linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/skbuff.h>
  97#include <linux/bpf.h>
  98#include <linux/bpf_trace.h>
  99#include <net/net_namespace.h>
 100#include <net/sock.h>
 101#include <net/busy_poll.h>
 102#include <linux/rtnetlink.h>
 103#include <linux/stat.h>
 104#include <net/dst.h>
 105#include <net/dst_metadata.h>
 106#include <net/pkt_sched.h>
 107#include <net/pkt_cls.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <linux/pci.h>
 135#include <linux/inetdevice.h>
 136#include <linux/cpu_rmap.h>
 137#include <linux/static_key.h>
 138#include <linux/hashtable.h>
 139#include <linux/vmalloc.h>
 140#include <linux/if_macvlan.h>
 141#include <linux/errqueue.h>
 142#include <linux/hrtimer.h>
 143#include <linux/netfilter_ingress.h>
 144#include <linux/crash_dump.h>
 145#include <linux/sctp.h>
 146#include <net/udp_tunnel.h>
 147#include <linux/net_namespace.h>
 148#include <linux/indirect_call_wrapper.h>
 149
 150#include "net-sysfs.h"
 151
 152#define MAX_GRO_SKBS 8
 153
 154/* This should be increased if a protocol with a bigger head is added. */
 155#define GRO_MAX_HEAD (MAX_HEADER + 128)
 156
 157static DEFINE_SPINLOCK(ptype_lock);
 158static DEFINE_SPINLOCK(offload_lock);
 159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 160struct list_head ptype_all __read_mostly;       /* Taps */
 161static struct list_head offload_base __read_mostly;
 162
 163static int netif_rx_internal(struct sk_buff *skb);
 164static int call_netdevice_notifiers_info(unsigned long val,
 165                                         struct netdev_notifier_info *info);
 166static int call_netdevice_notifiers_extack(unsigned long val,
 167                                           struct net_device *dev,
 168                                           struct netlink_ext_ack *extack);
 169static struct napi_struct *napi_by_id(unsigned int napi_id);
 170
 171/*
 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 173 * semaphore.
 174 *
 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 176 *
 177 * Writers must hold the rtnl semaphore while they loop through the
 178 * dev_base_head list, and hold dev_base_lock for writing when they do the
 179 * actual updates.  This allows pure readers to access the list even
 180 * while a writer is preparing to update it.
 181 *
 182 * To put it another way, dev_base_lock is held for writing only to
 183 * protect against pure readers; the rtnl semaphore provides the
 184 * protection against other writers.
 185 *
 186 * See, for example usages, register_netdevice() and
 187 * unregister_netdevice(), which must be called with the rtnl
 188 * semaphore held.
 189 */
 190DEFINE_RWLOCK(dev_base_lock);
 191EXPORT_SYMBOL(dev_base_lock);
 192
 193static DEFINE_MUTEX(ifalias_mutex);
 194
 195/* protects napi_hash addition/deletion and napi_gen_id */
 196static DEFINE_SPINLOCK(napi_hash_lock);
 197
 198static unsigned int napi_gen_id = NR_CPUS;
 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 200
 201static seqcount_t devnet_rename_seq;
 202
 203static inline void dev_base_seq_inc(struct net *net)
 204{
 205        while (++net->dev_base_seq == 0)
 206                ;
 207}
 208
 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 210{
 211        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 212
 213        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 214}
 215
 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 217{
 218        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 219}
 220
 221static inline void rps_lock(struct softnet_data *sd)
 222{
 223#ifdef CONFIG_RPS
 224        spin_lock(&sd->input_pkt_queue.lock);
 225#endif
 226}
 227
 228static inline void rps_unlock(struct softnet_data *sd)
 229{
 230#ifdef CONFIG_RPS
 231        spin_unlock(&sd->input_pkt_queue.lock);
 232#endif
 233}
 234
 235/* Device list insertion */
 236static void list_netdevice(struct net_device *dev)
 237{
 238        struct net *net = dev_net(dev);
 239
 240        ASSERT_RTNL();
 241
 242        write_lock_bh(&dev_base_lock);
 243        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 244        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 245        hlist_add_head_rcu(&dev->index_hlist,
 246                           dev_index_hash(net, dev->ifindex));
 247        write_unlock_bh(&dev_base_lock);
 248
 249        dev_base_seq_inc(net);
 250}
 251
 252/* Device list removal
 253 * caller must respect a RCU grace period before freeing/reusing dev
 254 */
 255static void unlist_netdevice(struct net_device *dev)
 256{
 257        ASSERT_RTNL();
 258
 259        /* Unlink dev from the device chain */
 260        write_lock_bh(&dev_base_lock);
 261        list_del_rcu(&dev->dev_list);
 262        hlist_del_rcu(&dev->name_hlist);
 263        hlist_del_rcu(&dev->index_hlist);
 264        write_unlock_bh(&dev_base_lock);
 265
 266        dev_base_seq_inc(dev_net(dev));
 267}
 268
 269/*
 270 *      Our notifier list
 271 */
 272
 273static RAW_NOTIFIER_HEAD(netdev_chain);
 274
 275/*
 276 *      Device drivers call our routines to queue packets here. We empty the
 277 *      queue in the local softnet handler.
 278 */
 279
 280DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 281EXPORT_PER_CPU_SYMBOL(softnet_data);
 282
 283#ifdef CONFIG_LOCKDEP
 284/*
 285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 286 * according to dev->type
 287 */
 288static const unsigned short netdev_lock_type[] = {
 289         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 290         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 291         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 292         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 293         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 294         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 295         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 296         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 297         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 298         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 299         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 300         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 301         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 302         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 303         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 304
 305static const char *const netdev_lock_name[] = {
 306        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 307        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 308        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 309        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 310        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 311        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 312        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 313        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 314        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 315        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 316        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 317        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 318        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 319        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 320        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 321
 322static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 323static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 324
 325static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 326{
 327        int i;
 328
 329        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 330                if (netdev_lock_type[i] == dev_type)
 331                        return i;
 332        /* the last key is used by default */
 333        return ARRAY_SIZE(netdev_lock_type) - 1;
 334}
 335
 336static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 337                                                 unsigned short dev_type)
 338{
 339        int i;
 340
 341        i = netdev_lock_pos(dev_type);
 342        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 343                                   netdev_lock_name[i]);
 344}
 345
 346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 347{
 348        int i;
 349
 350        i = netdev_lock_pos(dev->type);
 351        lockdep_set_class_and_name(&dev->addr_list_lock,
 352                                   &netdev_addr_lock_key[i],
 353                                   netdev_lock_name[i]);
 354}
 355#else
 356static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 357                                                 unsigned short dev_type)
 358{
 359}
 360static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 361{
 362}
 363#endif
 364
 365/*******************************************************************************
 366 *
 367 *              Protocol management and registration routines
 368 *
 369 *******************************************************************************/
 370
 371
 372/*
 373 *      Add a protocol ID to the list. Now that the input handler is
 374 *      smarter we can dispense with all the messy stuff that used to be
 375 *      here.
 376 *
 377 *      BEWARE!!! Protocol handlers, mangling input packets,
 378 *      MUST BE last in hash buckets and checking protocol handlers
 379 *      MUST start from promiscuous ptype_all chain in net_bh.
 380 *      It is true now, do not change it.
 381 *      Explanation follows: if protocol handler, mangling packet, will
 382 *      be the first on list, it is not able to sense, that packet
 383 *      is cloned and should be copied-on-write, so that it will
 384 *      change it and subsequent readers will get broken packet.
 385 *                                                      --ANK (980803)
 386 */
 387
 388static inline struct list_head *ptype_head(const struct packet_type *pt)
 389{
 390        if (pt->type == htons(ETH_P_ALL))
 391                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 392        else
 393                return pt->dev ? &pt->dev->ptype_specific :
 394                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 395}
 396
 397/**
 398 *      dev_add_pack - add packet handler
 399 *      @pt: packet type declaration
 400 *
 401 *      Add a protocol handler to the networking stack. The passed &packet_type
 402 *      is linked into kernel lists and may not be freed until it has been
 403 *      removed from the kernel lists.
 404 *
 405 *      This call does not sleep therefore it can not
 406 *      guarantee all CPU's that are in middle of receiving packets
 407 *      will see the new packet type (until the next received packet).
 408 */
 409
 410void dev_add_pack(struct packet_type *pt)
 411{
 412        struct list_head *head = ptype_head(pt);
 413
 414        spin_lock(&ptype_lock);
 415        list_add_rcu(&pt->list, head);
 416        spin_unlock(&ptype_lock);
 417}
 418EXPORT_SYMBOL(dev_add_pack);
 419
 420/**
 421 *      __dev_remove_pack        - remove packet handler
 422 *      @pt: packet type declaration
 423 *
 424 *      Remove a protocol handler that was previously added to the kernel
 425 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 426 *      from the kernel lists and can be freed or reused once this function
 427 *      returns.
 428 *
 429 *      The packet type might still be in use by receivers
 430 *      and must not be freed until after all the CPU's have gone
 431 *      through a quiescent state.
 432 */
 433void __dev_remove_pack(struct packet_type *pt)
 434{
 435        struct list_head *head = ptype_head(pt);
 436        struct packet_type *pt1;
 437
 438        spin_lock(&ptype_lock);
 439
 440        list_for_each_entry(pt1, head, list) {
 441                if (pt == pt1) {
 442                        list_del_rcu(&pt->list);
 443                        goto out;
 444                }
 445        }
 446
 447        pr_warn("dev_remove_pack: %p not found\n", pt);
 448out:
 449        spin_unlock(&ptype_lock);
 450}
 451EXPORT_SYMBOL(__dev_remove_pack);
 452
 453/**
 454 *      dev_remove_pack  - remove packet handler
 455 *      @pt: packet type declaration
 456 *
 457 *      Remove a protocol handler that was previously added to the kernel
 458 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 459 *      from the kernel lists and can be freed or reused once this function
 460 *      returns.
 461 *
 462 *      This call sleeps to guarantee that no CPU is looking at the packet
 463 *      type after return.
 464 */
 465void dev_remove_pack(struct packet_type *pt)
 466{
 467        __dev_remove_pack(pt);
 468
 469        synchronize_net();
 470}
 471EXPORT_SYMBOL(dev_remove_pack);
 472
 473
 474/**
 475 *      dev_add_offload - register offload handlers
 476 *      @po: protocol offload declaration
 477 *
 478 *      Add protocol offload handlers to the networking stack. The passed
 479 *      &proto_offload is linked into kernel lists and may not be freed until
 480 *      it has been removed from the kernel lists.
 481 *
 482 *      This call does not sleep therefore it can not
 483 *      guarantee all CPU's that are in middle of receiving packets
 484 *      will see the new offload handlers (until the next received packet).
 485 */
 486void dev_add_offload(struct packet_offload *po)
 487{
 488        struct packet_offload *elem;
 489
 490        spin_lock(&offload_lock);
 491        list_for_each_entry(elem, &offload_base, list) {
 492                if (po->priority < elem->priority)
 493                        break;
 494        }
 495        list_add_rcu(&po->list, elem->list.prev);
 496        spin_unlock(&offload_lock);
 497}
 498EXPORT_SYMBOL(dev_add_offload);
 499
 500/**
 501 *      __dev_remove_offload     - remove offload handler
 502 *      @po: packet offload declaration
 503 *
 504 *      Remove a protocol offload handler that was previously added to the
 505 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 506 *      is removed from the kernel lists and can be freed or reused once this
 507 *      function returns.
 508 *
 509 *      The packet type might still be in use by receivers
 510 *      and must not be freed until after all the CPU's have gone
 511 *      through a quiescent state.
 512 */
 513static void __dev_remove_offload(struct packet_offload *po)
 514{
 515        struct list_head *head = &offload_base;
 516        struct packet_offload *po1;
 517
 518        spin_lock(&offload_lock);
 519
 520        list_for_each_entry(po1, head, list) {
 521                if (po == po1) {
 522                        list_del_rcu(&po->list);
 523                        goto out;
 524                }
 525        }
 526
 527        pr_warn("dev_remove_offload: %p not found\n", po);
 528out:
 529        spin_unlock(&offload_lock);
 530}
 531
 532/**
 533 *      dev_remove_offload       - remove packet offload handler
 534 *      @po: packet offload declaration
 535 *
 536 *      Remove a packet offload handler that was previously added to the kernel
 537 *      offload handlers by dev_add_offload(). The passed &offload_type is
 538 *      removed from the kernel lists and can be freed or reused once this
 539 *      function returns.
 540 *
 541 *      This call sleeps to guarantee that no CPU is looking at the packet
 542 *      type after return.
 543 */
 544void dev_remove_offload(struct packet_offload *po)
 545{
 546        __dev_remove_offload(po);
 547
 548        synchronize_net();
 549}
 550EXPORT_SYMBOL(dev_remove_offload);
 551
 552/******************************************************************************
 553 *
 554 *                    Device Boot-time Settings Routines
 555 *
 556 ******************************************************************************/
 557
 558/* Boot time configuration table */
 559static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 560
 561/**
 562 *      netdev_boot_setup_add   - add new setup entry
 563 *      @name: name of the device
 564 *      @map: configured settings for the device
 565 *
 566 *      Adds new setup entry to the dev_boot_setup list.  The function
 567 *      returns 0 on error and 1 on success.  This is a generic routine to
 568 *      all netdevices.
 569 */
 570static int netdev_boot_setup_add(char *name, struct ifmap *map)
 571{
 572        struct netdev_boot_setup *s;
 573        int i;
 574
 575        s = dev_boot_setup;
 576        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 577                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 578                        memset(s[i].name, 0, sizeof(s[i].name));
 579                        strlcpy(s[i].name, name, IFNAMSIZ);
 580                        memcpy(&s[i].map, map, sizeof(s[i].map));
 581                        break;
 582                }
 583        }
 584
 585        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 586}
 587
 588/**
 589 * netdev_boot_setup_check      - check boot time settings
 590 * @dev: the netdevice
 591 *
 592 * Check boot time settings for the device.
 593 * The found settings are set for the device to be used
 594 * later in the device probing.
 595 * Returns 0 if no settings found, 1 if they are.
 596 */
 597int netdev_boot_setup_check(struct net_device *dev)
 598{
 599        struct netdev_boot_setup *s = dev_boot_setup;
 600        int i;
 601
 602        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 603                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 604                    !strcmp(dev->name, s[i].name)) {
 605                        dev->irq = s[i].map.irq;
 606                        dev->base_addr = s[i].map.base_addr;
 607                        dev->mem_start = s[i].map.mem_start;
 608                        dev->mem_end = s[i].map.mem_end;
 609                        return 1;
 610                }
 611        }
 612        return 0;
 613}
 614EXPORT_SYMBOL(netdev_boot_setup_check);
 615
 616
 617/**
 618 * netdev_boot_base     - get address from boot time settings
 619 * @prefix: prefix for network device
 620 * @unit: id for network device
 621 *
 622 * Check boot time settings for the base address of device.
 623 * The found settings are set for the device to be used
 624 * later in the device probing.
 625 * Returns 0 if no settings found.
 626 */
 627unsigned long netdev_boot_base(const char *prefix, int unit)
 628{
 629        const struct netdev_boot_setup *s = dev_boot_setup;
 630        char name[IFNAMSIZ];
 631        int i;
 632
 633        sprintf(name, "%s%d", prefix, unit);
 634
 635        /*
 636         * If device already registered then return base of 1
 637         * to indicate not to probe for this interface
 638         */
 639        if (__dev_get_by_name(&init_net, name))
 640                return 1;
 641
 642        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 643                if (!strcmp(name, s[i].name))
 644                        return s[i].map.base_addr;
 645        return 0;
 646}
 647
 648/*
 649 * Saves at boot time configured settings for any netdevice.
 650 */
 651int __init netdev_boot_setup(char *str)
 652{
 653        int ints[5];
 654        struct ifmap map;
 655
 656        str = get_options(str, ARRAY_SIZE(ints), ints);
 657        if (!str || !*str)
 658                return 0;
 659
 660        /* Save settings */
 661        memset(&map, 0, sizeof(map));
 662        if (ints[0] > 0)
 663                map.irq = ints[1];
 664        if (ints[0] > 1)
 665                map.base_addr = ints[2];
 666        if (ints[0] > 2)
 667                map.mem_start = ints[3];
 668        if (ints[0] > 3)
 669                map.mem_end = ints[4];
 670
 671        /* Add new entry to the list */
 672        return netdev_boot_setup_add(str, &map);
 673}
 674
 675__setup("netdev=", netdev_boot_setup);
 676
 677/*******************************************************************************
 678 *
 679 *                          Device Interface Subroutines
 680 *
 681 *******************************************************************************/
 682
 683/**
 684 *      dev_get_iflink  - get 'iflink' value of a interface
 685 *      @dev: targeted interface
 686 *
 687 *      Indicates the ifindex the interface is linked to.
 688 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 689 */
 690
 691int dev_get_iflink(const struct net_device *dev)
 692{
 693        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 694                return dev->netdev_ops->ndo_get_iflink(dev);
 695
 696        return dev->ifindex;
 697}
 698EXPORT_SYMBOL(dev_get_iflink);
 699
 700/**
 701 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 702 *      @dev: targeted interface
 703 *      @skb: The packet.
 704 *
 705 *      For better visibility of tunnel traffic OVS needs to retrieve
 706 *      egress tunnel information for a packet. Following API allows
 707 *      user to get this info.
 708 */
 709int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 710{
 711        struct ip_tunnel_info *info;
 712
 713        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 714                return -EINVAL;
 715
 716        info = skb_tunnel_info_unclone(skb);
 717        if (!info)
 718                return -ENOMEM;
 719        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 720                return -EINVAL;
 721
 722        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 723}
 724EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 725
 726/**
 727 *      __dev_get_by_name       - find a device by its name
 728 *      @net: the applicable net namespace
 729 *      @name: name to find
 730 *
 731 *      Find an interface by name. Must be called under RTNL semaphore
 732 *      or @dev_base_lock. If the name is found a pointer to the device
 733 *      is returned. If the name is not found then %NULL is returned. The
 734 *      reference counters are not incremented so the caller must be
 735 *      careful with locks.
 736 */
 737
 738struct net_device *__dev_get_by_name(struct net *net, const char *name)
 739{
 740        struct net_device *dev;
 741        struct hlist_head *head = dev_name_hash(net, name);
 742
 743        hlist_for_each_entry(dev, head, name_hlist)
 744                if (!strncmp(dev->name, name, IFNAMSIZ))
 745                        return dev;
 746
 747        return NULL;
 748}
 749EXPORT_SYMBOL(__dev_get_by_name);
 750
 751/**
 752 * dev_get_by_name_rcu  - find a device by its name
 753 * @net: the applicable net namespace
 754 * @name: name to find
 755 *
 756 * Find an interface by name.
 757 * If the name is found a pointer to the device is returned.
 758 * If the name is not found then %NULL is returned.
 759 * The reference counters are not incremented so the caller must be
 760 * careful with locks. The caller must hold RCU lock.
 761 */
 762
 763struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 764{
 765        struct net_device *dev;
 766        struct hlist_head *head = dev_name_hash(net, name);
 767
 768        hlist_for_each_entry_rcu(dev, head, name_hlist)
 769                if (!strncmp(dev->name, name, IFNAMSIZ))
 770                        return dev;
 771
 772        return NULL;
 773}
 774EXPORT_SYMBOL(dev_get_by_name_rcu);
 775
 776/**
 777 *      dev_get_by_name         - find a device by its name
 778 *      @net: the applicable net namespace
 779 *      @name: name to find
 780 *
 781 *      Find an interface by name. This can be called from any
 782 *      context and does its own locking. The returned handle has
 783 *      the usage count incremented and the caller must use dev_put() to
 784 *      release it when it is no longer needed. %NULL is returned if no
 785 *      matching device is found.
 786 */
 787
 788struct net_device *dev_get_by_name(struct net *net, const char *name)
 789{
 790        struct net_device *dev;
 791
 792        rcu_read_lock();
 793        dev = dev_get_by_name_rcu(net, name);
 794        if (dev)
 795                dev_hold(dev);
 796        rcu_read_unlock();
 797        return dev;
 798}
 799EXPORT_SYMBOL(dev_get_by_name);
 800
 801/**
 802 *      __dev_get_by_index - find a device by its ifindex
 803 *      @net: the applicable net namespace
 804 *      @ifindex: index of device
 805 *
 806 *      Search for an interface by index. Returns %NULL if the device
 807 *      is not found or a pointer to the device. The device has not
 808 *      had its reference counter increased so the caller must be careful
 809 *      about locking. The caller must hold either the RTNL semaphore
 810 *      or @dev_base_lock.
 811 */
 812
 813struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 814{
 815        struct net_device *dev;
 816        struct hlist_head *head = dev_index_hash(net, ifindex);
 817
 818        hlist_for_each_entry(dev, head, index_hlist)
 819                if (dev->ifindex == ifindex)
 820                        return dev;
 821
 822        return NULL;
 823}
 824EXPORT_SYMBOL(__dev_get_by_index);
 825
 826/**
 827 *      dev_get_by_index_rcu - find a device by its ifindex
 828 *      @net: the applicable net namespace
 829 *      @ifindex: index of device
 830 *
 831 *      Search for an interface by index. Returns %NULL if the device
 832 *      is not found or a pointer to the device. The device has not
 833 *      had its reference counter increased so the caller must be careful
 834 *      about locking. The caller must hold RCU lock.
 835 */
 836
 837struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 838{
 839        struct net_device *dev;
 840        struct hlist_head *head = dev_index_hash(net, ifindex);
 841
 842        hlist_for_each_entry_rcu(dev, head, index_hlist)
 843                if (dev->ifindex == ifindex)
 844                        return dev;
 845
 846        return NULL;
 847}
 848EXPORT_SYMBOL(dev_get_by_index_rcu);
 849
 850
 851/**
 852 *      dev_get_by_index - find a device by its ifindex
 853 *      @net: the applicable net namespace
 854 *      @ifindex: index of device
 855 *
 856 *      Search for an interface by index. Returns NULL if the device
 857 *      is not found or a pointer to the device. The device returned has
 858 *      had a reference added and the pointer is safe until the user calls
 859 *      dev_put to indicate they have finished with it.
 860 */
 861
 862struct net_device *dev_get_by_index(struct net *net, int ifindex)
 863{
 864        struct net_device *dev;
 865
 866        rcu_read_lock();
 867        dev = dev_get_by_index_rcu(net, ifindex);
 868        if (dev)
 869                dev_hold(dev);
 870        rcu_read_unlock();
 871        return dev;
 872}
 873EXPORT_SYMBOL(dev_get_by_index);
 874
 875/**
 876 *      dev_get_by_napi_id - find a device by napi_id
 877 *      @napi_id: ID of the NAPI struct
 878 *
 879 *      Search for an interface by NAPI ID. Returns %NULL if the device
 880 *      is not found or a pointer to the device. The device has not had
 881 *      its reference counter increased so the caller must be careful
 882 *      about locking. The caller must hold RCU lock.
 883 */
 884
 885struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 886{
 887        struct napi_struct *napi;
 888
 889        WARN_ON_ONCE(!rcu_read_lock_held());
 890
 891        if (napi_id < MIN_NAPI_ID)
 892                return NULL;
 893
 894        napi = napi_by_id(napi_id);
 895
 896        return napi ? napi->dev : NULL;
 897}
 898EXPORT_SYMBOL(dev_get_by_napi_id);
 899
 900/**
 901 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 902 *      @net: network namespace
 903 *      @name: a pointer to the buffer where the name will be stored.
 904 *      @ifindex: the ifindex of the interface to get the name from.
 905 *
 906 *      The use of raw_seqcount_begin() and cond_resched() before
 907 *      retrying is required as we want to give the writers a chance
 908 *      to complete when CONFIG_PREEMPT is not set.
 909 */
 910int netdev_get_name(struct net *net, char *name, int ifindex)
 911{
 912        struct net_device *dev;
 913        unsigned int seq;
 914
 915retry:
 916        seq = raw_seqcount_begin(&devnet_rename_seq);
 917        rcu_read_lock();
 918        dev = dev_get_by_index_rcu(net, ifindex);
 919        if (!dev) {
 920                rcu_read_unlock();
 921                return -ENODEV;
 922        }
 923
 924        strcpy(name, dev->name);
 925        rcu_read_unlock();
 926        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 927                cond_resched();
 928                goto retry;
 929        }
 930
 931        return 0;
 932}
 933
 934/**
 935 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 936 *      @net: the applicable net namespace
 937 *      @type: media type of device
 938 *      @ha: hardware address
 939 *
 940 *      Search for an interface by MAC address. Returns NULL if the device
 941 *      is not found or a pointer to the device.
 942 *      The caller must hold RCU or RTNL.
 943 *      The returned device has not had its ref count increased
 944 *      and the caller must therefore be careful about locking
 945 *
 946 */
 947
 948struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 949                                       const char *ha)
 950{
 951        struct net_device *dev;
 952
 953        for_each_netdev_rcu(net, dev)
 954                if (dev->type == type &&
 955                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 956                        return dev;
 957
 958        return NULL;
 959}
 960EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 961
 962struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 963{
 964        struct net_device *dev;
 965
 966        ASSERT_RTNL();
 967        for_each_netdev(net, dev)
 968                if (dev->type == type)
 969                        return dev;
 970
 971        return NULL;
 972}
 973EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 974
 975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 976{
 977        struct net_device *dev, *ret = NULL;
 978
 979        rcu_read_lock();
 980        for_each_netdev_rcu(net, dev)
 981                if (dev->type == type) {
 982                        dev_hold(dev);
 983                        ret = dev;
 984                        break;
 985                }
 986        rcu_read_unlock();
 987        return ret;
 988}
 989EXPORT_SYMBOL(dev_getfirstbyhwtype);
 990
 991/**
 992 *      __dev_get_by_flags - find any device with given flags
 993 *      @net: the applicable net namespace
 994 *      @if_flags: IFF_* values
 995 *      @mask: bitmask of bits in if_flags to check
 996 *
 997 *      Search for any interface with the given flags. Returns NULL if a device
 998 *      is not found or a pointer to the device. Must be called inside
 999 *      rtnl_lock(), and result refcount is unchanged.
1000 */
1001
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                      unsigned short mask)
1004{
1005        struct net_device *dev, *ret;
1006
1007        ASSERT_RTNL();
1008
1009        ret = NULL;
1010        for_each_netdev(net, dev) {
1011                if (((dev->flags ^ if_flags) & mask) == 0) {
1012                        ret = dev;
1013                        break;
1014                }
1015        }
1016        return ret;
1017}
1018EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020/**
1021 *      dev_valid_name - check if name is okay for network device
1022 *      @name: name string
1023 *
1024 *      Network device names need to be valid file names to
1025 *      to allow sysfs to work.  We also disallow any kind of
1026 *      whitespace.
1027 */
1028bool dev_valid_name(const char *name)
1029{
1030        if (*name == '\0')
1031                return false;
1032        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                return false;
1034        if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                return false;
1036
1037        while (*name) {
1038                if (*name == '/' || *name == ':' || isspace(*name))
1039                        return false;
1040                name++;
1041        }
1042        return true;
1043}
1044EXPORT_SYMBOL(dev_valid_name);
1045
1046/**
1047 *      __dev_alloc_name - allocate a name for a device
1048 *      @net: network namespace to allocate the device name in
1049 *      @name: name format string
1050 *      @buf:  scratch buffer and result name string
1051 *
1052 *      Passed a format string - eg "lt%d" it will try and find a suitable
1053 *      id. It scans list of devices to build up a free map, then chooses
1054 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055 *      while allocating the name and adding the device in order to avoid
1056 *      duplicates.
1057 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 *      Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062{
1063        int i = 0;
1064        const char *p;
1065        const int max_netdevices = 8*PAGE_SIZE;
1066        unsigned long *inuse;
1067        struct net_device *d;
1068
1069        if (!dev_valid_name(name))
1070                return -EINVAL;
1071
1072        p = strchr(name, '%');
1073        if (p) {
1074                /*
1075                 * Verify the string as this thing may have come from
1076                 * the user.  There must be either one "%d" and no other "%"
1077                 * characters.
1078                 */
1079                if (p[1] != 'd' || strchr(p + 2, '%'))
1080                        return -EINVAL;
1081
1082                /* Use one page as a bit array of possible slots */
1083                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                if (!inuse)
1085                        return -ENOMEM;
1086
1087                for_each_netdev(net, d) {
1088                        if (!sscanf(d->name, name, &i))
1089                                continue;
1090                        if (i < 0 || i >= max_netdevices)
1091                                continue;
1092
1093                        /*  avoid cases where sscanf is not exact inverse of printf */
1094                        snprintf(buf, IFNAMSIZ, name, i);
1095                        if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                set_bit(i, inuse);
1097                }
1098
1099                i = find_first_zero_bit(inuse, max_netdevices);
1100                free_page((unsigned long) inuse);
1101        }
1102
1103        snprintf(buf, IFNAMSIZ, name, i);
1104        if (!__dev_get_by_name(net, buf))
1105                return i;
1106
1107        /* It is possible to run out of possible slots
1108         * when the name is long and there isn't enough space left
1109         * for the digits, or if all bits are used.
1110         */
1111        return -ENFILE;
1112}
1113
1114static int dev_alloc_name_ns(struct net *net,
1115                             struct net_device *dev,
1116                             const char *name)
1117{
1118        char buf[IFNAMSIZ];
1119        int ret;
1120
1121        BUG_ON(!net);
1122        ret = __dev_alloc_name(net, name, buf);
1123        if (ret >= 0)
1124                strlcpy(dev->name, buf, IFNAMSIZ);
1125        return ret;
1126}
1127
1128/**
1129 *      dev_alloc_name - allocate a name for a device
1130 *      @dev: device
1131 *      @name: name format string
1132 *
1133 *      Passed a format string - eg "lt%d" it will try and find a suitable
1134 *      id. It scans list of devices to build up a free map, then chooses
1135 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136 *      while allocating the name and adding the device in order to avoid
1137 *      duplicates.
1138 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139 *      Returns the number of the unit assigned or a negative errno code.
1140 */
1141
1142int dev_alloc_name(struct net_device *dev, const char *name)
1143{
1144        return dev_alloc_name_ns(dev_net(dev), dev, name);
1145}
1146EXPORT_SYMBOL(dev_alloc_name);
1147
1148int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                       const char *name)
1150{
1151        BUG_ON(!net);
1152
1153        if (!dev_valid_name(name))
1154                return -EINVAL;
1155
1156        if (strchr(name, '%'))
1157                return dev_alloc_name_ns(net, dev, name);
1158        else if (__dev_get_by_name(net, name))
1159                return -EEXIST;
1160        else if (dev->name != name)
1161                strlcpy(dev->name, name, IFNAMSIZ);
1162
1163        return 0;
1164}
1165EXPORT_SYMBOL(dev_get_valid_name);
1166
1167/**
1168 *      dev_change_name - change name of a device
1169 *      @dev: device
1170 *      @newname: name (or format string) must be at least IFNAMSIZ
1171 *
1172 *      Change name of a device, can pass format strings "eth%d".
1173 *      for wildcarding.
1174 */
1175int dev_change_name(struct net_device *dev, const char *newname)
1176{
1177        unsigned char old_assign_type;
1178        char oldname[IFNAMSIZ];
1179        int err = 0;
1180        int ret;
1181        struct net *net;
1182
1183        ASSERT_RTNL();
1184        BUG_ON(!dev_net(dev));
1185
1186        net = dev_net(dev);
1187        if (dev->flags & IFF_UP)
1188                return -EBUSY;
1189
1190        write_seqcount_begin(&devnet_rename_seq);
1191
1192        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193                write_seqcount_end(&devnet_rename_seq);
1194                return 0;
1195        }
1196
1197        memcpy(oldname, dev->name, IFNAMSIZ);
1198
1199        err = dev_get_valid_name(net, dev, newname);
1200        if (err < 0) {
1201                write_seqcount_end(&devnet_rename_seq);
1202                return err;
1203        }
1204
1205        if (oldname[0] && !strchr(oldname, '%'))
1206                netdev_info(dev, "renamed from %s\n", oldname);
1207
1208        old_assign_type = dev->name_assign_type;
1209        dev->name_assign_type = NET_NAME_RENAMED;
1210
1211rollback:
1212        ret = device_rename(&dev->dev, dev->name);
1213        if (ret) {
1214                memcpy(dev->name, oldname, IFNAMSIZ);
1215                dev->name_assign_type = old_assign_type;
1216                write_seqcount_end(&devnet_rename_seq);
1217                return ret;
1218        }
1219
1220        write_seqcount_end(&devnet_rename_seq);
1221
1222        netdev_adjacent_rename_links(dev, oldname);
1223
1224        write_lock_bh(&dev_base_lock);
1225        hlist_del_rcu(&dev->name_hlist);
1226        write_unlock_bh(&dev_base_lock);
1227
1228        synchronize_rcu();
1229
1230        write_lock_bh(&dev_base_lock);
1231        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232        write_unlock_bh(&dev_base_lock);
1233
1234        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235        ret = notifier_to_errno(ret);
1236
1237        if (ret) {
1238                /* err >= 0 after dev_alloc_name() or stores the first errno */
1239                if (err >= 0) {
1240                        err = ret;
1241                        write_seqcount_begin(&devnet_rename_seq);
1242                        memcpy(dev->name, oldname, IFNAMSIZ);
1243                        memcpy(oldname, newname, IFNAMSIZ);
1244                        dev->name_assign_type = old_assign_type;
1245                        old_assign_type = NET_NAME_RENAMED;
1246                        goto rollback;
1247                } else {
1248                        pr_err("%s: name change rollback failed: %d\n",
1249                               dev->name, ret);
1250                }
1251        }
1252
1253        return err;
1254}
1255
1256/**
1257 *      dev_set_alias - change ifalias of a device
1258 *      @dev: device
1259 *      @alias: name up to IFALIASZ
1260 *      @len: limit of bytes to copy from info
1261 *
1262 *      Set ifalias for a device,
1263 */
1264int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265{
1266        struct dev_ifalias *new_alias = NULL;
1267
1268        if (len >= IFALIASZ)
1269                return -EINVAL;
1270
1271        if (len) {
1272                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273                if (!new_alias)
1274                        return -ENOMEM;
1275
1276                memcpy(new_alias->ifalias, alias, len);
1277                new_alias->ifalias[len] = 0;
1278        }
1279
1280        mutex_lock(&ifalias_mutex);
1281        rcu_swap_protected(dev->ifalias, new_alias,
1282                           mutex_is_locked(&ifalias_mutex));
1283        mutex_unlock(&ifalias_mutex);
1284
1285        if (new_alias)
1286                kfree_rcu(new_alias, rcuhead);
1287
1288        return len;
1289}
1290EXPORT_SYMBOL(dev_set_alias);
1291
1292/**
1293 *      dev_get_alias - get ifalias of a device
1294 *      @dev: device
1295 *      @name: buffer to store name of ifalias
1296 *      @len: size of buffer
1297 *
1298 *      get ifalias for a device.  Caller must make sure dev cannot go
1299 *      away,  e.g. rcu read lock or own a reference count to device.
1300 */
1301int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302{
1303        const struct dev_ifalias *alias;
1304        int ret = 0;
1305
1306        rcu_read_lock();
1307        alias = rcu_dereference(dev->ifalias);
1308        if (alias)
1309                ret = snprintf(name, len, "%s", alias->ifalias);
1310        rcu_read_unlock();
1311
1312        return ret;
1313}
1314
1315/**
1316 *      netdev_features_change - device changes features
1317 *      @dev: device to cause notification
1318 *
1319 *      Called to indicate a device has changed features.
