linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/mm.h>
  45#include <linux/interrupt.h>
  46#include <linux/in.h>
  47#include <linux/inet.h>
  48#include <linux/slab.h>
  49#include <linux/tcp.h>
  50#include <linux/udp.h>
  51#include <linux/sctp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <linux/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
  79
  80struct kmem_cache *skbuff_head_cache __ro_after_init;
  81static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  82#ifdef CONFIG_SKB_EXTENSIONS
  83static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  84#endif
  85int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  86EXPORT_SYMBOL(sysctl_max_skb_frags);
  87
  88/**
  89 *      skb_panic - private function for out-of-line support
  90 *      @skb:   buffer
  91 *      @sz:    size
  92 *      @addr:  address
  93 *      @msg:   skb_over_panic or skb_under_panic
  94 *
  95 *      Out-of-line support for skb_put() and skb_push().
  96 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  97 *      Keep out of line to prevent kernel bloat.
  98 *      __builtin_return_address is not used because it is not always reliable.
  99 */
 100static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 101                      const char msg[])
 102{
 103        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 104                 msg, addr, skb->len, sz, skb->head, skb->data,
 105                 (unsigned long)skb->tail, (unsigned long)skb->end,
 106                 skb->dev ? skb->dev->name : "<NULL>");
 107        BUG();
 108}
 109
 110static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 111{
 112        skb_panic(skb, sz, addr, __func__);
 113}
 114
 115static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 116{
 117        skb_panic(skb, sz, addr, __func__);
 118}
 119
 120/*
 121 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 122 * the caller if emergency pfmemalloc reserves are being used. If it is and
 123 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 124 * may be used. Otherwise, the packet data may be discarded until enough
 125 * memory is free
 126 */
 127#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 128         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 129
 130static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 131                               unsigned long ip, bool *pfmemalloc)
 132{
 133        void *obj;
 134        bool ret_pfmemalloc = false;
 135
 136        /*
 137         * Try a regular allocation, when that fails and we're not entitled
 138         * to the reserves, fail.
 139         */
 140        obj = kmalloc_node_track_caller(size,
 141                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 142                                        node);
 143        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 144                goto out;
 145
 146        /* Try again but now we are using pfmemalloc reserves */
 147        ret_pfmemalloc = true;
 148        obj = kmalloc_node_track_caller(size, flags, node);
 149
 150out:
 151        if (pfmemalloc)
 152                *pfmemalloc = ret_pfmemalloc;
 153
 154        return obj;
 155}
 156
 157/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 158 *      'private' fields and also do memory statistics to find all the
 159 *      [BEEP] leaks.
 160 *
 161 */
 162
 163/**
 164 *      __alloc_skb     -       allocate a network buffer
 165 *      @size: size to allocate
 166 *      @gfp_mask: allocation mask
 167 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 168 *              instead of head cache and allocate a cloned (child) skb.
 169 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 170 *              allocations in case the data is required for writeback
 171 *      @node: numa node to allocate memory on
 172 *
 173 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 174 *      tail room of at least size bytes. The object has a reference count
 175 *      of one. The return is the buffer. On a failure the return is %NULL.
 176 *
 177 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 178 *      %GFP_ATOMIC.
 179 */
 180struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 181                            int flags, int node)
 182{
 183        struct kmem_cache *cache;
 184        struct skb_shared_info *shinfo;
 185        struct sk_buff *skb;
 186        u8 *data;
 187        bool pfmemalloc;
 188
 189        cache = (flags & SKB_ALLOC_FCLONE)
 190                ? skbuff_fclone_cache : skbuff_head_cache;
 191
 192        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 193                gfp_mask |= __GFP_MEMALLOC;
 194
 195        /* Get the HEAD */
 196        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 197        if (!skb)
 198                goto out;
 199        prefetchw(skb);
 200
 201        /* We do our best to align skb_shared_info on a separate cache
 202         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 203         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 204         * Both skb->head and skb_shared_info are cache line aligned.
 205         */
 206        size = SKB_DATA_ALIGN(size);
 207        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 208        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 209        if (!data)
 210                goto nodata;
 211        /* kmalloc(size) might give us more room than requested.
 212         * Put skb_shared_info exactly at the end of allocated zone,
 213         * to allow max possible filling before reallocation.
 214         */
 215        size = SKB_WITH_OVERHEAD(ksize(data));
 216        prefetchw(data + size);
 217
 218        /*
 219         * Only clear those fields we need to clear, not those that we will
 220         * actually initialise below. Hence, don't put any more fields after
 221         * the tail pointer in struct sk_buff!
 222         */
 223        memset(skb, 0, offsetof(struct sk_buff, tail));
 224        /* Account for allocated memory : skb + skb->head */
 225        skb->truesize = SKB_TRUESIZE(size);
 226        skb->pfmemalloc = pfmemalloc;
 227        refcount_set(&skb->users, 1);
 228        skb->head = data;
 229        skb->data = data;
 230        skb_reset_tail_pointer(skb);
 231        skb->end = skb->tail + size;
 232        skb->mac_header = (typeof(skb->mac_header))~0U;
 233        skb->transport_header = (typeof(skb->transport_header))~0U;
 234
 235        /* make sure we initialize shinfo sequentially */
 236        shinfo = skb_shinfo(skb);
 237        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 238        atomic_set(&shinfo->dataref, 1);
 239
 240        if (flags & SKB_ALLOC_FCLONE) {
 241                struct sk_buff_fclones *fclones;
 242
 243                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 244
 245                skb->fclone = SKB_FCLONE_ORIG;
 246                refcount_set(&fclones->fclone_ref, 1);
 247
 248                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 249        }
 250out:
 251        return skb;
 252nodata:
 253        kmem_cache_free(cache, skb);
 254        skb = NULL;
 255        goto out;
 256}
 257EXPORT_SYMBOL(__alloc_skb);
 258
 259/**
 260 * __build_skb - build a network buffer
 261 * @data: data buffer provided by caller
 262 * @frag_size: size of data, or 0 if head was kmalloced
 263 *
 264 * Allocate a new &sk_buff. Caller provides space holding head and
 265 * skb_shared_info. @data must have been allocated by kmalloc() only if
 266 * @frag_size is 0, otherwise data should come from the page allocator
 267 *  or vmalloc()
 268 * The return is the new skb buffer.
 269 * On a failure the return is %NULL, and @data is not freed.
 270 * Notes :
 271 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 272 *  Driver should add room at head (NET_SKB_PAD) and
 273 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 274 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 275 *  before giving packet to stack.
 276 *  RX rings only contains data buffers, not full skbs.
 277 */
 278struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 279{
 280        struct skb_shared_info *shinfo;
 281        struct sk_buff *skb;
 282        unsigned int size = frag_size ? : ksize(data);
 283
 284        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 285        if (!skb)
 286                return NULL;
 287
 288        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 289
 290        memset(skb, 0, offsetof(struct sk_buff, tail));
 291        skb->truesize = SKB_TRUESIZE(size);
 292        refcount_set(&skb->users, 1);
 293        skb->head = data;
 294        skb->data = data;
 295        skb_reset_tail_pointer(skb);
 296        skb->end = skb->tail + size;
 297        skb->mac_header = (typeof(skb->mac_header))~0U;
 298        skb->transport_header = (typeof(skb->transport_header))~0U;
 299
 300        /* make sure we initialize shinfo sequentially */
 301        shinfo = skb_shinfo(skb);
 302        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 303        atomic_set(&shinfo->dataref, 1);
 304
 305        return skb;
 306}
 307
 308/* build_skb() is wrapper over __build_skb(), that specifically
 309 * takes care of skb->head and skb->pfmemalloc
 310 * This means that if @frag_size is not zero, then @data must be backed
 311 * by a page fragment, not kmalloc() or vmalloc()
 312 */
 313struct sk_buff *build_skb(void *data, unsigned int frag_size)
 314{
 315        struct sk_buff *skb = __build_skb(data, frag_size);
 316
 317        if (skb && frag_size) {
 318                skb->head_frag = 1;
 319                if (page_is_pfmemalloc(virt_to_head_page(data)))
 320                        skb->pfmemalloc = 1;
 321        }
 322        return skb;
 323}
 324EXPORT_SYMBOL(build_skb);
 325
 326#define NAPI_SKB_CACHE_SIZE     64
 327
 328struct napi_alloc_cache {
 329        struct page_frag_cache page;
 330        unsigned int skb_count;
 331        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 332};
 333
 334static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 335static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 336
 337static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 338{
 339        struct page_frag_cache *nc;
 340        unsigned long flags;
 341        void *data;
 342
 343        local_irq_save(flags);
 344        nc = this_cpu_ptr(&netdev_alloc_cache);
 345        data = page_frag_alloc(nc, fragsz, gfp_mask);
 346        local_irq_restore(flags);
 347        return data;
 348}
 349
 350/**
 351 * netdev_alloc_frag - allocate a page fragment
 352 * @fragsz: fragment size
 353 *
 354 * Allocates a frag from a page for receive buffer.
