACHE_BYTES to resist false sharing */
3475        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3476                                L1_CACHE_BYTES), GFP_KERNEL);
3477        if (!sbinfo)
3478                return -ENOMEM;
3479
3480        sbinfo->mode = 0777 | S_ISVTX;
3481        sbinfo->uid = current_fsuid();
3482        sbinfo->gid = current_fsgid();
3483        sb->s_fs_info = sbinfo;
3484
3485#ifdef CONFIG_TMPFS
3486        /*
3487         * Per default we only allow half of the physical ram per
3488         * tmpfs instance, limiting inodes to one per page of lowmem;
3489         * but the internal instance is left unlimited.
3490         */
3491        if (!(sb->s_flags & SB_KERNMOUNT)) {
3492                sbinfo->max_blocks = shmem_default_max_blocks();
3493                sbinfo->max_inodes = shmem_default_max_inodes();
3494                if (shmem_parse_options(data, sbinfo, false)) {
3495                        err = -EINVAL;
3496                        goto failed;
3497                }
3498        } else {
3499                sb->s_flags |= SB_NOUSER;
3500        }
3501        sb->s_export_op = &shmem_export_ops;
3502        sb->s_flags |= SB_NOSEC;
3503#else
3504        sb->s_flags |= SB_NOUSER;
3505#endif
3506
3507        spin_lock_init(&sbinfo->stat_lock);
3508        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3509                goto failed;
3510        sbinfo->free_inodes = sbinfo->max_inodes;
3511        spin_lock_init(&sbinfo->shrinklist_lock);
3512        INIT_LIST_HEAD(&sbinfo->shrinklist);
3513
3514        sb->s_maxbytes = MAX_LFS_FILESIZE;
3515        sb->s_blocksize = PAGE_SIZE;
3516        sb->s_blocksize_bits = PAGE_SHIFT;
3517        sb->s_magic = TMPFS_MAGIC;
3518        sb->s_op = &shmem_ops;
3519        sb->s_time_gran = 1;
3520#ifdef CONFIG_TMPFS_XATTR
3521        sb->s_xattr = shmem_xattr_handlers;
3522#endif
3523#ifdef CONFIG_TMPFS_POSIX_ACL
3524        sb->s_flags |= SB_POSIXACL;
3525#endif
3526        uuid_gen(&sb->s_uuid);
3527
3528        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3529        if (!inode)
3530                goto failed;
3531        inode->i_uid = sbinfo->uid;
3532        inode->i_gid = sbinfo->gid;
3533        sb->s_root = d_make_root(inode);
3534        if (!sb->s_root)
3535                goto failed;
3536        return 0;
3537
3538failed:
3539        shmem_put_super(sb);
3540        return err;
3541}
3542
3543static struct kmem_cache *shmem_inode_cachep;
3544
3545static struct inode *shmem_alloc_inode(struct super_block *sb)
3546{
3547        struct shmem_inode_info *info;
3548        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3549        if (!info)
3550                return NULL;
3551        return &info->vfs_inode;
3552}
3553
3554static void shmem_destroy_callback(struct rcu_head *head)
3555{
3556        struct inode *inode = container_of(head, struct inode, i_rcu);
3557        if (S_ISLNK(inode->i_mode))
3558                kfree(inode->i_link);
3559        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3560}
3561
3562static void shmem_destroy_inode(struct inode *inode)
3563{
3564        if (S_ISREG(inode->i_mode))
3565                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3566        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3567}
3568
3569static void shmem_init_inode(void *foo)
3570{
3571        struct shmem_inode_info *info = foo;
3572        inode_init_once(&info->vfs_inode);
3573}
3574
3575static void shmem_init_inodecache(void)
3576{
3577        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3578                                sizeof(struct shmem_inode_info),
3579                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3580}
3581
3582static void shmem_destroy_inodecache(void)
3583{
3584        kmem_cache_destroy(shmem_inode_cachep);
3585}
3586
3587static const struct address_space_operations shmem_aops = {
3588        .writepage      = shmem_writepage,
3589        .set_page_dirty = __set_page_dirty_no_writeback,
3590#ifdef CONFIG_TMPFS
3591        .write_begin    = shmem_write_begin,
3592        .write_end      = shmem_write_end,
3593#endif
3594#ifdef CONFIG_MIGRATION
3595        .migratepage    = migrate_page,