1320 */
1321void netdev_features_change(struct net_device *dev)
1322{
1323        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324}
1325EXPORT_SYMBOL(netdev_features_change);
1326
1327/**
1328 *      netdev_state_change - device changes state
1329 *      @dev: device to cause notification
1330 *
1331 *      Called to indicate a device has changed state. This function calls
1332 *      the notifier chains for netdev_chain and sends a NEWLINK message
1333 *      to the routing socket.
1334 */
1335void netdev_state_change(struct net_device *dev)
1336{
1337        if (dev->flags & IFF_UP) {
1338                struct netdev_notifier_change_info change_info = {
1339                        .info.dev = dev,
1340                };
1341
1342                call_netdevice_notifiers_info(NETDEV_CHANGE,
1343                                              &change_info.info);
1344                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345        }
1346}
1347EXPORT_SYMBOL(netdev_state_change);
1348
1349/**
1350 * netdev_notify_peers - notify network peers about existence of @dev
1351 * @dev: network device
1352 *
1353 * Generate traffic such that interested network peers are aware of
1354 * @dev, such as by generating a gratuitous ARP. This may be used when
1355 * a device wants to inform the rest of the network about some sort of
1356 * reconfiguration such as a failover event or virtual machine
1357 * migration.
1358 */
1359void netdev_notify_peers(struct net_device *dev)
1360{
1361        rtnl_lock();
1362        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364        rtnl_unlock();
1365}
1366EXPORT_SYMBOL(netdev_notify_peers);
1367
1368static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369{
1370        const struct net_device_ops *ops = dev->netdev_ops;
1371        int ret;
1372
1373        ASSERT_RTNL();
1374
1375        if (!netif_device_present(dev))
1376                return -ENODEV;
1377
1378        /* Block netpoll from trying to do any rx path servicing.
1379         * If we don't do this there is a chance ndo_poll_controller
1380         * or ndo_poll may be running while we open the device
1381         */
1382        netpoll_poll_disable(dev);
1383
1384        ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385        ret = notifier_to_errno(ret);
1386        if (ret)
1387                return ret;
1388
1389        set_bit(__LINK_STATE_START, &dev->state);
1390
1391        if (ops->ndo_validate_addr)
1392                ret = ops->ndo_validate_addr(dev);
1393
1394        if (!ret && ops->ndo_open)
1395                ret = ops->ndo_open(dev);
1396
1397        netpoll_poll_enable(dev);
1398
1399        if (ret)
1400                clear_bit(__LINK_STATE_START, &dev->state);
1401        else {
1402                dev->flags |= IFF_UP;
1403                dev_set_rx_mode(dev);
1404                dev_activate(dev);
1405                add_device_randomness(dev->dev_addr, dev->addr_len);
1406        }
1407
1408        return ret;
1409}
1410
1411/**
1412 *      dev_open        - prepare an interface for use.
1413 *      @dev: device to open
1414 *      @extack: netlink extended ack
1415 *
1416 *      Takes a device from down to up state. The device's private open
1417 *      function is invoked and then the multicast lists are loaded. Finally
1418 *      the device is moved into the up state and a %NETDEV_UP message is
1419 *      sent to the netdev notifier chain.
1420 *
1421 *      Calling this function on an active interface is a nop. On a failure
1422 *      a negative errno code is returned.
1423 */
1424int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425{
1426        int ret;
1427
1428        if (dev->flags & IFF_UP)
1429                return 0;
1430
1431        ret = __dev_open(dev, extack);
1432        if (ret < 0)
1433                return ret;
1434
1435        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436        call_netdevice_notifiers(NETDEV_UP, dev);
1437
1438        return ret;
1439}
1440EXPORT_SYMBOL(dev_open);
1441
1442static void __dev_close_many(struct list_head *head)
1443{
1444        struct net_device *dev;
1445
1446        ASSERT_RTNL();
1447        might_sleep();
1448
1449        list_for_each_entry(dev, head, close_list) {
1450                /* Temporarily disable netpoll until the interface is down */
1451                netpoll_poll_disable(dev);
1452
1453                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454
1455                clear_bit(__LINK_STATE_START, &dev->state);
1456
1457                /* Synchronize to scheduled poll. We cannot touch poll list, it
1458                 * can be even on different cpu. So just clear netif_running().
1459                 *
1460                 * dev->stop() will invoke napi_disable() on all of it's
1461                 * napi_struct instances on this device.
1462                 */
1463                smp_mb__after_atomic(); /* Commit netif_running(). */
1464        }
1465
1466        dev_deactivate_many(head);
1467
1468        list_for_each_entry(dev, head, close_list) {
1469                const struct net_device_ops *ops = dev->netdev_ops;
1470
1471                /*
1472                 *      Call the device specific close. This cannot fail.
1473                 *      Only if device is UP
1474                 *
1475                 *      We allow it to be called even after a DETACH hot-plug
1476                 *      event.
1477                 */
1478                if (ops->ndo_stop)
1479                        ops->ndo_stop(dev);
1480
1481                dev->flags &= ~IFF_UP;
1482                netpoll_poll_enable(dev);
1483        }
1484}
1485
1486static void __dev_close(struct net_device *dev)
1487{
1488        LIST_HEAD(single);
1489
1490        list_add(&dev->close_list, &single);
1491        __dev_close_many(&single);
1492        list_del(&single);
1493}
1494
1495void dev_close_many(struct list_head *head, bool unlink)
1496{
1497        struct net_device *dev, *tmp;
1498
1499        /* Remove the devices that don't need to be closed */
1500        list_for_each_entry_safe(dev, tmp, head, close_list)
1501                if (!(dev->flags & IFF_UP))
1502                        list_del_init(&dev->close_list);
1503
1504        __dev_close_many(head);
1505
1506        list_for_each_entry_safe(dev, tmp, head, close_list) {
1507                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508                call_netdevice_notifiers(NETDEV_DOWN, dev);
1509                if (unlink)
1510                        list_del_init(&dev->close_list);
1511        }
1512}
1513EXPORT_SYMBOL(dev_close_many);
1514
1515/**
1516 *      dev_close - shutdown an interface.
1517 *      @dev: device to shutdown
1518 *
1519 *      This function moves an active device into down state. A
1520 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522 *      chain.
1523 */
1524void dev_close(struct net_device *dev)
1525{
1526        if (dev->flags & IFF_UP) {
1527                LIST_HEAD(single);
1528
1529                list_add(&dev->close_list, &single);
1530                dev_close_many(&single, true);
1531                list_del(&single);
1532        }
1533}
1534EXPORT_SYMBOL(dev_close);
1535
1536
1537/**
1538 *      dev_disable_lro - disable Large Receive Offload on a device
1539 *      @dev: device
1540 *
1541 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1542 *      called under RTNL.  This is needed if received packets may be
1543 *      forwarded to another interface.
1544 */
1545void dev_disable_lro(struct net_device *dev)
1546{
1547        struct net_device *lower_dev;
1548        struct list_head *iter;
1549
1550        dev->wanted_features &= ~NETIF_F_LRO;
1551        netdev_update_features(dev);
1552
1553        if (unlikely(dev->features & NETIF_F_LRO))
1554                netdev_WARN(dev, "failed to disable LRO!\n");
1555
1556        netdev_for_each_lower_dev(dev, lower_dev, iter)
1557                dev_disable_lro(lower_dev);
1558}
1559EXPORT_SYMBOL(dev_disable_lro);
1560
1561/**
1562 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563 *      @dev: device
1564 *
1565 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566 *      called under RTNL.  This is needed if Generic XDP is installed on
1567 *      the device.
1568 */
1569static void dev_disable_gro_hw(struct net_device *dev)
1570{
1571        dev->wanted_features &= ~NETIF_F_GRO_HW;
1572        netdev_update_features(dev);
1573
1574        if (unlikely(dev->features & NETIF_F_GRO_HW))
1575                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576}
1577
1578const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579{
1580#define N(val)                                          \
1581        case NETDEV_##val:                              \
1582                return "NETDEV_" __stringify(val);
1583        switch (cmd) {
1584        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593        N(PRE_CHANGEADDR)
1594        }
1595#undef N
1596        return "UNKNOWN_NETDEV_EVENT";
1597}
1598EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599
1600static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601                                   struct net_device *dev)
1602{
1603        struct netdev_notifier_info info = {
1604                .dev = dev,
1605        };
1606
1607        return nb->notifier_call(nb, val, &info);
1608}
1609
1610static int dev_boot_phase = 1;
1611
1612/**
1613 * register_netdevice_notifier - register a network notifier block
1614 * @nb: notifier
1615 *
1616 * Register a notifier to be called when network device events occur.
1617 * The notifier passed is linked into the kernel structures and must
1618 * not be reused until it has been unregistered. A negative errno code
1619 * is returned on a failure.
1620 *
1621 * When registered all registration and up events are replayed
1622 * to the new notifier to allow device to have a race free
1623 * view of the network device list.
1624 */
1625
1626int register_netdevice_notifier(struct notifier_block *nb)
1627{
1628        struct net_device *dev;
1629        struct net_device *last;
1630        struct net *net;
1631        int err;
1632
1633        /* Close race with setup_net() and cleanup_net() */
1634        down_write(&pernet_ops_rwsem);
1635        rtnl_lock();
1636        err = raw_notifier_chain_register(&netdev_chain, nb);
1637        if (err)
1638                goto unlock;
1639        if (dev_boot_phase)
1640                goto unlock;
1641        for_each_net(net) {
1642                for_each_netdev(net, dev) {
1643                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644                        err = notifier_to_errno(err);
1645                        if (err)
1646                                goto rollback;
1647
1648                        if (!(dev->flags & IFF_UP))
1649                                continue;
1650
1651                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1652                }
1653        }
1654
1655unlock:
1656        rtnl_unlock();
1657        up_write(&pernet_ops_rwsem);
1658        return err;
1659
1660rollback:
1661        last = dev;
1662        for_each_net(net) {
1663                for_each_netdev(net, dev) {
1664                        if (dev == last)
1665                                goto outroll;
1666
1667                        if (dev->flags & IFF_UP) {
1668                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669                                                        dev);
1670                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671                        }
1672                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673                }
1674        }
1675
1676outroll:
1677        raw_notifier_chain_unregister(&netdev_chain, nb);
1678        goto unlock;
1679}
1680EXPORT_SYMBOL(register_netdevice_notifier);
1681
1682/**
1683 * unregister_netdevice_notifier - unregister a network notifier block
1684 * @nb: notifier
1685 *
1686 * Unregister a notifier previously registered by
1687 * register_netdevice_notifier(). The notifier is unlinked into the
1688 * kernel structures and may then be reused. A negative errno code
1689 * is returned on a failure.
1690 *
1691 * After unregistering unregister and down device events are synthesized
1692 * for all devices on the device list to the removed notifier to remove
1693 * the need for special case cleanup code.
1694 */
1695
1696int unregister_netdevice_notifier(struct notifier_block *nb)
1697{
1698        struct net_device *dev;
1699        struct net *net;
1700        int err;
1701
1702        /* Close race with setup_net() and cleanup_net() */
1703        down_write(&pernet_ops_rwsem);
1704        rtnl_lock();
1705        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706        if (err)
1707                goto unlock;
1708
1709        for_each_net(net) {
1710                for_each_netdev(net, dev) {
1711                        if (dev->flags & IFF_UP) {
1712                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713                                                        dev);
1714                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715                        }
1716                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717                }
1718        }
1719unlock:
1720        rtnl_unlock();
1721        up_write(&pernet_ops_rwsem);
1722        return err;
1723}
1724EXPORT_SYMBOL(unregister_netdevice_notifier);
1725
1726/**
1727 *      call_netdevice_notifiers_info - call all network notifier blocks
1728 *      @val: value passed unmodified to notifier function
1729 *      @info: notifier information data
1730 *
1731 *      Call all network notifier blocks.  Parameters and return value
1732 *      are as for raw_notifier_call_chain().
1733 */
1734
1735static int call_netdevice_notifiers_info(unsigned long val,
1736                                         struct netdev_notifier_info *info)
1737{
1738        ASSERT_RTNL();
1739        return raw_notifier_call_chain(&netdev_chain, val, info);
1740}
1741
1742static int call_netdevice_notifiers_extack(unsigned long val,
1743                                           struct net_device *dev,
1744                                           struct netlink_ext_ack *extack)
1745{
1746        struct netdev_notifier_info info = {
1747                .dev = dev,
1748                .extack = extack,
1749        };
1750
1751        return call_netdevice_notifiers_info(val, &info);
1752}
1753
1754/**
1755 *      call_netdevice_notifiers - call all network notifier blocks
1756 *      @val: value passed unmodified to notifier function
1757 *      @dev: net_device pointer passed unmodified to notifier function
1758 *
1759 *      Call all network notifier blocks.  Parameters and return value
1760 *      are as for raw_notifier_call_chain().
1761 */
1762
1763int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764{
1765        return call_netdevice_notifiers_extack(val, dev, NULL);
1766}
1767EXPORT_SYMBOL(call_netdevice_notifiers);
1768
1769/**
1770 *      call_netdevice_notifiers_mtu - call all network notifier blocks
1771 *      @val: value passed unmodified to notifier function
1772 *      @dev: net_device pointer passed unmodified to notifier function
1773 *      @arg: additional u32 argument passed to the notifier function
1774 *
1775 *      Call all network notifier blocks.  Parameters and return value
1776 *      are as for raw_notifier_call_chain().
1777 */
1778static int call_netdevice_notifiers_mtu(unsigned long val,
1779                                        struct net_device *dev, u32 arg)
1780{
1781        struct netdev_notifier_info_ext info = {
1782                .info.dev = dev,
1783                .ext.mtu = arg,
1784        };
1785
1786        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787
1788        return call_netdevice_notifiers_info(val, &info.info);
1789}
1790
1791#ifdef CONFIG_NET_INGRESS
1792static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793
1794void net_inc_ingress_queue(void)
1795{
1796        static_branch_inc(&ingress_needed_key);
1797}
1798EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799
1800void net_dec_ingress_queue(void)
1801{
1802        static_branch_dec(&ingress_needed_key);
1803}
1804EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805#endif
1806
1807#ifdef CONFIG_NET_EGRESS
1808static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809
1810void net_inc_egress_queue(void)
1811{
1812        static_branch_inc(&egress_needed_key);
1813}
1814EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815
1816void net_dec_egress_queue(void)
1817{
1818        static_branch_dec(&egress_needed_key);
1819}
1820EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821#endif
1822
1823static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824#ifdef CONFIG_JUMP_LABEL
1825static atomic_t netstamp_needed_deferred;
1826static atomic_t netstamp_wanted;
1827static void netstamp_clear(struct work_struct *work)
1828{
1829        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830        int wanted;
1831
1832        wanted = atomic_add_return(deferred, &netstamp_wanted);
1833        if (wanted > 0)
1834                static_branch_enable(&netstamp_needed_key);
1835        else
1836                static_branch_disable(&netstamp_needed_key);
1837}
1838static DECLARE_WORK(netstamp_work, netstamp_clear);
1839#endif
1840
1841void net_enable_timestamp(void)
1842{
1843#ifdef CONFIG_JUMP_LABEL
1844        int wanted;
1845
1846        while (1) {
1847                wanted = atomic_read(&netstamp_wanted);
1848                if (wanted <= 0)
1849                        break;
1850                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851                        return;
1852        }
1853        atomic_inc(&netstamp_needed_deferred);
1854        schedule_work(&netstamp_work);
1855#else
1856        static_branch_inc(&netstamp_needed_key);
1857#endif
1858}
1859EXPORT_SYMBOL(net_enable_timestamp);
1860
1861void net_disable_timestamp(void)
1862{
1863#ifdef CONFIG_JUMP_LABEL
1864        int wanted;
1865
1866        while (1) {
1867                wanted = atomic_read(&netstamp_wanted);
1868                if (wanted <= 1)
1869                        break;
1870                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871                        return;
1872        }
1873        atomic_dec(&netstamp_needed_deferred);
1874        schedule_work(&netstamp_work);
1875#else
1876        static_branch_dec(&netstamp_needed_key);
1877#endif
1878}
1879EXPORT_SYMBOL(net_disable_timestamp);
1880
1881static inline void net_timestamp_set(struct sk_buff *skb)
1882{
1883        skb->tstamp = 0;
1884        if (static_branch_unlikely(&netstamp_needed_key))
1885                __net_timestamp(skb);
1886}
1887
1888#define net_timestamp_check(COND, SKB)                          \
1889        if (static_branch_unlikely(&netstamp_needed_key)) {     \
1890                if ((COND) && !(SKB)->tstamp)                   \
1891                        __net_timestamp(SKB);                   \
1892        }                                                       \
1893
1894bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895{
1896        unsigned int len;
1897
1898        if (!(dev->flags & IFF_UP))
1899                return false;
1900
1901        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902        if (skb->len <= len)
1903                return true;
1904
1905        /* if TSO is enabled, we don't care about the length as the packet
1906         * could be forwarded without being segmented before
1907         */
1908        if (skb_is_gso(skb))
1909                return true;
1910
1911        return false;
1912}
1913EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914
1915int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916{
1917        int ret = ____dev_forward_skb(dev, skb);
1918
1919        if (likely(!ret)) {
1920                skb->protocol = eth_type_trans(skb, dev);
1921                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922        }
1923
1924        return ret;
1925}
1926EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927
1928/**
1929 * dev_forward_skb - loopback an skb to another netif
1930 *
1931 * @dev: destination network device
1932 * @skb: buffer to forward
1933 *
1934 * return values:
1935 *      NET_RX_SUCCESS  (no congestion)
1936 *      NET_RX_DROP     (packet was dropped, but freed)
1937 *
1938 * dev_forward_skb can be used for injecting an skb from the
1939 * start_xmit function of one device into the receive queue
1940 * of another device.
1941 *
1942 * The receiving device may be in another namespace, so
1943 * we have to clear all information in the skb that could
1944 * impact namespace isolation.
1945 */
1946int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947{
1948        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949}
1950EXPORT_SYMBOL_GPL(dev_forward_skb);
1951
1952static inline int deliver_skb(struct sk_buff *skb,
1953                              struct packet_type *pt_prev,
1954                              struct net_device *orig_dev)
1955{
1956        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957                return -ENOMEM;
1958        refcount_inc(&skb->users);
1959        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960}
1961
1962static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963                                          struct packet_type **pt,
1964                                          struct net_device *orig_dev,
1965                                          __be16 type,
1966                                          struct list_head *ptype_list)
1967{
1968        struct packet_type *ptype, *pt_prev = *pt;
1969
1970        list_for_each_entry_rcu(ptype, ptype_list, list) {
1971                if (ptype->type != type)
1972                        continue;
1973                if (pt_prev)
1974                        deliver_skb(skb, pt_prev, orig_dev);
1975                pt_prev = ptype;
1976        }
1977        *pt = pt_prev;
1978}
1979
1980static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981{
1982        if (!ptype->af_packet_priv || !skb->sk)
1983                return false;
1984
1985        if (ptype->id_match)
1986                return ptype->id_match(ptype, skb->sk);
1987        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988                return true;
1989
1990        return false;
1991}
1992
1993/**
1994 * dev_nit_active - return true if any network interface taps are in use
1995 *
1996 * @dev: network device to check for the presence of taps
1997 */
1998bool dev_nit_active(struct net_device *dev)
1999{
2000        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001}
2002EXPORT_SYMBOL_GPL(dev_nit_active);
2003
2004/*
2005 *      Support routine. Sends outgoing frames to any network
2006 *      taps currently in use.
2007 */
2008
2009void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010{
2011        struct packet_type *ptype;
2012        struct sk_buff *skb2 = NULL;
2013        struct packet_type *pt_prev = NULL;
2014        struct list_head *ptype_list = &ptype_all;
2015
2016        rcu_read_lock();
2017again:
2018        list_for_each_entry_rcu(ptype, ptype_list, list) {
2019                if (ptype->ignore_outgoing)
2020                        continue;
2021
2022                /* Never send packets back to the socket
2023                 * they originated from - MvS (miquels@drinkel.ow.org)
2024                 */
2025                if (skb_loop_sk(ptype, skb))
2026                        continue;
2027
2028                if (pt_prev) {
2029                        deliver_skb(skb2, pt_prev, skb->dev);
2030                        pt_prev = ptype;
2031                        continue;
2032                }
2033
2034                /* need to clone skb, done only once */
2035                skb2 = skb_clone(skb, GFP_ATOMIC);
2036                if (!skb2)
2037                        goto out_unlock;
2038
2039                net_timestamp_set(skb2);
2040
2041                /* skb->nh should be correctly
2042                 * set by sender, so that the second statement is
2043                 * just protection against buggy protocols.
2044                 */
2045                skb_reset_mac_header(skb2);
2046
2047                if (skb_network_header(skb2) < skb2->data ||
2048                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050                                             ntohs(skb2->protocol),
2051                                             dev->name);
2052                        skb_reset_network_header(skb2);
2053                }
2054
2055                skb2->transport_header = skb2->network_header;
2056                skb2->pkt_type = PACKET_OUTGOING;
2057                pt_prev = ptype;
2058        }
2059
2060        if (ptype_list == &ptype_all) {
2061                ptype_list = &dev->ptype_all;
2062                goto again;
2063        }
2064out_unlock:
2065        if (pt_prev) {
2066                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068                else
2069                        kfree_skb(skb2);
2070        }
2071        rcu_read_unlock();
2072}
2073EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074
2075/**
2076 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077 * @dev: Network device
2078 * @txq: number of queues available
2079 *
2080 * If real_num_tx_queues is changed the tc mappings may no longer be
2081 * valid. To resolve this verify the tc mapping remains valid and if
2082 * not NULL the mapping. With no priorities mapping to this
2083 * offset/count pair it will no longer be used. In the worst case TC0
2084 * is invalid nothing can be done so disable priority mappings. If is
2085 * expected that drivers will fix this mapping if they can before
2086 * calling netif_set_real_num_tx_queues.
2087 */
2088static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089{
2090        int i;
2091        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092
2093        /* If TC0 is invalidated disable TC mapping */
2094        if (tc->offset + tc->count > txq) {
2095                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096                dev->num_tc = 0;
2097                return;
2098        }
2099
2100        /* Invalidated prio to tc mappings set to TC0 */
2101        for (i = 1; i < TC_BITMASK + 1; i++) {
2102                int q = netdev_get_prio_tc_map(dev, i);
2103
2104                tc = &dev->tc_to_txq[q];
2105                if (tc->offset + tc->count > txq) {
2106                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107                                i, q);
2108                        netdev_set_prio_tc_map(dev, i, 0);
2109                }
2110        }
2111}
2112
2113int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114{
2115        if (dev->num_tc) {
2116                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117                int i;
2118
2119                /* walk through the TCs and see if it falls into any of them */
2120                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121                        if ((txq - tc->offset) < tc->count)
2122                                return i;
2123                }
2124
2125                /* didn't find it, just return -1 to indicate no match */
2126                return -1;
2127        }
2128
2129        return 0;
2130}
2131EXPORT_SYMBOL(netdev_txq_to_tc);
2132
2133#ifdef CONFIG_XPS
2134struct static_key xps_needed __read_mostly;
2135EXPORT_SYMBOL(xps_needed);
2136struct static_key xps_rxqs_needed __read_mostly;
2137EXPORT_SYMBOL(xps_rxqs_needed);
2138static DEFINE_MUTEX(xps_map_mutex);
2139#define xmap_dereference(P)             \
2140        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141
2142static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143                             int tci, u16 index)
2144{
2145        struct xps_map *map = NULL;
2146        int pos;
2147
2148        if (dev_maps)
2149                map = xmap_dereference(dev_maps->attr_map[tci]);
2150        if (!map)
2151                return false;
2152
2153        for (pos = map->len; pos--;) {
2154                if (map->queues[pos] != index)
2155                        continue;
2156
2157                if (map->len > 1) {
2158                        map->queues[pos] = map->queues[--map->len];
2159                        break;
2160                }
2161
2162                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163                kfree_rcu(map, rcu);
2164                return false;
2165        }
2166
2167        return true;
2168}
2169
2170static bool remove_xps_queue_cpu(struct net_device *dev,
2171                                 struct xps_dev_maps *dev_maps,
2172                                 int cpu, u16 offset, u16 count)
2173{
2174        int num_tc = dev->num_tc ? : 1;
2175        bool active = false;
2176        int tci;
2177
2178        for (tci = cpu * num_tc; num_tc--; tci++) {
2179                int i, j;
2180
2181                for (i = count, j = offset; i--; j++) {
2182                        if (!remove_xps_queue(dev_maps, tci, j))
2183                                break;
2184                }
2185
2186                active |= i < 0;
2187        }
2188
2189        return active;
2190}
2191
2192static void reset_xps_maps(struct net_device *dev,
2193                           struct xps_dev_maps *dev_maps,
2194                           bool is_rxqs_map)
2195{
2196        if (is_rxqs_map) {
2197                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198                RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199        } else {
2200                RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201        }
2202        static_key_slow_dec_cpuslocked(&xps_needed);
2203        kfree_rcu(dev_maps, rcu);
2204}
2205
2206static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207                           struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208                           u16 offset, u16 count, bool is_rxqs_map)
2209{
2210        bool active = false;
2211        int i, j;
2212
2213        for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214             j < nr_ids;)
2215                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216                                               count);
2217        if (!active)
2218                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219
2220        if (!is_rxqs_map) {
2221                for (i = offset + (count - 1); count--; i--) {
2222                        netdev_queue_numa_node_write(
2223                                netdev_get_tx_queue(dev, i),
2224                                NUMA_NO_NODE);
2225                }
2226        }
2227}
2228
2229static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230                                   u16 count)
2231{
2232        const unsigned long *possible_mask = NULL;
2233        struct xps_dev_maps *dev_maps;
2234        unsigned int nr_ids;
2235
2236        if (!static_key_false(&xps_needed))
2237                return;
2238
2239        cpus_read_lock();
2240        mutex_lock(&xps_map_mutex);
2241
2242        if (static_key_false(&xps_rxqs_needed)) {
2243                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244                if (dev_maps) {
2245                        nr_ids = dev->num_rx_queues;
2246                        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247                                       offset, count, true);
2248                }
2249        }
2250
2251        dev_maps = xmap_dereference(dev->xps_cpus_map);
2252        if (!dev_maps)
2253                goto out_no_maps;
2254
2255        if (num_possible_cpus() > 1)
2256                possible_mask = cpumask_bits(cpu_possible_mask);
2257        nr_ids = nr_cpu_ids;
2258        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259                       false);
2260
2261out_no_maps:
2262        mutex_unlock(&xps_map_mutex);
2263        cpus_read_unlock();
2264}
2265
2266static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267{
2268        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269}
2270
2271static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272                                      u16 index, bool is_rxqs_map)
2273{
2274        struct xps_map *new_map;
2275        int alloc_len = XPS_MIN_MAP_ALLOC;
2276        int i, pos;
2277
2278        for (pos = 0; map && pos < map->len; pos++) {
2279                if (map->queues[pos] != index)
2280                        continue;
2281                return map;
2282        }
2283
2284        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285        if (map) {
2286                if (pos < map->alloc_len)
2287                        return map;
2288
2289                alloc_len = map->alloc_len * 2;
2290        }
2291
2292        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293         *  map
2294         */
2295        if (is_rxqs_map)
2296                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297        else
2298                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299                                       cpu_to_node(attr_index));
2300        if (!new_map)
2301                return NULL;
2302
2303        for (i = 0; i < pos; i++)
2304                new_map->queues[i] = map->queues[i];
2305        new_map->alloc_len = alloc_len;
2306        new_map->len = pos;
2307
2308        return new_map;
2309}
2310
2311/* Must be called under cpus_read_lock */
2312int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313                          u16 index, bool is_rxqs_map)
2314{
2315        const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317        int i, j, tci, numa_node_id = -2;
2318        int maps_sz, num_tc = 1, tc = 0;
2319        struct xps_map *map, *new_map;
2320        bool active = false;
2321        unsigned int nr_ids;
2322
2323        if (dev->num_tc) {
2324                /* Do not allow XPS on subordinate device directly */
2325                num_tc = dev->num_tc;
2326                if (num_tc < 0)
2327                        return -EINVAL;
2328
2329                /* If queue belongs to subordinate dev use its map */
2330                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331
2332                tc = netdev_txq_to_tc(dev, index);
2333                if (tc < 0)
2334                        return -EINVAL;
2335        }
2336
2337        mutex_lock(&xps_map_mutex);
2338        if (is_rxqs_map) {
2339                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341                nr_ids = dev->num_rx_queues;
2342        } else {
2343                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344                if (num_possible_cpus() > 1) {
2345                        online_mask = cpumask_bits(cpu_online_mask);
2346                        possible_mask = cpumask_bits(cpu_possible_mask);
2347                }
2348                dev_maps = xmap_dereference(dev->xps_cpus_map);
2349                nr_ids = nr_cpu_ids;
2350        }
2351
2352        if (maps_sz < L1_CACHE_BYTES)
2353                maps_sz = L1_CACHE_BYTES;
2354
2355        /* allocate memory for queue storage */
2356        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357             j < nr_ids;) {
2358                if (!new_dev_maps)
2359                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360                if (!new_dev_maps) {
2361                        mutex_unlock(&xps_map_mutex);
2362                        return -ENOMEM;
2363                }
2364
2365                tci = j * num_tc + tc;
2366                map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367                                 NULL;
2368
2369                map = expand_xps_map(map, j, index, is_rxqs_map);
2370                if (!map)
2371                        goto error;
2372
2373                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374        }
2375
2376        if (!new_dev_maps)
2377                goto out_no_new_maps;
2378
2379        if (!dev_maps) {
2380                /* Increment static keys at most once per type */
2381                static_key_slow_inc_cpuslocked(&xps_needed);
2382                if (is_rxqs_map)
2383                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384        }
2385
2386        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387             j < nr_ids;) {
2388                /* copy maps belonging to foreign traffic classes */
2389                for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390                        /* fill in the new device map from the old device map */
2391                        map = xmap_dereference(dev_maps->attr_map[tci]);
2392                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393                }
2394
2395                /* We need to explicitly update tci as prevous loop
2396                 * could break out early if dev_maps is NULL.
2397                 */
2398                tci = j * num_tc + tc;
2399
2400                if (netif_attr_test_mask(j, mask, nr_ids) &&
2401                    netif_attr_test_online(j, online_mask, nr_ids)) {
2402                        /* add tx-queue to CPU/rx-queue maps */
2403                        int pos = 0;
2404
2405                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406                        while ((pos < map->len) && (map->queues[pos] != index))
2407                                pos++;
2408
2409                        if (pos == map->len)
2410                                map->queues[map->len++] = index;
2411#ifdef CONFIG_NUMA
2412                        if (!is_rxqs_map) {
2413                                if (numa_node_id == -2)
2414                                        numa_node_id = cpu_to_node(j);
2415                                else if (numa_node_id != cpu_to_node(j))
2416                                        numa_node_id = -1;
2417                        }
2418#endif
2419                } else if (dev_maps) {
2420                        /* fill in the new device map from the old device map */
2421                        map = xmap_dereference(dev_maps->attr_map[tci]);
2422                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423                }
2424
2425                /* copy maps belonging to foreign traffic classes */
2426                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427                        /* fill in the new device map from the old device map */
2428                        map = xmap_dereference(dev_maps->attr_map[tci]);
2429                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430                }
2431        }
2432
2433        if (is_rxqs_map)
2434                rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435        else
2436                rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437
2438        /* Cleanup old maps */
2439        if (!dev_maps)
2440                goto out_no_old_maps;
2441
2442        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443             j < nr_ids;) {
2444                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446                        map = xmap_dereference(dev_maps->attr_map[tci]);
2447                        if (map && map != new_map)
2448                                kfree_rcu(map, rcu);
2449                }
2450        }
2451
2452        kfree_rcu(dev_maps, rcu);
2453
2454out_no_old_maps:
2455        dev_maps = new_dev_maps;
2456        active = true;
2457
2458out_no_new_maps:
2459        if (!is_rxqs_map) {
2460                /* update Tx queue numa node */
2461                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462                                             (numa_node_id >= 0) ?
2463                                             numa_node_id : NUMA_NO_NODE);
2464        }
2465
2466        if (!dev_maps)
2467                goto out_no_maps;
2468
2469        /* removes tx-queue from unused CPUs/rx-queues */
2470        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471             j < nr_ids;) {
2472                for (i = tc, tci = j * num_tc; i--; tci++)
2473                        active |= remove_xps_queue(dev_maps, tci, index);
2474                if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475                    !netif_attr_test_online(j, online_mask, nr_ids))
2476                        active |= remove_xps_queue(dev_maps, tci, index);
2477                for (i = num_tc - tc, tci++; --i; tci++)
2478                        active |= remove_xps_queue(dev_maps, tci, index);
2479        }
2480
2481        /* free map if not active */
2482        if (!active)
2483                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484
2485out_no_maps:
2486        mutex_unlock(&xps_map_mutex);
2487
2488        return 0;
2489error:
2490        /* remove any maps that we added */
2491        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492             j < nr_ids;) {
2493                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495                        map = dev_maps ?
2496                              xmap_dereference(dev_maps->attr_map[tci]) :
2497                              NULL;
2498                        if (new_map && new_map != map)
2499                                kfree(new_map);
2500                }
2501        }
2502
2503        mutex_unlock(&xps_map_mutex);
2504
2505        kfree(new_dev_maps);
2506        return -ENOMEM;
2507}
2508EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509
2510int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511                        u16 index)
2512{
2513        int ret;
2514
2515        cpus_read_lock();
2516        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517        cpus_read_unlock();
2518
2519        return ret;
2520}
2521EXPORT_SYMBOL(netif_set_xps_queue);
2522
2523#endif
2524static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525{
2526        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528        /* Unbind any subordinate channels */
2529        while (txq-- != &dev->_tx[0]) {
2530                if (txq->sb_dev)
2531                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2532        }
2533}
2534
2535void netdev_reset_tc(struct net_device *dev)
2536{
2537#ifdef CONFIG_XPS
2538        netif_reset_xps_queues_gt(dev, 0);
2539#endif
2540        netdev_unbind_all_sb_channels(dev);
2541
2542        /* Reset TC configuration of device */
2543        dev->num_tc = 0;
2544        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546}
2547EXPORT_SYMBOL(netdev_reset_tc);
2548
2549int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550{
2551        if (tc >= dev->num_tc)
2552                return -EINVAL;
2553
2554#ifdef CONFIG_XPS
2555        netif_reset_xps_queues(dev, offset, count);
2556#endif
2557        dev->tc_to_txq[tc].count = count;
2558        dev->tc_to_txq[tc].offset = offset;
2559        return 0;
2560}
2561EXPORT_SYMBOL(netdev_set_tc_queue);
2562
2563int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564{
2565        if (num_tc > TC_MAX_QUEUE)
2566                return -EINVAL;
2567
2568#ifdef CONFIG_XPS
2569        netif_reset_xps_queues_gt(dev, 0);
2570#endif
2571        netdev_unbind_all_sb_channels(dev);
2572
2573        dev->num_tc = num_tc;
2574        return 0;
2575}
2576EXPORT_SYMBOL(netdev_set_num_tc);
2577
2578void netdev_unbind_sb_channel(struct net_device *dev,
2579                              struct net_device *sb_dev)
2580{
2581        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582
2583#ifdef CONFIG_XPS
2584        netif_reset_xps_queues_gt(sb_dev, 0);
2585#endif
2586        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588
2589        while (txq-- != &dev->_tx[0]) {
2590                if (txq->sb_dev == sb_dev)
2591                        txq->sb_dev = NULL;
2592        }
2593}
2594EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595
2596int netdev_bind_sb_channel_queue(struct net_device *dev,
2597                                 struct net_device *sb_dev,
2598                                 u8 tc, u16 count, u16 offset)
2599{
2600        /* Make certain the sb_dev and dev are already configured */
2601        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602                return -EINVAL;
2603
2604        /* We cannot hand out queues we don't have */
2605        if ((offset + count) > dev->real_num_tx_queues)
2606                return -EINVAL;
2607
2608        /* Record the mapping */
2609        sb_dev->tc_to_txq[tc].count = count;
2610        sb_dev->tc_to_txq[tc].offset = offset;
2611
2612        /* Provide a way for Tx queue to find the tc_to_txq map or
2613         * XPS map for itself.