 355 * Uses GFP_ATOMIC allocations.
 356 */
 357void *netdev_alloc_frag(unsigned int fragsz)
 358{
 359        fragsz = SKB_DATA_ALIGN(fragsz);
 360
 361        return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
 362}
 363EXPORT_SYMBOL(netdev_alloc_frag);
 364
 365static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 366{
 367        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 368
 369        return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 370}
 371
 372void *napi_alloc_frag(unsigned int fragsz)
 373{
 374        fragsz = SKB_DATA_ALIGN(fragsz);
 375
 376        return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 377}
 378EXPORT_SYMBOL(napi_alloc_frag);
 379
 380/**
 381 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 382 *      @dev: network device to receive on
 383 *      @len: length to allocate
 384 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 385 *
 386 *      Allocate a new &sk_buff and assign it a usage count of one. The
 387 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 388 *      the headroom they think they need without accounting for the
 389 *      built in space. The built in space is used for optimisations.
 390 *
 391 *      %NULL is returned if there is no free memory.
 392 */
 393struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 394                                   gfp_t gfp_mask)
 395{
 396        struct page_frag_cache *nc;
 397        unsigned long flags;
 398        struct sk_buff *skb;
 399        bool pfmemalloc;
 400        void *data;
 401
 402        len += NET_SKB_PAD;
 403
 404        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 405            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 406                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 407                if (!skb)
 408                        goto skb_fail;
 409                goto skb_success;
 410        }
 411
 412        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 413        len = SKB_DATA_ALIGN(len);
 414
 415        if (sk_memalloc_socks())
 416                gfp_mask |= __GFP_MEMALLOC;
 417
 418        local_irq_save(flags);
 419
 420        nc = this_cpu_ptr(&netdev_alloc_cache);
 421        data = page_frag_alloc(nc, len, gfp_mask);
 422        pfmemalloc = nc->pfmemalloc;
 423
 424        local_irq_restore(flags);
 425
 426        if (unlikely(!data))
 427                return NULL;
 428
 429        skb = __build_skb(data, len);
 430        if (unlikely(!skb)) {
 431                skb_free_frag(data);
 432                return NULL;
 433        }
 434
 435        /* use OR instead of assignment to avoid clearing of bits in mask */
 436        if (pfmemalloc)
 437                skb->pfmemalloc = 1;
 438        skb->head_frag = 1;
 439
 440skb_success:
 441        skb_reserve(skb, NET_SKB_PAD);
 442        skb->dev = dev;
 443
 444skb_fail:
 445        return skb;
 446}
 447EXPORT_SYMBOL(__netdev_alloc_skb);
 448
 449/**
 450 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 451 *      @napi: napi instance this buffer was allocated for
 452 *      @len: length to allocate
 453 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 454 *
 455 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 456 *      attempt to allocate the head from a special reserved region used
 457 *      only for NAPI Rx allocation.  By doing this we can save several
 458 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 459 *
 460 *      %NULL is returned if there is no free memory.
 461 */
 462struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 463                                 gfp_t gfp_mask)
 464{
 465        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 466        struct sk_buff *skb;
 467        void *data;
 468
 469        len += NET_SKB_PAD + NET_IP_ALIGN;
 470
 471        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 472            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 473                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 474                if (!skb)
 475                        goto skb_fail;
 476                goto skb_success;
 477        }
 478
 479        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 480        len = SKB_DATA_ALIGN(len);
 481
 482        if (sk_memalloc_socks())
 483                gfp_mask |= __GFP_MEMALLOC;
 484
 485        data = page_frag_alloc(&nc->page, len, gfp_mask);
 486        if (unlikely(!data))
 487                return NULL;
 488
 489        skb = __build_skb(data, len);
 490        if (unlikely(!skb)) {
 491                skb_free_frag(data);
 492                return NULL;
 493        }
 494
 495        /* use OR instead of assignment to avoid clearing of bits in mask */
 496        if (nc->page.pfmemalloc)
 497                skb->pfmemalloc = 1;
 498        skb->head_frag = 1;
 499
 500skb_success:
 501        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 502        skb->dev = napi->dev;
 503
 504skb_fail:
 505        return skb;
 506}
 507EXPORT_SYMBOL(__napi_alloc_skb);
 508
 509void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 510                     int size, unsigned int truesize)
 511{
 512        skb_fill_page_desc(skb, i, page, off, size);
 513        skb->len += size;
 514        skb->data_len += size;
 515        skb->truesize += truesize;
 516}
 517EXPORT_SYMBOL(skb_add_rx_frag);
 518
 519void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 520                          unsigned int truesize)
 521{
 522        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 523
 524        skb_frag_size_add(frag, size);
 525        skb->len += size;
 526        skb->data_len += size;
 527        skb->truesize += truesize;
 528}
 529EXPORT_SYMBOL(skb_coalesce_rx_frag);
 530
 531static void skb_drop_list(struct sk_buff **listp)
 532{
 533        kfree_skb_list(*listp);
 534        *listp = NULL;
 535}
 536
 537static inline void skb_drop_fraglist(struct sk_buff *skb)
 538{
 539        skb_drop_list(&skb_shinfo(skb)->frag_list);
 540}
 541
 542static void skb_clone_fraglist(struct sk_buff *skb)
 543{
 544        struct sk_buff *list;
 545
 546        skb_walk_frags(skb, list)
 547                skb_get(list);
 548}
 549
 550static void skb_free_head(struct sk_buff *skb)
 551{
 552        unsigned char *head = skb->head;
 553
 554        if (skb->head_frag)
 555                skb_free_frag(head);
 556        else
 557                kfree(head);
 558}
 559
 560static void skb_release_data(struct sk_buff *skb)
 561{
 562        struct skb_shared_info *shinfo = skb_shinfo(skb);
 563        int i;
 564
 565        if (skb->cloned &&
 566            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 567                              &shinfo->dataref))
 568                return;
 569
 570        for (i = 0; i < shinfo->nr_frags; i++)
 571                __skb_frag_unref(&shinfo->frags[i]);
 572
 573        if (shinfo->frag_list)
 574                kfree_skb_list(shinfo->frag_list);
 575
 576        skb_zcopy_clear(skb, true);
 577        skb_free_head(skb);
 578}
 579
 580/*
 581 *      Free an skbuff by memory without cleaning the state.
 582 */
 583static void kfree_skbmem(struct sk_buff *skb)
 584{
 585        struct sk_buff_fclones *fclones;
 586
 587        switch (skb->fclone) {
 588        case SKB_FCLONE_UNAVAILABLE:
 589                kmem_cache_free(skbuff_head_cache, skb);
 590                return;
 591
 592        case SKB_FCLONE_ORIG:
 593                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 594
 595                /* We usually free the clone (TX completion) before original skb
 596                 * This test would have no chance to be true for the clone,
 597                 * while here, branch prediction will be good.
 598                 */
 599                if (refcount_read(&fclones->fclone_ref) == 1)
 600                        goto fastpath;
 601                break;
 602
 603        default: /* SKB_FCLONE_CLONE */
 604                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 605                break;
 606        }
 607        if (!refcount_dec_and_test(&fclones->fclone_ref))
 608                return;
 609fastpath:
 610        kmem_cache_free(skbuff_fclone_cache, fclones);
 611}
 612
 613void skb_release_head_state(struct sk_buff *skb)
 614{
 615        skb_dst_drop(skb);
 616        if (skb->destructor) {
 617                WARN_ON(in_irq());
 618                skb->destructor(skb);
 619        }
 620#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 621        nf_conntrack_put(skb_nfct(skb));
 622#endif
 623        skb_ext_put(skb);
 624}
 625
 626/* Free everything but the sk_buff shell. */
 627static void skb_release_all(struct sk_buff *skb)
 628{
 629        skb_release_head_state(skb);
 630        if (likely(skb->head))
 631                skb_release_data(skb);
 632}
 633
 634/**
 635 *      __kfree_skb - private function
 636 *      @skb: buffer
 637 *
 638 *      Free an sk_buff. Release anything attached to the buffer.