3596#endif
3597        .error_remove_page = generic_error_remove_page,
3598};
3599
3600static const struct file_operations shmem_file_operations = {
3601        .mmap           = shmem_mmap,
3602        .get_unmapped_area = shmem_get_unmapped_area,
3603#ifdef CONFIG_TMPFS
3604        .llseek         = shmem_file_llseek,
3605        .read_iter      = shmem_file_read_iter,
3606        .write_iter     = generic_file_write_iter,
3607        .fsync          = noop_fsync,
3608        .splice_read    = generic_file_splice_read,
3609        .splice_write   = iter_file_splice_write,
3610        .fallocate      = shmem_fallocate,
3611#endif
3612};
3613
3614static const struct inode_operations shmem_inode_operations = {
3615        .getattr        = shmem_getattr,
3616        .setattr        = shmem_setattr,
3617#ifdef CONFIG_TMPFS_XATTR
3618        .listxattr      = shmem_listxattr,
3619        .set_acl        = simple_set_acl,
3620#endif
3621};
3622
3623static const struct inode_operations shmem_dir_inode_operations = {
3624#ifdef CONFIG_TMPFS
3625        .create         = shmem_create,
3626        .lookup         = simple_lookup,
3627        .link           = shmem_link,
3628        .unlink         = shmem_unlink,
3629        .symlink        = shmem_symlink,
3630        .mkdir          = shmem_mkdir,
3631        .rmdir          = shmem_rmdir,
3632        .mknod          = shmem_mknod,
3633        .rename         = shmem_rename2,
3634        .tmpfile        = shmem_tmpfile,
3635#endif
3636#ifdef CONFIG_TMPFS_XATTR
3637        .listxattr      = shmem_listxattr,
3638#endif
3639#ifdef CONFIG_TMPFS_POSIX_ACL
3640        .setattr        = shmem_setattr,
3641        .set_acl        = simple_set_acl,
3642#endif
3643};
3644
3645static const struct inode_operations shmem_special_inode_operations = {
3646#ifdef CONFIG_TMPFS_XATTR
3647        .listxattr      = shmem_listxattr,
3648#endif
3649#ifdef CONFIG_TMPFS_POSIX_ACL
3650        .setattr        = shmem_setattr,
3651        .set_acl        = simple_set_acl,
3652#endif
3653};
3654
3655static const struct super_operations shmem_ops = {
3656        .alloc_inode    = shmem_alloc_inode,
3657        .destroy_inode  = shmem_destroy_inode,
3658#ifdef CONFIG_TMPFS
3659        .statfs         = shmem_statfs,
3660        .remount_fs     = shmem_remount_fs,
3661        .show_options   = shmem_show_options,
3662#endif
3663        .evict_inode    = shmem_evict_inode,
3664        .drop_inode     = generic_delete_inode,
3665        .put_super      = shmem_put_super,
3666#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3667        .nr_cached_objects      = shmem_unused_huge_count,
3668        .free_cached_objects    = shmem_unused_huge_scan,
3669#endif
3670};
3671
3672static const struct vm_operations_struct shmem_vm_ops = {
3673        .fault          = shmem_fault,
3674        .map_pages      = filemap_map_pages,
3675#ifdef CONFIG_NUMA
3676        .set_policy     = shmem_set_policy,
3677        .get_policy     = shmem_get_policy,
3678#endif
3679};
3680
3681static struct dentry *shmem_mount(struct file_system_type *fs_type,
3682        int flags, const char *dev_name, void *data)
3683{
3684        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3685}
3686
3687static struct file_system_type shmem_fs_type = {
3688        .owner          = THIS_MODULE,
3689        .name           = "tmpfs",
3690        .mount          = shmem_mount,
3691        .kill_sb        = kill_litter_super,
3692        .fs_flags       = FS_USERNS_MOUNT,
3693};
3694
3695int __init shmem_init(void)
3696{
3697        int error;
3698
3699        /* If rootfs called this, don't re-init */
3700        if (shmem_inode_cachep)
3701                return 0;
3702
3703        shmem_init_inodecache();
3704
3705        error = register_filesystem(&shmem_fs_type);
3706        if (error) {
3707                pr_err("Could not register tmpfs\n");
3708                goto out2;
3709        }
3710
3711        shm_mnt = kern_mount(&shmem_fs_type);
3712        if (IS_ERR(shm_mnt)) {
3713                error = PTR_ERR(shm_mnt);
3714                pr_err("Could not kern_mount tmpfs\n");
3715                goto out1;
3716        }
3717