2614         */
2615        while (count--)
2616                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617
2618        return 0;
2619}
2620EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621
2622int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623{
2624        /* Do not use a multiqueue device to represent a subordinate channel */
2625        if (netif_is_multiqueue(dev))
2626                return -ENODEV;
2627
2628        /* We allow channels 1 - 32767 to be used for subordinate channels.
2629         * Channel 0 is meant to be "native" mode and used only to represent
2630         * the main root device. We allow writing 0 to reset the device back
2631         * to normal mode after being used as a subordinate channel.
2632         */
2633        if (channel > S16_MAX)
2634                return -EINVAL;
2635
2636        dev->num_tc = -channel;
2637
2638        return 0;
2639}
2640EXPORT_SYMBOL(netdev_set_sb_channel);
2641
2642/*
2643 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645 */
2646int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647{
2648        bool disabling;
2649        int rc;
2650
2651        disabling = txq < dev->real_num_tx_queues;
2652
2653        if (txq < 1 || txq > dev->num_tx_queues)
2654                return -EINVAL;
2655
2656        if (dev->reg_state == NETREG_REGISTERED ||
2657            dev->reg_state == NETREG_UNREGISTERING) {
2658                ASSERT_RTNL();
2659
2660                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661                                                  txq);
2662                if (rc)
2663                        return rc;
2664
2665                if (dev->num_tc)
2666                        netif_setup_tc(dev, txq);
2667
2668                dev->real_num_tx_queues = txq;
2669
2670                if (disabling) {
2671                        synchronize_net();
2672                        qdisc_reset_all_tx_gt(dev, txq);
2673#ifdef CONFIG_XPS
2674                        netif_reset_xps_queues_gt(dev, txq);
2675#endif
2676                }
2677        } else {
2678                dev->real_num_tx_queues = txq;
2679        }
2680
2681        return 0;
2682}
2683EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684
2685#ifdef CONFIG_SYSFS
2686/**
2687 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2688 *      @dev: Network device
2689 *      @rxq: Actual number of RX queues
2690 *
2691 *      This must be called either with the rtnl_lock held or before
2692 *      registration of the net device.  Returns 0 on success, or a
2693 *      negative error code.  If called before registration, it always
2694 *      succeeds.
2695 */
2696int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697{
2698        int rc;
2699
2700        if (rxq < 1 || rxq > dev->num_rx_queues)
2701                return -EINVAL;
2702
2703        if (dev->reg_state == NETREG_REGISTERED) {
2704                ASSERT_RTNL();
2705
2706                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707                                                  rxq);
2708                if (rc)
2709                        return rc;
2710        }
2711
2712        dev->real_num_rx_queues = rxq;
2713        return 0;
2714}
2715EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716#endif
2717
2718/**
2719 * netif_get_num_default_rss_queues - default number of RSS queues
2720 *
2721 * This routine should set an upper limit on the number of RSS queues
2722 * used by default by multiqueue devices.
2723 */
2724int netif_get_num_default_rss_queues(void)
2725{
2726        return is_kdump_kernel() ?
2727                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728}
2729EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730
2731static void __netif_reschedule(struct Qdisc *q)
2732{
2733        struct softnet_data *sd;
2734        unsigned long flags;
2735
2736        local_irq_save(flags);
2737        sd = this_cpu_ptr(&softnet_data);
2738        q->next_sched = NULL;
2739        *sd->output_queue_tailp = q;
2740        sd->output_queue_tailp = &q->next_sched;
2741        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742        local_irq_restore(flags);
2743}
2744
2745void __netif_schedule(struct Qdisc *q)
2746{
2747        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748                __netif_reschedule(q);
2749}
2750EXPORT_SYMBOL(__netif_schedule);
2751
2752struct dev_kfree_skb_cb {
2753        enum skb_free_reason reason;
2754};
2755
2756static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757{
2758        return (struct dev_kfree_skb_cb *)skb->cb;
2759}
2760
2761void netif_schedule_queue(struct netdev_queue *txq)
2762{
2763        rcu_read_lock();
2764        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765                struct Qdisc *q = rcu_dereference(txq->qdisc);
2766
2767                __netif_schedule(q);
2768        }
2769        rcu_read_unlock();
2770}
2771EXPORT_SYMBOL(netif_schedule_queue);
2772
2773void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774{
2775        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776                struct Qdisc *q;
2777
2778                rcu_read_lock();
2779                q = rcu_dereference(dev_queue->qdisc);
2780                __netif_schedule(q);
2781                rcu_read_unlock();
2782        }
2783}
2784EXPORT_SYMBOL(netif_tx_wake_queue);
2785
2786void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787{
2788        unsigned long flags;
2789
2790        if (unlikely(!skb))
2791                return;
2792
2793        if (likely(refcount_read(&skb->users) == 1)) {
2794                smp_rmb();
2795                refcount_set(&skb->users, 0);
2796        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2797                return;
2798        }
2799        get_kfree_skb_cb(skb)->reason = reason;
2800        local_irq_save(flags);
2801        skb->next = __this_cpu_read(softnet_data.completion_queue);
2802        __this_cpu_write(softnet_data.completion_queue, skb);
2803        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804        local_irq_restore(flags);
2805}
2806EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807
2808void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809{
2810        if (in_irq() || irqs_disabled())
2811                __dev_kfree_skb_irq(skb, reason);
2812        else
2813                dev_kfree_skb(skb);
2814}
2815EXPORT_SYMBOL(__dev_kfree_skb_any);
2816
2817
2818/**
2819 * netif_device_detach - mark device as removed
2820 * @dev: network device
2821 *
2822 * Mark device as removed from system and therefore no longer available.
2823 */
2824void netif_device_detach(struct net_device *dev)
2825{
2826        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827            netif_running(dev)) {
2828                netif_tx_stop_all_queues(dev);
2829        }
2830}
2831EXPORT_SYMBOL(netif_device_detach);
2832
2833/**
2834 * netif_device_attach - mark device as attached
2835 * @dev: network device
2836 *
2837 * Mark device as attached from system and restart if needed.
2838 */
2839void netif_device_attach(struct net_device *dev)
2840{
2841        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842            netif_running(dev)) {
2843                netif_tx_wake_all_queues(dev);
2844                __netdev_watchdog_up(dev);
2845        }
2846}
2847EXPORT_SYMBOL(netif_device_attach);
2848
2849/*
2850 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851 * to be used as a distribution range.
2852 */
2853static u16 skb_tx_hash(const struct net_device *dev,
2854                       const struct net_device *sb_dev,
2855                       struct sk_buff *skb)
2856{
2857        u32 hash;
2858        u16 qoffset = 0;
2859        u16 qcount = dev->real_num_tx_queues;
2860
2861        if (dev->num_tc) {
2862                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863
2864                qoffset = sb_dev->tc_to_txq[tc].offset;
2865                qcount = sb_dev->tc_to_txq[tc].count;
2866        }
2867
2868        if (skb_rx_queue_recorded(skb)) {
2869                hash = skb_get_rx_queue(skb);
2870                while (unlikely(hash >= qcount))
2871                        hash -= qcount;
2872                return hash + qoffset;
2873        }
2874
2875        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876}
2877
2878static void skb_warn_bad_offload(const struct sk_buff *skb)
2879{
2880        static const netdev_features_t null_features;
2881        struct net_device *dev = skb->dev;
2882        const char *name = "";
2883
2884        if (!net_ratelimit())
2885                return;
2886
2887        if (dev) {
2888                if (dev->dev.parent)
2889                        name = dev_driver_string(dev->dev.parent);
2890                else
2891                        name = netdev_name(dev);
2892        }
2893        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894             "gso_type=%d ip_summed=%d\n",
2895             name, dev ? &dev->features : &null_features,
2896             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898             skb_shinfo(skb)->gso_type, skb->ip_summed);
2899}
2900
2901/*
2902 * Invalidate hardware checksum when packet is to be mangled, and
2903 * complete checksum manually on outgoing path.
2904 */
2905int skb_checksum_help(struct sk_buff *skb)
2906{
2907        __wsum csum;
2908        int ret = 0, offset;
2909
2910        if (skb->ip_summed == CHECKSUM_COMPLETE)
2911                goto out_set_summed;
2912
2913        if (unlikely(skb_shinfo(skb)->gso_size)) {
2914                skb_warn_bad_offload(skb);
2915                return -EINVAL;
2916        }
2917
2918        /* Before computing a checksum, we should make sure no frag could
2919         * be modified by an external entity : checksum could be wrong.
2920         */
2921        if (skb_has_shared_frag(skb)) {
2922                ret = __skb_linearize(skb);
2923                if (ret)
2924                        goto out;
2925        }
2926
2927        offset = skb_checksum_start_offset(skb);
2928        BUG_ON(offset >= skb_headlen(skb));
2929        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930
2931        offset += skb->csum_offset;
2932        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933
2934        if (skb_cloned(skb) &&
2935            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937                if (ret)
2938                        goto out;
2939        }
2940
2941        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942out_set_summed:
2943        skb->ip_summed = CHECKSUM_NONE;
2944out:
2945        return ret;
2946}
2947EXPORT_SYMBOL(skb_checksum_help);
2948
2949int skb_crc32c_csum_help(struct sk_buff *skb)
2950{
2951        __le32 crc32c_csum;
2952        int ret = 0, offset, start;
2953
2954        if (skb->ip_summed != CHECKSUM_PARTIAL)
2955                goto out;
2956
2957        if (unlikely(skb_is_gso(skb)))
2958                goto out;
2959
2960        /* Before computing a checksum, we should make sure no frag could
2961         * be modified by an external entity : checksum could be wrong.
2962         */
2963        if (unlikely(skb_has_shared_frag(skb))) {
2964                ret = __skb_linearize(skb);
2965                if (ret)
2966                        goto out;
2967        }
2968        start = skb_checksum_start_offset(skb);
2969        offset = start + offsetof(struct sctphdr, checksum);
2970        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971                ret = -EINVAL;
2972                goto out;
2973        }
2974        if (skb_cloned(skb) &&
2975            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977                if (ret)
2978                        goto out;
2979        }
2980        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981                                                  skb->len - start, ~(__u32)0,
2982                                                  crc32c_csum_stub));
2983        *(__le32 *)(skb->data + offset) = crc32c_csum;
2984        skb->ip_summed = CHECKSUM_NONE;
2985        skb->csum_not_inet = 0;
2986out:
2987        return ret;
2988}
2989
2990__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991{
2992        __be16 type = skb->protocol;
2993
2994        /* Tunnel gso handlers can set protocol to ethernet. */
2995        if (type == htons(ETH_P_TEB)) {
2996                struct ethhdr *eth;
2997
2998                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999                        return 0;
3000
3001                eth = (struct ethhdr *)skb->data;
3002                type = eth->h_proto;
3003        }
3004
3005        return __vlan_get_protocol(skb, type, depth);
3006}
3007
3008/**
3009 *      skb_mac_gso_segment - mac layer segmentation handler.
3010 *      @skb: buffer to segment
3011 *      @features: features for the output path (see dev->features)
3012 */
3013struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014                                    netdev_features_t features)
3015{
3016        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017        struct packet_offload *ptype;
3018        int vlan_depth = skb->mac_len;
3019        __be16 type = skb_network_protocol(skb, &vlan_depth);
3020
3021        if (unlikely(!type))
3022                return ERR_PTR(-EINVAL);
3023
3024        __skb_pull(skb, vlan_depth);
3025
3026        rcu_read_lock();
3027        list_for_each_entry_rcu(ptype, &offload_base, list) {
3028                if (ptype->type == type && ptype->callbacks.gso_segment) {
3029                        segs = ptype->callbacks.gso_segment(skb, features);
3030                        break;
3031                }
3032        }
3033        rcu_read_unlock();
3034
3035        __skb_push(skb, skb->data - skb_mac_header(skb));
3036
3037        return segs;
3038}
3039EXPORT_SYMBOL(skb_mac_gso_segment);
3040
3041
3042/* openvswitch calls this on rx path, so we need a different check.
3043 */
3044static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045{
3046        if (tx_path)
3047                return skb->ip_summed != CHECKSUM_PARTIAL &&
3048                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3049
3050        return skb->ip_summed == CHECKSUM_NONE;
3051}
3052
3053/**
3054 *      __skb_gso_segment - Perform segmentation on skb.
3055 *      @skb: buffer to segment
3056 *      @features: features for the output path (see dev->features)
3057 *      @tx_path: whether it is called in TX path
3058 *
3059 *      This function segments the given skb and returns a list of segments.
3060 *
3061 *      It may return NULL if the skb requires no segmentation.  This is
3062 *      only possible when GSO is used for verifying header integrity.
3063 *
3064 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065 */
3066struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067                                  netdev_features_t features, bool tx_path)
3068{
3069        struct sk_buff *segs;
3070
3071        if (unlikely(skb_needs_check(skb, tx_path))) {
3072                int err;
3073
3074                /* We're going to init ->check field in TCP or UDP header */
3075                err = skb_cow_head(skb, 0);
3076                if (err < 0)
3077                        return ERR_PTR(err);
3078        }
3079
3080        /* Only report GSO partial support if it will enable us to
3081         * support segmentation on this frame without needing additional
3082         * work.
3083         */
3084        if (features & NETIF_F_GSO_PARTIAL) {
3085                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086                struct net_device *dev = skb->dev;
3087
3088                partial_features |= dev->features & dev->gso_partial_features;
3089                if (!skb_gso_ok(skb, features | partial_features))
3090                        features &= ~NETIF_F_GSO_PARTIAL;
3091        }
3092
3093        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095
3096        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097        SKB_GSO_CB(skb)->encap_level = 0;
3098
3099        skb_reset_mac_header(skb);
3100        skb_reset_mac_len(skb);
3101
3102        segs = skb_mac_gso_segment(skb, features);
3103
3104        if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105                skb_warn_bad_offload(skb);
3106
3107        return segs;
3108}
3109EXPORT_SYMBOL(__skb_gso_segment);
3110
3111/* Take action when hardware reception checksum errors are detected. */
3112#ifdef CONFIG_BUG
3113void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114{
3115        if (net_ratelimit()) {
3116                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117                if (dev)
3118                        pr_err("dev features: %pNF\n", &dev->features);
3119                pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120                       skb->len, skb->data_len, skb->pkt_type,
3121                       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122                       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123                       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124                dump_stack();
3125        }
3126}
3127EXPORT_SYMBOL(netdev_rx_csum_fault);
3128#endif
3129
3130/* XXX: check that highmem exists at all on the given machine. */
3131static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132{
3133#ifdef CONFIG_HIGHMEM
3134        int i;
3135
3136        if (!(dev->features & NETIF_F_HIGHDMA)) {
3137                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139
3140                        if (PageHighMem(skb_frag_page(frag)))
3141                                return 1;
3142                }
3143        }
3144#endif
3145        return 0;
3146}
3147
3148/* If MPLS offload request, verify we are testing hardware MPLS features
3149 * instead of standard features for the netdev.
3150 */
3151#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153                                           netdev_features_t features,
3154                                           __be16 type)
3155{
3156        if (eth_p_mpls(type))
3157                features &= skb->dev->mpls_features;
3158
3159        return features;
3160}
3161#else
3162static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163                                           netdev_features_t features,
3164                                           __be16 type)
3165{
3166        return features;
3167}
3168#endif
3169
3170static netdev_features_t harmonize_features(struct sk_buff *skb,
3171        netdev_features_t features)
3172{
3173        int tmp;
3174        __be16 type;
3175
3176        type = skb_network_protocol(skb, &tmp);
3177        features = net_mpls_features(skb, features, type);
3178
3179        if (skb->ip_summed != CHECKSUM_NONE &&
3180            !can_checksum_protocol(features, type)) {
3181                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182        }
3183        if (illegal_highdma(skb->dev, skb))
3184                features &= ~NETIF_F_SG;
3185
3186        return features;
3187}
3188
3189netdev_features_t passthru_features_check(struct sk_buff *skb,
3190                                          struct net_device *dev,
3191                                          netdev_features_t features)
3192{
3193        return features;
3194}
3195EXPORT_SYMBOL(passthru_features_check);
3196
3197static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198                                             struct net_device *dev,
3199                                             netdev_features_t features)
3200{
3201        return vlan_features_check(skb, features);
3202}
3203
3204static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205                                            struct net_device *dev,
3206                                            netdev_features_t features)
3207{
3208        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209
3210        if (gso_segs > dev->gso_max_segs)
3211                return features & ~NETIF_F_GSO_MASK;
3212
3213        /* Support for GSO partial features requires software
3214         * intervention before we can actually process the packets
3215         * so we need to strip support for any partial features now
3216         * and we can pull them back in after we have partially
3217         * segmented the frame.
3218         */
3219        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220                features &= ~dev->gso_partial_features;
3221
3222        /* Make sure to clear the IPv4 ID mangling feature if the
3223         * IPv4 header has the potential to be fragmented.
3224         */
3225        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226                struct iphdr *iph = skb->encapsulation ?
3227                                    inner_ip_hdr(skb) : ip_hdr(skb);
3228
3229                if (!(iph->frag_off & htons(IP_DF)))
3230                        features &= ~NETIF_F_TSO_MANGLEID;
3231        }
3232
3233        return features;
3234}
3235
3236netdev_features_t netif_skb_features(struct sk_buff *skb)
3237{
3238        struct net_device *dev = skb->dev;
3239        netdev_features_t features = dev->features;
3240
3241        if (skb_is_gso(skb))
3242                features = gso_features_check(skb, dev, features);
3243
3244        /* If encapsulation offload request, verify we are testing
3245         * hardware encapsulation features instead of standard
3246         * features for the netdev
3247         */
3248        if (skb->encapsulation)
3249                features &= dev->hw_enc_features;
3250
3251        if (skb_vlan_tagged(skb))
3252                features = netdev_intersect_features(features,
3253                                                     dev->vlan_features |
3254                                                     NETIF_F_HW_VLAN_CTAG_TX |
3255                                                     NETIF_F_HW_VLAN_STAG_TX);
3256
3257        if (dev->netdev_ops->ndo_features_check)
3258                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259                                                                features);
3260        else
3261                features &= dflt_features_check(skb, dev, features);
3262
3263        return harmonize_features(skb, features);
3264}
3265EXPORT_SYMBOL(netif_skb_features);
3266
3267static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268                    struct netdev_queue *txq, bool more)
3269{
3270        unsigned int len;
3271        int rc;
3272
3273        if (dev_nit_active(dev))
3274                dev_queue_xmit_nit(skb, dev);
3275
3276        len = skb->len;
3277        trace_net_dev_start_xmit(skb, dev);
3278        rc = netdev_start_xmit(skb, dev, txq, more);
3279        trace_net_dev_xmit(skb, rc, dev, len);
3280
3281        return rc;
3282}
3283
3284struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285                                    struct netdev_queue *txq, int *ret)
3286{
3287        struct sk_buff *skb = first;
3288        int rc = NETDEV_TX_OK;
3289
3290        while (skb) {
3291                struct sk_buff *next = skb->next;
3292
3293                skb_mark_not_on_list(skb);
3294                rc = xmit_one(skb, dev, txq, next != NULL);
3295                if (unlikely(!dev_xmit_complete(rc))) {
3296                        skb->next = next;
3297                        goto out;
3298                }
3299
3300                skb = next;
3301                if (netif_tx_queue_stopped(txq) && skb) {
3302                        rc = NETDEV_TX_BUSY;
3303                        break;
3304                }
3305        }
3306
3307out:
3308        *ret = rc;
3309        return skb;
3310}
3311
3312static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313                                          netdev_features_t features)
3314{
3315        if (skb_vlan_tag_present(skb) &&
3316            !vlan_hw_offload_capable(features, skb->vlan_proto))
3317                skb = __vlan_hwaccel_push_inside(skb);
3318        return skb;
3319}
3320
3321int skb_csum_hwoffload_help(struct sk_buff *skb,
3322                            const netdev_features_t features)
3323{
3324        if (unlikely(skb->csum_not_inet))
3325                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326                        skb_crc32c_csum_help(skb);
3327
3328        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329}
3330EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331
3332static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333{
3334        netdev_features_t features;
3335
3336        features = netif_skb_features(skb);
3337        skb = validate_xmit_vlan(skb, features);
3338        if (unlikely(!skb))
3339                goto out_null;
3340
3341        skb = sk_validate_xmit_skb(skb, dev);
3342        if (unlikely(!skb))
3343                goto out_null;
3344
3345        if (netif_needs_gso(skb, features)) {
3346                struct sk_buff *segs;
3347
3348                segs = skb_gso_segment(skb, features);
3349                if (IS_ERR(segs)) {
3350                        goto out_kfree_skb;
3351                } else if (segs) {
3352                        consume_skb(skb);
3353                        skb = segs;
3354                }
3355        } else {
3356                if (skb_needs_linearize(skb, features) &&
3357                    __skb_linearize(skb))
3358                        goto out_kfree_skb;
3359
3360                /* If packet is not checksummed and device does not
3361                 * support checksumming for this protocol, complete
3362                 * checksumming here.
3363                 */
3364                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365                        if (skb->encapsulation)
3366                                skb_set_inner_transport_header(skb,
3367                                                               skb_checksum_start_offset(skb));
3368                        else
3369                                skb_set_transport_header(skb,
3370                                                         skb_checksum_start_offset(skb));
3371                        if (skb_csum_hwoffload_help(skb, features))
3372                                goto out_kfree_skb;
3373                }
3374        }
3375
3376        skb = validate_xmit_xfrm(skb, features, again);
3377
3378        return skb;
3379
3380out_kfree_skb:
3381        kfree_skb(skb);
3382out_null:
3383        atomic_long_inc(&dev->tx_dropped);
3384        return NULL;
3385}
3386
3387struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388{
3389        struct sk_buff *next, *head = NULL, *tail;
3390
3391        for (; skb != NULL; skb = next) {
3392                next = skb->next;
3393                skb_mark_not_on_list(skb);
3394
3395                /* in case skb wont be segmented, point to itself */
3396                skb->prev = skb;
3397
3398                skb = validate_xmit_skb(skb, dev, again);
3399                if (!skb)
3400                        continue;
3401
3402                if (!head)
3403                        head = skb;
3404                else
3405                        tail->next = skb;
3406                /* If skb was segmented, skb->prev points to
3407                 * the last segment. If not, it still contains skb.
3408                 */
3409                tail = skb->prev;
3410        }
3411        return head;
3412}
3413EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414
3415static void qdisc_pkt_len_init(struct sk_buff *skb)
3416{
3417        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418
3419        qdisc_skb_cb(skb)->pkt_len = skb->len;
3420
3421        /* To get more precise estimation of bytes sent on wire,
3422         * we add to pkt_len the headers size of all segments
3423         */
3424        if (shinfo->gso_size)  {
3425                unsigned int hdr_len;
3426                u16 gso_segs = shinfo->gso_segs;
3427
3428                /* mac layer + network layer */
3429                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430
3431                /* + transport layer */
3432                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433                        const struct tcphdr *th;
3434                        struct tcphdr _tcphdr;
3435
3436                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3437                                                sizeof(_tcphdr), &_tcphdr);
3438                        if (likely(th))
3439                                hdr_len += __tcp_hdrlen(th);
3440                } else {
3441                        struct udphdr _udphdr;
3442
3443                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3444                                               sizeof(_udphdr), &_udphdr))
3445                                hdr_len += sizeof(struct udphdr);
3446                }
3447
3448                if (shinfo->gso_type & SKB_GSO_DODGY)
3449                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450                                                shinfo->gso_size);
3451
3452                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453        }
3454}
3455
3456static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457                                 struct net_device *dev,
3458                                 struct netdev_queue *txq)
3459{
3460        spinlock_t *root_lock = qdisc_lock(q);
3461        struct sk_buff *to_free = NULL;
3462        bool contended;
3463        int rc;
3464
3465        qdisc_calculate_pkt_len(skb, q);
3466
3467        if (q->flags & TCQ_F_NOLOCK) {
3468                if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469                        __qdisc_drop(skb, &to_free);
3470                        rc = NET_XMIT_DROP;
3471                } else {
3472                        rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3473                        qdisc_run(q);
3474                }
3475
3476                if (unlikely(to_free))
3477                        kfree_skb_list(to_free);
3478                return rc;
3479        }
3480
3481        /*
3482         * Heuristic to force contended enqueues to serialize on a
3483         * separate lock before trying to get qdisc main lock.
3484         * This permits qdisc->running owner to get the lock more
3485         * often and dequeue packets faster.
3486         */
3487        contended = qdisc_is_running(q);
3488        if (unlikely(contended))
3489                spin_lock(&q->busylock);
3490
3491        spin_lock(root_lock);
3492        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3493                __qdisc_drop(skb, &to_free);
3494                rc = NET_XMIT_DROP;
3495        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3496                   qdisc_run_begin(q)) {
3497                /*
3498                 * This is a work-conserving queue; there are no old skbs
3499                 * waiting to be sent out; and the qdisc is not running -
3500                 * xmit the skb directly.
3501                 */
3502
3503                qdisc_bstats_update(q, skb);
3504
3505                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3506                        if (unlikely(contended)) {
3507                                spin_unlock(&q->busylock);
3508                                contended = false;
3509                        }
3510                        __qdisc_run(q);
3511                }
3512
3513                qdisc_run_end(q);
3514                rc = NET_XMIT_SUCCESS;
3515        } else {
3516                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3517                if (qdisc_run_begin(q)) {
3518                        if (unlikely(contended)) {
3519                                spin_unlock(&q->busylock);
3520                                contended = false;
3521                        }
3522                        __qdisc_run(q);
3523                        qdisc_run_end(q);
3524                }
3525        }
3526        spin_unlock(root_lock);
3527        if (unlikely(to_free))
3528                kfree_skb_list(to_free);
3529        if (unlikely(contended))
3530                spin_unlock(&q->busylock);
3531        return rc;
3532}
3533
3534#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3535static void skb_update_prio(struct sk_buff *skb)
3536{
3537        const struct netprio_map *map;
3538        const struct sock *sk;
3539        unsigned int prioidx;
3540
3541        if (skb->priority)
3542                return;
3543        map = rcu_dereference_bh(skb->dev->priomap);
3544        if (!map)
3545                return;
3546        sk = skb_to_full_sk(skb);
3547        if (!sk)
3548                return;
3549
3550        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3551
3552        if (prioidx < map->priomap_len)
3553                skb->priority = map->priomap[prioidx];
3554}
3555#else
3556#define skb_update_prio(skb)
3557#endif
3558
3559DEFINE_PER_CPU(int, xmit_recursion);
3560EXPORT_SYMBOL(xmit_recursion);
3561
3562/**
3563 *      dev_loopback_xmit - loop back @skb
3564 *      @net: network namespace this loopback is happening in
3565 *      @sk:  sk needed to be a netfilter okfn
3566 *      @skb: buffer to transmit
3567 */
3568int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3569{
3570        skb_reset_mac_header(skb);
3571        __skb_pull(skb, skb_network_offset(skb));
3572        skb->pkt_type = PACKET_LOOPBACK;
3573        skb->ip_summed = CHECKSUM_UNNECESSARY;
3574        WARN_ON(!skb_dst(skb));
3575        skb_dst_force(skb);
3576        netif_rx_ni(skb);
3577        return 0;
3578}
3579EXPORT_SYMBOL(dev_loopback_xmit);
3580
3581#ifdef CONFIG_NET_EGRESS
3582static struct sk_buff *
3583sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3584{
3585        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3586        struct tcf_result cl_res;
3587
3588        if (!miniq)
3589                return skb;
3590
3591        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3592        mini_qdisc_bstats_cpu_update(miniq, skb);
3593
3594        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3595        case TC_ACT_OK:
3596        case TC_ACT_RECLASSIFY:
3597                skb->tc_index = TC_H_MIN(cl_res.classid);
3598                break;
3599        case TC_ACT_SHOT:
3600                mini_qdisc_qstats_cpu_drop(miniq);
3601                *ret = NET_XMIT_DROP;
3602                kfree_skb(skb);
3603                return NULL;
3604        case TC_ACT_STOLEN:
3605        case TC_ACT_QUEUED:
3606        case TC_ACT_TRAP:
3607                *ret = NET_XMIT_SUCCESS;
3608                consume_skb(skb);
3609                return NULL;
3610        case TC_ACT_REDIRECT:
3611                /* No need to push/pop skb's mac_header here on egress! */
3612                skb_do_redirect(skb);
3613                *ret = NET_XMIT_SUCCESS;
3614                return NULL;
3615        default:
3616                break;
3617        }
3618
3619        return skb;
3620}
3621#endif /* CONFIG_NET_EGRESS */
3622
3623#ifdef CONFIG_XPS
3624static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3625                               struct xps_dev_maps *dev_maps, unsigned int tci)
3626{
3627        struct xps_map *map;
3628        int queue_index = -1;
3629
3630        if (dev->num_tc) {
3631                tci *= dev->num_tc;
3632                tci += netdev_get_prio_tc_map(dev, skb->priority);
3633        }
3634
3635        map = rcu_dereference(dev_maps->attr_map[tci]);
3636        if (map) {
3637                if (map->len == 1)
3638                        queue_index = map->queues[0];
3639                else
3640                        queue_index = map->queues[reciprocal_scale(
3641                                                skb_get_hash(skb), map->len)];
3642                if (unlikely(queue_index >= dev->real_num_tx_queues))
3643                        queue_index = -1;
3644        }
3645        return queue_index;
3646}
3647#endif
3648
3649static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3650                         struct sk_buff *skb)
3651{
3652#ifdef CONFIG_XPS
3653        struct xps_dev_maps *dev_maps;
3654        struct sock *sk = skb->sk;
3655        int queue_index = -1;
3656
3657        if (!static_key_false(&xps_needed))
3658                return -1;
3659
3660        rcu_read_lock();
3661        if (!static_key_false(&xps_rxqs_needed))
3662                goto get_cpus_map;
3663
3664        dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3665        if (dev_maps) {
3666                int tci = sk_rx_queue_get(sk);
3667
3668                if (tci >= 0 && tci < dev->num_rx_queues)
3669                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3670                                                          tci);
3671        }
3672
3673get_cpus_map:
3674        if (queue_index < 0) {
3675                dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3676                if (dev_maps) {
3677                        unsigned int tci = skb->sender_cpu - 1;
3678
3679                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680                                                          tci);
3681                }
3682        }
3683        rcu_read_unlock();
3684
3685        return queue_index;
3686#else
3687        return -1;
3688#endif
3689}
3690
3691u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3692                     struct net_device *sb_dev,
3693                     select_queue_fallback_t fallback)
3694{
3695        return 0;
3696}
3697EXPORT_SYMBOL(dev_pick_tx_zero);
3698
3699u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3700                       struct net_device *sb_dev,
3701                       select_queue_fallback_t fallback)
3702{
3703        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3704}
3705EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3706
3707static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3708                            struct net_device *sb_dev)
3709{
3710        struct sock *sk = skb->sk;
3711        int queue_index = sk_tx_queue_get(sk);
3712
3713        sb_dev = sb_dev ? : dev;
3714
3715        if (queue_index < 0 || skb->ooo_okay ||
3716            queue_index >= dev->real_num_tx_queues) {
3717                int new_index = get_xps_queue(dev, sb_dev, skb);
3718
3719                if (new_index < 0)
3720                        new_index = skb_tx_hash(dev, sb_dev, skb);
3721
3722                if (queue_index != new_index && sk &&
3723                    sk_fullsock(sk) &&
3724                    rcu_access_pointer(sk->sk_dst_cache))
3725                        sk_tx_queue_set(sk, new_index);
3726
3727                queue_index = new_index;
3728        }
3729
3730        return queue_index;
3731}
3732
3733struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3734                                    struct sk_buff *skb,
3735                                    struct net_device *sb_dev)
3736{
3737        int queue_index = 0;
3738
3739#ifdef CONFIG_XPS
3740        u32 sender_cpu = skb->sender_cpu - 1;
3741
3742        if (sender_cpu >= (u32)NR_CPUS)
3743                skb->sender_cpu = raw_smp_processor_id() + 1;
3744#endif
3745
3746        if (dev->real_num_tx_queues != 1) {
3747                const struct net_device_ops *ops = dev->netdev_ops;
3748
3749                if (ops->ndo_select_queue)
3750                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3751                                                            __netdev_pick_tx);
3752                else
3753                        queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3754
3755                queue_index = netdev_cap_txqueue(dev, queue_index);
3756        }
3757
3758        skb_set_queue_mapping(skb, queue_index);
3759        return netdev_get_tx_queue(dev, queue_index);
3760}
3761
3762/**
3763 *      __dev_queue_xmit - transmit a buffer
3764 *      @skb: buffer to transmit
3765 *      @sb_dev: suboordinate device used for L2 forwarding offload
3766 *
3767 *      Queue a buffer for transmission to a network device. The caller must
3768 *      have set the device and priority and built the buffer before calling
3769 *      this function. The function can be called from an interrupt.
3770 *
3771 *      A negative errno code is returned on a failure. A success does not
3772 *      guarantee the frame will be transmitted as it may be dropped due
3773 *      to congestion or traffic shaping.
3774 *
3775 * -----------------------------------------------------------------------------------
3776 *      I notice this method can also return errors from the queue disciplines,
3777 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3778 *      be positive.
3779 *
3780 *      Regardless of the return value, the skb is consumed, so it is currently
3781 *      difficult to retry a send to this method.  (You can bump the ref count
3782 *      before sending to hold a reference for retry if you are careful.)
3783 *
3784 *      When calling this method, interrupts MUST be enabled.  This is because
3785 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3786 *          --BLG
3787 */
3788static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3789{
3790        struct net_device *dev = skb->dev;
3791        struct netdev_queue *txq;
3792        struct Qdisc *q;
3793        int rc = -ENOMEM;
3794        bool again = false;
3795
3796        skb_reset_mac_header(skb);
3797
3798        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3799                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3800
3801        /* Disable soft irqs for various locks below. Also
3802         * stops preemption for RCU.
3803         */
3804        rcu_read_lock_bh();
3805
3806        skb_update_prio(skb);
3807
3808        qdisc_pkt_len_init(skb);
3809#ifdef CONFIG_NET_CLS_ACT
3810        skb->tc_at_ingress = 0;
3811# ifdef CONFIG_NET_EGRESS
3812        if (static_branch_unlikely(&egress_needed_key)) {
3813                skb = sch_handle_egress(skb, &rc, dev);
3814                if (!skb)
3815                        goto out;
3816        }
3817# endif
3818#endif
3819        /* If device/qdisc don't need skb->dst, release it right now while
3820         * its hot in this cpu cache.
3821         */
3822        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3823                skb_dst_drop(skb);
3824        else
3825                skb_dst_force(skb);
3826
3827        txq = netdev_pick_tx(dev, skb, sb_dev);
3828        q = rcu_dereference_bh(txq->qdisc);
3829
3830        trace_net_dev_queue(skb);
3831        if (q->enqueue) {
3832                rc = __dev_xmit_skb(skb, q, dev, txq);
3833                goto out;
3834        }
3835
3836        /* The device has no queue. Common case for software devices:
3837         * loopback, all the sorts of tunnels...
3838
3839         * Really, it is unlikely that netif_tx_lock protection is necessary
3840         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3841         * counters.)