 639 *      Clean the state. This is an internal helper function. Users should
 640 *      always call kfree_skb
 641 */
 642
 643void __kfree_skb(struct sk_buff *skb)
 644{
 645        skb_release_all(skb);
 646        kfree_skbmem(skb);
 647}
 648EXPORT_SYMBOL(__kfree_skb);
 649
 650/**
 651 *      kfree_skb - free an sk_buff
 652 *      @skb: buffer to free
 653 *
 654 *      Drop a reference to the buffer and free it if the usage count has
 655 *      hit zero.
 656 */
 657void kfree_skb(struct sk_buff *skb)
 658{
 659        if (!skb_unref(skb))
 660                return;
 661
 662        trace_kfree_skb(skb, __builtin_return_address(0));
 663        __kfree_skb(skb);
 664}
 665EXPORT_SYMBOL(kfree_skb);
 666
 667void kfree_skb_list(struct sk_buff *segs)
 668{
 669        while (segs) {
 670                struct sk_buff *next = segs->next;
 671
 672                kfree_skb(segs);
 673                segs = next;
 674        }
 675}
 676EXPORT_SYMBOL(kfree_skb_list);
 677
 678/**
 679 *      skb_tx_error - report an sk_buff xmit error
 680 *      @skb: buffer that triggered an error
 681 *
 682 *      Report xmit error if a device callback is tracking this skb.
 683 *      skb must be freed afterwards.
 684 */
 685void skb_tx_error(struct sk_buff *skb)
 686{
 687        skb_zcopy_clear(skb, true);
 688}
 689EXPORT_SYMBOL(skb_tx_error);
 690
 691/**
 692 *      consume_skb - free an skbuff
 693 *      @skb: buffer to free
 694 *
 695 *      Drop a ref to the buffer and free it if the usage count has hit zero
 696 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 697 *      is being dropped after a failure and notes that
 698 */
 699void consume_skb(struct sk_buff *skb)
 700{
 701        if (!skb_unref(skb))
 702                return;
 703
 704        trace_consume_skb(skb);
 705        __kfree_skb(skb);
 706}
 707EXPORT_SYMBOL(consume_skb);
 708
 709/**
 710 *      consume_stateless_skb - free an skbuff, assuming it is stateless
 711 *      @skb: buffer to free
 712 *
 713 *      Alike consume_skb(), but this variant assumes that this is the last
 714 *      skb reference and all the head states have been already dropped
 715 */
 716void __consume_stateless_skb(struct sk_buff *skb)
 717{
 718        trace_consume_skb(skb);
 719        skb_release_data(skb);
 720        kfree_skbmem(skb);
 721}
 722
 723void __kfree_skb_flush(void)
 724{
 725        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 726
 727        /* flush skb_cache if containing objects */
 728        if (nc->skb_count) {
 729                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 730                                     nc->skb_cache);
 731                nc->skb_count = 0;
 732        }
 733}
 734
 735static inline void _kfree_skb_defer(struct sk_buff *skb)
 736{
 737        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 738
 739        /* drop skb->head and call any destructors for packet */
 740        skb_release_all(skb);
 741
 742        /* record skb to CPU local list */
 743        nc->skb_cache[nc->skb_count++] = skb;
 744
 745#ifdef CONFIG_SLUB
 746        /* SLUB writes into objects when freeing */
 747        prefetchw(skb);
 748#endif
 749
 750        /* flush skb_cache if it is filled */
 751        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 752                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 753                                     nc->skb_cache);
 754                nc->skb_count = 0;
 755        }
 756}
 757void __kfree_skb_defer(struct sk_buff *skb)
 758{
 759        _kfree_skb_defer(skb);
 760}
 761
 762void napi_consume_skb(struct sk_buff *skb, int budget)
 763{
 764        if (unlikely(!skb))
 765                return;
 766
 767        /* Zero budget indicate non-NAPI context called us, like netpoll */
 768        if (unlikely(!budget)) {
 769                dev_consume_skb_any(skb);
 770                return;
 771        }
 772
 773        if (!skb_unref(skb))
 774                return;
 775
 776        /* if reaching here SKB is ready to free */
 777        trace_consume_skb(skb);
 778
 779        /* if SKB is a clone, don't handle this case */
 780        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 781                __kfree_skb(skb);
 782                return;
 783        }
 784
 785        _kfree_skb_defer(skb);
 786}
 787EXPORT_SYMBOL(napi_consume_skb);
 788
 789/* Make sure a field is enclosed inside headers_start/headers_end section */
 790#define CHECK_SKB_FIELD(field) \
 791        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 792                     offsetof(struct sk_buff, headers_start));  \
 793        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 794                     offsetof(struct sk_buff, headers_end));    \
 795
 796static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 797{
 798        new->tstamp             = old->tstamp;
 799        /* We do not copy old->sk */
 800        new->dev                = old->dev;
 801        memcpy(new->cb, old->cb, sizeof(old->cb));
 802        skb_dst_copy(new, old);
 803        __skb_ext_copy(new, old);
 804        __nf_copy(new, old, false);
 805
 806        /* Note : this field could be in headers_start/headers_end section
 807         * It is not yet because we do not want to have a 16 bit hole
 808         */
 809        new->queue_mapping = old->queue_mapping;
 810
 811        memcpy(&new->headers_start, &old->headers_start,
 812               offsetof(struct sk_buff, headers_end) -
 813               offsetof(struct sk_buff, headers_start));
 814        CHECK_SKB_FIELD(protocol);
 815        CHECK_SKB_FIELD(csum);
 816        CHECK_SKB_FIELD(hash);
 817        CHECK_SKB_FIELD(priority);
 818        CHECK_SKB_FIELD(skb_iif);
 819        CHECK_SKB_FIELD(vlan_proto);
 820        CHECK_SKB_FIELD(vlan_tci);
 821        CHECK_SKB_FIELD(transport_header);
 822        CHECK_SKB_FIELD(network_header);
 823        CHECK_SKB_FIELD(mac_header);
 824        CHECK_SKB_FIELD(inner_protocol);
 825        CHECK_SKB_FIELD(inner_transport_header);
 826        CHECK_SKB_FIELD(inner_network_header);
 827        CHECK_SKB_FIELD(inner_mac_header);
 828        CHECK_SKB_FIELD(mark);
 829#ifdef CONFIG_NETWORK_SECMARK
 830        CHECK_SKB_FIELD(secmark);
 831#endif
 832#ifdef CONFIG_NET_RX_BUSY_POLL
 833        CHECK_SKB_FIELD(napi_id);
 834#endif
 835#ifdef CONFIG_XPS
 836        CHECK_SKB_FIELD(sender_cpu);
 837#endif
 838#ifdef CONFIG_NET_SCHED
 839        CHECK_SKB_FIELD(tc_index);
 840#endif
 841
 842}
 843
 844/*
 845 * You should not add any new code to this function.  Add it to
 846 * __copy_skb_header above instead.
 847 */
 848static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 849{
 850#define C(x) n->x = skb->x
 851
 852        n->next = n->prev = NULL;
 853        n->sk = NULL;
 854        __copy_skb_header(n, skb);
 855
 856        C(len);
 857        C(data_len);
 858        C(mac_len);
 859        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 860        n->cloned = 1;
 861        n->nohdr = 0;
 862        n->peeked = 0;
 863        C(pfmemalloc);
 864        n->destructor = NULL;
 865        C(tail);
 866        C(end);
 867        C(head);
 868        C(head_frag);
 869        C(data);
 870        C(truesize);
 871        refcount_set(&n->users, 1);
 872
 873        atomic_inc(&(skb_shinfo(skb)->dataref));
 874        skb->cloned = 1;
 875
 876        return n;
 877#undef C
 878}
 879
 880/**
 881 *      skb_morph       -       morph one skb into another
 882 *      @dst: the skb to receive the contents
 883 *      @src: the skb to supply the contents
 884 *
 885 *      This is identical to skb_clone except that the target skb is
 886 *      supplied by the user.
 887 *
 888 *      The target skb is returned upon exit.