3718#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3719        if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3720                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3721        else
3722                shmem_huge = 0; /* just in case it was patched */
3723#endif
3724        return 0;
3725
3726out1:
3727        unregister_filesystem(&shmem_fs_type);
3728out2:
3729        shmem_destroy_inodecache();
3730        shm_mnt = ERR_PTR(error);
3731        return error;
3732}
3733
3734#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3735static ssize_t shmem_enabled_show(struct kobject *kobj,
3736                struct kobj_attribute *attr, char *buf)
3737{
3738        int values[] = {
3739                SHMEM_HUGE_ALWAYS,
3740                SHMEM_HUGE_WITHIN_SIZE,
3741                SHMEM_HUGE_ADVISE,
3742                SHMEM_HUGE_NEVER,
3743                SHMEM_HUGE_DENY,
3744                SHMEM_HUGE_FORCE,
3745        };
3746        int i, count;
3747
3748        for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3749                const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3750
3751                count += sprintf(buf + count, fmt,
3752                                shmem_format_huge(values[i]));
3753        }
3754        buf[count - 1] = '\n';
3755        return count;
3756}
3757
3758static ssize_t shmem_enabled_store(struct kobject *kobj,
3759                struct kobj_attribute *attr, const char *buf, size_t count)
3760{
3761        char tmp[16];
3762        int huge;
3763
3764        if (count + 1 > sizeof(tmp))
3765                return -EINVAL;
3766        memcpy(tmp, buf, count);
3767        tmp[count] = '\0';
3768        if (count && tmp[count - 1] == '\n')
3769                tmp[count - 1] = '\0';
3770
3771        huge = shmem_parse_huge(tmp);
3772        if (huge == -EINVAL)
3773                return -EINVAL;
3774        if (!has_transparent_hugepage() &&
3775                        huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3776                return -EINVAL;
3777
3778        shmem_huge = huge;
3779        if (shmem_huge > SHMEM_HUGE_DENY)
3780                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3781        return count;
3782}
3783
3784struct kobj_attribute shmem_enabled_attr =
3785        __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3786#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3787
3788#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3789bool shmem_huge_enabled(struct vm_area_struct *vma)
3790{
3791        struct inode *inode = file_inode(vma->vm_file);
3792        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3793        loff_t i_size;
3794        pgoff_t off;
3795
3796        if (shmem_huge == SHMEM_HUGE_FORCE)
3797                return true;
3798        if (shmem_huge == SHMEM_HUGE_DENY)
3799                return false;
3800        switch (sbinfo->huge) {
3801                case SHMEM_HUGE_NEVER:
3802                        return false;
3803                case SHMEM_HUGE_ALWAYS:
3804                        return true;
3805                case SHMEM_HUGE_WITHIN_SIZE:
3806                        off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3807                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
3808                        if (i_size >= HPAGE_PMD_SIZE &&
3809                                        i_size >> PAGE_SHIFT >= off)
3810                                return true;
3811                        /* fall through */
3812                case SHMEM_HUGE_ADVISE:
3813                        /* TODO: implement fadvise() hints */
3814                        return (vma->vm_flags & VM_HUGEPAGE);
3815                default:
3816                        VM_BUG_ON(1);
3817                        return false;
3818        }
3819}
3820#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3821
3822#else /* !CONFIG_SHMEM */
3823
3824/*
3825 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3826 *
3827 * This is intended for small system where the benefits of the full
3828 * shmem code (swap-backed and resource-limited) are outweighed by
3829 * their complexity. On systems without swap this code should be
3830 * effectively equivalent, but much lighter weight.