3842         * However, it is possible, that they rely on protection
3843         * made by us here.
3844
3845         * Check this and shot the lock. It is not prone from deadlocks.
3846         *Either shot noqueue qdisc, it is even simpler 8)
3847         */
3848        if (dev->flags & IFF_UP) {
3849                int cpu = smp_processor_id(); /* ok because BHs are off */
3850
3851                if (txq->xmit_lock_owner != cpu) {
3852                        if (unlikely(__this_cpu_read(xmit_recursion) >
3853                                     XMIT_RECURSION_LIMIT))
3854                                goto recursion_alert;
3855
3856                        skb = validate_xmit_skb(skb, dev, &again);
3857                        if (!skb)
3858                                goto out;
3859
3860                        HARD_TX_LOCK(dev, txq, cpu);
3861
3862                        if (!netif_xmit_stopped(txq)) {
3863                                __this_cpu_inc(xmit_recursion);
3864                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3865                                __this_cpu_dec(xmit_recursion);
3866                                if (dev_xmit_complete(rc)) {
3867                                        HARD_TX_UNLOCK(dev, txq);
3868                                        goto out;
3869                                }
3870                        }
3871                        HARD_TX_UNLOCK(dev, txq);
3872                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3873                                             dev->name);
3874                } else {
3875                        /* Recursion is detected! It is possible,
3876                         * unfortunately
3877                         */
3878recursion_alert:
3879                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3880                                             dev->name);
3881                }
3882        }
3883
3884        rc = -ENETDOWN;
3885        rcu_read_unlock_bh();
3886
3887        atomic_long_inc(&dev->tx_dropped);
3888        kfree_skb_list(skb);
3889        return rc;
3890out:
3891        rcu_read_unlock_bh();
3892        return rc;
3893}
3894
3895int dev_queue_xmit(struct sk_buff *skb)
3896{
3897        return __dev_queue_xmit(skb, NULL);
3898}
3899EXPORT_SYMBOL(dev_queue_xmit);
3900
3901int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3902{
3903        return __dev_queue_xmit(skb, sb_dev);
3904}
3905EXPORT_SYMBOL(dev_queue_xmit_accel);
3906
3907int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3908{
3909        struct net_device *dev = skb->dev;
3910        struct sk_buff *orig_skb = skb;
3911        struct netdev_queue *txq;
3912        int ret = NETDEV_TX_BUSY;
3913        bool again = false;
3914
3915        if (unlikely(!netif_running(dev) ||
3916                     !netif_carrier_ok(dev)))
3917                goto drop;
3918
3919        skb = validate_xmit_skb_list(skb, dev, &again);
3920        if (skb != orig_skb)
3921                goto drop;
3922
3923        skb_set_queue_mapping(skb, queue_id);
3924        txq = skb_get_tx_queue(dev, skb);
3925
3926        local_bh_disable();
3927
3928        HARD_TX_LOCK(dev, txq, smp_processor_id());
3929        if (!netif_xmit_frozen_or_drv_stopped(txq))
3930                ret = netdev_start_xmit(skb, dev, txq, false);
3931        HARD_TX_UNLOCK(dev, txq);
3932
3933        local_bh_enable();
3934
3935        if (!dev_xmit_complete(ret))
3936                kfree_skb(skb);
3937
3938        return ret;
3939drop:
3940        atomic_long_inc(&dev->tx_dropped);
3941        kfree_skb_list(skb);
3942        return NET_XMIT_DROP;
3943}
3944EXPORT_SYMBOL(dev_direct_xmit);
3945
3946/*************************************************************************
3947 *                      Receiver routines
3948 *************************************************************************/
3949
3950int netdev_max_backlog __read_mostly = 1000;
3951EXPORT_SYMBOL(netdev_max_backlog);
3952
3953int netdev_tstamp_prequeue __read_mostly = 1;
3954int netdev_budget __read_mostly = 300;
3955unsigned int __read_mostly netdev_budget_usecs = 2000;
3956int weight_p __read_mostly = 64;           /* old backlog weight */
3957int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3958int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3959int dev_rx_weight __read_mostly = 64;
3960int dev_tx_weight __read_mostly = 64;
3961
3962/* Called with irq disabled */
3963static inline void ____napi_schedule(struct softnet_data *sd,
3964                                     struct napi_struct *napi)
3965{
3966        list_add_tail(&napi->poll_list, &sd->poll_list);
3967        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3968}
3969
3970#ifdef CONFIG_RPS
3971
3972/* One global table that all flow-based protocols share. */
3973struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3974EXPORT_SYMBOL(rps_sock_flow_table);
3975u32 rps_cpu_mask __read_mostly;
3976EXPORT_SYMBOL(rps_cpu_mask);
3977
3978struct static_key rps_needed __read_mostly;
3979EXPORT_SYMBOL(rps_needed);
3980struct static_key rfs_needed __read_mostly;
3981EXPORT_SYMBOL(rfs_needed);
3982
3983static struct rps_dev_flow *
3984set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3985            struct rps_dev_flow *rflow, u16 next_cpu)
3986{
3987        if (next_cpu < nr_cpu_ids) {
3988#ifdef CONFIG_RFS_ACCEL
3989                struct netdev_rx_queue *rxqueue;
3990                struct rps_dev_flow_table *flow_table;
3991                struct rps_dev_flow *old_rflow;
3992                u32 flow_id;
3993                u16 rxq_index;
3994                int rc;
3995
3996                /* Should we steer this flow to a different hardware queue? */
3997                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3998                    !(dev->features & NETIF_F_NTUPLE))
3999                        goto out;
4000                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4001                if (rxq_index == skb_get_rx_queue(skb))
4002                        goto out;
4003
4004                rxqueue = dev->_rx + rxq_index;
4005                flow_table = rcu_dereference(rxqueue->rps_flow_table);
4006                if (!flow_table)
4007                        goto out;
4008                flow_id = skb_get_hash(skb) & flow_table->mask;
4009                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4010                                                        rxq_index, flow_id);
4011                if (rc < 0)
4012                        goto out;
4013                old_rflow = rflow;
4014                rflow = &flow_table->flows[flow_id];
4015                rflow->filter = rc;
4016                if (old_rflow->filter == rflow->filter)
4017                        old_rflow->filter = RPS_NO_FILTER;
4018        out:
4019#endif
4020                rflow->last_qtail =
4021                        per_cpu(softnet_data, next_cpu).input_queue_head;
4022        }
4023
4024        rflow->cpu = next_cpu;
4025        return rflow;
4026}
4027
4028/*
4029 * get_rps_cpu is called from netif_receive_skb and returns the target
4030 * CPU from the RPS map of the receiving queue for a given skb.
4031 * rcu_read_lock must be held on entry.
4032 */
4033static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4034                       struct rps_dev_flow **rflowp)
4035{
4036        const struct rps_sock_flow_table *sock_flow_table;
4037        struct netdev_rx_queue *rxqueue = dev->_rx;
4038        struct rps_dev_flow_table *flow_table;
4039        struct rps_map *map;
4040        int cpu = -1;
4041        u32 tcpu;
4042        u32 hash;
4043
4044        if (skb_rx_queue_recorded(skb)) {
4045                u16 index = skb_get_rx_queue(skb);
4046
4047                if (unlikely(index >= dev->real_num_rx_queues)) {
4048                        WARN_ONCE(dev->real_num_rx_queues > 1,
4049                                  "%s received packet on queue %u, but number "
4050                                  "of RX queues is %u\n",
4051                                  dev->name, index, dev->real_num_rx_queues);
4052                        goto done;
4053                }
4054                rxqueue += index;
4055        }
4056
4057        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4058
4059        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4060        map = rcu_dereference(rxqueue->rps_map);
4061        if (!flow_table && !map)
4062                goto done;
4063
4064        skb_reset_network_header(skb);
4065        hash = skb_get_hash(skb);
4066        if (!hash)
4067                goto done;
4068
4069        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4070        if (flow_table && sock_flow_table) {
4071                struct rps_dev_flow *rflow;
4072                u32 next_cpu;
4073                u32 ident;
4074
4075                /* First check into global flow table if there is a match */
4076                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4077                if ((ident ^ hash) & ~rps_cpu_mask)
4078                        goto try_rps;
4079
4080                next_cpu = ident & rps_cpu_mask;
4081
4082                /* OK, now we know there is a match,
4083                 * we can look at the local (per receive queue) flow table
4084                 */
4085                rflow = &flow_table->flows[hash & flow_table->mask];
4086                tcpu = rflow->cpu;
4087
4088                /*
4089                 * If the desired CPU (where last recvmsg was done) is
4090                 * different from current CPU (one in the rx-queue flow
4091                 * table entry), switch if one of the following holds:
4092                 *   - Current CPU is unset (>= nr_cpu_ids).
4093                 *   - Current CPU is offline.
4094                 *   - The current CPU's queue tail has advanced beyond the
4095                 *     last packet that was enqueued using this table entry.
4096                 *     This guarantees that all previous packets for the flow
4097                 *     have been dequeued, thus preserving in order delivery.
4098                 */
4099                if (unlikely(tcpu != next_cpu) &&
4100                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4101                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4102                      rflow->last_qtail)) >= 0)) {
4103                        tcpu = next_cpu;
4104                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4105                }
4106
4107                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4108                        *rflowp = rflow;
4109                        cpu = tcpu;
4110                        goto done;
4111                }
4112        }
4113
4114try_rps:
4115
4116        if (map) {
4117                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4118                if (cpu_online(tcpu)) {
4119                        cpu = tcpu;
4120                        goto done;
4121                }
4122        }
4123
4124done:
4125        return cpu;
4126}
4127
4128#ifdef CONFIG_RFS_ACCEL
4129
4130/**
4131 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4132 * @dev: Device on which the filter was set
4133 * @rxq_index: RX queue index
4134 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4135 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4136 *
4137 * Drivers that implement ndo_rx_flow_steer() should periodically call
4138 * this function for each installed filter and remove the filters for
4139 * which it returns %true.
4140 */
4141bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4142                         u32 flow_id, u16 filter_id)
4143{
4144        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4145        struct rps_dev_flow_table *flow_table;
4146        struct rps_dev_flow *rflow;
4147        bool expire = true;
4148        unsigned int cpu;
4149
4150        rcu_read_lock();
4151        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4152        if (flow_table && flow_id <= flow_table->mask) {
4153                rflow = &flow_table->flows[flow_id];
4154                cpu = READ_ONCE(rflow->cpu);
4155                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4156                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4157                           rflow->last_qtail) <
4158                     (int)(10 * flow_table->mask)))
4159                        expire = false;
4160        }
4161        rcu_read_unlock();
4162        return expire;
4163}
4164EXPORT_SYMBOL(rps_may_expire_flow);
4165
4166#endif /* CONFIG_RFS_ACCEL */
4167
4168/* Called from hardirq (IPI) context */
4169static void rps_trigger_softirq(void *data)
4170{
4171        struct softnet_data *sd = data;
4172
4173        ____napi_schedule(sd, &sd->backlog);
4174        sd->received_rps++;
4175}
4176
4177#endif /* CONFIG_RPS */
4178
4179/*
4180 * Check if this softnet_data structure is another cpu one
4181 * If yes, queue it to our IPI list and return 1
4182 * If no, return 0
4183 */
4184static int rps_ipi_queued(struct softnet_data *sd)
4185{
4186#ifdef CONFIG_RPS
4187        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4188
4189        if (sd != mysd) {
4190                sd->rps_ipi_next = mysd->rps_ipi_list;
4191                mysd->rps_ipi_list = sd;
4192
4193                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4194                return 1;
4195        }
4196#endif /* CONFIG_RPS */
4197        return 0;
4198}
4199
4200#ifdef CONFIG_NET_FLOW_LIMIT
4201int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4202#endif
4203
4204static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4205{
4206#ifdef CONFIG_NET_FLOW_LIMIT
4207        struct sd_flow_limit *fl;
4208        struct softnet_data *sd;
4209        unsigned int old_flow, new_flow;
4210
4211        if (qlen < (netdev_max_backlog >> 1))
4212                return false;
4213
4214        sd = this_cpu_ptr(&softnet_data);
4215
4216        rcu_read_lock();
4217        fl = rcu_dereference(sd->flow_limit);
4218        if (fl) {
4219                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4220                old_flow = fl->history[fl->history_head];
4221                fl->history[fl->history_head] = new_flow;
4222
4223                fl->history_head++;
4224                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4225
4226                if (likely(fl->buckets[old_flow]))
4227                        fl->buckets[old_flow]--;
4228
4229                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4230                        fl->count++;
4231                        rcu_read_unlock();
4232                        return true;
4233                }
4234        }
4235        rcu_read_unlock();
4236#endif
4237        return false;
4238}
4239
4240/*
4241 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4242 * queue (may be a remote CPU queue).
4243 */
4244static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4245                              unsigned int *qtail)
4246{
4247        struct softnet_data *sd;
4248        unsigned long flags;
4249        unsigned int qlen;
4250
4251        sd = &per_cpu(softnet_data, cpu);
4252
4253        local_irq_save(flags);
4254
4255        rps_lock(sd);
4256        if (!netif_running(skb->dev))
4257                goto drop;
4258        qlen = skb_queue_len(&sd->input_pkt_queue);
4259        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4260                if (qlen) {
4261enqueue:
4262                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4263                        input_queue_tail_incr_save(sd, qtail);
4264                        rps_unlock(sd);
4265                        local_irq_restore(flags);
4266                        return NET_RX_SUCCESS;
4267                }
4268
4269                /* Schedule NAPI for backlog device
4270                 * We can use non atomic operation since we own the queue lock
4271                 */
4272                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4273                        if (!rps_ipi_queued(sd))
4274                                ____napi_schedule(sd, &sd->backlog);
4275                }
4276                goto enqueue;
4277        }
4278
4279drop:
4280        sd->dropped++;
4281        rps_unlock(sd);
4282
4283        local_irq_restore(flags);
4284
4285        atomic_long_inc(&skb->dev->rx_dropped);
4286        kfree_skb(skb);
4287        return NET_RX_DROP;
4288}
4289
4290static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4291{
4292        struct net_device *dev = skb->dev;
4293        struct netdev_rx_queue *rxqueue;
4294
4295        rxqueue = dev->_rx;
4296
4297        if (skb_rx_queue_recorded(skb)) {
4298                u16 index = skb_get_rx_queue(skb);
4299
4300                if (unlikely(index >= dev->real_num_rx_queues)) {
4301                        WARN_ONCE(dev->real_num_rx_queues > 1,
4302                                  "%s received packet on queue %u, but number "
4303                                  "of RX queues is %u\n",
4304                                  dev->name, index, dev->real_num_rx_queues);
4305
4306                        return rxqueue; /* Return first rxqueue */
4307                }
4308                rxqueue += index;
4309        }
4310        return rxqueue;
4311}
4312
4313static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4314                                     struct xdp_buff *xdp,
4315                                     struct bpf_prog *xdp_prog)
4316{
4317        struct netdev_rx_queue *rxqueue;
4318        void *orig_data, *orig_data_end;
4319        u32 metalen, act = XDP_DROP;
4320        __be16 orig_eth_type;
4321        struct ethhdr *eth;
4322        bool orig_bcast;
4323        int hlen, off;
4324        u32 mac_len;
4325
4326        /* Reinjected packets coming from act_mirred or similar should
4327         * not get XDP generic processing.
4328         */
4329        if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4330                return XDP_PASS;
4331
4332        /* XDP packets must be linear and must have sufficient headroom
4333         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4334         * native XDP provides, thus we need to do it here as well.
4335         */
4336        if (skb_is_nonlinear(skb) ||
4337            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4338                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4339                int troom = skb->tail + skb->data_len - skb->end;
4340
4341                /* In case we have to go down the path and also linearize,
4342                 * then lets do the pskb_expand_head() work just once here.
4343                 */
4344                if (pskb_expand_head(skb,
4345                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4346                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4347                        goto do_drop;
4348                if (skb_linearize(skb))
4349                        goto do_drop;
4350        }
4351
4352        /* The XDP program wants to see the packet starting at the MAC
4353         * header.
4354         */
4355        mac_len = skb->data - skb_mac_header(skb);
4356        hlen = skb_headlen(skb) + mac_len;
4357        xdp->data = skb->data - mac_len;
4358        xdp->data_meta = xdp->data;
4359        xdp->data_end = xdp->data + hlen;
4360        xdp->data_hard_start = skb->data - skb_headroom(skb);
4361        orig_data_end = xdp->data_end;
4362        orig_data = xdp->data;
4363        eth = (struct ethhdr *)xdp->data;
4364        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4365        orig_eth_type = eth->h_proto;
4366
4367        rxqueue = netif_get_rxqueue(skb);
4368        xdp->rxq = &rxqueue->xdp_rxq;
4369
4370        act = bpf_prog_run_xdp(xdp_prog, xdp);
4371
4372        off = xdp->data - orig_data;
4373        if (off > 0)
4374                __skb_pull(skb, off);
4375        else if (off < 0)
4376                __skb_push(skb, -off);
4377        skb->mac_header += off;
4378
4379        /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4380         * pckt.
4381         */
4382        off = orig_data_end - xdp->data_end;
4383        if (off != 0) {
4384                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4385                skb->len -= off;
4386
4387        }
4388
4389        /* check if XDP changed eth hdr such SKB needs update */
4390        eth = (struct ethhdr *)xdp->data;
4391        if ((orig_eth_type != eth->h_proto) ||
4392            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4393                __skb_push(skb, ETH_HLEN);
4394                skb->protocol = eth_type_trans(skb, skb->dev);
4395        }
4396
4397        switch (act) {
4398        case XDP_REDIRECT:
4399        case XDP_TX:
4400                __skb_push(skb, mac_len);
4401                break;
4402        case XDP_PASS:
4403                metalen = xdp->data - xdp->data_meta;
4404                if (metalen)
4405                        skb_metadata_set(skb, metalen);
4406                break;
4407        default:
4408                bpf_warn_invalid_xdp_action(act);
4409                /* fall through */
4410        case XDP_ABORTED:
4411                trace_xdp_exception(skb->dev, xdp_prog, act);
4412                /* fall through */
4413        case XDP_DROP:
4414        do_drop:
4415                kfree_skb(skb);
4416                break;
4417        }
4418
4419        return act;
4420}
4421
4422/* When doing generic XDP we have to bypass the qdisc layer and the
4423 * network taps in order to match in-driver-XDP behavior.
4424 */
4425void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4426{
4427        struct net_device *dev = skb->dev;
4428        struct netdev_queue *txq;
4429        bool free_skb = true;
4430        int cpu, rc;
4431
4432        txq = netdev_pick_tx(dev, skb, NULL);
4433        cpu = smp_processor_id();
4434        HARD_TX_LOCK(dev, txq, cpu);
4435        if (!netif_xmit_stopped(txq)) {
4436                rc = netdev_start_xmit(skb, dev, txq, 0);
4437                if (dev_xmit_complete(rc))
4438                        free_skb = false;
4439        }
4440        HARD_TX_UNLOCK(dev, txq);
4441        if (free_skb) {
4442                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4443                kfree_skb(skb);
4444        }
4445}
4446EXPORT_SYMBOL_GPL(generic_xdp_tx);
4447
4448static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4449
4450int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4451{
4452        if (xdp_prog) {
4453                struct xdp_buff xdp;
4454                u32 act;
4455                int err;
4456
4457                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4458                if (act != XDP_PASS) {
4459                        switch (act) {
4460                        case XDP_REDIRECT:
4461                                err = xdp_do_generic_redirect(skb->dev, skb,
4462                                                              &xdp, xdp_prog);
4463                                if (err)
4464                                        goto out_redir;
4465                                break;
4466                        case XDP_TX:
4467                                generic_xdp_tx(skb, xdp_prog);
4468                                break;
4469                        }
4470                        return XDP_DROP;
4471                }
4472        }
4473        return XDP_PASS;
4474out_redir:
4475        kfree_skb(skb);
4476        return XDP_DROP;
4477}
4478EXPORT_SYMBOL_GPL(do_xdp_generic);
4479
4480static int netif_rx_internal(struct sk_buff *skb)
4481{
4482        int ret;
4483
4484        net_timestamp_check(netdev_tstamp_prequeue, skb);
4485
4486        trace_netif_rx(skb);
4487
4488        if (static_branch_unlikely(&generic_xdp_needed_key)) {
4489                int ret;
4490
4491                preempt_disable();
4492                rcu_read_lock();
4493                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4494                rcu_read_unlock();
4495                preempt_enable();
4496
4497                /* Consider XDP consuming the packet a success from
4498                 * the netdev point of view we do not want to count
4499                 * this as an error.
4500                 */
4501                if (ret != XDP_PASS)
4502                        return NET_RX_SUCCESS;
4503        }
4504
4505#ifdef CONFIG_RPS
4506        if (static_key_false(&rps_needed)) {
4507                struct rps_dev_flow voidflow, *rflow = &voidflow;
4508                int cpu;
4509
4510                preempt_disable();
4511                rcu_read_lock();
4512
4513                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514                if (cpu < 0)
4515                        cpu = smp_processor_id();
4516
4517                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
4519                rcu_read_unlock();
4520                preempt_enable();
4521        } else
4522#endif
4523        {
4524                unsigned int qtail;
4525
4526                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527                put_cpu();
4528        }
4529        return ret;
4530}
4531
4532/**
4533 *      netif_rx        -       post buffer to the network code
4534 *      @skb: buffer to post
4535 *
4536 *      This function receives a packet from a device driver and queues it for
4537 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4538 *      may be dropped during processing for congestion control or by the
4539 *      protocol layers.
4540 *
4541 *      return values:
4542 *      NET_RX_SUCCESS  (no congestion)
4543 *      NET_RX_DROP     (packet was dropped)
4544 *
4545 */
4546
4547int netif_rx(struct sk_buff *skb)
4548{
4549        int ret;
4550
4551        trace_netif_rx_entry(skb);
4552
4553        ret = netif_rx_internal(skb);
4554        trace_netif_rx_exit(ret);
4555
4556        return ret;
4557}
4558EXPORT_SYMBOL(netif_rx);
4559
4560int netif_rx_ni(struct sk_buff *skb)
4561{
4562        int err;
4563
4564        trace_netif_rx_ni_entry(skb);
4565
4566        preempt_disable();
4567        err = netif_rx_internal(skb);
4568        if (local_softirq_pending())
4569                do_softirq();
4570        preempt_enable();
4571        trace_netif_rx_ni_exit(err);
4572
4573        return err;
4574}
4575EXPORT_SYMBOL(netif_rx_ni);
4576
4577static __latent_entropy void net_tx_action(struct softirq_action *h)
4578{
4579        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580
4581        if (sd->completion_queue) {
4582                struct sk_buff *clist;
4583
4584                local_irq_disable();
4585                clist = sd->completion_queue;
4586                sd->completion_queue = NULL;
4587                local_irq_enable();
4588
4589                while (clist) {
4590                        struct sk_buff *skb = clist;
4591
4592                        clist = clist->next;
4593
4594                        WARN_ON(refcount_read(&skb->users));
4595                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596                                trace_consume_skb(skb);
4597                        else
4598                                trace_kfree_skb(skb, net_tx_action);
4599
4600                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601                                __kfree_skb(skb);
4602                        else
4603                                __kfree_skb_defer(skb);
4604                }
4605
4606                __kfree_skb_flush();
4607        }
4608
4609        if (sd->output_queue) {
4610                struct Qdisc *head;
4611
4612                local_irq_disable();
4613                head = sd->output_queue;
4614                sd->output_queue = NULL;
4615                sd->output_queue_tailp = &sd->output_queue;
4616                local_irq_enable();
4617
4618                while (head) {
4619                        struct Qdisc *q = head;
4620                        spinlock_t *root_lock = NULL;
4621
4622                        head = head->next_sched;
4623
4624                        if (!(q->flags & TCQ_F_NOLOCK)) {
4625                                root_lock = qdisc_lock(q);
4626                                spin_lock(root_lock);
4627                        }
4628                        /* We need to make sure head->next_sched is read
4629                         * before clearing __QDISC_STATE_SCHED
4630                         */
4631                        smp_mb__before_atomic();
4632                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4633                        qdisc_run(q);
4634                        if (root_lock)
4635                                spin_unlock(root_lock);
4636                }
4637        }
4638
4639        xfrm_dev_backlog(sd);
4640}
4641
4642#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643/* This hook is defined here for ATM LANE */
4644int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645                             unsigned char *addr) __read_mostly;
4646EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647#endif
4648
4649static inline struct sk_buff *
4650sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651                   struct net_device *orig_dev)
4652{
4653#ifdef CONFIG_NET_CLS_ACT
4654        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655        struct tcf_result cl_res;
4656
4657        /* If there's at least one ingress present somewhere (so
4658         * we get here via enabled static key), remaining devices
4659         * that are not configured with an ingress qdisc will bail
4660         * out here.
4661         */
4662        if (!miniq)
4663                return skb;
4664
4665        if (*pt_prev) {
4666                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667                *pt_prev = NULL;
4668        }
4669
4670        qdisc_skb_cb(skb)->pkt_len = skb->len;
4671        skb->tc_at_ingress = 1;
4672        mini_qdisc_bstats_cpu_update(miniq, skb);
4673
4674        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675        case TC_ACT_OK:
4676        case TC_ACT_RECLASSIFY:
4677                skb->tc_index = TC_H_MIN(cl_res.classid);
4678                break;
4679        case TC_ACT_SHOT:
4680                mini_qdisc_qstats_cpu_drop(miniq);
4681                kfree_skb(skb);
4682                return NULL;
4683        case TC_ACT_STOLEN:
4684        case TC_ACT_QUEUED:
4685        case TC_ACT_TRAP:
4686                consume_skb(skb);
4687                return NULL;
4688        case TC_ACT_REDIRECT:
4689                /* skb_mac_header check was done by cls/act_bpf, so
4690                 * we can safely push the L2 header back before
4691                 * redirecting to another netdev
4692                 */
4693                __skb_push(skb, skb->mac_len);
4694                skb_do_redirect(skb);
4695                return NULL;
4696        case TC_ACT_REINSERT:
4697                /* this does not scrub the packet, and updates stats on error */
4698                skb_tc_reinsert(skb, &cl_res);
4699                return NULL;
4700        default:
4701                break;
4702        }
4703#endif /* CONFIG_NET_CLS_ACT */
4704        return skb;
4705}
4706
4707/**
4708 *      netdev_is_rx_handler_busy - check if receive handler is registered
4709 *      @dev: device to check
4710 *
4711 *      Check if a receive handler is already registered for a given device.
4712 *      Return true if there one.
4713 *
4714 *      The caller must hold the rtnl_mutex.
4715 */
4716bool netdev_is_rx_handler_busy(struct net_device *dev)
4717{
4718        ASSERT_RTNL();
4719        return dev && rtnl_dereference(dev->rx_handler);
4720}
4721EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722
4723/**
4724 *      netdev_rx_handler_register - register receive handler
4725 *      @dev: device to register a handler for
4726 *      @rx_handler: receive handler to register
4727 *      @rx_handler_data: data pointer that is used by rx handler
4728 *
4729 *      Register a receive handler for a device. This handler will then be
4730 *      called from __netif_receive_skb. A negative errno code is returned
4731 *      on a failure.
4732 *
4733 *      The caller must hold the rtnl_mutex.
4734 *
4735 *      For a general description of rx_handler, see enum rx_handler_result.
4736 */
4737int netdev_rx_handler_register(struct net_device *dev,
4738                               rx_handler_func_t *rx_handler,
4739                               void *rx_handler_data)
4740{
4741        if (netdev_is_rx_handler_busy(dev))
4742                return -EBUSY;
4743
4744        if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745                return -EINVAL;
4746
4747        /* Note: rx_handler_data must be set before rx_handler */
4748        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4749        rcu_assign_pointer(dev->rx_handler, rx_handler);
4750
4751        return 0;
4752}
4753EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754
4755/**
4756 *      netdev_rx_handler_unregister - unregister receive handler
4757 *      @dev: device to unregister a handler from
4758 *
4759 *      Unregister a receive handler from a device.
4760 *
4761 *      The caller must hold the rtnl_mutex.
4762 */
4763void netdev_rx_handler_unregister(struct net_device *dev)
4764{
4765
4766        ASSERT_RTNL();
4767        RCU_INIT_POINTER(dev->rx_handler, NULL);
4768        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769         * section has a guarantee to see a non NULL rx_handler_data
4770         * as well.
4771         */
4772        synchronize_net();
4773        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4774}
4775EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776
4777/*
4778 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779 * the special handling of PFMEMALLOC skbs.
4780 */
4781static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782{
4783        switch (skb->protocol) {
4784        case htons(ETH_P_ARP):
4785        case htons(ETH_P_IP):
4786        case htons(ETH_P_IPV6):
4787        case htons(ETH_P_8021Q):
4788        case htons(ETH_P_8021AD):
4789                return true;
4790        default:
4791                return false;
4792        }
4793}
4794
4795static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796                             int *ret, struct net_device *orig_dev)
4797{
4798#ifdef CONFIG_NETFILTER_INGRESS
4799        if (nf_hook_ingress_active(skb)) {
4800                int ingress_retval;
4801
4802                if (*pt_prev) {
4803                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4804                        *pt_prev = NULL;
4805                }
4806
4807                rcu_read_lock();
4808                ingress_retval = nf_hook_ingress(skb);
4809                rcu_read_unlock();
4810                return ingress_retval;
4811        }
4812#endif /* CONFIG_NETFILTER_INGRESS */
4813        return 0;
4814}
4815
4816static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817                                    struct packet_type **ppt_prev)
4818{
4819        struct packet_type *ptype, *pt_prev;
4820        rx_handler_func_t *rx_handler;
4821        struct net_device *orig_dev;
4822        bool deliver_exact = false;
4823        int ret = NET_RX_DROP;
4824        __be16 type;
4825
4826        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4827
4828        trace_netif_receive_skb(skb);
4829
4830        orig_dev = skb->dev;
4831
4832        skb_reset_network_header(skb);
4833        if (!skb_transport_header_was_set(skb))
4834                skb_reset_transport_header(skb);
4835        skb_reset_mac_len(skb);
4836
4837        pt_prev = NULL;
4838
4839another_round:
4840        skb->skb_iif = skb->dev->ifindex;
4841
4842        __this_cpu_inc(softnet_data.processed);
4843
4844        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4845            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4846                skb = skb_vlan_untag(skb);
4847                if (unlikely(!skb))
4848                        goto out;
4849        }
4850
4851        if (skb_skip_tc_classify(skb))
4852                goto skip_classify;
4853
4854        if (pfmemalloc)
4855                goto skip_taps;
4856
4857        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4858                if (pt_prev)
4859                        ret = deliver_skb(skb, pt_prev, orig_dev);
4860                pt_prev = ptype;
4861        }
4862
4863        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4864                if (pt_prev)
4865                        ret = deliver_skb(skb, pt_prev, orig_dev);
4866                pt_prev = ptype;
4867        }
4868
4869skip_taps:
4870#ifdef CONFIG_NET_INGRESS
4871        if (static_branch_unlikely(&ingress_needed_key)) {
4872                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4873                if (!skb)
4874                        goto out;
4875
4876                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4877                        goto out;
4878        }
4879#endif
4880        skb_reset_tc(skb);
4881skip_classify:
4882        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4883                goto drop;
4884
4885        if (skb_vlan_tag_present(skb)) {
4886                if (pt_prev) {
4887                        ret = deliver_skb(skb, pt_prev, orig_dev);
4888                        pt_prev = NULL;
4889                }
4890                if (vlan_do_receive(&skb))
4891                        goto another_round;
4892                else if (unlikely(!skb))
4893                        goto out;
4894        }
4895
4896        rx_handler = rcu_dereference(skb->dev->rx_handler);
4897        if (rx_handler) {
4898                if (pt_prev) {
4899                        ret = deliver_skb(skb, pt_prev, orig_dev);
4900                        pt_prev = NULL;
4901                }
4902                switch (rx_handler(&skb)) {
4903                case RX_HANDLER_CONSUMED:
4904                        ret = NET_RX_SUCCESS;
4905                        goto out;
4906                case RX_HANDLER_ANOTHER:
4907                        goto another_round;
4908                case RX_HANDLER_EXACT:
4909                        deliver_exact = true;
4910                case RX_HANDLER_PASS:
4911                        break;
4912                default:
4913                        BUG();
4914                }
4915        }
4916
4917        if (unlikely(skb_vlan_tag_present(skb))) {
4918                if (skb_vlan_tag_get_id(skb))
4919                        skb->pkt_type = PACKET_OTHERHOST;
4920                /* Note: we might in the future use prio bits
4921                 * and set skb->priority like in vlan_do_receive()
4922                 * For the time being, just ignore Priority Code Point
4923                 */
4924                __vlan_hwaccel_clear_tag(skb);
4925        }
4926
4927        type = skb->protocol;
4928
4929        /* deliver only exact match when indicated */
4930        if (likely(!deliver_exact)) {
4931                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4932                                       &ptype_base[ntohs(type) &
4933                                                   PTYPE_HASH_MASK]);
4934        }
4935
4936        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4937                               &orig_dev->ptype_specific);
4938
4939        if (unlikely(skb->dev != orig_dev)) {
4940                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4941                                       &skb->dev->ptype_specific);
4942        }
4943
4944        if (pt_prev) {
4945                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4946                        goto drop;
4947                *ppt_prev = pt_prev;
4948        } else {
4949drop:
4950                if (!deliver_exact)
4951                        atomic_long_inc(&skb->dev->rx_dropped);
4952                else
4953                        atomic_long_inc(&skb->dev->rx_nohandler);
4954                kfree_skb(skb);
4955                /* Jamal, now you will not able to escape explaining
4956                 * me how you were going to use this. :-)
4957                 */
4958                ret = NET_RX_DROP;
4959        }
4960
4961out:
4962        return ret;
4963}
4964
4965static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4966{
4967        struct net_device *orig_dev = skb->dev;
4968        struct packet_type *pt_prev = NULL;
4969        int ret;
4970
4971        ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4972        if (pt_prev)
4973                ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4974        return ret;
4975}
4976
4977/**
4978 *      netif_receive_skb_core - special purpose version of netif_receive_skb
4979 *      @skb: buffer to process
4980 *
4981 *      More direct receive version of netif_receive_skb().  It should
4982 *      only be used by callers that have a need to skip RPS and Generic XDP.
4983 *      Caller must also take care of handling if (page_is_)pfmemalloc.
4984 *
4985 *      This function may only be called from softirq context and interrupts
4986 *      should be enabled.
4987 *
4988 *      Return values (usually ignored):
4989 *      NET_RX_SUCCESS: no congestion
4990 *      NET_RX_DROP: packet was dropped
4991 */
4992int netif_receive_skb_core(struct sk_buff *skb)
4993{
4994        int ret;
4995
4996        rcu_read_lock();
4997        ret = __netif_receive_skb_one_core(skb, false);
4998        rcu_read_unlock();
4999
5000        return ret;
5001}
5002EXPORT_SYMBOL(netif_receive_skb_core);
5003
5004static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5005                                                  struct packet_type *pt_prev,
5006                                                  struct net_device *orig_dev)
5007{
5008        struct sk_buff *skb, *next;
5009
5010        if (!pt_prev)
5011                return;
5012        if (list_empty(head))
5013                return;
5014        if (pt_prev->list_func != NULL)
5015                pt_prev->list_func(head, pt_prev, orig_dev);
5016        else
5017                list_for_each_entry_safe(skb, next, head, list)
5018                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5019}
5020
5021static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5022{
5023        /* Fast-path assumptions:
5024         * - There is no RX handler.
5025         * - Only one packet_type matches.