 889 */
 890struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 891{
 892        skb_release_all(dst);
 893        return __skb_clone(dst, src);
 894}
 895EXPORT_SYMBOL_GPL(skb_morph);
 896
 897int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
 898{
 899        unsigned long max_pg, num_pg, new_pg, old_pg;
 900        struct user_struct *user;
 901
 902        if (capable(CAP_IPC_LOCK) || !size)
 903                return 0;
 904
 905        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
 906        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 907        user = mmp->user ? : current_user();
 908
 909        do {
 910                old_pg = atomic_long_read(&user->locked_vm);
 911                new_pg = old_pg + num_pg;
 912                if (new_pg > max_pg)
 913                        return -ENOBUFS;
 914        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
 915                 old_pg);
 916
 917        if (!mmp->user) {
 918                mmp->user = get_uid(user);
 919                mmp->num_pg = num_pg;
 920        } else {
 921                mmp->num_pg += num_pg;
 922        }
 923
 924        return 0;
 925}
 926EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
 927
 928void mm_unaccount_pinned_pages(struct mmpin *mmp)
 929{
 930        if (mmp->user) {
 931                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
 932                free_uid(mmp->user);
 933        }
 934}
 935EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
 936
 937struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
 938{
 939        struct ubuf_info *uarg;
 940        struct sk_buff *skb;
 941
 942        WARN_ON_ONCE(!in_task());
 943
 944        skb = sock_omalloc(sk, 0, GFP_KERNEL);
 945        if (!skb)
 946                return NULL;
 947
 948        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
 949        uarg = (void *)skb->cb;
 950        uarg->mmp.user = NULL;
 951
 952        if (mm_account_pinned_pages(&uarg->mmp, size)) {
 953                kfree_skb(skb);
 954                return NULL;
 955        }
 956
 957        uarg->callback = sock_zerocopy_callback;
 958        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
 959        uarg->len = 1;
 960        uarg->bytelen = size;
 961        uarg->zerocopy = 1;
 962        refcount_set(&uarg->refcnt, 1);
 963        sock_hold(sk);
 964
 965        return uarg;
 966}
 967EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
 968
 969static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
 970{
 971        return container_of((void *)uarg, struct sk_buff, cb);
 972}
 973
 974struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 975                                        struct ubuf_info *uarg)
 976{
 977        if (uarg) {
 978                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
 979                u32 bytelen, next;
 980
 981                /* realloc only when socket is locked (TCP, UDP cork),
 982                 * so uarg->len and sk_zckey access is serialized
 983                 */
 984                if (!sock_owned_by_user(sk)) {
 985                        WARN_ON_ONCE(1);
 986                        return NULL;
 987                }
 988
 989                bytelen = uarg->bytelen + size;
 990                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
 991                        /* TCP can create new skb to attach new uarg */
 992                        if (sk->sk_type == SOCK_STREAM)
 993                                goto new_alloc;
 994                        return NULL;
 995                }
 996
 997                next = (u32)atomic_read(&sk->sk_zckey);
 998                if ((u32)(uarg->id + uarg->len) == next) {
 999                        if (mm_account_pinned_pages(&uarg->mmp, size))
1000                                return NULL;
1001                        uarg->len++;
1002                        uarg->bytelen = bytelen;
1003                        atomic_set(&sk->sk_zckey, ++next);
1004                        sock_zerocopy_get(uarg);
1005                        return uarg;
1006                }
1007        }
1008
1009new_alloc:
1010        return sock_zerocopy_alloc(sk, size);
1011}
1012EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013
1014static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015{
1016        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017        u32 old_lo, old_hi;
1018        u64 sum_len;
1019
1020        old_lo = serr->ee.ee_info;
1021        old_hi = serr->ee.ee_data;
1022        sum_len = old_hi - old_lo + 1ULL + len;
1023
1024        if (sum_len >= (1ULL << 32))
1025                return false;
1026
1027        if (lo != old_hi + 1)
1028                return false;
1029
1030        serr->ee.ee_data += len;
1031        return true;
1032}
1033
1034void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035{
1036        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037        struct sock_exterr_skb *serr;
1038        struct sock *sk = skb->sk;
1039        struct sk_buff_head *q;
1040        unsigned long flags;
1041        u32 lo, hi;
1042        u16 len;
1043
1044        mm_unaccount_pinned_pages(&uarg->mmp);
1045
1046        /* if !len, there was only 1 call, and it was aborted
1047         * so do not queue a completion notification
1048         */
1049        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050                goto release;
1051
1052        len = uarg->len;
1053        lo = uarg->id;
1054        hi = uarg->id + len - 1;
1055
1056        serr = SKB_EXT_ERR(skb);
1057        memset(serr, 0, sizeof(*serr));
1058        serr->ee.ee_errno = 0;
1059        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060        serr->ee.ee_data = hi;
1061        serr->ee.ee_info = lo;
1062        if (!success)
1063                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064
1065        q = &sk->sk_error_queue;
1066        spin_lock_irqsave(&q->lock, flags);
1067        tail = skb_peek_tail(q);
1068        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069            !skb_zerocopy_notify_extend(tail, lo, len)) {
1070                __skb_queue_tail(q, skb);
1071                skb = NULL;
1072        }
1073        spin_unlock_irqrestore(&q->lock, flags);
1074
1075        sk->sk_error_report(sk);
1076
1077release:
1078        consume_skb(skb);
1079        sock_put(sk);
1080}
1081EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082
1083void sock_zerocopy_put(struct ubuf_info *uarg)
1084{
1085        if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086                if (uarg->callback)
1087                        uarg->callback(uarg, uarg->zerocopy);
1088                else
1089                        consume_skb(skb_from_uarg(uarg));
1090        }
1091}
1092EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093
1094void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1095{
1096        if (uarg) {
1097                struct sock *sk = skb_from_uarg(uarg)->sk;
1098
1099                atomic_dec(&sk->sk_zckey);
1100                uarg->len--;
1101
1102                if (have_uref)
1103                        sock_zerocopy_put(uarg);
1104        }
1105}
1106EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107
1108extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109                                   struct iov_iter *from, size_t length);
1110
1111int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1112{
1113        return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1114}
1115EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1116
1117int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1118                             struct msghdr *msg, int len,
1119                             struct ubuf_info *uarg)
1120{
1121        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1122        struct iov_iter orig_iter = msg->msg_iter;
1123        int err, orig_len = skb->len;
1124
1125        /* An skb can only point to one uarg. This edge case happens when
1126         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1127         */
1128        if (orig_uarg && uarg != orig_uarg)
1129                return -EEXIST;
1130
1131        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1132        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1133                struct sock *save_sk = skb->sk;
1134
1135                /* Streams do not free skb on error. Reset to prev state. */
1136                msg->msg_iter = orig_iter;
1137                skb->sk = sk;
1138                ___pskb_trim(skb, orig_len);
1139                skb->sk = save_sk;
1140                return err;
1141        }
1142
1143        skb_zcopy_set(skb, uarg, NULL);
1144        return skb->len - orig_len;
1145}
1146EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1147
1148static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1149                              gfp_t gfp_mask)
1150{
1151        if (skb_zcopy(orig)) {
1152                if (skb_zcopy(nskb)) {
1153                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1154                        if (!gfp_mask) {
1155                                WARN_ON_ONCE(1);
1156                                return -ENOMEM;
1157                        }
1158                        if (skb_uarg(nskb) == skb_uarg(orig))
1159                                return 0;
1160                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1161                                return -EIO;
1162                }
1163                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1164        }
1165        return 0;
1166}
1167
1168/**
1169 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1170 *      @skb: the skb to modify
1171 *      @gfp_mask: allocation priority
1172 *
1173 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
1174 *      It will copy all frags into kernel and drop the reference
1175 *      to userspace pages.
1176 *
1177 *      If this function is called from an interrupt gfp_mask() must be
1178 *      %GFP_ATOMIC.
1179 *
1180 *      Returns 0 on success or a negative error code on failure
1181 *      to allocate kernel memory to copy to.