3831 */
3832
3833static struct file_system_type shmem_fs_type = {
3834        .name           = "tmpfs",
3835        .mount          = ramfs_mount,
3836        .kill_sb        = kill_litter_super,
3837        .fs_flags       = FS_USERNS_MOUNT,
3838};
3839
3840int __init shmem_init(void)
3841{
3842        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3843
3844        shm_mnt = kern_mount(&shmem_fs_type);
3845        BUG_ON(IS_ERR(shm_mnt));
3846
3847        return 0;
3848}
3849
3850int shmem_unuse(swp_entry_t swap, struct page *page)
3851{
3852        return 0;
3853}
3854
3855int shmem_lock(struct file *file, int lock, struct user_struct *user)
3856{
3857        return 0;
3858}
3859
3860void shmem_unlock_mapping(struct address_space *mapping)
3861{
3862}
3863
3864#ifdef CONFIG_MMU
3865unsigned long shmem_get_unmapped_area(struct file *file,
3866                                      unsigned long addr, unsigned long len,
3867                                      unsigned long pgoff, unsigned long flags)
3868{
3869        return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3870}
3871#endif
3872
3873void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3874{
3875        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3876}
3877EXPORT_SYMBOL_GPL(shmem_truncate_range);
3878
3879#define shmem_vm_ops                            generic_file_vm_ops
3880#define shmem_file_operations                   ramfs_file_operations
3881#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3882#define shmem_acct_size(flags, size)            0
3883#define shmem_unacct_size(flags, size)          do {} while (0)
3884
3885#endif /* CONFIG_SHMEM */
3886
3887/* common code */
3888
3889static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3890                                       unsigned long flags, unsigned int i_flags)
3891{
3892        struct inode *inode;
3893        struct file *res;
3894
3895        if (IS_ERR(mnt))
3896                return ERR_CAST(mnt);
3897
3898        if (size < 0 || size > MAX_LFS_FILESIZE)
3899                return ERR_PTR(-EINVAL);
3900
3901        if (shmem_acct_size(flags, size))
3902                return ERR_PTR(-ENOMEM);
3903
3904        inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3905                                flags);
3906        if (unlikely(!inode)) {
3907                shmem_unacct_size(flags, size);
3908                return ERR_PTR(-ENOSPC);
3909        }
3910        inode->i_flags |= i_flags;
3911        inode->i_size = size;
3912        clear_nlink(inode);     /* It is unlinked */
3913        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3914        if (!IS_ERR(res))
3915                res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3916                                &shmem_file_operations);
3917        if (IS_ERR(res))
3918                iput(inode);
3919        return res;
3920}
3921
3922/**
3923 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3924 *      kernel internal.  There will be NO LSM permission checks against the
3925 *      underlying inode.  So users of this interface must do LSM checks at a
3926 *      higher layer.  The users are the big_key and shm implementations.  LSM
3927 *      checks are provided at the key or shm level rather than the inode.
3928 * @name: name for dentry (to be seen in /proc/<pid>/maps
3929 * @size: size to be set for the file
3930 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3931 */
3932struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3933{
3934        return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3935}
3936
3937/**
3938 * shmem_file_setup - get an unlinked file living in tmpfs
3939 * @name: name for dentry (to be seen in /proc/<pid>/maps
3940 * @size: size to be set for the file
3941 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3942 */
3943struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3944{
3945        return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3946}
3947EXPORT_SYMBOL_GPL(shmem_file_setup);
3948
3949/**
3950 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3951 * @mnt: the tmpfs mount where the file will be created
3952 * @name: name for dentry (to be seen in /proc/<pid>/maps
3953 * @size: size to be set for the file
3954 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3955 */
3956struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3957                                       loff_t size, unsigned long flags)
3958{
3959        return __shmem_file_setup(mnt, name, size, flags, 0);
3960}
3961EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3962
3963/**
3964 * shmem_zero_setup - setup a shared anonymous mapping
3965 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3966 */
3967int shmem_zero_setup(struct vm_area_struct *vma)
3968{
3969        struct file *file;
3970        loff_t size = vma->vm_end - vma->vm_start;
3971
3972        /*
3973         * Cloning a new file under mmap_sem leads to a lock ordering conflict
3974         * between XFS directory reading and selinux: since this file is only
3975         * accessible to the user through its mapping, use S_PRIVATE flag to
3976         * bypass file security, in the same way as shmem_kernel_file_setup().
3977         */
3978        file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3979        if (IS_ERR(file))
3980                return PTR_ERR(file);
3981
3982        if (vma->vm_file)
3983                fput(vma->vm_file);
3984        vma->vm_file = file;
3985        vma->vm_ops = &shmem_vm_ops;
3986
3987        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3988                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3989                        (vma->vm_end & HPAGE_PMD_MASK)) {
3990                khugepaged_enter(vma, vma->vm_flags);
3991        }
3992
3993        return 0;
3994}
3995
3996/**
3997 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3998 * @mapping:    the page's address_space
3999 * @index:      the page index
4000 * @gfp:        the page allocator flags to use if allocating
4001 *
4002 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4003 * with any new page allocations done using the specified allocation flags.
4004 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4005 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4006 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4007 *
4008 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4009 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4010 */
4011struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4012                                         pgoff_t index, gfp_t gfp)
4013{
4014#ifdef CONFIG_SHMEM
4015        struct inode *inode = mapping->host;
4016        struct page *page;
4017        int error;
4018
4019        BUG_ON(mapping->a_ops != &shmem_aops);
4020        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4021                                  gfp, NULL, NULL, NULL);
4022        if (error)
4023                page = ERR_PTR(error);
4024        else
4025                unlock_page(page);
4026        return page;
4027#else
4028        /*
4029         * The tiny !SHMEM case uses ramfs without swap
4030         */
4031        return read_cache_page_gfp(mapping, index, gfp);
4032#endif
4033}
4034EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4035