5026         * If either of these fails, we will end up doing some per-packet
5027         * processing in-line, then handling the 'last ptype' for the whole
5028         * sublist.  This can't cause out-of-order delivery to any single ptype,
5029         * because the 'last ptype' must be constant across the sublist, and all
5030         * other ptypes are handled per-packet.
5031         */
5032        /* Current (common) ptype of sublist */
5033        struct packet_type *pt_curr = NULL;
5034        /* Current (common) orig_dev of sublist */
5035        struct net_device *od_curr = NULL;
5036        struct list_head sublist;
5037        struct sk_buff *skb, *next;
5038
5039        INIT_LIST_HEAD(&sublist);
5040        list_for_each_entry_safe(skb, next, head, list) {
5041                struct net_device *orig_dev = skb->dev;
5042                struct packet_type *pt_prev = NULL;
5043
5044                skb_list_del_init(skb);
5045                __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5046                if (!pt_prev)
5047                        continue;
5048                if (pt_curr != pt_prev || od_curr != orig_dev) {
5049                        /* dispatch old sublist */
5050                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5051                        /* start new sublist */
5052                        INIT_LIST_HEAD(&sublist);
5053                        pt_curr = pt_prev;
5054                        od_curr = orig_dev;
5055                }
5056                list_add_tail(&skb->list, &sublist);
5057        }
5058
5059        /* dispatch final sublist */
5060        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5061}
5062
5063static int __netif_receive_skb(struct sk_buff *skb)
5064{
5065        int ret;
5066
5067        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5068                unsigned int noreclaim_flag;
5069
5070                /*
5071                 * PFMEMALLOC skbs are special, they should
5072                 * - be delivered to SOCK_MEMALLOC sockets only
5073                 * - stay away from userspace
5074                 * - have bounded memory usage
5075                 *
5076                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5077                 * context down to all allocation sites.
5078                 */
5079                noreclaim_flag = memalloc_noreclaim_save();
5080                ret = __netif_receive_skb_one_core(skb, true);
5081                memalloc_noreclaim_restore(noreclaim_flag);
5082        } else
5083                ret = __netif_receive_skb_one_core(skb, false);
5084
5085        return ret;
5086}
5087
5088static void __netif_receive_skb_list(struct list_head *head)
5089{
5090        unsigned long noreclaim_flag = 0;
5091        struct sk_buff *skb, *next;
5092        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5093
5094        list_for_each_entry_safe(skb, next, head, list) {
5095                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5096                        struct list_head sublist;
5097
5098                        /* Handle the previous sublist */
5099                        list_cut_before(&sublist, head, &skb->list);
5100                        if (!list_empty(&sublist))
5101                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5102                        pfmemalloc = !pfmemalloc;
5103                        /* See comments in __netif_receive_skb */
5104                        if (pfmemalloc)
5105                                noreclaim_flag = memalloc_noreclaim_save();
5106                        else
5107                                memalloc_noreclaim_restore(noreclaim_flag);
5108                }
5109        }
5110        /* Handle the remaining sublist */
5111        if (!list_empty(head))
5112                __netif_receive_skb_list_core(head, pfmemalloc);
5113        /* Restore pflags */
5114        if (pfmemalloc)
5115                memalloc_noreclaim_restore(noreclaim_flag);
5116}
5117
5118static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5119{
5120        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5121        struct bpf_prog *new = xdp->prog;
5122        int ret = 0;
5123
5124        switch (xdp->command) {
5125        case XDP_SETUP_PROG:
5126                rcu_assign_pointer(dev->xdp_prog, new);
5127                if (old)
5128                        bpf_prog_put(old);
5129
5130                if (old && !new) {
5131                        static_branch_dec(&generic_xdp_needed_key);
5132                } else if (new && !old) {
5133                        static_branch_inc(&generic_xdp_needed_key);
5134                        dev_disable_lro(dev);
5135                        dev_disable_gro_hw(dev);
5136                }
5137                break;
5138
5139        case XDP_QUERY_PROG:
5140                xdp->prog_id = old ? old->aux->id : 0;
5141                break;
5142
5143        default:
5144                ret = -EINVAL;
5145                break;
5146        }
5147
5148        return ret;
5149}
5150
5151static int netif_receive_skb_internal(struct sk_buff *skb)
5152{
5153        int ret;
5154
5155        net_timestamp_check(netdev_tstamp_prequeue, skb);
5156
5157        if (skb_defer_rx_timestamp(skb))
5158                return NET_RX_SUCCESS;
5159
5160        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5161                int ret;
5162
5163                preempt_disable();
5164                rcu_read_lock();
5165                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5166                rcu_read_unlock();
5167                preempt_enable();
5168
5169                if (ret != XDP_PASS)
5170                        return NET_RX_DROP;
5171        }
5172
5173        rcu_read_lock();
5174#ifdef CONFIG_RPS
5175        if (static_key_false(&rps_needed)) {
5176                struct rps_dev_flow voidflow, *rflow = &voidflow;
5177                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5178
5179                if (cpu >= 0) {
5180                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5181                        rcu_read_unlock();
5182                        return ret;
5183                }
5184        }
5185#endif
5186        ret = __netif_receive_skb(skb);
5187        rcu_read_unlock();
5188        return ret;
5189}
5190
5191static void netif_receive_skb_list_internal(struct list_head *head)
5192{
5193        struct bpf_prog *xdp_prog = NULL;
5194        struct sk_buff *skb, *next;
5195        struct list_head sublist;
5196
5197        INIT_LIST_HEAD(&sublist);
5198        list_for_each_entry_safe(skb, next, head, list) {
5199                net_timestamp_check(netdev_tstamp_prequeue, skb);
5200                skb_list_del_init(skb);
5201                if (!skb_defer_rx_timestamp(skb))
5202                        list_add_tail(&skb->list, &sublist);
5203        }
5204        list_splice_init(&sublist, head);
5205
5206        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5207                preempt_disable();
5208                rcu_read_lock();
5209                list_for_each_entry_safe(skb, next, head, list) {
5210                        xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5211                        skb_list_del_init(skb);
5212                        if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5213                                list_add_tail(&skb->list, &sublist);
5214                }
5215                rcu_read_unlock();
5216                preempt_enable();
5217                /* Put passed packets back on main list */
5218                list_splice_init(&sublist, head);
5219        }
5220
5221        rcu_read_lock();
5222#ifdef CONFIG_RPS
5223        if (static_key_false(&rps_needed)) {
5224                list_for_each_entry_safe(skb, next, head, list) {
5225                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5226                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5227
5228                        if (cpu >= 0) {
5229                                /* Will be handled, remove from list */
5230                                skb_list_del_init(skb);
5231                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5232                        }
5233                }
5234        }
5235#endif
5236        __netif_receive_skb_list(head);
5237        rcu_read_unlock();
5238}
5239
5240/**
5241 *      netif_receive_skb - process receive buffer from network
5242 *      @skb: buffer to process
5243 *
5244 *      netif_receive_skb() is the main receive data processing function.
5245 *      It always succeeds. The buffer may be dropped during processing
5246 *      for congestion control or by the protocol layers.
5247 *
5248 *      This function may only be called from softirq context and interrupts
5249 *      should be enabled.
5250 *
5251 *      Return values (usually ignored):
5252 *      NET_RX_SUCCESS: no congestion
5253 *      NET_RX_DROP: packet was dropped
5254 */
5255int netif_receive_skb(struct sk_buff *skb)
5256{
5257        int ret;
5258
5259        trace_netif_receive_skb_entry(skb);
5260
5261        ret = netif_receive_skb_internal(skb);
5262        trace_netif_receive_skb_exit(ret);
5263
5264        return ret;
5265}
5266EXPORT_SYMBOL(netif_receive_skb);
5267
5268/**
5269 *      netif_receive_skb_list - process many receive buffers from network
5270 *      @head: list of skbs to process.
5271 *
5272 *      Since return value of netif_receive_skb() is normally ignored, and
5273 *      wouldn't be meaningful for a list, this function returns void.
5274 *
5275 *      This function may only be called from softirq context and interrupts
5276 *      should be enabled.
5277 */
5278void netif_receive_skb_list(struct list_head *head)
5279{
5280        struct sk_buff *skb;
5281
5282        if (list_empty(head))
5283                return;
5284        if (trace_netif_receive_skb_list_entry_enabled()) {
5285                list_for_each_entry(skb, head, list)
5286                        trace_netif_receive_skb_list_entry(skb);
5287        }
5288        netif_receive_skb_list_internal(head);
5289        trace_netif_receive_skb_list_exit(0);
5290}
5291EXPORT_SYMBOL(netif_receive_skb_list);
5292
5293DEFINE_PER_CPU(struct work_struct, flush_works);
5294
5295/* Network device is going away, flush any packets still pending */
5296static void flush_backlog(struct work_struct *work)
5297{
5298        struct sk_buff *skb, *tmp;
5299        struct softnet_data *sd;
5300
5301        local_bh_disable();
5302        sd = this_cpu_ptr(&softnet_data);
5303
5304        local_irq_disable();
5305        rps_lock(sd);
5306        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5307                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5308                        __skb_unlink(skb, &sd->input_pkt_queue);
5309                        kfree_skb(skb);
5310                        input_queue_head_incr(sd);
5311                }
5312        }
5313        rps_unlock(sd);
5314        local_irq_enable();
5315
5316        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5317                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5318                        __skb_unlink(skb, &sd->process_queue);
5319                        kfree_skb(skb);
5320                        input_queue_head_incr(sd);
5321                }
5322        }
5323        local_bh_enable();
5324}
5325
5326static void flush_all_backlogs(void)
5327{
5328        unsigned int cpu;
5329
5330        get_online_cpus();
5331
5332        for_each_online_cpu(cpu)
5333                queue_work_on(cpu, system_highpri_wq,
5334                              per_cpu_ptr(&flush_works, cpu));
5335
5336        for_each_online_cpu(cpu)
5337                flush_work(per_cpu_ptr(&flush_works, cpu));
5338
5339        put_online_cpus();
5340}
5341
5342INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5343INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5344static int napi_gro_complete(struct sk_buff *skb)
5345{
5346        struct packet_offload *ptype;
5347        __be16 type = skb->protocol;
5348        struct list_head *head = &offload_base;
5349        int err = -ENOENT;
5350
5351        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5352
5353        if (NAPI_GRO_CB(skb)->count == 1) {
5354                skb_shinfo(skb)->gso_size = 0;
5355                goto out;
5356        }
5357
5358        rcu_read_lock();
5359        list_for_each_entry_rcu(ptype, head, list) {
5360                if (ptype->type != type || !ptype->callbacks.gro_complete)
5361                        continue;
5362
5363                err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5364                                         ipv6_gro_complete, inet_gro_complete,
5365                                         skb, 0);
5366                break;
5367        }
5368        rcu_read_unlock();
5369
5370        if (err) {
5371                WARN_ON(&ptype->list == head);
5372                kfree_skb(skb);
5373                return NET_RX_SUCCESS;
5374        }
5375
5376out:
5377        return netif_receive_skb_internal(skb);
5378}
5379
5380static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5381                                   bool flush_old)
5382{
5383        struct list_head *head = &napi->gro_hash[index].list;
5384        struct sk_buff *skb, *p;
5385
5386        list_for_each_entry_safe_reverse(skb, p, head, list) {
5387                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5388                        return;
5389                skb_list_del_init(skb);
5390                napi_gro_complete(skb);
5391                napi->gro_hash[index].count--;
5392        }
5393
5394        if (!napi->gro_hash[index].count)
5395                __clear_bit(index, &napi->gro_bitmask);
5396}
5397
5398/* napi->gro_hash[].list contains packets ordered by age.
5399 * youngest packets at the head of it.
5400 * Complete skbs in reverse order to reduce latencies.
5401 */
5402void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5403{
5404        unsigned long bitmask = napi->gro_bitmask;
5405        unsigned int i, base = ~0U;
5406
5407        while ((i = ffs(bitmask)) != 0) {
5408                bitmask >>= i;
5409                base += i;
5410                __napi_gro_flush_chain(napi, base, flush_old);
5411        }
5412}
5413EXPORT_SYMBOL(napi_gro_flush);
5414
5415static struct list_head *gro_list_prepare(struct napi_struct *napi,
5416                                          struct sk_buff *skb)
5417{
5418        unsigned int maclen = skb->dev->hard_header_len;
5419        u32 hash = skb_get_hash_raw(skb);
5420        struct list_head *head;
5421        struct sk_buff *p;
5422
5423        head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5424        list_for_each_entry(p, head, list) {
5425                unsigned long diffs;
5426
5427                NAPI_GRO_CB(p)->flush = 0;
5428
5429                if (hash != skb_get_hash_raw(p)) {
5430                        NAPI_GRO_CB(p)->same_flow = 0;
5431                        continue;
5432                }
5433
5434                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5435                diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5436                if (skb_vlan_tag_present(p))
5437                        diffs |= p->vlan_tci ^ skb->vlan_tci;
5438                diffs |= skb_metadata_dst_cmp(p, skb);
5439                diffs |= skb_metadata_differs(p, skb);
5440                if (maclen == ETH_HLEN)
5441                        diffs |= compare_ether_header(skb_mac_header(p),
5442                                                      skb_mac_header(skb));
5443                else if (!diffs)
5444                        diffs = memcmp(skb_mac_header(p),
5445                                       skb_mac_header(skb),
5446                                       maclen);
5447                NAPI_GRO_CB(p)->same_flow = !diffs;
5448        }
5449
5450        return head;
5451}
5452
5453static void skb_gro_reset_offset(struct sk_buff *skb)
5454{
5455        const struct skb_shared_info *pinfo = skb_shinfo(skb);
5456        const skb_frag_t *frag0 = &pinfo->frags[0];
5457
5458        NAPI_GRO_CB(skb)->data_offset = 0;
5459        NAPI_GRO_CB(skb)->frag0 = NULL;
5460        NAPI_GRO_CB(skb)->frag0_len = 0;
5461
5462        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5463            pinfo->nr_frags &&
5464            !PageHighMem(skb_frag_page(frag0))) {
5465                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5466                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5467                                                    skb_frag_size(frag0),
5468                                                    skb->end - skb->tail);
5469        }
5470}
5471
5472static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5473{
5474        struct skb_shared_info *pinfo = skb_shinfo(skb);
5475
5476        BUG_ON(skb->end - skb->tail < grow);
5477
5478        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5479
5480        skb->data_len -= grow;
5481        skb->tail += grow;
5482
5483        pinfo->frags[0].page_offset += grow;
5484        skb_frag_size_sub(&pinfo->frags[0], grow);
5485
5486        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5487                skb_frag_unref(skb, 0);
5488                memmove(pinfo->frags, pinfo->frags + 1,
5489                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5490        }
5491}
5492
5493static void gro_flush_oldest(struct list_head *head)
5494{
5495        struct sk_buff *oldest;
5496
5497        oldest = list_last_entry(head, struct sk_buff, list);
5498
5499        /* We are called with head length >= MAX_GRO_SKBS, so this is
5500         * impossible.
5501         */
5502        if (WARN_ON_ONCE(!oldest))
5503                return;
5504
5505        /* Do not adjust napi->gro_hash[].count, caller is adding a new
5506         * SKB to the chain.
5507         */
5508        skb_list_del_init(oldest);
5509        napi_gro_complete(oldest);
5510}
5511
5512INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5513                                                           struct sk_buff *));
5514INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5515                                                           struct sk_buff *));
5516static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5517{
5518        u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5519        struct list_head *head = &offload_base;
5520        struct packet_offload *ptype;
5521        __be16 type = skb->protocol;
5522        struct list_head *gro_head;
5523        struct sk_buff *pp = NULL;
5524        enum gro_result ret;
5525        int same_flow;
5526        int grow;
5527
5528        if (netif_elide_gro(skb->dev))
5529                goto normal;
5530
5531        gro_head = gro_list_prepare(napi, skb);
5532
5533        rcu_read_lock();
5534        list_for_each_entry_rcu(ptype, head, list) {
5535                if (ptype->type != type || !ptype->callbacks.gro_receive)
5536                        continue;
5537
5538                skb_set_network_header(skb, skb_gro_offset(skb));
5539                skb_reset_mac_len(skb);
5540                NAPI_GRO_CB(skb)->same_flow = 0;
5541                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5542                NAPI_GRO_CB(skb)->free = 0;
5543                NAPI_GRO_CB(skb)->encap_mark = 0;
5544                NAPI_GRO_CB(skb)->recursion_counter = 0;
5545                NAPI_GRO_CB(skb)->is_fou = 0;
5546                NAPI_GRO_CB(skb)->is_atomic = 1;
5547                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5548
5549                /* Setup for GRO checksum validation */
5550                switch (skb->ip_summed) {
5551                case CHECKSUM_COMPLETE:
5552                        NAPI_GRO_CB(skb)->csum = skb->csum;
5553                        NAPI_GRO_CB(skb)->csum_valid = 1;
5554                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5555                        break;
5556                case CHECKSUM_UNNECESSARY:
5557                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5558                        NAPI_GRO_CB(skb)->csum_valid = 0;
5559                        break;
5560                default:
5561                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5562                        NAPI_GRO_CB(skb)->csum_valid = 0;
5563                }
5564
5565                pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5566                                        ipv6_gro_receive, inet_gro_receive,
5567                                        gro_head, skb);
5568                break;
5569        }
5570        rcu_read_unlock();
5571
5572        if (&ptype->list == head)
5573                goto normal;
5574
5575        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5576                ret = GRO_CONSUMED;
5577                goto ok;
5578        }
5579
5580        same_flow = NAPI_GRO_CB(skb)->same_flow;
5581        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5582
5583        if (pp) {
5584                skb_list_del_init(pp);
5585                napi_gro_complete(pp);
5586                napi->gro_hash[hash].count--;
5587        }
5588
5589        if (same_flow)
5590                goto ok;
5591
5592        if (NAPI_GRO_CB(skb)->flush)
5593                goto normal;
5594
5595        if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5596                gro_flush_oldest(gro_head);
5597        } else {
5598                napi->gro_hash[hash].count++;
5599        }
5600        NAPI_GRO_CB(skb)->count = 1;
5601        NAPI_GRO_CB(skb)->age = jiffies;
5602        NAPI_GRO_CB(skb)->last = skb;
5603        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5604        list_add(&skb->list, gro_head);
5605        ret = GRO_HELD;
5606
5607pull:
5608        grow = skb_gro_offset(skb) - skb_headlen(skb);
5609        if (grow > 0)
5610                gro_pull_from_frag0(skb, grow);
5611ok:
5612        if (napi->gro_hash[hash].count) {
5613                if (!test_bit(hash, &napi->gro_bitmask))
5614                        __set_bit(hash, &napi->gro_bitmask);
5615        } else if (test_bit(hash, &napi->gro_bitmask)) {
5616                __clear_bit(hash, &napi->gro_bitmask);
5617        }
5618
5619        return ret;
5620
5621normal:
5622        ret = GRO_NORMAL;
5623        goto pull;
5624}
5625
5626struct packet_offload *gro_find_receive_by_type(__be16 type)
5627{
5628        struct list_head *offload_head = &offload_base;
5629        struct packet_offload *ptype;
5630
5631        list_for_each_entry_rcu(ptype, offload_head, list) {
5632                if (ptype->type != type || !ptype->callbacks.gro_receive)
5633                        continue;
5634                return ptype;
5635        }
5636        return NULL;
5637}
5638EXPORT_SYMBOL(gro_find_receive_by_type);
5639
5640struct packet_offload *gro_find_complete_by_type(__be16 type)
5641{
5642        struct list_head *offload_head = &offload_base;
5643        struct packet_offload *ptype;
5644
5645        list_for_each_entry_rcu(ptype, offload_head, list) {
5646                if (ptype->type != type || !ptype->callbacks.gro_complete)
5647                        continue;
5648                return ptype;
5649        }
5650        return NULL;
5651}
5652EXPORT_SYMBOL(gro_find_complete_by_type);
5653
5654static void napi_skb_free_stolen_head(struct sk_buff *skb)
5655{
5656        skb_dst_drop(skb);
5657        secpath_reset(skb);
5658        kmem_cache_free(skbuff_head_cache, skb);
5659}
5660
5661static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5662{
5663        switch (ret) {
5664        case GRO_NORMAL:
5665                if (netif_receive_skb_internal(skb))
5666                        ret = GRO_DROP;
5667                break;
5668
5669        case GRO_DROP:
5670                kfree_skb(skb);
5671                break;
5672
5673        case GRO_MERGED_FREE:
5674                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5675                        napi_skb_free_stolen_head(skb);
5676                else
5677                        __kfree_skb(skb);
5678                break;
5679
5680        case GRO_HELD:
5681        case GRO_MERGED:
5682        case GRO_CONSUMED:
5683                break;
5684        }
5685
5686        return ret;
5687}
5688
5689gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5690{
5691        gro_result_t ret;
5692
5693        skb_mark_napi_id(skb, napi);
5694        trace_napi_gro_receive_entry(skb);
5695
5696        skb_gro_reset_offset(skb);
5697
5698        ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5699        trace_napi_gro_receive_exit(ret);
5700
5701        return ret;
5702}
5703EXPORT_SYMBOL(napi_gro_receive);
5704
5705static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5706{
5707        if (unlikely(skb->pfmemalloc)) {
5708                consume_skb(skb);
5709                return;
5710        }
5711        __skb_pull(skb, skb_headlen(skb));
5712        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5713        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5714        __vlan_hwaccel_clear_tag(skb);
5715        skb->dev = napi->dev;
5716        skb->skb_iif = 0;
5717
5718        /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5719        skb->pkt_type = PACKET_HOST;
5720
5721        skb->encapsulation = 0;
5722        skb_shinfo(skb)->gso_type = 0;
5723        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5724        secpath_reset(skb);
5725
5726        napi->skb = skb;
5727}
5728
5729struct sk_buff *napi_get_frags(struct napi_struct *napi)
5730{
5731        struct sk_buff *skb = napi->skb;
5732
5733        if (!skb) {
5734                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5735                if (skb) {
5736                        napi->skb = skb;
5737                        skb_mark_napi_id(skb, napi);
5738                }
5739        }
5740        return skb;
5741}
5742EXPORT_SYMBOL(napi_get_frags);
5743
5744static gro_result_t napi_frags_finish(struct napi_struct *napi,
5745                                      struct sk_buff *skb,
5746                                      gro_result_t ret)
5747{
5748        switch (ret) {
5749        case GRO_NORMAL:
5750        case GRO_HELD:
5751                __skb_push(skb, ETH_HLEN);
5752                skb->protocol = eth_type_trans(skb, skb->dev);
5753                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5754                        ret = GRO_DROP;
5755                break;
5756
5757        case GRO_DROP:
5758                napi_reuse_skb(napi, skb);
5759                break;
5760
5761        case GRO_MERGED_FREE:
5762                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5763                        napi_skb_free_stolen_head(skb);
5764                else
5765                        napi_reuse_skb(napi, skb);
5766                break;
5767
5768        case GRO_MERGED:
5769        case GRO_CONSUMED:
5770                break;
5771        }
5772
5773        return ret;
5774}
5775
5776/* Upper GRO stack assumes network header starts at gro_offset=0
5777 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5778 * We copy ethernet header into skb->data to have a common layout.
5779 */
5780static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5781{
5782        struct sk_buff *skb = napi->skb;
5783        const struct ethhdr *eth;
5784        unsigned int hlen = sizeof(*eth);
5785
5786        napi->skb = NULL;
5787
5788        skb_reset_mac_header(skb);
5789        skb_gro_reset_offset(skb);
5790
5791        eth = skb_gro_header_fast(skb, 0);
5792        if (unlikely(skb_gro_header_hard(skb, hlen))) {
5793                eth = skb_gro_header_slow(skb, hlen, 0);
5794                if (unlikely(!eth)) {
5795                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5796                                             __func__, napi->dev->name);
5797                        napi_reuse_skb(napi, skb);
5798                        return NULL;
5799                }
5800        } else {
5801                gro_pull_from_frag0(skb, hlen);
5802                NAPI_GRO_CB(skb)->frag0 += hlen;
5803                NAPI_GRO_CB(skb)->frag0_len -= hlen;
5804        }
5805        __skb_pull(skb, hlen);
5806
5807        /*
5808         * This works because the only protocols we care about don't require
5809         * special handling.
5810         * We'll fix it up properly in napi_frags_finish()
5811         */
5812        skb->protocol = eth->h_proto;
5813
5814        return skb;
5815}
5816
5817gro_result_t napi_gro_frags(struct napi_struct *napi)
5818{
5819        gro_result_t ret;
5820        struct sk_buff *skb = napi_frags_skb(napi);
5821
5822        if (!skb)
5823                return GRO_DROP;
5824
5825        trace_napi_gro_frags_entry(skb);
5826
5827        ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5828        trace_napi_gro_frags_exit(ret);
5829
5830        return ret;
5831}
5832EXPORT_SYMBOL(napi_gro_frags);
5833
5834/* Compute the checksum from gro_offset and return the folded value
5835 * after adding in any pseudo checksum.
5836 */
5837__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5838{
5839        __wsum wsum;
5840        __sum16 sum;
5841
5842        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5843
5844        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5845        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5846        /* See comments in __skb_checksum_complete(). */
5847        if (likely(!sum)) {
5848                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5849                    !skb->csum_complete_sw)
5850                        netdev_rx_csum_fault(skb->dev, skb);
5851        }
5852
5853        NAPI_GRO_CB(skb)->csum = wsum;
5854        NAPI_GRO_CB(skb)->csum_valid = 1;
5855
5856        return sum;
5857}
5858EXPORT_SYMBOL(__skb_gro_checksum_complete);
5859
5860static void net_rps_send_ipi(struct softnet_data *remsd)
5861{
5862#ifdef CONFIG_RPS
5863        while (remsd) {
5864                struct softnet_data *next = remsd->rps_ipi_next;
5865
5866                if (cpu_online(remsd->cpu))
5867                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5868                remsd = next;
5869        }
5870#endif
5871}
5872
5873/*
5874 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5875 * Note: called with local irq disabled, but exits with local irq enabled.
5876 */
5877static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5878{
5879#ifdef CONFIG_RPS
5880        struct softnet_data *remsd = sd->rps_ipi_list;
5881
5882        if (remsd) {
5883                sd->rps_ipi_list = NULL;
5884
5885                local_irq_enable();
5886
5887                /* Send pending IPI's to kick RPS processing on remote cpus. */
5888                net_rps_send_ipi(remsd);
5889        } else
5890#endif
5891                local_irq_enable();
5892}
5893
5894static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5895{
5896#ifdef CONFIG_RPS
5897        return sd->rps_ipi_list != NULL;
5898#else
5899        return false;
5900#endif
5901}
5902
5903static int process_backlog(struct napi_struct *napi, int quota)
5904{
5905        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5906        bool again = true;
5907        int work = 0;
5908
5909        /* Check if we have pending ipi, its better to send them now,
5910         * not waiting net_rx_action() end.
5911         */
5912        if (sd_has_rps_ipi_waiting(sd)) {
5913                local_irq_disable();
5914                net_rps_action_and_irq_enable(sd);
5915        }
5916
5917        napi->weight = dev_rx_weight;
5918        while (again) {
5919                struct sk_buff *skb;
5920
5921                while ((skb = __skb_dequeue(&sd->process_queue))) {
5922                        rcu_read_lock();
5923                        __netif_receive_skb(skb);
5924                        rcu_read_unlock();
5925                        input_queue_head_incr(sd);
5926                        if (++work >= quota)
5927                                return work;
5928
5929                }
5930
5931                local_irq_disable();
5932                rps_lock(sd);
5933                if (skb_queue_empty(&sd->input_pkt_queue)) {
5934                        /*
5935                         * Inline a custom version of __napi_complete().
5936                         * only current cpu owns and manipulates this napi,
5937                         * and NAPI_STATE_SCHED is the only possible flag set
5938                         * on backlog.
5939                         * We can use a plain write instead of clear_bit(),
5940                         * and we dont need an smp_mb() memory barrier.
5941                         */
5942                        napi->state = 0;
5943                        again = false;
5944                } else {
5945                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946                                                   &sd->process_queue);
5947                }
5948                rps_unlock(sd);
5949                local_irq_enable();
5950        }
5951
5952        return work;
5953}
5954
5955/**
5956 * __napi_schedule - schedule for receive
5957 * @n: entry to schedule
5958 *
5959 * The entry's receive function will be scheduled to run.
5960 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5961 */
5962void __napi_schedule(struct napi_struct *n)
5963{
5964        unsigned long flags;
5965
5966        local_irq_save(flags);
5967        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5968        local_irq_restore(flags);
5969}
5970EXPORT_SYMBOL(__napi_schedule);
5971
5972/**
5973 *      napi_schedule_prep - check if napi can be scheduled
5974 *      @n: napi context
5975 *
5976 * Test if NAPI routine is already running, and if not mark
5977 * it as running.  This is used as a condition variable
5978 * insure only one NAPI poll instance runs.  We also make
5979 * sure there is no pending NAPI disable.
5980 */
5981bool napi_schedule_prep(struct napi_struct *n)
5982{
5983        unsigned long val, new;
5984
5985        do {
5986                val = READ_ONCE(n->state);
5987                if (unlikely(val & NAPIF_STATE_DISABLE))
5988                        return false;
5989                new = val | NAPIF_STATE_SCHED;
5990
5991                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5992                 * This was suggested by Alexander Duyck, as compiler
5993                 * emits better code than :
5994                 * if (val & NAPIF_STATE_SCHED)
5995                 *     new |= NAPIF_STATE_MISSED;
5996                 */
5997                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5998                                                   NAPIF_STATE_MISSED;
5999        } while (cmpxchg(&n->state, val, new) != val);
6000
6001        return !(val & NAPIF_STATE_SCHED);
6002}
6003EXPORT_SYMBOL(napi_schedule_prep);
6004
6005/**
6006 * __napi_schedule_irqoff - schedule for receive
6007 * @n: entry to schedule
6008 *
6009 * Variant of __napi_schedule() assuming hard irqs are masked
6010 */
6011void __napi_schedule_irqoff(struct napi_struct *n)
6012{
6013        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014}
6015EXPORT_SYMBOL(__napi_schedule_irqoff);
6016
6017bool napi_complete_done(struct napi_struct *n, int work_done)
6018{
6019        unsigned long flags, val, new;
6020
6021        /*
6022         * 1) Don't let napi dequeue from the cpu poll list
6023         *    just in case its running on a different cpu.
6024         * 2) If we are busy polling, do nothing here, we have
6025         *    the guarantee we will be called later.
6026         */
6027        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6028                                 NAPIF_STATE_IN_BUSY_POLL)))
6029                return false;
6030
6031        if (n->gro_bitmask) {
6032                unsigned long timeout = 0;
6033
6034                if (work_done)
6035                        timeout = n->dev->gro_flush_timeout;
6036
6037                /* When the NAPI instance uses a timeout and keeps postponing
6038                 * it, we need to bound somehow the time packets are kept in
6039                 * the GRO layer
6040                 */
6041                napi_gro_flush(n, !!timeout);
6042                if (timeout)
6043                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
6044                                      HRTIMER_MODE_REL_PINNED);
6045        }
6046        if (unlikely(!list_empty(&n->poll_list))) {
6047                /* If n->poll_list is not empty, we need to mask irqs */
6048                local_irq_save(flags);
6049                list_del_init(&n->poll_list);
6050                local_irq_restore(flags);
6051        }
6052
6053        do {
6054                val = READ_ONCE(n->state);
6055
6056                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6057
6058                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6059
6060                /* If STATE_MISSED was set, leave STATE_SCHED set,
6061                 * because we will call napi->poll() one more time.
6062                 * This C code was suggested by Alexander Duyck to help gcc.
6063                 */
6064                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6065                                                    NAPIF_STATE_SCHED;
6066        } while (cmpxchg(&n->state, val, new) != val);
6067
6068        if (unlikely(val & NAPIF_STATE_MISSED)) {
6069                __napi_schedule(n);
6070                return false;
6071        }
6072
6073        return true;
6074}
6075EXPORT_SYMBOL(napi_complete_done);
6076
6077/* must be called under rcu_read_lock(), as we dont take a reference */
6078static struct napi_struct *napi_by_id(unsigned int napi_id)
6079{
6080        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6081        struct napi_struct *napi;
6082
6083        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6084                if (napi->napi_id == napi_id)
6085                        return napi;
6086
6087        return NULL;
6088}
6089
6090#if defined(CONFIG_NET_RX_BUSY_POLL)
6091
6092#define BUSY_POLL_BUDGET 8
6093
6094static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6095{
6096        int rc;
6097
6098        /* Busy polling means there is a high chance device driver hard irq
6099         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6100         * set in napi_schedule_prep().
6101         * Since we are about to call napi->poll() once more, we can safely
6102         * clear NAPI_STATE_MISSED.
6103         *
6104         * Note: x86 could use a single "lock and ..." instruction
6105         * to perform these two clear_bit()
6106         */
6107        clear_bit(NAPI_STATE_MISSED, &napi->state);
6108        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6109
6110        local_bh_disable();
6111
6112        /* All we really want here is to re-enable device interrupts.
6113         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6114         */
6115        rc = napi->poll(napi, BUSY_POLL_BUDGET);
6116        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6117        netpoll_poll_unlock(have_poll_lock);
6118        if (rc == BUSY_POLL_BUDGET)
6119                __napi_schedule(napi);
6120        local_bh_enable();
6121}
6122
6123void napi_busy_loop(unsigned int napi_id,
6124                    bool (*loop_end)(void *, unsigned long),
6125                    void *loop_end_arg)
6126{
6127        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6128        int (*napi_poll)(struct napi_struct *napi, int budget);
6129        void *have_poll_lock = NULL;
6130        struct napi_struct *napi;
6131
6132restart:
6133        napi_poll = NULL;
6134
6135        rcu_read_lock();
6136
6137        napi = napi_by_id(napi_id);
6138        if (!napi)
6139                goto out;
6140
6141        preempt_disable();
6142        for (;;) {
6143                int work = 0;
6144
6145                local_bh_disable();
6146                if (!napi_poll) {
6147                        unsigned long val = READ_ONCE(napi->state);
6148
6149                        /* If multiple threads are competing for this napi,
6150                         * we avoid dirtying napi->state as much as we can.