1182 */
1183int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1184{
1185        int num_frags = skb_shinfo(skb)->nr_frags;
1186        struct page *page, *head = NULL;
1187        int i, new_frags;
1188        u32 d_off;
1189
1190        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1191                return -EINVAL;
1192
1193        if (!num_frags)
1194                goto release;
1195
1196        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1197        for (i = 0; i < new_frags; i++) {
1198                page = alloc_page(gfp_mask);
1199                if (!page) {
1200                        while (head) {
1201                                struct page *next = (struct page *)page_private(head);
1202                                put_page(head);
1203                                head = next;
1204                        }
1205                        return -ENOMEM;
1206                }
1207                set_page_private(page, (unsigned long)head);
1208                head = page;
1209        }
1210
1211        page = head;
1212        d_off = 0;
1213        for (i = 0; i < num_frags; i++) {
1214                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1215                u32 p_off, p_len, copied;
1216                struct page *p;
1217                u8 *vaddr;
1218
1219                skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1220                                      p, p_off, p_len, copied) {
1221                        u32 copy, done = 0;
1222                        vaddr = kmap_atomic(p);
1223
1224                        while (done < p_len) {
1225                                if (d_off == PAGE_SIZE) {
1226                                        d_off = 0;
1227                                        page = (struct page *)page_private(page);
1228                                }
1229                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1230                                memcpy(page_address(page) + d_off,
1231                                       vaddr + p_off + done, copy);
1232                                done += copy;
1233                                d_off += copy;
1234                        }
1235                        kunmap_atomic(vaddr);
1236                }
1237        }
1238
1239        /* skb frags release userspace buffers */
1240        for (i = 0; i < num_frags; i++)
1241                skb_frag_unref(skb, i);
1242
1243        /* skb frags point to kernel buffers */
1244        for (i = 0; i < new_frags - 1; i++) {
1245                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1246                head = (struct page *)page_private(head);
1247        }
1248        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1249        skb_shinfo(skb)->nr_frags = new_frags;
1250
1251release:
1252        skb_zcopy_clear(skb, false);
1253        return 0;
1254}
1255EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1256
1257/**
1258 *      skb_clone       -       duplicate an sk_buff
1259 *      @skb: buffer to clone
1260 *      @gfp_mask: allocation priority
1261 *
1262 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1263 *      copies share the same packet data but not structure. The new
1264 *      buffer has a reference count of 1. If the allocation fails the
1265 *      function returns %NULL otherwise the new buffer is returned.
1266 *
1267 *      If this function is called from an interrupt gfp_mask() must be
1268 *      %GFP_ATOMIC.
1269 */
1270
1271struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1272{
1273        struct sk_buff_fclones *fclones = container_of(skb,
1274                                                       struct sk_buff_fclones,
1275                                                       skb1);
1276        struct sk_buff *n;
1277
1278        if (skb_orphan_frags(skb, gfp_mask))
1279                return NULL;
1280
1281        if (skb->fclone == SKB_FCLONE_ORIG &&
1282            refcount_read(&fclones->fclone_ref) == 1) {
1283                n = &fclones->skb2;
1284                refcount_set(&fclones->fclone_ref, 2);
1285        } else {
1286                if (skb_pfmemalloc(skb))
1287                        gfp_mask |= __GFP_MEMALLOC;
1288
1289                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1290                if (!n)
1291                        return NULL;
1292
1293                n->fclone = SKB_FCLONE_UNAVAILABLE;
1294        }
1295
1296        return __skb_clone(n, skb);
1297}
1298EXPORT_SYMBOL(skb_clone);
1299
1300void skb_headers_offset_update(struct sk_buff *skb, int off)
1301{
1302        /* Only adjust this if it actually is csum_start rather than csum */
1303        if (skb->ip_summed == CHECKSUM_PARTIAL)
1304                skb->csum_start += off;
1305        /* {transport,network,mac}_header and tail are relative to skb->head */
1306        skb->transport_header += off;
1307        skb->network_header   += off;
1308        if (skb_mac_header_was_set(skb))
1309                skb->mac_header += off;
1310        skb->inner_transport_header += off;
1311        skb->inner_network_header += off;
1312        skb->inner_mac_header += off;
1313}
1314EXPORT_SYMBOL(skb_headers_offset_update);
1315
1316void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1317{
1318        __copy_skb_header(new, old);
1319
1320        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1321        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1322        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1323}
1324EXPORT_SYMBOL(skb_copy_header);
1325
1326static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1327{
1328        if (skb_pfmemalloc(skb))
1329                return SKB_ALLOC_RX;
1330        return 0;
1331}
1332
1333/**
1334 *      skb_copy        -       create private copy of an sk_buff
1335 *      @skb: buffer to copy
1336 *      @gfp_mask: allocation priority
1337 *
1338 *      Make a copy of both an &sk_buff and its data. This is used when the
1339 *      caller wishes to modify the data and needs a private copy of the
1340 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1341 *      on success. The returned buffer has a reference count of 1.
1342 *
1343 *      As by-product this function converts non-linear &sk_buff to linear
1344 *      one, so that &sk_buff becomes completely private and caller is allowed
1345 *      to modify all the data of returned buffer. This means that this
1346 *      function is not recommended for use in circumstances when only
1347 *      header is going to be modified. Use pskb_copy() instead.
1348 */
1349
1350struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1351{
1352        int headerlen = skb_headroom(skb);
1353        unsigned int size = skb_end_offset(skb) + skb->data_len;
1354        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1355                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1356
1357        if (!n)
1358                return NULL;
1359
1360        /* Set the data pointer */
1361        skb_reserve(n, headerlen);
1362        /* Set the tail pointer and length */
1363        skb_put(n, skb->len);
1364
1365        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1366
1367        skb_copy_header(n, skb);
1368        return n;
1369}
1370EXPORT_SYMBOL(skb_copy);
1371
1372/**
1373 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1374 *      @skb: buffer to copy
1375 *      @headroom: headroom of new skb
1376 *      @gfp_mask: allocation priority
1377 *      @fclone: if true allocate the copy of the skb from the fclone
1378 *      cache instead of the head cache; it is recommended to set this
1379 *      to true for the cases where the copy will likely be cloned
1380 *
1381 *      Make a copy of both an &sk_buff and part of its data, located
1382 *      in header. Fragmented data remain shared. This is used when
1383 *      the caller wishes to modify only header of &sk_buff and needs
1384 *      private copy of the header to alter. Returns %NULL on failure
1385 *      or the pointer to the buffer on success.
1386 *      The returned buffer has a reference count of 1.
1387 */
1388
1389struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1390                                   gfp_t gfp_mask, bool fclone)
1391{
1392        unsigned int size = skb_headlen(skb) + headroom;
1393        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1394        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1395
1396        if (!n)
1397                goto out;
1398
1399        /* Set the data pointer */
1400        skb_reserve(n, headroom);
1401        /* Set the tail pointer and length */
1402        skb_put(n, skb_headlen(skb));
1403        /* Copy the bytes */
1404        skb_copy_from_linear_data(skb, n->data, n->len);
1405
1406        n->truesize += skb->data_len;
1407        n->data_len  = skb->data_len;
1408        n->len       = skb->len;
1409
1410        if (skb_shinfo(skb)->nr_frags) {
1411                int i;
1412
1413                if (skb_orphan_frags(skb, gfp_mask) ||
1414                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1415                        kfree_skb(n);
1416                        n = NULL;
1417                        goto out;
1418                }
1419                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1420                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1421                        skb_frag_ref(skb, i);
1422                }
1423                skb_shinfo(n)->nr_frags = i;
1424        }
1425
1426        if (skb_has_frag_list(skb)) {
1427                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1428                skb_clone_fraglist(n);
1429        }
1430
1431        skb_copy_header(n, skb);
1432out:
1433        return n;
1434}
1435EXPORT_SYMBOL(__pskb_copy_fclone);
1436
1437/**
1438 *      pskb_expand_head - reallocate header of &sk_buff
1439 *      @skb: buffer to reallocate
1440 *      @nhead: room to add at head
1441 *      @ntail: room to add at tail
1442 *      @gfp_mask: allocation priority
1443 *
1444 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1445 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1446 *      reference count of 1. Returns zero in the case of success or error,
1447 *      if expansion failed. In the last case, &sk_buff is not changed.
1448 *
1449 *      All the pointers pointing into skb header may change and must be
1450 *      reloaded after call to this function.
1451 */
1452
1453int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1454                     gfp_t gfp_mask)
1455{
1456        int i, osize = skb_end_offset(skb);
1457        int size = osize + nhead + ntail;
1458        long off;
1459        u8 *data;
1460
1461        BUG_ON(nhead < 0);
1462
1463        BUG_ON(skb_shared(skb));
1464
1465        size = SKB_DATA_ALIGN(size);
1466
1467        if (skb_pfmemalloc(skb))
1468                gfp_mask |= __GFP_MEMALLOC;
1469        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1470                               gfp_mask, NUMA_NO_NODE, NULL);
1471        if (!data)
1472                goto nodata;
1473        size = SKB_WITH_OVERHEAD(ksize(data));
1474
1475        /* Copy only real data... and, alas, header. This should be
1476         * optimized for the cases when header is void.
1477         */
1478        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1479
1480        memcpy((struct skb_shared_info *)(data + size),
1481               skb_shinfo(skb),
1482               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1483
1484        /*
1485         * if shinfo is shared we must drop the old head gracefully, but if it
1486         * is not we can just drop the old head and let the existing refcount
1487         * be since all we did is relocate the values
1488         */
1489        if (skb_cloned(skb)) {
1490                if (skb_orphan_frags(skb, gfp_mask))
1491                        goto nofrags;
1492                if (skb_zcopy(skb))
1493                        refcount_inc(&skb_uarg(skb)->refcnt);
1494                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1495                        skb_frag_ref(skb, i);
1496
1497                if (skb_has_frag_list(skb))
1498                        skb_clone_fraglist(skb);
1499
1500                skb_release_data(skb);
1501        } else {
1502                skb_free_head(skb);
1503        }
1504        off = (data + nhead) - skb->head;
1505
1506        skb->head     = data;
1507        skb->head_frag = 0;
1508        skb->data    += off;
1509#ifdef NET_SKBUFF_DATA_USES_OFFSET
1510        skb->end      = size;
1511        off           = nhead;
1512#else
1513        skb->end      = skb->head + size;
1514#endif
1515        skb->tail             += off;
1516        skb_headers_offset_update(skb, nhead);
1517        skb->cloned   = 0;
1518        skb->hdr_len  = 0;
1519        skb->nohdr    = 0;
1520        atomic_set(&skb_shinfo(skb)->dataref, 1);
1521
1522        skb_metadata_clear(skb);
1523
1524        /* It is not generally safe to change skb->truesize.
1525         * For the moment, we really care of rx path, or
1526         * when skb is orphaned (not attached to a socket).
1527         */
1528        if (!skb->sk || skb->destructor == sock_edemux)
1529                skb->truesize += size - osize;
1530
1531        return 0;
1532
1533nofrags:
1534        kfree(data);
1535nodata:
1536        return -ENOMEM;
1537}
1538EXPORT_SYMBOL(pskb_expand_head);
1539
1540/* Make private copy of skb with writable head and some headroom */
1541
1542struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1543{
1544        struct sk_buff *skb2;
1545        int delta = headroom - skb_headroom(skb);
1546
1547        if (delta <= 0)
1548                skb2 = pskb_copy(skb, GFP_ATOMIC);
1549        else {
1550                skb2 = skb_clone(skb, GFP_ATOMIC);
1551                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1552                                             GFP_ATOMIC)) {
1553                        kfree_skb(skb2);
1554                        skb2 = NULL;
1555                }
1556        }
1557        return skb2;
1558}
1559EXPORT_SYMBOL(skb_realloc_headroom);
1560
1561/**
1562 *      skb_copy_expand -       copy and expand sk_buff
1563 *      @skb: buffer to copy
1564 *      @newheadroom: new free bytes at head
1565 *      @newtailroom: new free bytes at tail
1566 *      @gfp_mask: allocation priority
1567 *
1568 *      Make a copy of both an &sk_buff and its data and while doing so
1569 *      allocate additional space.
1570 *
1571 *      This is used when the caller wishes to modify the data and needs a
1572 *      private copy of the data to alter as well as more space for new fields.
1573 *      Returns %NULL on failure or the pointer to the buffer
1574 *      on success. The returned buffer has a reference count of 1.
1575 *
1576 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1577 *      is called from an interrupt.
1578 */
1579struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1580                                int newheadroom, int newtailroom,
1581                                gfp_t gfp_mask)
1582{
1583        /*
1584         *      Allocate the copy buffer
1585         */
1586        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1587                                        gfp_mask, skb_alloc_rx_flag(skb),
1588                                        NUMA_NO_NODE);
1589        int oldheadroom = skb_headroom(skb);
1590        int head_copy_len, head_copy_off;
1591
1592        if (!n)
1593                return NULL;
1594
1595        skb_reserve(n, newheadroom);
1596
1597        /* Set the tail pointer and length */
1598        skb_put(n, skb->len);
1599
1600        head_copy_len = oldheadroom;
1601        head_copy_off = 0;
1602        if (newheadroom <= head_copy_len)
1603                head_copy_len = newheadroom;
1604        else
1605                head_copy_off = newheadroom - head_copy_len;
1606
1607        /* Copy the linear header and data. */
1608        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1609                             skb->len + head_copy_len));
1610
1611        skb_copy_header(n, skb);
1612
1613        skb_headers_offset_update(n, newheadroom - oldheadroom);
1614
1615        return n;
1616}
1617EXPORT_SYMBOL(skb_copy_expand);
1618
1619/**
1620 *      __skb_pad               -       zero pad the tail of an skb
1621 *      @skb: buffer to pad
1622 *      @pad: space to pad
1623 *      @free_on_error: free buffer on error
1624 *
1625 *      Ensure that a buffer is followed by a padding area that is zero
1626 *      filled. Used by network drivers which may DMA or transfer data
1627 *      beyond the buffer end onto the wire.
1628 *
1629 *      May return error in out of memory cases. The skb is freed on error
1630 *      if @free_on_error is true.
1631 */
1632
1633int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1634{
1635        int err;
1636        int ntail;
1637
1638        /* If the skbuff is non linear tailroom is always zero.. */
1639        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1640                memset(skb->data+skb->len, 0, pad);
1641                return 0;
1642        }
1643
1644        ntail = skb->data_len + pad - (skb->end - skb->tail);
1645        if (likely(skb_cloned(skb) || ntail > 0)) {
1646                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1647                if (unlikely(err))
1648                        goto free_skb;
1649        }
1650
1651        /* FIXME: The use of this function with non-linear skb's really needs
1652         * to be audited.
1653         */
1654        err = skb_linearize(skb);
1655        if (unlikely(err))
1656                goto free_skb;
1657
1658        memset(skb->data + skb->len, 0, pad);
1659        return 0;
1660
1661free_skb:
1662        if (free_on_error)
1663                kfree_skb(skb);
1664        return err;
1665}
1666EXPORT_SYMBOL(__skb_pad);
1667
1668/**
1669 *      pskb_put - add data to the tail of a potentially fragmented buffer
1670 *      @skb: start of the buffer to use
1671 *      @tail: tail fragment of the buffer to use
1672 *      @len: amount of data to add
1673 *
1674 *      This function extends the used data area of the potentially
1675 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1676 *      @skb itself. If this would exceed the total buffer size the kernel
1677 *      will panic. A pointer to the first byte of the extra data is
1678 *      returned.
1679 */
1680
1681void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1682{
1683        if (tail != skb) {
1684                skb->data_len += len;
1685                skb->len += len;
1686        }
1687        return skb_put(tail, len);
1688}
1689EXPORT_SYMBOL_GPL(pskb_put);
1690
1691/**
1692 *      skb_put - add data to a buffer
1693 *      @skb: buffer to use
1694 *      @len: amount of data to add
1695 *
1696 *      This function extends the used data area of the buffer. If this would
1697 *      exceed the total buffer size the kernel will panic. A pointer to the
1698 *      first byte of the extra data is returned.
1699 */
1700void *skb_put(struct sk_buff *skb, unsigned int len)
1701{
1702        void *tmp = skb_tail_pointer(skb);
1703        SKB_LINEAR_ASSERT(skb);
1704        skb->tail += len;
1705        skb->len  += len;
1706        if (unlikely(skb->tail > skb->end))
1707                skb_over_panic(skb, len, __builtin_return_address(0));
1708        return tmp;
1709}
1710EXPORT_SYMBOL(skb_put);
1711
1712/**
1713 *      skb_push - add data to the start of a buffer
1714 *      @skb: buffer to use
1715 *      @len: amount of data to add
1716 *
1717 *      This function extends the used data area of the buffer at the buffer
1718 *      start. If this would exceed the total buffer headroom the kernel will
1719 *      panic. A pointer to the first byte of the extra data is returned.
1720 */
1721void *skb_push(struct sk_buff *skb, unsigned int len)
1722{
1723        skb->data -= len;
1724        skb->len  += len;
1725        if (unlikely(skb->data < skb->head))
1726                skb_under_panic(skb, len, __builtin_return_address(0));
1727        return skb->data;
1728}
1729EXPORT_SYMBOL(skb_push);
1730
1731/**
1732 *      skb_pull - remove data from the start of a buffer
1733 *      @skb: buffer to use
1734 *      @len: amount of data to remove
1735 *
1736 *      This function removes data from the start of a buffer, returning
1737 *      the memory to the headroom. A pointer to the next data in the buffer
1738 *      is returned. Once the data has been pulled future pushes will overwrite
1739 *      the old data.
1740 */
1741void *skb_pull(struct sk_buff *skb, unsigned int len)
1742{
1743        return skb_pull_inline(skb, len);
1744}
1745EXPORT_SYMBOL(skb_pull);
1746
1747/**
1748 *      skb_trim - remove end from a buffer
1749 *      @skb: buffer to alter
1750 *      @len: new length
1751 *
1752 *      Cut the length of a buffer down by removing data from the tail. If
1753 *      the buffer is already under the length specified it is not modified.