6151                         */
6152                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6153                                   NAPIF_STATE_IN_BUSY_POLL))
6154                                goto count;
6155                        if (cmpxchg(&napi->state, val,
6156                                    val | NAPIF_STATE_IN_BUSY_POLL |
6157                                          NAPIF_STATE_SCHED) != val)
6158                                goto count;
6159                        have_poll_lock = netpoll_poll_lock(napi);
6160                        napi_poll = napi->poll;
6161                }
6162                work = napi_poll(napi, BUSY_POLL_BUDGET);
6163                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6164count:
6165                if (work > 0)
6166                        __NET_ADD_STATS(dev_net(napi->dev),
6167                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6168                local_bh_enable();
6169
6170                if (!loop_end || loop_end(loop_end_arg, start_time))
6171                        break;
6172
6173                if (unlikely(need_resched())) {
6174                        if (napi_poll)
6175                                busy_poll_stop(napi, have_poll_lock);
6176                        preempt_enable();
6177                        rcu_read_unlock();
6178                        cond_resched();
6179                        if (loop_end(loop_end_arg, start_time))
6180                                return;
6181                        goto restart;
6182                }
6183                cpu_relax();
6184        }
6185        if (napi_poll)
6186                busy_poll_stop(napi, have_poll_lock);
6187        preempt_enable();
6188out:
6189        rcu_read_unlock();
6190}
6191EXPORT_SYMBOL(napi_busy_loop);
6192
6193#endif /* CONFIG_NET_RX_BUSY_POLL */
6194
6195static void napi_hash_add(struct napi_struct *napi)
6196{
6197        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6198            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6199                return;
6200
6201        spin_lock(&napi_hash_lock);
6202
6203        /* 0..NR_CPUS range is reserved for sender_cpu use */
6204        do {
6205                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6206                        napi_gen_id = MIN_NAPI_ID;
6207        } while (napi_by_id(napi_gen_id));
6208        napi->napi_id = napi_gen_id;
6209
6210        hlist_add_head_rcu(&napi->napi_hash_node,
6211                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6212
6213        spin_unlock(&napi_hash_lock);
6214}
6215
6216/* Warning : caller is responsible to make sure rcu grace period
6217 * is respected before freeing memory containing @napi
6218 */
6219bool napi_hash_del(struct napi_struct *napi)
6220{
6221        bool rcu_sync_needed = false;
6222
6223        spin_lock(&napi_hash_lock);
6224
6225        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6226                rcu_sync_needed = true;
6227                hlist_del_rcu(&napi->napi_hash_node);
6228        }
6229        spin_unlock(&napi_hash_lock);
6230        return rcu_sync_needed;
6231}
6232EXPORT_SYMBOL_GPL(napi_hash_del);
6233
6234static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6235{
6236        struct napi_struct *napi;
6237
6238        napi = container_of(timer, struct napi_struct, timer);
6239
6240        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6241         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6242         */
6243        if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6244            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6245                __napi_schedule_irqoff(napi);
6246
6247        return HRTIMER_NORESTART;
6248}
6249
6250static void init_gro_hash(struct napi_struct *napi)
6251{
6252        int i;
6253
6254        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6255                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6256                napi->gro_hash[i].count = 0;
6257        }
6258        napi->gro_bitmask = 0;
6259}
6260
6261void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6262                    int (*poll)(struct napi_struct *, int), int weight)
6263{
6264        INIT_LIST_HEAD(&napi->poll_list);
6265        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6266        napi->timer.function = napi_watchdog;
6267        init_gro_hash(napi);
6268        napi->skb = NULL;
6269        napi->poll = poll;
6270        if (weight > NAPI_POLL_WEIGHT)
6271                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6272                                weight);
6273        napi->weight = weight;
6274        list_add(&napi->dev_list, &dev->napi_list);
6275        napi->dev = dev;
6276#ifdef CONFIG_NETPOLL
6277        napi->poll_owner = -1;
6278#endif
6279        set_bit(NAPI_STATE_SCHED, &napi->state);
6280        napi_hash_add(napi);
6281}
6282EXPORT_SYMBOL(netif_napi_add);
6283
6284void napi_disable(struct napi_struct *n)
6285{
6286        might_sleep();
6287        set_bit(NAPI_STATE_DISABLE, &n->state);
6288
6289        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6290                msleep(1);
6291        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6292                msleep(1);
6293
6294        hrtimer_cancel(&n->timer);
6295
6296        clear_bit(NAPI_STATE_DISABLE, &n->state);
6297}
6298EXPORT_SYMBOL(napi_disable);
6299
6300static void flush_gro_hash(struct napi_struct *napi)
6301{
6302        int i;
6303
6304        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6305                struct sk_buff *skb, *n;
6306
6307                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6308                        kfree_skb(skb);
6309                napi->gro_hash[i].count = 0;
6310        }
6311}
6312
6313/* Must be called in process context */
6314void netif_napi_del(struct napi_struct *napi)
6315{
6316        might_sleep();
6317        if (napi_hash_del(napi))
6318                synchronize_net();
6319        list_del_init(&napi->dev_list);
6320        napi_free_frags(napi);
6321
6322        flush_gro_hash(napi);
6323        napi->gro_bitmask = 0;
6324}
6325EXPORT_SYMBOL(netif_napi_del);
6326
6327static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6328{
6329        void *have;
6330        int work, weight;
6331
6332        list_del_init(&n->poll_list);
6333
6334        have = netpoll_poll_lock(n);
6335
6336        weight = n->weight;
6337
6338        /* This NAPI_STATE_SCHED test is for avoiding a race
6339         * with netpoll's poll_napi().  Only the entity which
6340         * obtains the lock and sees NAPI_STATE_SCHED set will
6341         * actually make the ->poll() call.  Therefore we avoid
6342         * accidentally calling ->poll() when NAPI is not scheduled.
6343         */
6344        work = 0;
6345        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6346                work = n->poll(n, weight);
6347                trace_napi_poll(n, work, weight);
6348        }
6349
6350        WARN_ON_ONCE(work > weight);
6351
6352        if (likely(work < weight))
6353                goto out_unlock;
6354
6355        /* Drivers must not modify the NAPI state if they
6356         * consume the entire weight.  In such cases this code
6357         * still "owns" the NAPI instance and therefore can
6358         * move the instance around on the list at-will.
6359         */
6360        if (unlikely(napi_disable_pending(n))) {
6361                napi_complete(n);
6362                goto out_unlock;
6363        }
6364
6365        if (n->gro_bitmask) {
6366                /* flush too old packets
6367                 * If HZ < 1000, flush all packets.
6368                 */
6369                napi_gro_flush(n, HZ >= 1000);
6370        }
6371
6372        /* Some drivers may have called napi_schedule
6373         * prior to exhausting their budget.
6374         */
6375        if (unlikely(!list_empty(&n->poll_list))) {
6376                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6377                             n->dev ? n->dev->name : "backlog");
6378                goto out_unlock;
6379        }
6380
6381        list_add_tail(&n->poll_list, repoll);
6382
6383out_unlock:
6384        netpoll_poll_unlock(have);
6385
6386        return work;
6387}
6388
6389static __latent_entropy void net_rx_action(struct softirq_action *h)
6390{
6391        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6392        unsigned long time_limit = jiffies +
6393                usecs_to_jiffies(netdev_budget_usecs);
6394        int budget = netdev_budget;
6395        LIST_HEAD(list);
6396        LIST_HEAD(repoll);
6397
6398        local_irq_disable();
6399        list_splice_init(&sd->poll_list, &list);
6400        local_irq_enable();
6401
6402        for (;;) {
6403                struct napi_struct *n;
6404
6405                if (list_empty(&list)) {
6406                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6407                                goto out;
6408                        break;
6409                }
6410
6411                n = list_first_entry(&list, struct napi_struct, poll_list);
6412                budget -= napi_poll(n, &repoll);
6413
6414                /* If softirq window is exhausted then punt.
6415                 * Allow this to run for 2 jiffies since which will allow
6416                 * an average latency of 1.5/HZ.
6417                 */
6418                if (unlikely(budget <= 0 ||
6419                             time_after_eq(jiffies, time_limit))) {
6420                        sd->time_squeeze++;
6421                        break;
6422                }
6423        }
6424
6425        local_irq_disable();
6426
6427        list_splice_tail_init(&sd->poll_list, &list);
6428        list_splice_tail(&repoll, &list);
6429        list_splice(&list, &sd->poll_list);
6430        if (!list_empty(&sd->poll_list))
6431                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6432
6433        net_rps_action_and_irq_enable(sd);
6434out:
6435        __kfree_skb_flush();
6436}
6437
6438struct netdev_adjacent {
6439        struct net_device *dev;
6440
6441        /* upper master flag, there can only be one master device per list */
6442        bool master;
6443
6444        /* counter for the number of times this device was added to us */
6445        u16 ref_nr;
6446
6447        /* private field for the users */
6448        void *private;
6449
6450        struct list_head list;
6451        struct rcu_head rcu;
6452};
6453
6454static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6455                                                 struct list_head *adj_list)
6456{
6457        struct netdev_adjacent *adj;
6458
6459        list_for_each_entry(adj, adj_list, list) {
6460                if (adj->dev == adj_dev)
6461                        return adj;
6462        }
6463        return NULL;
6464}
6465
6466static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6467{
6468        struct net_device *dev = data;
6469
6470        return upper_dev == dev;
6471}
6472
6473/**
6474 * netdev_has_upper_dev - Check if device is linked to an upper device
6475 * @dev: device
6476 * @upper_dev: upper device to check
6477 *
6478 * Find out if a device is linked to specified upper device and return true
6479 * in case it is. Note that this checks only immediate upper device,
6480 * not through a complete stack of devices. The caller must hold the RTNL lock.
6481 */
6482bool netdev_has_upper_dev(struct net_device *dev,
6483                          struct net_device *upper_dev)
6484{
6485        ASSERT_RTNL();
6486
6487        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6488                                             upper_dev);
6489}
6490EXPORT_SYMBOL(netdev_has_upper_dev);
6491
6492/**
6493 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6494 * @dev: device
6495 * @upper_dev: upper device to check
6496 *
6497 * Find out if a device is linked to specified upper device and return true
6498 * in case it is. Note that this checks the entire upper device chain.
6499 * The caller must hold rcu lock.
6500 */
6501
6502bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6503                                  struct net_device *upper_dev)
6504{
6505        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6506                                               upper_dev);
6507}
6508EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6509
6510/**
6511 * netdev_has_any_upper_dev - Check if device is linked to some device
6512 * @dev: device
6513 *
6514 * Find out if a device is linked to an upper device and return true in case
6515 * it is. The caller must hold the RTNL lock.
6516 */
6517bool netdev_has_any_upper_dev(struct net_device *dev)
6518{
6519        ASSERT_RTNL();
6520
6521        return !list_empty(&dev->adj_list.upper);
6522}
6523EXPORT_SYMBOL(netdev_has_any_upper_dev);
6524
6525/**
6526 * netdev_master_upper_dev_get - Get master upper device
6527 * @dev: device
6528 *
6529 * Find a master upper device and return pointer to it or NULL in case
6530 * it's not there. The caller must hold the RTNL lock.
6531 */
6532struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6533{
6534        struct netdev_adjacent *upper;
6535
6536        ASSERT_RTNL();
6537
6538        if (list_empty(&dev->adj_list.upper))
6539                return NULL;
6540
6541        upper = list_first_entry(&dev->adj_list.upper,
6542                                 struct netdev_adjacent, list);
6543        if (likely(upper->master))
6544                return upper->dev;
6545        return NULL;
6546}
6547EXPORT_SYMBOL(netdev_master_upper_dev_get);
6548
6549/**
6550 * netdev_has_any_lower_dev - Check if device is linked to some device
6551 * @dev: device
6552 *
6553 * Find out if a device is linked to a lower device and return true in case
6554 * it is. The caller must hold the RTNL lock.
6555 */
6556static bool netdev_has_any_lower_dev(struct net_device *dev)
6557{
6558        ASSERT_RTNL();
6559
6560        return !list_empty(&dev->adj_list.lower);
6561}
6562
6563void *netdev_adjacent_get_private(struct list_head *adj_list)
6564{
6565        struct netdev_adjacent *adj;
6566
6567        adj = list_entry(adj_list, struct netdev_adjacent, list);
6568
6569        return adj->private;
6570}
6571EXPORT_SYMBOL(netdev_adjacent_get_private);
6572
6573/**
6574 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6575 * @dev: device
6576 * @iter: list_head ** of the current position
6577 *
6578 * Gets the next device from the dev's upper list, starting from iter
6579 * position. The caller must hold RCU read lock.
6580 */
6581struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6582                                                 struct list_head **iter)
6583{
6584        struct netdev_adjacent *upper;
6585
6586        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6587
6588        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6589
6590        if (&upper->list == &dev->adj_list.upper)
6591                return NULL;
6592
6593        *iter = &upper->list;
6594
6595        return upper->dev;
6596}
6597EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6598
6599static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6600                                                    struct list_head **iter)
6601{
6602        struct netdev_adjacent *upper;
6603
6604        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6605
6606        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6607
6608        if (&upper->list == &dev->adj_list.upper)
6609                return NULL;
6610
6611        *iter = &upper->list;
6612
6613        return upper->dev;
6614}
6615
6616int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6617                                  int (*fn)(struct net_device *dev,
6618                                            void *data),
6619                                  void *data)
6620{
6621        struct net_device *udev;
6622        struct list_head *iter;
6623        int ret;
6624
6625        for (iter = &dev->adj_list.upper,
6626             udev = netdev_next_upper_dev_rcu(dev, &iter);
6627             udev;
6628             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6629                /* first is the upper device itself */
6630                ret = fn(udev, data);
6631                if (ret)
6632                        return ret;
6633
6634                /* then look at all of its upper devices */
6635                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6636                if (ret)
6637                        return ret;
6638        }
6639
6640        return 0;
6641}
6642EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6643
6644/**
6645 * netdev_lower_get_next_private - Get the next ->private from the
6646 *                                 lower neighbour list
6647 * @dev: device
6648 * @iter: list_head ** of the current position
6649 *
6650 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6651 * list, starting from iter position. The caller must hold either hold the
6652 * RTNL lock or its own locking that guarantees that the neighbour lower
6653 * list will remain unchanged.
6654 */
6655void *netdev_lower_get_next_private(struct net_device *dev,
6656                                    struct list_head **iter)
6657{
6658        struct netdev_adjacent *lower;
6659
6660        lower = list_entry(*iter, struct netdev_adjacent, list);
6661
6662        if (&lower->list == &dev->adj_list.lower)
6663                return NULL;
6664
6665        *iter = lower->list.next;
6666
6667        return lower->private;
6668}
6669EXPORT_SYMBOL(netdev_lower_get_next_private);
6670
6671/**
6672 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6673 *                                     lower neighbour list, RCU
6674 *                                     variant
6675 * @dev: device
6676 * @iter: list_head ** of the current position
6677 *
6678 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6679 * list, starting from iter position. The caller must hold RCU read lock.
6680 */
6681void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6682                                        struct list_head **iter)
6683{
6684        struct netdev_adjacent *lower;
6685
6686        WARN_ON_ONCE(!rcu_read_lock_held());
6687
6688        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6689
6690        if (&lower->list == &dev->adj_list.lower)
6691                return NULL;
6692
6693        *iter = &lower->list;
6694
6695        return lower->private;
6696}
6697EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6698
6699/**
6700 * netdev_lower_get_next - Get the next device from the lower neighbour
6701 *                         list
6702 * @dev: device
6703 * @iter: list_head ** of the current position
6704 *
6705 * Gets the next netdev_adjacent from the dev's lower neighbour
6706 * list, starting from iter position. The caller must hold RTNL lock or
6707 * its own locking that guarantees that the neighbour lower
6708 * list will remain unchanged.
6709 */
6710void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6711{
6712        struct netdev_adjacent *lower;
6713
6714        lower = list_entry(*iter, struct netdev_adjacent, list);
6715
6716        if (&lower->list == &dev->adj_list.lower)
6717                return NULL;
6718
6719        *iter = lower->list.next;
6720
6721        return lower->dev;
6722}
6723EXPORT_SYMBOL(netdev_lower_get_next);
6724
6725static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6726                                                struct list_head **iter)
6727{
6728        struct netdev_adjacent *lower;
6729
6730        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6731
6732        if (&lower->list == &dev->adj_list.lower)
6733                return NULL;
6734
6735        *iter = &lower->list;
6736
6737        return lower->dev;
6738}
6739
6740int netdev_walk_all_lower_dev(struct net_device *dev,
6741                              int (*fn)(struct net_device *dev,
6742                                        void *data),
6743                              void *data)
6744{
6745        struct net_device *ldev;
6746        struct list_head *iter;
6747        int ret;
6748
6749        for (iter = &dev->adj_list.lower,
6750             ldev = netdev_next_lower_dev(dev, &iter);
6751             ldev;
6752             ldev = netdev_next_lower_dev(dev, &iter)) {
6753                /* first is the lower device itself */
6754                ret = fn(ldev, data);
6755                if (ret)
6756                        return ret;
6757
6758                /* then look at all of its lower devices */
6759                ret = netdev_walk_all_lower_dev(ldev, fn, data);
6760                if (ret)
6761                        return ret;
6762        }
6763
6764        return 0;
6765}
6766EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6767
6768static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6769                                                    struct list_head **iter)
6770{
6771        struct netdev_adjacent *lower;
6772
6773        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6774        if (&lower->list == &dev->adj_list.lower)
6775                return NULL;
6776
6777        *iter = &lower->list;
6778
6779        return lower->dev;
6780}
6781
6782int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6783                                  int (*fn)(struct net_device *dev,
6784                                            void *data),
6785                                  void *data)
6786{
6787        struct net_device *ldev;
6788        struct list_head *iter;
6789        int ret;
6790
6791        for (iter = &dev->adj_list.lower,
6792             ldev = netdev_next_lower_dev_rcu(dev, &iter);
6793             ldev;
6794             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6795                /* first is the lower device itself */
6796                ret = fn(ldev, data);
6797                if (ret)
6798                        return ret;
6799
6800                /* then look at all of its lower devices */
6801                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6802                if (ret)
6803                        return ret;
6804        }
6805
6806        return 0;
6807}
6808EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6809
6810/**
6811 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6812 *                                     lower neighbour list, RCU
6813 *                                     variant
6814 * @dev: device
6815 *
6816 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6817 * list. The caller must hold RCU read lock.
6818 */
6819void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6820{
6821        struct netdev_adjacent *lower;
6822
6823        lower = list_first_or_null_rcu(&dev->adj_list.lower,
6824                        struct netdev_adjacent, list);
6825        if (lower)
6826                return lower->private;
6827        return NULL;
6828}
6829EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6830
6831/**
6832 * netdev_master_upper_dev_get_rcu - Get master upper device
6833 * @dev: device
6834 *
6835 * Find a master upper device and return pointer to it or NULL in case
6836 * it's not there. The caller must hold the RCU read lock.
6837 */
6838struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6839{
6840        struct netdev_adjacent *upper;
6841
6842        upper = list_first_or_null_rcu(&dev->adj_list.upper,
6843                                       struct netdev_adjacent, list);
6844        if (upper && likely(upper->master))
6845                return upper->dev;
6846        return NULL;
6847}
6848EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6849
6850static int netdev_adjacent_sysfs_add(struct net_device *dev,
6851                              struct net_device *adj_dev,
6852                              struct list_head *dev_list)
6853{
6854        char linkname[IFNAMSIZ+7];
6855
6856        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6857                "upper_%s" : "lower_%s", adj_dev->name);
6858        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6859                                 linkname);
6860}
6861static void netdev_adjacent_sysfs_del(struct net_device *dev,
6862                               char *name,
6863                               struct list_head *dev_list)
6864{
6865        char linkname[IFNAMSIZ+7];
6866
6867        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868                "upper_%s" : "lower_%s", name);
6869        sysfs_remove_link(&(dev->dev.kobj), linkname);
6870}
6871
6872static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6873                                                 struct net_device *adj_dev,
6874                                                 struct list_head *dev_list)
6875{
6876        return (dev_list == &dev->adj_list.upper ||
6877                dev_list == &dev->adj_list.lower) &&
6878                net_eq(dev_net(dev), dev_net(adj_dev));
6879}
6880
6881static int __netdev_adjacent_dev_insert(struct net_device *dev,
6882                                        struct net_device *adj_dev,
6883                                        struct list_head *dev_list,
6884                                        void *private, bool master)
6885{
6886        struct netdev_adjacent *adj;
6887        int ret;
6888
6889        adj = __netdev_find_adj(adj_dev, dev_list);
6890
6891        if (adj) {
6892                adj->ref_nr += 1;
6893                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6894                         dev->name, adj_dev->name, adj->ref_nr);
6895
6896                return 0;
6897        }
6898
6899        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6900        if (!adj)
6901                return -ENOMEM;
6902
6903        adj->dev = adj_dev;
6904        adj->master = master;
6905        adj->ref_nr = 1;
6906        adj->private = private;
6907        dev_hold(adj_dev);
6908
6909        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6910                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6911
6912        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6913                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6914                if (ret)
6915                        goto free_adj;
6916        }
6917
6918        /* Ensure that master link is always the first item in list. */
6919        if (master) {
6920                ret = sysfs_create_link(&(dev->dev.kobj),
6921                                        &(adj_dev->dev.kobj), "master");
6922                if (ret)
6923                        goto remove_symlinks;
6924
6925                list_add_rcu(&adj->list, dev_list);
6926        } else {
6927                list_add_tail_rcu(&adj->list, dev_list);
6928        }
6929
6930        return 0;
6931
6932remove_symlinks:
6933        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6934                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6935free_adj:
6936        kfree(adj);
6937        dev_put(adj_dev);
6938
6939        return ret;
6940}
6941
6942static void __netdev_adjacent_dev_remove(struct net_device *dev,
6943                                         struct net_device *adj_dev,
6944                                         u16 ref_nr,
6945                                         struct list_head *dev_list)
6946{
6947        struct netdev_adjacent *adj;
6948
6949        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6950                 dev->name, adj_dev->name, ref_nr);
6951
6952        adj = __netdev_find_adj(adj_dev, dev_list);
6953
6954        if (!adj) {
6955                pr_err("Adjacency does not exist for device %s from %s\n",
6956                       dev->name, adj_dev->name);
6957                WARN_ON(1);
6958                return;
6959        }
6960
6961        if (adj->ref_nr > ref_nr) {
6962                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6963                         dev->name, adj_dev->name, ref_nr,
6964                         adj->ref_nr - ref_nr);
6965                adj->ref_nr -= ref_nr;
6966                return;
6967        }
6968
6969        if (adj->master)
6970                sysfs_remove_link(&(dev->dev.kobj), "master");
6971
6972        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6973                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6974
6975        list_del_rcu(&adj->list);
6976        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6977                 adj_dev->name, dev->name, adj_dev->name);
6978        dev_put(adj_dev);
6979        kfree_rcu(adj, rcu);
6980}
6981
6982static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6983                                            struct net_device *upper_dev,
6984                                            struct list_head *up_list,
6985                                            struct list_head *down_list,
6986                                            void *private, bool master)
6987{
6988        int ret;
6989
6990        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6991                                           private, master);
6992        if (ret)
6993                return ret;
6994
6995        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6996                                           private, false);
6997        if (ret) {
6998                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6999                return ret;
7000        }
7001
7002        return 0;
7003}
7004
7005static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7006                                               struct net_device *upper_dev,
7007                                               u16 ref_nr,
7008                                               struct list_head *up_list,
7009                                               struct list_head *down_list)
7010{
7011        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7012        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7013}
7014
7015static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7016                                                struct net_device *upper_dev,
7017                                                void *private, bool master)
7018{
7019        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7020                                                &dev->adj_list.upper,
7021                                                &upper_dev->adj_list.lower,
7022                                                private, master);
7023}
7024
7025static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7026                                                   struct net_device *upper_dev)
7027{
7028        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7029                                           &dev->adj_list.upper,
7030                                           &upper_dev->adj_list.lower);
7031}
7032
7033static int __netdev_upper_dev_link(struct net_device *dev,
7034                                   struct net_device *upper_dev, bool master,
7035                                   void *upper_priv, void *upper_info,
7036                                   struct netlink_ext_ack *extack)
7037{
7038        struct netdev_notifier_changeupper_info changeupper_info = {
7039                .info = {
7040                        .dev = dev,
7041                        .extack = extack,
7042                },
7043                .upper_dev = upper_dev,
7044                .master = master,
7045                .linking = true,
7046                .upper_info = upper_info,
7047        };
7048        struct net_device *master_dev;
7049        int ret = 0;
7050
7051        ASSERT_RTNL();
7052
7053        if (dev == upper_dev)
7054                return -EBUSY;
7055
7056        /* To prevent loops, check if dev is not upper device to upper_dev. */
7057        if (netdev_has_upper_dev(upper_dev, dev))
7058                return -EBUSY;
7059
7060        if (!master) {
7061                if (netdev_has_upper_dev(dev, upper_dev))
7062                        return -EEXIST;
7063        } else {
7064                master_dev = netdev_master_upper_dev_get(dev);
7065                if (master_dev)
7066                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
7067        }
7068
7069        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7070                                            &changeupper_info.info);
7071        ret = notifier_to_errno(ret);
7072        if (ret)
7073                return ret;
7074
7075        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7076                                                   master);
7077        if (ret)
7078                return ret;
7079
7080        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7081                                            &changeupper_info.info);
7082        ret = notifier_to_errno(ret);
7083        if (ret)
7084                goto rollback;
7085
7086        return 0;
7087
7088rollback:
7089        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7090
7091        return ret;
7092}
7093
7094/**
7095 * netdev_upper_dev_link - Add a link to the upper device
7096 * @dev: device
7097 * @upper_dev: new upper device
7098 * @extack: netlink extended ack
7099 *
7100 * Adds a link to device which is upper to this one. The caller must hold
7101 * the RTNL lock. On a failure a negative errno code is returned.
7102 * On success the reference counts are adjusted and the function
7103 * returns zero.
7104 */
7105int netdev_upper_dev_link(struct net_device *dev,
7106                          struct net_device *upper_dev,
7107                          struct netlink_ext_ack *extack)
7108{
7109        return __netdev_upper_dev_link(dev, upper_dev, false,
7110                                       NULL, NULL, extack);
7111}
7112EXPORT_SYMBOL(netdev_upper_dev_link);
7113
7114/**
7115 * netdev_master_upper_dev_link - Add a master link to the upper device
7116 * @dev: device
7117 * @upper_dev: new upper device
7118 * @upper_priv: upper device private
7119 * @upper_info: upper info to be passed down via notifier
7120 * @extack: netlink extended ack
7121 *
7122 * Adds a link to device which is upper to this one. In this case, only
7123 * one master upper device can be linked, although other non-master devices
7124 * might be linked as well. The caller must hold the RTNL lock.
7125 * On a failure a negative errno code is returned. On success the reference
7126 * counts are adjusted and the function returns zero.
7127 */
7128int netdev_master_upper_dev_link(struct net_device *dev,
7129                                 struct net_device *upper_dev,
7130                                 void *upper_priv, void *upper_info,
7131                                 struct netlink_ext_ack *extack)
7132{
7133        return __netdev_upper_dev_link(dev, upper_dev, true,
7134                                       upper_priv, upper_info, extack);
7135}
7136EXPORT_SYMBOL(netdev_master_upper_dev_link);
7137
7138/**
7139 * netdev_upper_dev_unlink - Removes a link to upper device
7140 * @dev: device
7141 * @upper_dev: new upper device
7142 *
7143 * Removes a link to device which is upper to this one. The caller must hold
7144 * the RTNL lock.
7145 */
7146void netdev_upper_dev_unlink(struct net_device *dev,
7147                             struct net_device *upper_dev)
7148{
7149        struct netdev_notifier_changeupper_info changeupper_info = {
7150                .info = {
7151                        .dev = dev,
7152                },
7153                .upper_dev = upper_dev,
7154                .linking = false,
7155        };
7156
7157        ASSERT_RTNL();
7158
7159        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7160
7161        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7162                                      &changeupper_info.info);
7163
7164        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7165
7166        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7167                                      &changeupper_info.info);
7168}
7169EXPORT_SYMBOL(netdev_upper_dev_unlink);
7170
7171/**
7172 * netdev_bonding_info_change - Dispatch event about slave change
7173 * @dev: device
7174 * @bonding_info: info to dispatch
7175 *
7176 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7177 * The caller must hold the RTNL lock.
7178 */
7179void netdev_bonding_info_change(struct net_device *dev,
7180                                struct netdev_bonding_info *bonding_info)
7181{
7182        struct netdev_notifier_bonding_info info = {
7183                .info.dev = dev,
7184        };
7185
7186        memcpy(&info.bonding_info, bonding_info,
7187               sizeof(struct netdev_bonding_info));
7188        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7189                                      &info.info);
7190}
7191EXPORT_SYMBOL(netdev_bonding_info_change);
7192
7193static void netdev_adjacent_add_links(struct net_device *dev)
7194{
7195        struct netdev_adjacent *iter;
7196
7197        struct net *net = dev_net(dev);
7198
7199        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7200                if (!net_eq(net, dev_net(iter->dev)))
7201                        continue;
7202                netdev_adjacent_sysfs_add(iter->dev, dev,
7203                                          &iter->dev->adj_list.lower);
7204                netdev_adjacent_sysfs_add(dev, iter->dev,
7205                                          &dev->adj_list.upper);
7206        }
7207
7208        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7209                if (!net_eq(net, dev_net(iter->dev)))
7210                        continue;
7211                netdev_adjacent_sysfs_add(iter->dev, dev,
7212                                          &iter->dev->adj_list.upper);
7213                netdev_adjacent_sysfs_add(dev, iter->dev,
7214                                          &dev->adj_list.lower);
7215        }
7216}
7217
7218static void netdev_adjacent_del_links(struct net_device *dev)
7219{
7220        struct netdev_adjacent *iter;
7221
7222        struct net *net = dev_net(dev);
7223
7224        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7225                if (!net_eq(net, dev_net(iter->dev)))
7226                        continue;
7227                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7228                                          &iter->dev->adj_list.lower);
7229                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7230                                          &dev->adj_list.upper);
7231        }
7232
7233        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7234                if (!net_eq(net, dev_net(iter->dev)))
7235                        continue;
7236                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7237                                          &iter->dev->adj_list.upper);
7238                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7239                                          &dev->adj_list.lower);
7240        }
7241}
7242
7243void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7244{
7245        struct netdev_adjacent *iter;
7246
7247        struct net *net = dev_net(dev);
7248
7249        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7250                if (!net_eq(net, dev_net(iter->dev)))
7251                        continue;
7252                netdev_adjacent_sysfs_del(iter->dev, oldname,
7253                                          &iter->dev->adj_list.lower);
7254                netdev_adjacent_sysfs_add(iter->dev, dev,
7255                                          &iter->dev->adj_list.lower);
7256        }
7257
7258        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7259                if (!net_eq(net, dev_net(iter->dev)))
7260                        continue;
7261                netdev_adjacent_sysfs_del(iter->dev, oldname,
7262                                          &iter->dev->adj_list.upper);
7263                netdev_adjacent_sysfs_add(iter->dev, dev,
7264                                          &iter->dev->adj_list.upper);
7265        }
7266}
7267
7268void *netdev_lower_dev_get_private(struct net_device *dev,
7269                                   struct net_device *lower_dev)
7270{
7271        struct netdev_adjacent *lower;
7272
7273        if (!lower_dev)
7274                return NULL;
7275        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7276        if (!lower)
7277                return NULL;
7278
7279        return lower->private;
7280}
7281EXPORT_SYMBOL(netdev_lower_dev_get_private);
7282
7283
7284int dev_get_nest_level(struct net_device *dev)
7285{
7286        struct net_device *lower = NULL;
7287        struct list_head *iter;
7288        int max_nest = -1;
7289        int nest;
7290
7291        ASSERT_RTNL();
7292
7293        netdev_for_each_lower_dev(dev, lower, iter) {
7294                nest = dev_get_nest_level(lower);
7295                if (max_nest < nest)
7296                        max_nest = nest;
7297        }
7298
7299        return max_nest + 1;
7300}
7301EXPORT_SYMBOL(dev_get_nest_level);
7302
7303/**
7304 * netdev_lower_change - Dispatch event about lower device state change
7305 * @lower_dev: device
7306 * @lower_state_info: state to dispatch
7307 *
7308 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7309 * The caller must hold the RTNL lock.
7310 */
7311void netdev_lower_state_changed(struct net_device *lower_dev,
7312                                void *lower_state_info)
7313{
7314        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7315                .info.dev = lower_dev,
7316        };
7317
7318        ASSERT_RTNL();
7319        changelowerstate_info.lower_state_info = lower_state_info;
7320        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7321                                      &changelowerstate_info.info);
7322}
7323EXPORT_SYMBOL(netdev_lower_state_changed);
7324
7325static void dev_change_rx_flags(struct net_device *dev, int flags)
7326{
7327        const struct net_device_ops *ops = dev->netdev_ops;
7328
7329        if (ops->ndo_change_rx_flags)
7330                ops->ndo_change_rx_flags(dev, flags);
7331}
7332
7333static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7334{
7335        unsigned int old_flags = dev->flags;
7336        kuid_t uid;
7337        kgid_t gid;
7338
7339        ASSERT_RTNL();
7340
7341        dev->flags |= IFF_PROMISC;
7342        dev->promiscuity += inc;
7343        if (dev->promiscuity == 0) {
7344                /*
7345                 * Avoid overflow.
7346                 * If inc causes overflow, untouch promisc and return error.
7347                 */
7348                if (inc < 0)
7349                        dev->flags &= ~IFF_PROMISC;
7350                else {
7351                        dev->promiscuity -= inc;
7352                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7353                                dev->name);
7354                        return -EOVERFLOW;
7355                }
7356        }
7357        if (dev->flags != old_flags) {
7358                pr_info("device %s %s promiscuous mode\n",
7359                        dev->name,
7360                        dev->flags & IFF_PROMISC ? "entered" : "left");
7361                if (audit_enabled) {
7362                        current_uid_gid(&uid, &gid);
7363                        audit_log(audit_context(), GFP_ATOMIC,
7364                                  AUDIT_ANOM_PROMISCUOUS,
7365                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7366                                  dev->name, (dev->flags & IFF_PROMISC),
7367                                  (old_flags & IFF_PROMISC),
7368                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7369                                  from_kuid(&init_user_ns, uid),
7370                                  from_kgid(&init_user_ns, gid),
7371                                  audit_get_sessionid(current));
7372                }
7373
7374                dev_change_rx_flags(dev, IFF_PROMISC);
7375        }
7376        if (notify)
7377                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7378        return 0;
7379}
7380
7381/**
7382 *      dev_set_promiscuity     - update promiscuity count on a device
7383 *      @dev: device
7384 *      @inc: modifier
7385 *
7386 *      Add or remove promiscuity from a device. While the count in the device
7387 *      remains above zero the interface remains promiscuous. Once it hits zero
7388 *      the device reverts back to normal filtering operation. A negative inc
7389 *      value is used to drop promiscuity on the device.
7390 *      Return 0 if successful or a negative errno code on error.
7391 */
7392int dev_set_promiscuity(struct net_device *dev, int inc)
7393{
7394        unsigned int old_flags = dev->flags;
7395        int err;
7396
7397        err = __dev_set_promiscuity(dev, inc, true);
7398        if (err < 0)
7399                return err;
7400        if (dev->flags != old_flags)
7401                dev_set_rx_mode(dev);
7402        return err;
7403}
7404EXPORT_SYMBOL(dev_set_promiscuity);
7405
7406static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7407{
7408        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7409
7410        ASSERT_RTNL();
7411
7412        dev->flags |= IFF_ALLMULTI;
7413        dev->allmulti += inc;
7414        if (dev->allmulti == 0) {
7415                /*
7416                 * Avoid overflow.
7417                 * If inc causes overflow, untouch allmulti and return error.
7418                 */
7419                if (inc < 0)
7420                        dev->flags &= ~IFF_ALLMULTI;
7421                else {
7422                        dev->allmulti -= inc;
7423                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7424                                dev->name);
7425                        return -EOVERFLOW;
7426                }
7427        }
7428        if (dev->flags ^ old_flags) {
7429                dev_change_rx_flags(dev, IFF_ALLMULTI);
7430                dev_set_rx_mode(dev);
7431                if (notify)
7432                        __dev_notify_flags(dev, old_flags,
7433                                           dev->gflags ^ old_gflags);
7434        }
7435        return 0;
7436}
7437
7438/**
7439 *      dev_set_allmulti        - update allmulti count on a device
7440 *      @dev: device
7441 *      @inc: modifier
7442 *
7443 *      Add or remove reception of all multicast frames to a device. While the
7444 *      count in the device remains above zero the interface remains listening
7445 *      to all interfaces. Once it hits zero the device reverts back to normal
7446 *      filtering operation. A negative @inc value is used to drop the counter
7447 *      when releasing a resource needing all multicasts.
7448 *      Return 0 if successful or a negative errno code on error.
7449 */
7450
7451int dev_set_allmulti(struct net_device *dev, int inc)
7452{
7453        return __dev_set_allmulti(dev, inc, true);
7454}
7455EXPORT_SYMBOL(dev_set_allmulti);
7456
7457/*
7458 *      Upload unicast and multicast address lists to device and
7459 *      configure RX filtering. When the device doesn't support unicast
7460 *      filtering it is put in promiscuous mode while unicast addresses
7461 *      are present.
7462 */
7463void __dev_set_rx_mode(struct net_device *dev)
7464{
7465        const struct net_device_ops *ops = dev->netdev_ops;
7466
7467        /* dev_open will call this function so the list will stay sane. */
7468        if (!(dev->flags&IFF_UP))
7469                return;
7470
7471        if (!netif_device_present(dev))
7472                return;
7473
7474        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7475                /* Unicast addresses changes may only happen under the rtnl,
7476                 * therefore calling __dev_set_promiscuity here is safe.
7477                 */
7478                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7479                        __dev_set_promiscuity(dev, 1, false);
7480                        dev->uc_promisc = true;
7481                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7482                        __dev_set_promiscuity(dev, -1, false);
7483                        dev->uc_promisc = false;
7484                }
7485        }
7486
7487        if (ops->ndo_set_rx_mode)
7488                ops->ndo_set_rx_mode(dev);
7489}
7490
7491void dev_set_rx_mode(struct net_device *dev)
7492{
7493        netif_addr_lock_bh(dev);
7494        __dev_set_rx_mode(dev);
7495        netif_addr_unlock_bh(dev);
7496}
7497
7498/**
7499 *      dev_get_flags - get flags reported to userspace
7500 *      @dev: device
7501 *
7502 *      Get the combination of flag bits exported through APIs to userspace.
7503 */
7504unsigned int dev_get_flags(const struct net_device *dev)
7505{
7506        unsigned int flags;
7507
7508        flags = (dev->flags & ~(IFF_PROMISC |
7509                                IFF_ALLMULTI |
7510                                IFF_RUNNING |
7511                                IFF_LOWER_UP |
7512                                IFF_DORMANT)) |
7513                (dev->gflags & (IFF_PROMISC |
7514                                IFF_ALLMULTI));
7515
7516        if (netif_running(dev)) {
7517                if (netif_oper_up(dev))
7518                        flags |= IFF_RUNNING;
7519                if (netif_carrier_ok(dev))
7520                        flags |= IFF_LOWER_UP;
7521                if (netif_dormant(dev))
7522                        flags |= IFF_DORMANT;
7523        }
7524
7525        return flags;
7526}
7527EXPORT_SYMBOL(dev_get_flags);
7528
7529int __dev_change_flags(struct net_device *dev, unsigned int flags,
7530                       struct netlink_ext_ack *extack)
7531{
7532        unsigned int old_flags = dev->flags;
7533        int ret;
7534
7535        ASSERT_RTNL();
7536
7537        /*
7538         *      Set the flags on our device.
7539         */
7540
7541        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7542                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7543                               IFF_AUTOMEDIA)) |
7544                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7545                                    IFF_ALLMULTI));
7546
7547        /*
7548         *      Load in the correct multicast list now the flags have changed.
7549         */
7550
7551        if ((old_flags ^ flags) & IFF_MULTICAST)
7552                dev_change_rx_flags(dev, IFF_MULTICAST);
7553
7554        dev_set_rx_mode(dev);
7555
7556        /*
7557         *      Have we downed the interface. We handle IFF_UP ourselves
7558         *      according to user attempts to set it, rather than blindly
7559         *      setting it.
7560         */
7561
7562        ret = 0;
7563        if ((old_flags ^ flags) & IFF_UP) {
7564                if (old_flags & IFF_UP)
7565                        __dev_close(dev);
7566                else
7567                        ret = __dev_open(dev, extack);
7568        }
7569
7570        if ((flags ^ dev->gflags) & IFF_PROMISC) {
7571                int inc = (flags & IFF_PROMISC) ? 1 : -1;
7572                unsigned int old_flags = dev->flags;
7573
7574                dev->gflags ^= IFF_PROMISC;
7575
7576                if (__dev_set_promiscuity(dev, inc, false) >= 0)
7577                        if (dev->flags != old_flags)
7578                                dev_set_rx_mode(dev);
7579        }
7580
7581        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7582         * is important. Some (broken) drivers set IFF_PROMISC, when
7583         * IFF_ALLMULTI is requested not asking us and not reporting.
7584         */
7585        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7586                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7587
7588                dev->gflags ^= IFF_ALLMULTI;
7589                __dev_set_allmulti(dev, inc, false);
7590        }
7591
7592        return ret;
7593}
7594
7595void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7596                        unsigned int gchanges)
7597{
7598        unsigned int changes = dev->flags ^ old_flags;
7599
7600        if (gchanges)
7601                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7602
7603        if (changes & IFF_UP) {
7604                if (dev->flags & IFF_UP)
7605                        call_netdevice_notifiers(NETDEV_UP, dev);
7606                else
7607                        call_netdevice_notifiers(NETDEV_DOWN, dev);
7608        }
7609
7610        if (dev->flags & IFF_UP &&
7611            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7612                struct netdev_notifier_change_info change_info = {
7613                        .info = {
7614                                .dev = dev,
7615                        },
7616                        .flags_changed = changes,
7617                };
7618
7619                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7620        }
7621}
7622
7623/**
7624 *      dev_change_flags - change device settings
7625 *      @dev: device
7626 *      @flags: device state flags
7627 *      @extack: netlink extended ack
7628 *
7629 *      Change settings on device based state flags. The flags are
7630 *      in the userspace exported format.
7631 */
7632int dev_change_flags(struct net_device *dev, unsigned int flags,
7633                     struct netlink_ext_ack *extack)
7634{
7635        int ret;
7636        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7637
7638        ret = __dev_change_flags(dev, flags, extack);
7639        if (ret < 0)
7640                return ret;
7641
7642        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7643        __dev_notify_flags(dev, old_flags, changes);
7644        return ret;
7645}
7646EXPORT_SYMBOL(dev_change_flags);
7647
7648int __dev_set_mtu(struct net_device *dev, int new_mtu)
7649{
7650        const struct net_device_ops *ops = dev->netdev_ops;
7651
7652        if (ops->ndo_change_mtu)
7653                return ops->ndo_change_mtu(dev, new_mtu);
7654
7655        dev->mtu = new_mtu;
7656        return 0;
7657}
7658EXPORT_SYMBOL(__dev_set_mtu);
7659
7660/**
7661 *      dev_set_mtu_ext - Change maximum transfer unit
7662 *      @dev: device
7663 *      @new_mtu: new transfer unit
7664 *      @extack: netlink extended ack
7665 *
7666 *      Change the maximum transfer size of the network device.
7667 */
7668int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7669                    struct netlink_ext_ack *extack)
7670{
7671        int err, orig_mtu;
7672
7673        if (new_mtu == dev->mtu)
7674                return 0;
7675
7676        /* MTU must be positive, and in range */
7677        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7678                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7679                return -EINVAL;
7680        }
7681
7682        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7683                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7684                return -EINVAL;
7685        }
7686
7687        if (!netif_device_present(dev))
7688                return -ENODEV;
7689
7690        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7691        err = notifier_to_errno(err);
7692        if (err)
7693                return err;
7694
7695        orig_mtu = dev->mtu;
7696        err = __dev_set_mtu(dev, new_mtu);
7697
7698        if (!err) {
7699                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7700                                                   orig_mtu);
7701                err = notifier_to_errno(err);
7702                if (err) {
7703                        /* setting mtu back and notifying everyone again,
7704                         * so that they have a chance to revert changes.
7705                         */
7706                        __dev_set_mtu(dev, orig_mtu);
7707                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7708                                                     new_mtu);
7709                }
7710        }
7711        return err;
7712}
7713
7714int dev_set_mtu(struct net_device *dev, int new_mtu)
7715{
7716        struct netlink_ext_ack extack;
7717        int err;
7718
7719        memset(&extack, 0, sizeof(extack));
7720        err = dev_set_mtu_ext(dev, new_mtu, &extack);
7721        if (err && extack._msg)
7722                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7723        return err;
7724}
7725EXPORT_SYMBOL(dev_set_mtu);
7726
7727/**
7728 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7729 *      @dev: device
7730 *      @new_len: new tx queue length
7731 */
7732int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7733{
7734        unsigned int orig_len = dev->tx_queue_len;
7735        int res;
7736
7737        if (new_len != (unsigned int)new_len)
7738                return -ERANGE;
7739
7740        if (new_len != orig_len) {
7741                dev->tx_queue_len = new_len;
7742                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7743                res = notifier_to_errno(res);
7744                if (res)
7745                        goto err_rollback;
7746                res = dev_qdisc_change_tx_queue_len(dev);
7747                if (res)
7748                        goto err_rollback;
7749        }
7750
7751        return 0;
7752
7753err_rollback:
7754        netdev_err(dev, "refused to change device tx_queue_len\n");
7755        dev->tx_queue_len = orig_len;
7756        return res;
7757}
7758
7759/**
7760 *      dev_set_group - Change group this device belongs to
7761 *      @dev: device
7762 *      @new_group: group this device should belong to
7763 */
7764void dev_set_group(struct net_device *dev, int new_group)
7765{
7766        dev->group = new_group;
7767}
7768EXPORT_SYMBOL(dev_set_group);
7769
7770/**
7771 *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7772 *      @dev: device
7773 *      @addr: new address
7774 *      @extack: netlink extended ack
7775 */
7776int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7777                              struct netlink_ext_ack *extack)
7778{
7779        struct netdev_notifier_pre_changeaddr_info info = {
7780                .info.dev = dev,
7781                .info.extack = extack,
7782                .dev_addr = addr,
7783        };
7784        int rc;
7785
7786        rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7787        return notifier_to_errno(rc);
7788}
7789EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7790
7791/**
7792 *      dev_set_mac_address - Change Media Access Control Address
7793 *      @dev: device
7794 *      @sa: new address
7795 *      @extack: netlink extended ack
7796 *
7797 *      Change the hardware (MAC) address of the device
7798 */
7799int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7800                        struct netlink_ext_ack *extack)
7801{
7802        const struct net_device_ops *ops = dev->netdev_ops;
7803        int err;
7804
7805        if (!ops->ndo_set_mac_address)
7806                return -EOPNOTSUPP;
7807        if (sa->sa_family != dev->type)
7808                return -EINVAL;
7809        if (!netif_device_present(dev))
7810                return -ENODEV;
7811        err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7812        if (err)
7813                return err;
7814        err = ops->ndo_set_mac_address(dev, sa);
7815        if (err)
7816                return err;
7817        dev->addr_assign_type = NET_ADDR_SET;
7818        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7819        add_device_randomness(dev->dev_addr, dev->addr_len);
7820        return 0;
7821}
7822EXPORT_SYMBOL(dev_set_mac_address);
7823
7824/**
7825 *      dev_change_carrier - Change device carrier
7826 *      @dev: device
7827 *      @new_carrier: new value
7828 *
7829 *      Change device carrier
7830 */
7831int dev_change_carrier(struct net_device *dev, bool new_carrier)
7832{
7833        const struct net_device_ops *ops = dev->netdev_ops;
7834
7835        if (!ops->ndo_change_carrier)
7836                return -EOPNOTSUPP;
7837        if (!netif_device_present(dev))
7838                return -ENODEV;
7839        return ops->ndo_change_carrier(dev, new_carrier);
7840}
7841EXPORT_SYMBOL(dev_change_carrier);
7842
7843/**
7844 *      dev_get_phys_port_id - Get device physical port ID
7845 *      @dev: device
7846 *      @ppid: port ID
7847 *
7848 *      Get device physical port ID
7849 */
7850int dev_get_phys_port_id(struct net_device *dev,
7851                         struct netdev_phys_item_id *ppid)
7852{
7853        const struct net_device_ops *ops = dev->netdev_ops;
7854
7855        if (!ops->ndo_get_phys_port_id)
7856                return -EOPNOTSUPP;
7857        return ops->ndo_get_phys_port_id(dev, ppid);
7858}
7859EXPORT_SYMBOL(dev_get_phys_port_id);
7860
7861/**
7862 *      dev_get_phys_port_name - Get device physical port name
7863 *      @dev: device
7864 *      @name: port name
7865 *      @len: limit of bytes to copy to name
7866 *
7867 *      Get device physical port name
7868 */
7869int dev_get_phys_port_name(struct net_device *dev,
7870                           char *name, size_t len)
7871{
7872        const struct net_device_ops *ops = dev->netdev_ops;
7873
7874        if (!ops->ndo_get_phys_port_name)
7875                return -EOPNOTSUPP;
7876        return ops->ndo_get_phys_port_name(dev, name, len);
7877}
7878EXPORT_SYMBOL(dev_get_phys_port_name);
7879
7880/**
7881 *      dev_change_proto_down - update protocol port state information
7882 *      @dev: device
7883 *      @proto_down: new value
7884 *
7885 *      This info can be used by switch drivers to set the phys state of the
7886 *      port.
7887 */
7888int dev_change_proto_down(struct net_device *dev, bool proto_down)
7889{
7890        const struct net_device_ops *ops = dev->netdev_ops;
7891
7892        if (!ops->ndo_change_proto_down)
7893                return -EOPNOTSUPP;
7894        if (!netif_device_present(dev))
7895                return -ENODEV;
7896        return ops->ndo_change_proto_down(dev, proto_down);
7897}
7898EXPORT_SYMBOL(dev_change_proto_down);
7899
7900u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7901                    enum bpf_netdev_command cmd)
7902{
7903        struct netdev_bpf xdp;
7904
7905        if (!bpf_op)
7906                return 0;
7907
7908        memset(&xdp, 0, sizeof(xdp));
7909        xdp.command = cmd;
7910
7911        /* Query must always succeed. */
7912        WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7913
7914        return xdp.prog_id;
7915}
7916
7917static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7918                           struct netlink_ext_ack *extack, u32 flags,
7919                           struct bpf_prog *prog)
7920{
7921        struct netdev_bpf xdp;
7922
7923        memset(&xdp, 0, sizeof(xdp));
7924        if (flags & XDP_FLAGS_HW_MODE)
7925                xdp.command = XDP_SETUP_PROG_HW;
7926        else
7927                xdp.command = XDP_SETUP_PROG;
7928        xdp.extack = extack;
7929        xdp.flags = flags;
7930        xdp.prog = prog;
7931
7932        return bpf_op(dev, &xdp);
7933}
7934
7935static void dev_xdp_uninstall(struct net_device *dev)
7936{
7937        struct netdev_bpf xdp;
7938        bpf_op_t ndo_bpf;
7939
7940        /* Remove generic XDP */
7941        WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7942
7943        /* Remove from the driver */
7944        ndo_bpf = dev->netdev_ops->ndo_bpf;
7945        if (!ndo_bpf)
7946                return;
7947
7948        memset(&xdp, 0, sizeof(xdp));
7949        xdp.command = XDP_QUERY_PROG;
7950        WARN_ON(ndo_bpf(dev, &xdp));
7951        if (xdp.prog_id)
7952                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7953                                        NULL));
7954
7955        /* Remove HW offload */
7956        memset(&xdp, 0, sizeof(xdp));
7957        xdp.command = XDP_QUERY_PROG_HW;
7958        if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7959                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7960                                        NULL));
7961}
7962
7963/**
7964 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7965 *      @dev: device
7966 *      @extack: netlink extended ack
7967 *      @fd: new program fd or negative value to clear
7968 *      @flags: xdp-related flags
7969 *
7970 *      Set or clear a bpf program for a device
7971 */
7972int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7973                      int fd, u32 flags)
7974{
7975        const struct net_device_ops *ops = dev->netdev_ops;
7976        enum bpf_netdev_command query;
7977        struct bpf_prog *prog = NULL;
7978        bpf_op_t bpf_op, bpf_chk;
7979        int err;
7980
7981        ASSERT_RTNL();
7982
7983        query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7984
7985        bpf_op = bpf_chk = ops->ndo_bpf;
7986        if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7987                return -EOPNOTSUPP;
7988        if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7989                bpf_op = generic_xdp_install;
7990        if (bpf_op == bpf_chk)
7991                bpf_chk = generic_xdp_install;
7992
7993        if (fd >= 0) {
7994                if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7995                    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7996                        return -EEXIST;
7997                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7998                    __dev_xdp_query(dev, bpf_op, query))
7999                        return -EBUSY;
8000
8001                prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8002                                             bpf_op == ops->ndo_bpf);
8003                if (IS_ERR(prog))
8004                        return PTR_ERR(prog);
8005
8006                if (!(flags & XDP_FLAGS_HW_MODE) &&
8007                    bpf_prog_is_dev_bound(prog->aux)) {
8008                        NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8009                        bpf_prog_put(prog);
8010                        return -EINVAL;
8011                }
8012        }
8013
8014        err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8015        if (err < 0 && prog)
8016                bpf_prog_put(prog);
8017
8018        return err;
8019}
8020
8021/**
8022 *      dev_new_index   -       allocate an ifindex
8023 *      @net: the applicable net namespace
8024 *
8025 *      Returns a suitable unique value for a new device interface
8026 *      number.  The caller must hold the rtnl semaphore or the
8027 *      dev_base_lock to be sure it remains unique.
8028 */
8029static int dev_new_index(struct net *net)
8030{
8031        int ifindex = net->ifindex;
8032
8033        for (;;) {
8034                if (++ifindex <= 0)
8035                        ifindex = 1;
8036                if (!__dev_get_by_index(net, ifindex))
8037                        return net->ifindex = ifindex;
8038        }
8039}
8040
8041/* Delayed registration/unregisteration */
8042static LIST_HEAD(net_todo_list);
8043DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8044
8045static void net_set_todo(struct net_device *dev)
8046{
8047        list_add_tail(&dev->todo_list, &net_todo_list);
8048        dev_net(dev)->dev_unreg_count++;
8049}
8050
8051static void rollback_registered_many(struct list_head *head)
8052{
8053        struct net_device *dev, *tmp;
8054        LIST_HEAD(close_head);
8055
8056        BUG_ON(dev_boot_phase);
8057        ASSERT_RTNL();
8058
8059        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8060                /* Some devices call without registering
8061                 * for initialization unwind. Remove those
8062                 * devices and proceed with the remaining.
8063                 */
8064                if (dev->reg_state == NETREG_UNINITIALIZED) {
8065                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8066                                 dev->name, dev);
8067
8068                        WARN_ON(1);
8069                        list_del(&dev->unreg_list);
8070                        continue;
8071                }
8072                dev->dismantle = true;
8073                BUG_ON(dev->reg_state != NETREG_REGISTERED);
8074        }
8075
8076        /* If device is running, close it first. */
8077        list_for_each_entry(dev, head, unreg_list)
8078                list_add_tail(&dev->close_list, &close_head);
8079        dev_close_many(&close_head, true);
8080
8081        list_for_each_entry(dev, head, unreg_list) {
8082                /* And unlink it from device chain. */
8083                unlist_netdevice(dev);
8084
8085                dev->reg_state = NETREG_UNREGISTERING;
8086        }
8087        flush_all_backlogs();
8088
8089        synchronize_net();
8090
8091        list_for_each_entry(dev, head, unreg_list) {
8092                struct sk_buff *skb = NULL;
8093
8094                /* Shutdown queueing discipline. */
8095                dev_shutdown(dev);
8096
8097                dev_xdp_uninstall(dev);
8098
8099                /* Notify protocols, that we are about to destroy
8100                 * this device. They should clean all the things.
8101                 */
8102                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8103
8104                if (!dev->rtnl_link_ops ||
8105                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8106                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8107                                                     GFP_KERNEL, NULL, 0);
8108
8109                /*
8110                 *      Flush the unicast and multicast chains
8111                 */
8112                dev_uc_flush(dev);
8113                dev_mc_flush(dev);
8114
8115                if (dev->netdev_ops->ndo_uninit)
8116                        dev->netdev_ops->ndo_uninit(dev);
8117
8118                if (skb)
8119                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8120
8121                /* Notifier chain MUST detach us all upper devices. */
8122                WARN_ON(netdev_has_any_upper_dev(dev));
8123                WARN_ON(netdev_has_any_lower_dev(dev));
8124
8125                /* Remove entries from kobject tree */
8126                netdev_unregister_kobject(dev);
8127#ifdef CONFIG_XPS
8128                /* Remove XPS queueing entries */
8129                netif_reset_xps_queues_gt(dev, 0);
8130#endif
8131        }
8132
8133        synchronize_net();
8134
8135        list_for_each_entry(dev, head, unreg_list)
8136                dev_put(dev);
8137}
8138
8139static void rollback_registered(struct net_device *dev)
8140{
8141        LIST_HEAD(single);
8142
8143        list_add(&dev->unreg_list, &single);
8144        rollback_registered_many(&single);
8145        list_del(&single);
8146}
8147
8148static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8149        struct net_device *upper, netdev_features_t features)
8150{
8151        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8152        netdev_features_t feature;
8153        int feature_bit;
8154
8155        for_each_netdev_feature(upper_disables, feature_bit) {
8156                feature = __NETIF_F_BIT(feature_bit);
8157                if (!(upper->wanted_features & feature)
8158                    && (features & feature)) {
8159                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8160                                   &feature, upper->name);
8161                        features &= ~feature;
8162                }
8163        }
8164
8165        return features;
8166}
8167
8168static void netdev_sync_lower_features(struct net_device *upper,
8169        struct net_device *lower, netdev_features_t features)
8170{
8171        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8172        netdev_features_t feature;
8173        int feature_bit;
8174
8175        for_each_netdev_feature(upper_disables, feature_bit) {
8176                feature = __NETIF_F_BIT(feature_bit);
8177                if (!(features & feature) && (lower->features & feature)) {
8178                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8179                                   &feature, lower->name);
8180                        lower->wanted_features &= ~feature;
8181                        netdev_update_features(lower);
8182
8183                        if (unlikely(lower->features & feature))
8184                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8185                                            &feature, lower->name);
8186                }
8187        }
8188}
8189
8190static netdev_features_t netdev_fix_features(struct net_device *dev,
8191        netdev_features_t features)
8192{
8193        /* Fix illegal checksum combinations */
8194        if ((features & NETIF_F_HW_CSUM) &&
8195            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8196                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8197                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8198        }
8199
8200        /* TSO requires that SG is present as well. */
8201        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8202                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8203                features &= ~NETIF_F_ALL_TSO;
8204        }
8205
8206        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8207                                        !(features & NETIF_F_IP_CSUM)) {
8208                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8209                features &= ~NETIF_F_TSO;
8210                features &= ~NETIF_F_TSO_ECN;
8211        }
8212
8213        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8214                                         !(features & NETIF_F_IPV6_CSUM)) {
8215                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8216                features &= ~NETIF_F_TSO6;
8217        }
8218
8219        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8220        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8221                features &= ~NETIF_F_TSO_MANGLEID;
8222
8223        /* TSO ECN requires that TSO is present as well. */
8224        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8225                features &= ~NETIF_F_TSO_ECN;
8226
8227        /* Software GSO depends on SG. */
8228        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8229                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8230                features &= ~NETIF_F_GSO;
8231        }
8232
8233        /* GSO partial features require GSO partial be set */
8234        if ((features & dev->gso_partial_features) &&
8235            !(features & NETIF_F_GSO_PARTIAL)) {
8236                netdev_dbg(dev,
8237                           "Dropping partially supported GSO features since no GSO partial.\n");
8238                features &= ~dev->gso_partial_features;
8239        }
8240
8241        if (!(features & NETIF_F_RXCSUM)) {
8242                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8243                 * successfully merged by hardware must also have the
8244                 * checksum verified by hardware.  If the user does not
8245                 * want to enable RXCSUM, logically, we should disable GRO_HW.
8246                 */
8247                if (features & NETIF_F_GRO_HW) {
8248                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8249                        features &= ~NETIF_F_GRO_HW;
8250                }
8251        }
8252
8253        /* LRO/HW-GRO features cannot be combined with RX-FCS */
8254        if (features & NETIF_F_RXFCS) {
8255                if (features & NETIF_F_LRO) {
8256                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8257                        features &= ~NETIF_F_LRO;
8258                }
8259
8260                if (features & NETIF_F_GRO_HW) {
8261                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8262                        features &= ~NETIF_F_GRO_HW;
8263                }
8264        }
8265
8266        return features;
8267}
8268
8269int __netdev_update_features(struct net_device *dev)
8270{
8271        struct net_device *upper, *lower;
8272        netdev_features_t features;
8273        struct list_head *iter;
8274        int err = -1;
8275
8276        ASSERT_RTNL();
8277
8278        features = netdev_get_wanted_features(dev);
8279
8280        if (dev->netdev_ops->ndo_fix_features)
8281                features = dev->netdev_ops->ndo_fix_features(dev, features);
8282
8283        /* driver might be less strict about feature dependencies */
8284        features = netdev_fix_features(dev, features);
8285
8286        /* some features can't be enabled if they're off an an upper device */
8287        netdev_for_each_upper_dev_rcu(dev, upper, iter)
8288                features = netdev_sync_upper_features(dev, upper, features);
8289
8290        if (dev->features == features)
8291                goto sync_lower;
8292
8293        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8294                &dev->features, &features);
8295
8296        if (dev->netdev_ops->ndo_set_features)
8297                err = dev->netdev_ops->ndo_set_features(dev, features);
8298        else
8299                err = 0;
8300
8301        if (unlikely(err < 0)) {
8302                netdev_err(dev,
8303                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
8304                        err, &features, &dev->features);
8305                /* return non-0 since some features might have changed and
8306                 * it's better to fire a spurious notification than miss it
8307                 */
8308                return -1;
8309        }
8310
8311sync_lower:
8312        /* some features must be disabled on lower devices when disabled
8313         * on an upper device (think: bonding master or bridge)
8314         */
8315        netdev_for_each_lower_dev(dev, lower, iter)
8316                netdev_sync_lower_features(dev, lower, features);
8317
8318        if (!err) {
8319                netdev_features_t diff = features ^ dev->features;
8320
8321                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8322                        /* udp_tunnel_{get,drop}_rx_info both need
8323                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8324                         * device, or they won't do anything.
8325                         * Thus we need to update dev->features
8326                         * *before* calling udp_tunnel_get_rx_info,
8327                         * but *after* calling udp_tunnel_drop_rx_info.
8328                         */
8329                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8330                                dev->features = features;
8331                                udp_tunnel_get_rx_info(dev);
8332                        } else {
8333                                udp_tunnel_drop_rx_info(dev);
8334                        }
8335                }
8336
8337                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8338                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8339                                dev->features = features;
8340                                err |= vlan_get_rx_ctag_filter_info(dev);
8341                        } else {
8342                                vlan_drop_rx_ctag_filter_info(dev);
8343                        }
8344                }
8345
8346                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8347                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8348                                dev->features = features;
8349                                err |= vlan_get_rx_stag_filter_info(dev);
8350                        } else {
8351                                vlan_drop_rx_stag_filter_info(dev);
8352                        }
8353                }
8354
8355                dev->features = features;
8356        }
8357
8358        return err < 0 ? 0 : 1;
8359}
8360
8361/**
8362 *      netdev_update_features - recalculate device features
8363 *      @dev: the device to check
8364 *
8365 *      Recalculate dev->features set and send notifications if it
8366 *      has changed. Should be called after driver or hardware dependent
8367 *      conditions might have changed that influence the features.
8368 */
8369void netdev_update_features(struct net_device *dev)
8370{
8371        if (__netdev_update_features(dev))
8372                netdev_features_change(dev);
8373}
8374EXPORT_SYMBOL(netdev_update_features);
8375
8376/**
8377 *      netdev_change_features - recalculate device features
8378 *      @dev: the device to check
8379 *
8380 *      Recalculate dev->features set and send notifications even
8381 *      if they have not changed. Should be called instead of
8382 *      netdev_update_features() if also dev->vlan_features might
8383 *      have changed to allow the changes to be propagated to stacked
8384 *      VLAN devices.
8385 */
8386void netdev_change_features(struct net_device *dev)
8387{
8388        __netdev_update_features(dev);
8389        netdev_features_change(dev);
8390}
8391EXPORT_SYMBOL(netdev_change_features);
8392
8393/**
8394 *      netif_stacked_transfer_operstate -      transfer operstate
8395 *      @rootdev: the root or lower level device to transfer state from
8396 *      @dev: the device to transfer operstate to
8397 *
8398 *      Transfer operational state from root to device. This is normally
8399 *      called when a stacking relationship exists between the root
8400 *      device and the device(a leaf device).
8401 */
8402void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8403                                        struct net_device *dev)
8404{
8405        if (rootdev->operstate == IF_OPER_DORMANT)
8406                netif_dormant_on(dev);
8407        else
8408                netif_dormant_off(dev);
8409
8410        if (netif_carrier_ok(rootdev))
8411                netif_carrier_on(dev);
8412        else
8413                netif_carrier_off(dev);
8414}
8415EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8416
8417static int netif_alloc_rx_queues(struct net_device *dev)
8418{
8419        unsigned int i, count = dev->num_rx_queues;
8420        struct netdev_rx_queue *rx;
8421        size_t sz = count * sizeof(*rx);
8422        int err = 0;
8423
8424        BUG_ON(count < 1);
8425
8426        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8427        if (!rx)
8428                return -ENOMEM;
8429
8430        dev->_rx = rx;
8431
8432        for (i = 0; i < count; i++) {
8433                rx[i].dev = dev;
8434
8435                /* XDP RX-queue setup */
8436                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8437                if (err < 0)
8438                        goto err_rxq_info;
8439        }
8440        return 0;
8441
8442err_rxq_info:
8443        /* Rollback successful reg's and free other resources */
8444        while (i--)
8445                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8446        kvfree(dev->_rx);
8447        dev->_rx = NULL;
8448        return err;
8449}
8450
8451static void netif_free_rx_queues(struct net_device *dev)
8452{
8453        unsigned int i, count = dev->num_rx_queues;
8454
8455        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8456        if (!dev->_rx)
8457                return;
8458
8459        for (i = 0; i < count; i++)
8460                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8461
8462        kvfree(dev->_rx);
8463}
8464
8465static void netdev_init_one_queue(struct net_device *dev,
8466                                  struct netdev_queue *queue, void *_unused)
8467{
8468        /* Initialize queue lock */
8469        spin_lock_init(&queue->_xmit_lock);
8470        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8471        queue->xmit_lock_owner = -1;
8472        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8473        queue->dev = dev;
8474#ifdef CONFIG_BQL
8475        dql_init(&queue->dql, HZ);
8476#endif
8477}
8478
8479static void netif_free_tx_queues(struct net_device *dev)
8480{
8481        kvfree(dev->_tx);
8482}
8483
8484static int netif_alloc_netdev_queues(struct net_device *dev)
8485{
8486        unsigned int count = dev->num_tx_queues;
8487        struct netdev_queue *tx;
8488        size_t sz = count * sizeof(*tx);
8489
8490        if (count < 1 || count > 0xffff)
8491                return -EINVAL;
8492
8493        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8494        if (!tx)
8495                return -ENOMEM;
8496
8497        dev->_tx = tx;
8498
8499        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8500        spin_lock_init(&dev->tx_global_lock);
8501
8502        return 0;
8503}
8504
8505void netif_tx_stop_all_queues(struct net_device *dev)
8506{
8507        unsigned int i;
8508
8509        for (i = 0; i < dev->num_tx_queues; i++) {
8510                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8511
8512                netif_tx_stop_queue(txq);
8513        }
8514}
8515EXPORT_SYMBOL(netif_tx_stop_all_queues);
8516
8517/**
8518 *      register_netdevice      - register a network device
8519 *      @dev: device to register
8520 *
8521 *      Take a completed network device structure and add it to the kernel
8522 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8523 *      chain. 0 is returned on success. A negative errno code is returned
8524 *      on a failure to set up the device, or if the name is a duplicate.
8525 *
8526 *      Callers must hold the rtnl semaphore. You may want
8527 *      register_netdev() instead of this.
8528 *
8529 *      BUGS:
8530 *      The locking appears insufficient to guarantee two parallel registers
8531 *      will not get the same name.
8532 */
8533
8534int register_netdevice(struct net_device *dev)
8535{
8536        int ret;
8537        struct net *net = dev_net(dev);
8538
8539        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8540                     NETDEV_FEATURE_COUNT);
8541        BUG_ON(dev_boot_phase);
8542        ASSERT_RTNL();
8543
8544        might_sleep();
8545
8546        /* When net_device's are persistent, this will be fatal. */
8547        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8548        BUG_ON(!net);
8549
8550        spin_lock_init(&dev->addr_list_lock);
8551        netdev_set_addr_lockdep_class(dev);
8552
8553        ret = dev_get_valid_name(net, dev, dev->name);
8554        if (ret < 0)
8555                goto out;
8556
8557        /* Init, if this function is available */
8558        if (dev->netdev_ops->ndo_init) {
8559                ret = dev->netdev_ops->ndo_init(dev);
8560                if (ret) {
8561                        if (ret > 0)
8562                                ret = -EIO;
8563                        goto out;
8564                }
8565        }
8566
8567        if (((dev->hw_features | dev->features) &
8568             NETIF_F_HW_VLAN_CTAG_FILTER) &&
8569            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8570             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8571                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8572                ret = -EINVAL;
8573                goto err_uninit;
8574        }
8575
8576        ret = -EBUSY;
8577        if (!dev->ifindex)
8578                dev->ifindex = dev_new_index(net);
8579        else if (__dev_get_by_index(net, dev->ifindex))
8580                goto err_uninit;
8581
8582        /* Transfer changeable features to wanted_features and enable
8583         * software offloads (GSO and GRO).
8584         */
8585        dev->hw_features |= NETIF_F_SOFT_FEATURES;
8586        dev->features |= NETIF_F_SOFT_FEATURES;
8587
8588        if (dev->netdev_ops->ndo_udp_tunnel_add) {
8589                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8590                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8591        }
8592
8593        dev->wanted_features = dev->features & dev->hw_features;
8594
8595        if (!(dev->flags & IFF_LOOPBACK))
8596                dev->hw_features |= NETIF_F_NOCACHE_COPY;
8597
8598        /* If IPv4 TCP segmentation offload is supported we should also
8599         * allow the device to enable segmenting the frame with the option
8600         * of ignoring a static IP ID value.  This doesn't enable the
8601         * feature itself but allows the user to enable it later.
8602         */
8603        if (dev->hw_features & NETIF_F_TSO)
8604                dev->hw_features |= NETIF_F_TSO_MANGLEID;
8605        if (dev->vlan_features & NETIF_F_TSO)
8606                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8607        if (dev->mpls_features & NETIF_F_TSO)
8608                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8609        if (dev->hw_enc_features & NETIF_F_TSO)
8610                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8611
8612        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8613         */
8614        dev->vlan_features |= NETIF_F_HIGHDMA;
8615
8616        /* Make NETIF_F_SG inheritable to tunnel devices.
8617         */
8618        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8619
8620        /* Make NETIF_F_SG inheritable to MPLS.
8621         */
8622        dev->mpls_features |= NETIF_F_SG;
8623
8624        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8625        ret = notifier_to_errno(ret);
8626        if (ret)
8627                goto err_uninit;
8628
8629        ret = netdev_register_kobject(dev);
8630        if (ret)
8631                goto err_uninit;
8632        dev->reg_state = NETREG_REGISTERED;
8633
8634        __netdev_update_features(dev);
8635
8636        /*
8637         *      Default initial state at registry is that the
8638         *      device is present.
8639         */
8640
8641        set_bit(__LINK_STATE_PRESENT, &dev->state);
8642
8643        linkwatch_init_dev(dev);
8644
8645        dev_init_scheduler(dev);
8646        dev_hold(dev);
8647        list_netdevice(dev);
8648        add_device_randomness(dev->dev_addr, dev->addr_len);
8649
8650        /* If the device has permanent device address, driver should
8651         * set dev_addr and also addr_assign_type should be set to
8652         * NET_ADDR_PERM (default value).