1754 *      The skb must be linear.
1755 */
1756void skb_trim(struct sk_buff *skb, unsigned int len)
1757{
1758        if (skb->len > len)
1759                __skb_trim(skb, len);
1760}
1761EXPORT_SYMBOL(skb_trim);
1762
1763/* Trims skb to length len. It can change skb pointers.
1764 */
1765
1766int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1767{
1768        struct sk_buff **fragp;
1769        struct sk_buff *frag;
1770        int offset = skb_headlen(skb);
1771        int nfrags = skb_shinfo(skb)->nr_frags;
1772        int i;
1773        int err;
1774
1775        if (skb_cloned(skb) &&
1776            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1777                return err;
1778
1779        i = 0;
1780        if (offset >= len)
1781                goto drop_pages;
1782
1783        for (; i < nfrags; i++) {
1784                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1785
1786                if (end < len) {
1787                        offset = end;
1788                        continue;
1789                }
1790
1791                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1792
1793drop_pages:
1794                skb_shinfo(skb)->nr_frags = i;
1795
1796                for (; i < nfrags; i++)
1797                        skb_frag_unref(skb, i);
1798
1799                if (skb_has_frag_list(skb))
1800                        skb_drop_fraglist(skb);
1801                goto done;
1802        }
1803
1804        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1805             fragp = &frag->next) {
1806                int end = offset + frag->len;
1807
1808                if (skb_shared(frag)) {
1809                        struct sk_buff *nfrag;
1810
1811                        nfrag = skb_clone(frag, GFP_ATOMIC);
1812                        if (unlikely(!nfrag))
1813                                return -ENOMEM;
1814
1815                        nfrag->next = frag->next;
1816                        consume_skb(frag);
1817                        frag = nfrag;
1818                        *fragp = frag;
1819                }
1820
1821                if (end < len) {
1822                        offset = end;
1823                        continue;
1824                }
1825
1826                if (end > len &&
1827                    unlikely((err = pskb_trim(frag, len - offset))))
1828                        return err;
1829
1830                if (frag->next)
1831                        skb_drop_list(&frag->next);
1832                break;
1833        }
1834
1835done:
1836        if (len > skb_headlen(skb)) {
1837                skb->data_len -= skb->len - len;
1838                skb->len       = len;
1839        } else {
1840                skb->len       = len;
1841                skb->data_len  = 0;
1842                skb_set_tail_pointer(skb, len);
1843        }
1844
1845        if (!skb->sk || skb->destructor == sock_edemux)
1846                skb_condense(skb);
1847        return 0;
1848}
1849EXPORT_SYMBOL(___pskb_trim);
1850
1851/* Note : use pskb_trim_rcsum() instead of calling this directly
1852 */
1853int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1854{
1855        if (skb->ip_summed == CHECKSUM_COMPLETE) {
1856                int delta = skb->len - len;
1857
1858                skb->csum = csum_block_sub(skb->csum,
1859                                           skb_checksum(skb, len, delta, 0),
1860                                           len);
1861        }
1862        return __pskb_trim(skb, len);
1863}
1864EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1865
1866/**
1867 *      __pskb_pull_tail - advance tail of skb header
1868 *      @skb: buffer to reallocate
1869 *      @delta: number of bytes to advance tail
1870 *
1871 *      The function makes a sense only on a fragmented &sk_buff,
1872 *      it expands header moving its tail forward and copying necessary
1873 *      data from fragmented part.
1874 *
1875 *      &sk_buff MUST have reference count of 1.
1876 *
1877 *      Returns %NULL (and &sk_buff does not change) if pull failed
1878 *      or value of new tail of skb in the case of success.
1879 *
1880 *      All the pointers pointing into skb header may change and must be
1881 *      reloaded after call to this function.
1882 */
1883
1884/* Moves tail of skb head forward, copying data from fragmented part,
1885 * when it is necessary.
1886 * 1. It may fail due to malloc failure.
1887 * 2. It may change skb pointers.
1888 *
1889 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1890 */
1891void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1892{
1893        /* If skb has not enough free space at tail, get new one
1894         * plus 128 bytes for future expansions. If we have enough
1895         * room at tail, reallocate without expansion only if skb is cloned.
1896         */
1897        int i, k, eat = (skb->tail + delta) - skb->end;
1898
1899        if (eat > 0 || skb_cloned(skb)) {
1900                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1901                                     GFP_ATOMIC))
1902                        return NULL;
1903        }
1904
1905        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1906                             skb_tail_pointer(skb), delta));
1907
1908        /* Optimization: no fragments, no reasons to preestimate
1909         * size of pulled pages. Superb.
1910         */
1911        if (!skb_has_frag_list(skb))
1912                goto pull_pages;
1913
1914        /* Estimate size of pulled pages. */
1915        eat = delta;
1916        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1917                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1918
1919                if (size >= eat)
1920                        goto pull_pages;
1921                eat -= size;
1922        }
1923
1924        /* If we need update frag list, we are in troubles.
1925         * Certainly, it is possible to add an offset to skb data,
1926         * but taking into account that pulling is expected to
1927         * be very rare operation, it is worth to fight against
1928         * further bloating skb head and crucify ourselves here instead.
1929         * Pure masohism, indeed. 8)8)
1930         */
1931        if (eat) {
1932                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1933                struct sk_buff *clone = NULL;
1934                struct sk_buff *insp = NULL;
1935
1936                do {
1937                        if (list->len <= eat) {
1938                                /* Eaten as whole. */
1939                                eat -= list->len;
1940                                list = list->next;
1941                                insp = list;
1942                        } else {
1943                                /* Eaten partially. */
1944
1945                                if (skb_shared(list)) {
1946                                        /* Sucks! We need to fork list. :-( */
1947                                        clone = skb_clone(list, GFP_ATOMIC);
1948                                        if (!clone)
1949                                                return NULL;
1950                                        insp = list->next;
1951                                        list = clone;
1952                                } else {
1953                                        /* This may be pulled without
1954                                         * problems. */
1955                                        insp = list;
1956                                }
1957                                if (!pskb_pull(list, eat)) {
1958                                        kfree_skb(clone);
1959                                        return NULL;
1960                                }
1961                                break;
1962                        }
1963                } while (eat);
1964
1965                /* Free pulled out fragments. */
1966                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1967                        skb_shinfo(skb)->frag_list = list->next;
1968                        kfree_skb(list);
1969                }
1970                /* And insert new clone at head. */
1971                if (clone) {
1972                        clone->next = list;
1973                        skb_shinfo(skb)->frag_list = clone;
1974                }
1975        }
1976        /* Success! Now we may commit changes to skb data. */
1977
1978pull_pages:
1979        eat = delta;
1980        k = 0;
1981        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1982                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1983
1984                if (size <= eat) {
1985                        skb_frag_unref(skb, i);
1986                        eat -= size;
1987                } else {
1988                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1989                        if (eat) {
1990                                skb_shinfo(skb)->frags[k].page_offset += eat;
1991                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1992                                if (!i)
1993                                        goto end;
1994                                eat = 0;
1995                        }
1996                        k++;
1997                }
1998        }
1999        skb_shinfo(skb)->nr_frags = k;
2000
2001end:
2002        skb->tail     += delta;
2003        skb->data_len -= delta;
2004
2005        if (!skb->data_len)
2006                skb_zcopy_clear(skb, false);
2007
2008        return skb_tail_pointer(skb);
2009}
2010EXPORT_SYMBOL(__pskb_pull_tail);
2011
2012/**
2013 *      skb_copy_bits - copy bits from skb to kernel buffer
2014 *      @skb: source skb
2015 *      @offset: offset in source
2016 *      @to: destination buffer
2017 *      @len: number of bytes to copy
2018 *
2019 *      Copy the specified number of bytes from the source skb to the
2020 *      destination buffer.
2021 *
2022 *      CAUTION ! :
2023 *              If its prototype is ever changed,
2024 *              check arch/{*}/net/{*}.S files,
2025 *              since it is called from BPF assembly code.