8653         */
8654        if (dev->addr_assign_type == NET_ADDR_PERM)
8655                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8656
8657        /* Notify protocols, that a new device appeared. */
8658        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8659        ret = notifier_to_errno(ret);
8660        if (ret) {
8661                rollback_registered(dev);
8662                dev->reg_state = NETREG_UNREGISTERED;
8663        }
8664        /*
8665         *      Prevent userspace races by waiting until the network
8666         *      device is fully setup before sending notifications.
8667         */
8668        if (!dev->rtnl_link_ops ||
8669            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8670                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8671
8672out:
8673        return ret;
8674
8675err_uninit:
8676        if (dev->netdev_ops->ndo_uninit)
8677                dev->netdev_ops->ndo_uninit(dev);
8678        if (dev->priv_destructor)
8679                dev->priv_destructor(dev);
8680        goto out;
8681}
8682EXPORT_SYMBOL(register_netdevice);
8683
8684/**
8685 *      init_dummy_netdev       - init a dummy network device for NAPI
8686 *      @dev: device to init
8687 *
8688 *      This takes a network device structure and initialize the minimum
8689 *      amount of fields so it can be used to schedule NAPI polls without
8690 *      registering a full blown interface. This is to be used by drivers
8691 *      that need to tie several hardware interfaces to a single NAPI
8692 *      poll scheduler due to HW limitations.
8693 */
8694int init_dummy_netdev(struct net_device *dev)
8695{
8696        /* Clear everything. Note we don't initialize spinlocks
8697         * are they aren't supposed to be taken by any of the
8698         * NAPI code and this dummy netdev is supposed to be
8699         * only ever used for NAPI polls
8700         */
8701        memset(dev, 0, sizeof(struct net_device));
8702
8703        /* make sure we BUG if trying to hit standard
8704         * register/unregister code path
8705         */
8706        dev->reg_state = NETREG_DUMMY;
8707
8708        /* NAPI wants this */
8709        INIT_LIST_HEAD(&dev->napi_list);
8710
8711        /* a dummy interface is started by default */
8712        set_bit(__LINK_STATE_PRESENT, &dev->state);
8713        set_bit(__LINK_STATE_START, &dev->state);
8714
8715        /* napi_busy_loop stats accounting wants this */
8716        dev_net_set(dev, &init_net);
8717
8718        /* Note : We dont allocate pcpu_refcnt for dummy devices,
8719         * because users of this 'device' dont need to change
8720         * its refcount.
8721         */
8722
8723        return 0;
8724}
8725EXPORT_SYMBOL_GPL(init_dummy_netdev);
8726
8727
8728/**
8729 *      register_netdev - register a network device
8730 *      @dev: device to register
8731 *
8732 *      Take a completed network device structure and add it to the kernel
8733 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8734 *      chain. 0 is returned on success. A negative errno code is returned
8735 *      on a failure to set up the device, or if the name is a duplicate.
8736 *
8737 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8738 *      and expands the device name if you passed a format string to
8739 *      alloc_netdev.
8740 */
8741int register_netdev(struct net_device *dev)
8742{
8743        int err;
8744
8745        if (rtnl_lock_killable())
8746                return -EINTR;
8747        err = register_netdevice(dev);
8748        rtnl_unlock();
8749        return err;
8750}
8751EXPORT_SYMBOL(register_netdev);
8752
8753int netdev_refcnt_read(const struct net_device *dev)
8754{
8755        int i, refcnt = 0;
8756
8757        for_each_possible_cpu(i)
8758                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8759        return refcnt;
8760}
8761EXPORT_SYMBOL(netdev_refcnt_read);
8762
8763/**
8764 * netdev_wait_allrefs - wait until all references are gone.
8765 * @dev: target net_device
8766 *
8767 * This is called when unregistering network devices.
8768 *
8769 * Any protocol or device that holds a reference should register
8770 * for netdevice notification, and cleanup and put back the
8771 * reference if they receive an UNREGISTER event.
8772 * We can get stuck here if buggy protocols don't correctly
8773 * call dev_put.
8774 */
8775static void netdev_wait_allrefs(struct net_device *dev)
8776{
8777        unsigned long rebroadcast_time, warning_time;
8778        int refcnt;
8779
8780        linkwatch_forget_dev(dev);
8781
8782        rebroadcast_time = warning_time = jiffies;
8783        refcnt = netdev_refcnt_read(dev);
8784
8785        while (refcnt != 0) {
8786                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8787                        rtnl_lock();
8788
8789                        /* Rebroadcast unregister notification */
8790                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8791
8792                        __rtnl_unlock();
8793                        rcu_barrier();
8794                        rtnl_lock();
8795
8796                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8797                                     &dev->state)) {
8798                                /* We must not have linkwatch events
8799                                 * pending on unregister. If this
8800                                 * happens, we simply run the queue
8801                                 * unscheduled, resulting in a noop
8802                                 * for this device.
8803                                 */
8804                                linkwatch_run_queue();
8805                        }
8806
8807                        __rtnl_unlock();
8808
8809                        rebroadcast_time = jiffies;
8810                }
8811
8812                msleep(250);
8813
8814                refcnt = netdev_refcnt_read(dev);
8815
8816                if (time_after(jiffies, warning_time + 10 * HZ)) {
8817                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8818                                 dev->name, refcnt);
8819                        warning_time = jiffies;
8820                }
8821        }
8822}
8823
8824/* The sequence is:
8825 *
8826 *      rtnl_lock();
8827 *      ...
8828 *      register_netdevice(x1);
8829 *      register_netdevice(x2);
8830 *      ...
8831 *      unregister_netdevice(y1);
8832 *      unregister_netdevice(y2);
8833 *      ...
8834 *      rtnl_unlock();
8835 *      free_netdev(y1);
8836 *      free_netdev(y2);
8837 *
8838 * We are invoked by rtnl_unlock().
8839 * This allows us to deal with problems:
8840 * 1) We can delete sysfs objects which invoke hotplug
8841 *    without deadlocking with linkwatch via keventd.
8842 * 2) Since we run with the RTNL semaphore not held, we can sleep
8843 *    safely in order to wait for the netdev refcnt to drop to zero.
8844 *
8845 * We must not return until all unregister events added during
8846 * the interval the lock was held have been completed.
8847 */
8848void netdev_run_todo(void)
8849{
8850        struct list_head list;
8851
8852        /* Snapshot list, allow later requests */
8853        list_replace_init(&net_todo_list, &list);
8854
8855        __rtnl_unlock();
8856
8857
8858        /* Wait for rcu callbacks to finish before next phase */
8859        if (!list_empty(&list))
8860                rcu_barrier();
8861
8862        while (!list_empty(&list)) {
8863                struct net_device *dev
8864                        = list_first_entry(&list, struct net_device, todo_list);
8865                list_del(&dev->todo_list);
8866
8867                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8868                        pr_err("network todo '%s' but state %d\n",
8869                               dev->name, dev->reg_state);
8870                        dump_stack();
8871                        continue;
8872                }
8873
8874                dev->reg_state = NETREG_UNREGISTERED;
8875
8876                netdev_wait_allrefs(dev);
8877
8878                /* paranoia */
8879                BUG_ON(netdev_refcnt_read(dev));
8880                BUG_ON(!list_empty(&dev->ptype_all));
8881                BUG_ON(!list_empty(&dev->ptype_specific));
8882                WARN_ON(rcu_access_pointer(dev->ip_ptr));
8883                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8884#if IS_ENABLED(CONFIG_DECNET)
8885                WARN_ON(dev->dn_ptr);
8886#endif
8887                if (dev->priv_destructor)
8888                        dev->priv_destructor(dev);
8889                if (dev->needs_free_netdev)
8890                        free_netdev(dev);
8891
8892                /* Report a network device has been unregistered */
8893                rtnl_lock();
8894                dev_net(dev)->dev_unreg_count--;
8895                __rtnl_unlock();
8896                wake_up(&netdev_unregistering_wq);
8897
8898                /* Free network device */
8899                kobject_put(&dev->dev.kobj);
8900        }
8901}
8902
8903/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8904 * all the same fields in the same order as net_device_stats, with only
8905 * the type differing, but rtnl_link_stats64 may have additional fields
8906 * at the end for newer counters.
8907 */
8908void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8909                             const struct net_device_stats *netdev_stats)
8910{
8911#if BITS_PER_LONG == 64
8912        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8913        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8914        /* zero out counters that only exist in rtnl_link_stats64 */
8915        memset((char *)stats64 + sizeof(*netdev_stats), 0,
8916               sizeof(*stats64) - sizeof(*netdev_stats));
8917#else
8918        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8919        const unsigned long *src = (const unsigned long *)netdev_stats;
8920        u64 *dst = (u64 *)stats64;
8921
8922        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8923        for (i = 0; i < n; i++)
8924                dst[i] = src[i];
8925        /* zero out counters that only exist in rtnl_link_stats64 */
8926        memset((char *)stats64 + n * sizeof(u64), 0,
8927               sizeof(*stats64) - n * sizeof(u64));
8928#endif
8929}
8930EXPORT_SYMBOL(netdev_stats_to_stats64);
8931
8932/**
8933 *      dev_get_stats   - get network device statistics
8934 *      @dev: device to get statistics from
8935 *      @storage: place to store stats
8936 *
8937 *      Get network statistics from device. Return @storage.
8938 *      The device driver may provide its own method by setting
8939 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8940 *      otherwise the internal statistics structure is used.
8941 */
8942struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8943                                        struct rtnl_link_stats64 *storage)
8944{
8945        const struct net_device_ops *ops = dev->netdev_ops;
8946
8947        if (ops->ndo_get_stats64) {
8948                memset(storage, 0, sizeof(*storage));
8949                ops->ndo_get_stats64(dev, storage);
8950        } else if (ops->ndo_get_stats) {
8951                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8952        } else {
8953                netdev_stats_to_stats64(storage, &dev->stats);
8954        }
8955        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8956        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8957        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8958        return storage;
8959}
8960EXPORT_SYMBOL(dev_get_stats);
8961
8962struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8963{
8964        struct netdev_queue *queue = dev_ingress_queue(dev);
8965
8966#ifdef CONFIG_NET_CLS_ACT
8967        if (queue)
8968                return queue;
8969        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8970        if (!queue)
8971                return NULL;
8972        netdev_init_one_queue(dev, queue, NULL);
8973        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8974        queue->qdisc_sleeping = &noop_qdisc;
8975        rcu_assign_pointer(dev->ingress_queue, queue);
8976#endif
8977        return queue;
8978}
8979
8980static const struct ethtool_ops default_ethtool_ops;
8981
8982void netdev_set_default_ethtool_ops(struct net_device *dev,
8983                                    const struct ethtool_ops *ops)
8984{
8985        if (dev->ethtool_ops == &default_ethtool_ops)
8986                dev->ethtool_ops = ops;
8987}
8988EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8989
8990void netdev_freemem(struct net_device *dev)
8991{
8992        char *addr = (char *)dev - dev->padded;
8993
8994        kvfree(addr);
8995}
8996
8997/**
8998 * alloc_netdev_mqs - allocate network device
8999 * @sizeof_priv: size of private data to allocate space for
9000 * @name: device name format string
9001 * @name_assign_type: origin of device name
9002 * @setup: callback to initialize device
9003 * @txqs: the number of TX subqueues to allocate
9004 * @rxqs: the number of RX subqueues to allocate
9005 *
9006 * Allocates a struct net_device with private data area for driver use
9007 * and performs basic initialization.  Also allocates subqueue structs
9008 * for each queue on the device.
9009 */
9010struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9011                unsigned char name_assign_type,
9012                void (*setup)(struct net_device *),
9013                unsigned int txqs, unsigned int rxqs)
9014{
9015        struct net_device *dev;
9016        unsigned int alloc_size;
9017        struct net_device *p;
9018
9019        BUG_ON(strlen(name) >= sizeof(dev->name));
9020
9021        if (txqs < 1) {
9022                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9023                return NULL;
9024        }
9025
9026        if (rxqs < 1) {
9027                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9028                return NULL;
9029        }
9030
9031        alloc_size = sizeof(struct net_device);
9032        if (sizeof_priv) {
9033                /* ensure 32-byte alignment of private area */
9034                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9035                alloc_size += sizeof_priv;
9036        }
9037        /* ensure 32-byte alignment of whole construct */
9038        alloc_size += NETDEV_ALIGN - 1;
9039
9040        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9041        if (!p)
9042                return NULL;
9043
9044        dev = PTR_ALIGN(p, NETDEV_ALIGN);
9045        dev->padded = (char *)dev - (char *)p;
9046
9047        dev->pcpu_refcnt = alloc_percpu(int);
9048        if (!dev->pcpu_refcnt)
9049                goto free_dev;
9050
9051        if (dev_addr_init(dev))
9052                goto free_pcpu;
9053
9054        dev_mc_init(dev);
9055        dev_uc_init(dev);
9056
9057        dev_net_set(dev, &init_net);
9058
9059        dev->gso_max_size = GSO_MAX_SIZE;
9060        dev->gso_max_segs = GSO_MAX_SEGS;
9061
9062        INIT_LIST_HEAD(&dev->napi_list);
9063        INIT_LIST_HEAD(&dev->unreg_list);
9064        INIT_LIST_HEAD(&dev->close_list);
9065        INIT_LIST_HEAD(&dev->link_watch_list);
9066        INIT_LIST_HEAD(&dev->adj_list.upper);
9067        INIT_LIST_HEAD(&dev->adj_list.lower);
9068        INIT_LIST_HEAD(&dev->ptype_all);
9069        INIT_LIST_HEAD(&dev->ptype_specific);
9070#ifdef CONFIG_NET_SCHED
9071        hash_init(dev->qdisc_hash);
9072#endif
9073        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9074        setup(dev);
9075
9076        if (!dev->tx_queue_len) {
9077                dev->priv_flags |= IFF_NO_QUEUE;
9078                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9079        }
9080
9081        dev->num_tx_queues = txqs;
9082        dev->real_num_tx_queues = txqs;
9083        if (netif_alloc_netdev_queues(dev))
9084                goto free_all;
9085
9086        dev->num_rx_queues = rxqs;
9087        dev->real_num_rx_queues = rxqs;
9088        if (netif_alloc_rx_queues(dev))
9089                goto free_all;
9090
9091        strcpy(dev->name, name);
9092        dev->name_assign_type = name_assign_type;
9093        dev->group = INIT_NETDEV_GROUP;
9094        if (!dev->ethtool_ops)
9095                dev->ethtool_ops = &default_ethtool_ops;
9096
9097        nf_hook_ingress_init(dev);
9098
9099        return dev;
9100
9101free_all:
9102        free_netdev(dev);
9103        return NULL;
9104
9105free_pcpu:
9106        free_percpu(dev->pcpu_refcnt);
9107free_dev:
9108        netdev_freemem(dev);
9109        return NULL;
9110}
9111EXPORT_SYMBOL(alloc_netdev_mqs);
9112
9113/**
9114 * free_netdev - free network device
9115 * @dev: device
9116 *
9117 * This function does the last stage of destroying an allocated device
9118 * interface. The reference to the device object is released. If this
9119 * is the last reference then it will be freed.Must be called in process
9120 * context.
9121 */
9122void free_netdev(struct net_device *dev)
9123{
9124        struct napi_struct *p, *n;
9125
9126        might_sleep();
9127        netif_free_tx_queues(dev);
9128        netif_free_rx_queues(dev);
9129
9130        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9131
9132        /* Flush device addresses */
9133        dev_addr_flush(dev);
9134
9135        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9136                netif_napi_del(p);
9137
9138        free_percpu(dev->pcpu_refcnt);
9139        dev->pcpu_refcnt = NULL;
9140
9141        /*  Compatibility with error handling in drivers */
9142        if (dev->reg_state == NETREG_UNINITIALIZED) {
9143                netdev_freemem(dev);
9144                return;
9145        }
9146
9147        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9148        dev->reg_state = NETREG_RELEASED;
9149
9150        /* will free via device release */
9151        put_device(&dev->dev);
9152}
9153EXPORT_SYMBOL(free_netdev);
9154
9155/**
9156 *      synchronize_net -  Synchronize with packet receive processing
9157 *
9158 *      Wait for packets currently being received to be done.
9159 *      Does not block later packets from starting.
9160 */
9161void synchronize_net(void)
9162{
9163        might_sleep();
9164        if (rtnl_is_locked())
9165                synchronize_rcu_expedited();
9166        else
9167                synchronize_rcu();
9168}
9169EXPORT_SYMBOL(synchronize_net);
9170
9171/**
9172 *      unregister_netdevice_queue - remove device from the kernel
9173 *      @dev: device
9174 *      @head: list
9175 *
9176 *      This function shuts down a device interface and removes it
9177 *      from the kernel tables.
9178 *      If head not NULL, device is queued to be unregistered later.
9179 *
9180 *      Callers must hold the rtnl semaphore.  You may want
9181 *      unregister_netdev() instead of this.
9182 */
9183
9184void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9185{
9186        ASSERT_RTNL();
9187
9188        if (head) {
9189                list_move_tail(&dev->unreg_list, head);
9190        } else {
9191                rollback_registered(dev);
9192                /* Finish processing unregister after unlock */
9193                net_set_todo(dev);
9194        }
9195}
9196EXPORT_SYMBOL(unregister_netdevice_queue);
9197
9198/**
9199 *      unregister_netdevice_many - unregister many devices
9200 *      @head: list of devices
9201 *
9202 *  Note: As most callers use a stack allocated list_head,
9203 *  we force a list_del() to make sure stack wont be corrupted later.
9204 */
9205void unregister_netdevice_many(struct list_head *head)
9206{
9207        struct net_device *dev;
9208
9209        if (!list_empty(head)) {
9210                rollback_registered_many(head);
9211                list_for_each_entry(dev, head, unreg_list)
9212                        net_set_todo(dev);
9213                list_del(head);
9214        }
9215}
9216EXPORT_SYMBOL(unregister_netdevice_many);
9217
9218/**
9219 *      unregister_netdev - remove device from the kernel
9220 *      @dev: device
9221 *
9222 *      This function shuts down a device interface and removes it
9223 *      from the kernel tables.
9224 *
9225 *      This is just a wrapper for unregister_netdevice that takes
9226 *      the rtnl semaphore.  In general you want to use this and not
9227 *      unregister_netdevice.
9228 */
9229void unregister_netdev(struct net_device *dev)
9230{
9231        rtnl_lock();
9232        unregister_netdevice(dev);
9233        rtnl_unlock();
9234}
9235EXPORT_SYMBOL(unregister_netdev);
9236
9237/**
9238 *      dev_change_net_namespace - move device to different nethost namespace
9239 *      @dev: device
9240 *      @net: network namespace
9241 *      @pat: If not NULL name pattern to try if the current device name
9242 *            is already taken in the destination network namespace.
9243 *
9244 *      This function shuts down a device interface and moves it
9245 *      to a new network namespace. On success 0 is returned, on
9246 *      a failure a netagive errno code is returned.
9247 *
9248 *      Callers must hold the rtnl semaphore.
9249 */
9250
9251int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9252{
9253        int err, new_nsid, new_ifindex;
9254
9255        ASSERT_RTNL();
9256
9257        /* Don't allow namespace local devices to be moved. */
9258        err = -EINVAL;
9259        if (dev->features & NETIF_F_NETNS_LOCAL)
9260                goto out;
9261
9262        /* Ensure the device has been registrered */
9263        if (dev->reg_state != NETREG_REGISTERED)
9264                goto out;
9265
9266        /* Get out if there is nothing todo */
9267        err = 0;
9268        if (net_eq(dev_net(dev), net))
9269                goto out;
9270
9271        /* Pick the destination device name, and ensure
9272         * we can use it in the destination network namespace.
9273         */
9274        err = -EEXIST;
9275        if (__dev_get_by_name(net, dev->name)) {
9276                /* We get here if we can't use the current device name */
9277                if (!pat)
9278                        goto out;
9279                err = dev_get_valid_name(net, dev, pat);
9280                if (err < 0)
9281                        goto out;
9282        }
9283
9284        /*
9285         * And now a mini version of register_netdevice unregister_netdevice.
9286         */
9287
9288        /* If device is running close it first. */
9289        dev_close(dev);
9290
9291        /* And unlink it from device chain */
9292        unlist_netdevice(dev);
9293
9294        synchronize_net();
9295
9296        /* Shutdown queueing discipline. */
9297        dev_shutdown(dev);
9298
9299        /* Notify protocols, that we are about to destroy
9300         * this device. They should clean all the things.
9301         *
9302         * Note that dev->reg_state stays at NETREG_REGISTERED.
9303         * This is wanted because this way 8021q and macvlan know
9304         * the device is just moving and can keep their slaves up.
9305         */
9306        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9307        rcu_barrier();
9308
9309        new_nsid = peernet2id_alloc(dev_net(dev), net);
9310        /* If there is an ifindex conflict assign a new one */
9311        if (__dev_get_by_index(net, dev->ifindex))
9312                new_ifindex = dev_new_index(net);
9313        else
9314                new_ifindex = dev->ifindex;
9315
9316        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9317                            new_ifindex);
9318
9319        /*
9320         *      Flush the unicast and multicast chains
9321         */
9322        dev_uc_flush(dev);
9323        dev_mc_flush(dev);
9324
9325        /* Send a netdev-removed uevent to the old namespace */
9326        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9327        netdev_adjacent_del_links(dev);
9328
9329        /* Actually switch the network namespace */
9330        dev_net_set(dev, net);
9331        dev->ifindex = new_ifindex;
9332
9333        /* Send a netdev-add uevent to the new namespace */
9334        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9335        netdev_adjacent_add_links(dev);
9336
9337        /* Fixup kobjects */
9338        err = device_rename(&dev->dev, dev->name);
9339        WARN_ON(err);
9340
9341        /* Add the device back in the hashes */
9342        list_netdevice(dev);
9343
9344        /* Notify protocols, that a new device appeared. */
9345        call_netdevice_notifiers(NETDEV_REGISTER, dev);
9346
9347        /*
9348         *      Prevent userspace races by waiting until the network
9349         *      device is fully setup before sending notifications.
9350         */
9351        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9352
9353        synchronize_net();
9354        err = 0;
9355out:
9356        return err;
9357}
9358EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9359
9360static int dev_cpu_dead(unsigned int oldcpu)
9361{
9362        struct sk_buff **list_skb;
9363        struct sk_buff *skb;
9364        unsigned int cpu;
9365        struct softnet_data *sd, *oldsd, *remsd = NULL;
9366
9367        local_irq_disable();
9368        cpu = smp_processor_id();
9369        sd = &per_cpu(softnet_data, cpu);
9370        oldsd = &per_cpu(softnet_data, oldcpu);
9371
9372        /* Find end of our completion_queue. */
9373        list_skb = &sd->completion_queue;
9374        while (*list_skb)
9375                list_skb = &(*list_skb)->next;
9376        /* Append completion queue from offline CPU. */
9377        *list_skb = oldsd->completion_queue;
9378        oldsd->completion_queue = NULL;
9379
9380        /* Append output queue from offline CPU. */
9381        if (oldsd->output_queue) {
9382                *sd->output_queue_tailp = oldsd->output_queue;
9383                sd->output_queue_tailp = oldsd->output_queue_tailp;
9384                oldsd->output_queue = NULL;
9385                oldsd->output_queue_tailp = &oldsd->output_queue;
9386        }
9387        /* Append NAPI poll list from offline CPU, with one exception :
9388         * process_backlog() must be called by cpu owning percpu backlog.
9389         * We properly handle process_queue & input_pkt_queue later.
9390         */
9391        while (!list_empty(&oldsd->poll_list)) {
9392                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9393                                                            struct napi_struct,
9394                                                            poll_list);
9395
9396                list_del_init(&napi->poll_list);
9397                if (napi->poll == process_backlog)
9398                        napi->state = 0;
9399                else
9400                        ____napi_schedule(sd, napi);
9401        }
9402
9403        raise_softirq_irqoff(NET_TX_SOFTIRQ);
9404        local_irq_enable();
9405
9406#ifdef CONFIG_RPS
9407        remsd = oldsd->rps_ipi_list;
9408        oldsd->rps_ipi_list = NULL;
9409#endif
9410        /* send out pending IPI's on offline CPU */
9411        net_rps_send_ipi(remsd);
9412
9413        /* Process offline CPU's input_pkt_queue */
9414        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9415                netif_rx_ni(skb);
9416                input_queue_head_incr(oldsd);
9417        }
9418        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9419                netif_rx_ni(skb);
9420                input_queue_head_incr(oldsd);
9421        }
9422
9423        return 0;
9424}
9425
9426/**
9427 *      netdev_increment_features - increment feature set by one
9428 *      @all: current feature set
9429 *      @one: new feature set
9430 *      @mask: mask feature set
9431 *
9432 *      Computes a new feature set after adding a device with feature set
9433 *      @one to the master device with current feature set @all.  Will not
9434 *      enable anything that is off in @mask. Returns the new feature set.
9435 */
9436netdev_features_t netdev_increment_features(netdev_features_t all,
9437        netdev_features_t one, netdev_features_t mask)
9438{
9439        if (mask & NETIF_F_HW_CSUM)
9440                mask |= NETIF_F_CSUM_MASK;
9441        mask |= NETIF_F_VLAN_CHALLENGED;
9442
9443        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9444        all &= one | ~NETIF_F_ALL_FOR_ALL;
9445
9446        /* If one device supports hw checksumming, set for all. */
9447        if (all & NETIF_F_HW_CSUM)
9448                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9449
9450        return all;
9451}
9452EXPORT_SYMBOL(netdev_increment_features);
9453
9454static struct hlist_head * __net_init netdev_create_hash(void)
9455{
9456        int i;
9457        struct hlist_head *hash;
9458
9459        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9460        if (hash != NULL)
9461                for (i = 0; i < NETDEV_HASHENTRIES; i++)
9462                        INIT_HLIST_HEAD(&hash[i]);
9463
9464        return hash;
9465}
9466
9467/* Initialize per network namespace state */
9468static int __net_init netdev_init(struct net *net)
9469{
9470        BUILD_BUG_ON(GRO_HASH_BUCKETS >
9471                     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9472
9473        if (net != &init_net)
9474                INIT_LIST_HEAD(&net->dev_base_head);
9475
9476        net->dev_name_head = netdev_create_hash();
9477        if (net->dev_name_head == NULL)
9478                goto err_name;
9479
9480        net->dev_index_head = netdev_create_hash();
9481        if (net->dev_index_head == NULL)
9482                goto err_idx;
9483
9484        return 0;
9485
9486err_idx:
9487        kfree(net->dev_name_head);
9488err_name:
9489        return -ENOMEM;
9490}
9491
9492/**
9493 *      netdev_drivername - network driver for the device
9494 *      @dev: network device
9495 *
9496 *      Determine network driver for device.
9497 */
9498const char *netdev_drivername(const struct net_device *dev)
9499{
9500        const struct device_driver *driver;
9501        const struct device *parent;
9502        const char *empty = "";
9503
9504        parent = dev->dev.parent;
9505        if (!parent)
9506                return empty;
9507
9508        driver = parent->driver;
9509        if (driver && driver->name)
9510                return driver->name;
9511        return empty;
9512}
9513
9514static void __netdev_printk(const char *level, const struct net_device *dev,
9515                            struct va_format *vaf)
9516{
9517        if (dev && dev->dev.parent) {
9518                dev_printk_emit(level[1] - '0',
9519                                dev->dev.parent,
9520                                "%s %s %s%s: %pV",
9521                                dev_driver_string(dev->dev.parent),
9522                                dev_name(dev->dev.parent),
9523                                netdev_name(dev), netdev_reg_state(dev),
9524                                vaf);
9525        } else if (dev) {
9526                printk("%s%s%s: %pV",
9527                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9528        } else {
9529                printk("%s(NULL net_device): %pV", level, vaf);
9530        }
9531}
9532
9533void netdev_printk(const char *level, const struct net_device *dev,
9534                   const char *format, ...)
9535{
9536        struct va_format vaf;
9537        va_list args;
9538
9539        va_start(args, format);
9540
9541        vaf.fmt = format;
9542        vaf.va = &args;
9543
9544        __netdev_printk(level, dev, &vaf);
9545
9546        va_end(args);
9547}
9548EXPORT_SYMBOL(netdev_printk);
9549
9550#define define_netdev_printk_level(func, level)                 \
9551void func(const struct net_device *dev, const char *fmt, ...)   \
9552{                                                               \
9553        struct va_format vaf;                                   \
9554        va_list args;                                           \
9555                                                                \
9556        va_start(args, fmt);                                    \
9557                                                                \
9558        vaf.fmt = fmt;                                          \
9559        vaf.va = &args;                                         \
9560                                                                \
9561        __netdev_printk(level, dev, &vaf);                      \
9562                                                                \
9563        va_end(args);                                           \
9564}                                                               \
9565EXPORT_SYMBOL(func);
9566
9567define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9568define_netdev_printk_level(netdev_alert, KERN_ALERT);
9569define_netdev_printk_level(netdev_crit, KERN_CRIT);
9570define_netdev_printk_level(netdev_err, KERN_ERR);
9571define_netdev_printk_level(netdev_warn, KERN_WARNING);
9572define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9573define_netdev_printk_level(netdev_info, KERN_INFO);
9574
9575static void __net_exit netdev_exit(struct net *net)
9576{
9577        kfree(net->dev_name_head);
9578        kfree(net->dev_index_head);
9579        if (net != &init_net)
9580                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9581}
9582
9583static struct pernet_operations __net_initdata netdev_net_ops = {
9584        .init = netdev_init,
9585        .exit = netdev_exit,
9586};
9587
9588static void __net_exit default_device_exit(struct net *net)
9589{
9590        struct net_device *dev, *aux;
9591        /*
9592         * Push all migratable network devices back to the
9593         * initial network namespace
9594         */
9595        rtnl_lock();
9596        for_each_netdev_safe(net, dev, aux) {
9597                int err;
9598                char fb_name[IFNAMSIZ];
9599
9600                /* Ignore unmoveable devices (i.e. loopback) */
9601                if (dev->features & NETIF_F_NETNS_LOCAL)
9602                        continue;
9603
9604                /* Leave virtual devices for the generic cleanup */
9605                if (dev->rtnl_link_ops)
9606                        continue;
9607
9608                /* Push remaining network devices to init_net */
9609                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9610                err = dev_change_net_namespace(dev, &init_net, fb_name);
9611                if (err) {
9612                        pr_emerg("%s: failed to move %s to init_net: %d\n",
9613                                 __func__, dev->name, err);
9614                        BUG();
9615                }
9616        }
9617        rtnl_unlock();
9618}
9619
9620static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9621{
9622        /* Return with the rtnl_lock held when there are no network
9623         * devices unregistering in any network namespace in net_list.
9624         */
9625        struct net *net;
9626        bool unregistering;
9627        DEFINE_WAIT_FUNC(wait, woken_wake_function);
9628
9629        add_wait_queue(&netdev_unregistering_wq, &wait);
9630        for (;;) {
9631                unregistering = false;
9632                rtnl_lock();
9633                list_for_each_entry(net, net_list, exit_list) {
9634                        if (net->dev_unreg_count > 0) {
9635                                unregistering = true;
9636                                break;
9637                        }
9638                }
9639                if (!unregistering)
9640                        break;
9641                __rtnl_unlock();
9642
9643                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9644        }
9645        remove_wait_queue(&netdev_unregistering_wq, &wait);
9646}
9647
9648static void __net_exit default_device_exit_batch(struct list_head *net_list)
9649{
9650        /* At exit all network devices most be removed from a network
9651         * namespace.  Do this in the reverse order of registration.
9652         * Do this across as many network namespaces as possible to
9653         * improve batching efficiency.
9654         */
9655        struct net_device *dev;
9656        struct net *net;
9657        LIST_HEAD(dev_kill_list);
9658
9659        /* To prevent network device cleanup code from dereferencing
9660         * loopback devices or network devices that have been freed
9661         * wait here for all pending unregistrations to complete,
9662         * before unregistring the loopback device and allowing the
9663         * network namespace be freed.
9664         *
9665         * The netdev todo list containing all network devices
9666         * unregistrations that happen in default_device_exit_batch
9667         * will run in the rtnl_unlock() at the end of
9668         * default_device_exit_batch.
9669         */
9670        rtnl_lock_unregistering(net_list);
9671        list_for_each_entry(net, net_list, exit_list) {
9672                for_each_netdev_reverse(net, dev) {
9673                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9674                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9675                        else
9676                                unregister_netdevice_queue(dev, &dev_kill_list);
9677                }
9678        }
9679        unregister_netdevice_many(&dev_kill_list);
9680        rtnl_unlock();
9681}
9682
9683static struct pernet_operations __net_initdata default_device_ops = {
9684        .exit = default_device_exit,
9685        .exit_batch = default_device_exit_batch,
9686};
9687
9688/*
9689 *      Initialize the DEV module. At boot time this walks the device list and
9690 *      unhooks any devices that fail to initialise (normally hardware not
9691 *      present) and leaves us with a valid list of present and active devices.
9692 *
9693 */
9694
9695/*
9696 *       This is called single threaded during boot, so no need
9697 *       to take the rtnl semaphore.
9698 */
9699static int __init net_dev_init(void)
9700{
9701        int i, rc = -ENOMEM;
9702
9703        BUG_ON(!dev_boot_phase);
9704
9705        if (dev_proc_init())
9706                goto out;
9707
9708        if (netdev_kobject_init())
9709                goto out;
9710
9711        INIT_LIST_HEAD(&ptype_all);
9712        for (i = 0; i < PTYPE_HASH_SIZE; i++)
9713                INIT_LIST_HEAD(&ptype_base[i]);
9714
9715        INIT_LIST_HEAD(&offload_base);
9716
9717        if (register_pernet_subsys(&netdev_net_ops))
9718                goto out;
9719
9720        /*
9721         *      Initialise the packet receive queues.
9722         */
9723
9724        for_each_possible_cpu(i) {
9725                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9726                struct softnet_data *sd = &per_cpu(softnet_data, i);
9727
9728                INIT_WORK(flush, flush_backlog);
9729
9730                skb_queue_head_init(&sd->input_pkt_queue);
9731                skb_queue_head_init(&sd->process_queue);
9732#ifdef CONFIG_XFRM_OFFLOAD
9733                skb_queue_head_init(&sd->xfrm_backlog);
9734#endif
9735                INIT_LIST_HEAD(&sd->poll_list);
9736                sd->output_queue_tailp = &sd->output_queue;
9737#ifdef CONFIG_RPS
9738                sd->csd.func = rps_trigger_softirq;
9739                sd->csd.info = sd;
9740                sd->cpu = i;
9741#endif
9742
9743                init_gro_hash(&sd->backlog);
9744                sd->backlog.poll = process_backlog;
9745                sd->backlog.weight = weight_p;
9746        }
9747
9748        dev_boot_phase = 0;
9749
9750        /* The loopback device is special if any other network devices
9751         * is present in a network namespace the loopback device must
9752         * be present. Since we now dynamically allocate and free the
9753         * loopback device ensure this invariant is maintained by
9754         * keeping the loopback device as the first device on the
9755         * list of network devices.  Ensuring the loopback devices
9756         * is the first device that appears and the last network device
9757         * that disappears.
9758         */
9759        if (register_pernet_device(&loopback_net_ops))
9760                goto out;
9761
9762        if (register_pernet_device(&default_device_ops))
9763                goto out;
9764
9765        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9766        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9767
9768        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9769                                       NULL, dev_cpu_dead);
9770        WARN_ON(rc < 0);
9771        rc = 0;
9772out:
9773        return rc;
9774}
9775
9776subsys_initcall(net_dev_init);
9777