2026 */
2027int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2028{
2029        int start = skb_headlen(skb);
2030        struct sk_buff *frag_iter;
2031        int i, copy;
2032
2033        if (offset > (int)skb->len - len)
2034                goto fault;
2035
2036        /* Copy header. */
2037        if ((copy = start - offset) > 0) {
2038                if (copy > len)
2039                        copy = len;
2040                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2041                if ((len -= copy) == 0)
2042                        return 0;
2043                offset += copy;
2044                to     += copy;
2045        }
2046
2047        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2048                int end;
2049                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2050
2051                WARN_ON(start > offset + len);
2052
2053                end = start + skb_frag_size(f);
2054                if ((copy = end - offset) > 0) {
2055                        u32 p_off, p_len, copied;
2056                        struct page *p;
2057                        u8 *vaddr;
2058
2059                        if (copy > len)
2060                                copy = len;
2061
2062                        skb_frag_foreach_page(f,
2063                                              f->page_offset + offset - start,
2064                                              copy, p, p_off, p_len, copied) {
2065                                vaddr = kmap_atomic(p);
2066                                memcpy(to + copied, vaddr + p_off, p_len);
2067                                kunmap_atomic(vaddr);
2068                        }
2069
2070                        if ((len -= copy) == 0)
2071                                return 0;
2072                        offset += copy;
2073                        to     += copy;
2074                }
2075                start = end;
2076        }
2077
2078        skb_walk_frags(skb, frag_iter) {
2079                int end;
2080
2081                WARN_ON(start > offset + len);
2082
2083                end = start + frag_iter->len;
2084                if ((copy = end - offset) > 0) {
2085                        if (copy > len)
2086                                copy = len;
2087                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2088                                goto fault;
2089                        if ((len -= copy) == 0)
2090                                return 0;
2091                        offset += copy;
2092                        to     += copy;
2093                }
2094                start = end;
2095        }
2096
2097        if (!len)
2098                return 0;
2099
2100fault:
2101        return -EFAULT;
2102}
2103EXPORT_SYMBOL(skb_copy_bits);
2104
2105/*
2106 * Callback from splice_to_pipe(), if we need to release some pages
2107 * at the end of the spd in case we error'ed out in filling the pipe.
2108 */
2109static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2110{
2111        put_page(spd->pages[i]);
2112}
2113
2114static struct page *linear_to_page(struct page *page, unsigned int *len,
2115                                   unsigned int *offset,
2116                                   struct sock *sk)
2117{
2118        struct page_frag *pfrag = sk_page_frag(sk);
2119
2120        if (!sk_page_frag_refill(sk, pfrag))
2121                return NULL;
2122
2123        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2124
2125        memcpy(page_address(pfrag->page) + pfrag->offset,
2126               page_address(page) + *offset, *len);
2127        *offset = pfrag->offset;
2128        pfrag->offset += *len;
2129
2130        return pfrag->page;
2131}
2132
2133static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2134                             struct page *page,
2135                             unsigned int offset)
2136{
2137        return  spd->nr_pages &&
2138                spd->pages[spd->nr_pages - 1] == page &&
2139                (spd->partial[spd->nr_pages - 1].offset +
2140                 spd->partial[spd->nr_pages - 1].len == offset);
2141}
2142
2143/*
2144 * Fill page/offset/length into spd, if it can hold more pages.
2145 */
2146static bool spd_fill_page(struct splice_pipe_desc *spd,
2147                          struct pipe_inode_info *pipe, struct page *page,
2148                          unsigned int *len, unsigned int offset,
2149                          bool linear,
2150                          struct sock *sk)
2151{
2152        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2153                return true;
2154
2155        if (linear) {
2156                page = linear_to_page(page, len, &offset, sk);
2157                if (!page)
2158                        return true;
2159        }
2160        if (spd_can_coalesce(spd, page, offset)) {
2161                spd->partial[spd->nr_pages - 1].len += *len;
2162                return false;
2163        }
2164        get_page(page);
2165        spd->pages[spd->nr_pages] = page;
2166        spd->partial[spd->nr_pages].len = *len;
2167        spd->partial[spd->nr_pages].offset = offset;
2168        spd->nr_pages++;
2169
2170        return false;
2171}
2172
2173static bool __splice_segment(struct page *page, unsigned int poff,
2174                             unsigned int plen, unsigned int *off,
2175                             unsigned int *len,
2176                             struct splice_pipe_desc *spd, bool linear,
2177                             struct sock *sk,
2178                             struct pipe_inode_info *pipe)
2179{
2180        if (!*len)
2181                return true;
2182
2183        /* skip this segment if already processed */
2184        if (*off >= plen) {
2185                *off -= plen;
2186                return false;
2187        }
2188
2189        /* ignore any bits we already processed */
2190        poff += *off;
2191        plen -= *off;
2192        *off = 0;
2193
2194        do {
2195                unsigned int flen = min(*len, plen);
2196
2197                if (spd_fill_page(spd, pipe, page, &flen, poff,
2198                                  linear, sk))
2199                        return true;
2200                poff += flen;
2201                plen -= flen;
2202                *len -= flen;
2203        } while (*len && plen);
2204
2205        return false;
2206}
2207
2208/*
2209 * Map linear and fragment data from the skb to spd. It reports true if the
2210 * pipe is full or if we already spliced the requested length.
2211 */
2212static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2213                              unsigned int *offset, unsigned int *len,
2214                              struct splice_pipe_desc *spd, struct sock *sk)
2215{
2216        int seg;
2217        struct sk_buff *iter;
2218
2219        /* map the linear part :
2220         * If skb->head_frag is set, this 'linear' part is backed by a
2221         * fragment, and if the head is not shared with any clones then
2222         * we can avoid a copy since we own the head portion of this page.
2223         */
2224        if (__splice_segment(virt_to_page(skb->data),
2225                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2226                             skb_headlen(skb),
2227                             offset, len, spd,
2228                             skb_head_is_locked(skb),
2229                             sk, pipe))
2230                return true;
2231
2232        /*
2233         * then map the fragments
2234         */
2235        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2236                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2237
2238                if (__splice_segment(skb_frag_page(f),
2239                                     f->page_offset, skb_frag_size(f),
2240                                     offset, len, spd, false, sk, pipe))
2241                        return true;
2242        }
2243
2244        skb_walk_frags(skb, iter) {
2245                if (*offset >= iter->len) {
2246                        *offset -= iter->len;
2247                        continue;
2248                }
2249                /* __skb_splice_bits() only fails if the output has no room
2250                 * left, so no point in going over the frag_list for the error
2251                 * case.
2252                 */
2253                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2254                        return true;
2255        }
2256
2257        return false;
2258}
2259
2260/*
2261 * Map data from the skb to a pipe. Should handle both the linear part,
2262 * the fragments, and the frag list.
2263 */
2264int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2265                    struct pipe_inode_info *pipe, unsigned int tlen,
2266                    unsigned int flags)
2267{
2268        struct partial_page partial[MAX_SKB_FRAGS];
2269        struct page *pages[MAX_SKB_FRAGS];
2270        struct splice_pipe_desc spd = {
2271                .pages = pages,
2272                .partial = partial,
2273                .nr_pages_max = MAX_SKB_FRAGS,
2274                .ops = &nosteal_pipe_buf_ops,
2275                .spd_release = sock_spd_release,
2276        };
2277        int ret = 0;
2278
2279        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2280
2281        if (spd.nr_pages)
2282                ret = splice_to_pipe(pipe, &spd);
2283
2284        return ret;
2285}
2286EXPORT_SYMBOL_GPL(skb_splice_bits);
2287
2288/* Send skb data on a socket. Socket must be locked. */
2289int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2290                         int len)
2291{
2292        unsigned int orig_len = len;
2293        struct sk_buff *head = skb;
2294        unsigned short fragidx;
2295        int slen, ret;
2296
2297do_frag_list:
2298
2299        /* Deal with head data */
2300        while (offset < skb_headlen(skb) && len) {
2301                struct kvec kv;
2302                struct msghdr msg;
2303
2304                slen = min_t(int, len, skb_headlen(skb) - offset);
2305                kv.iov_base = skb->data + offset;
2306                kv.iov_len = slen;
2307                memset(&msg, 0, sizeof(msg));
2308
2309                ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2310                if (ret <= 0)
2311                        goto error;
2312
2313                offset += ret;
2314                len -= ret;
2315        }
2316
2317        /* All the data was skb head? */
2318        if (!len)
2319                goto out;
2320
2321        /* Make offset relative to start of frags */
2322        offset -= skb_headlen(skb);
2323
2324        /* Find where we are in frag list */
2325        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2326                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2327
2328                if (offset < frag->size)
2329                        break;
2330
2331                offset -= frag->size;
2332        }
2333
2334        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2335                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2336
2337                slen = min_t(size_t, len, frag->size - offset);
2338
2339                while (slen) {
2340                        ret = kernel_sendpage_locked(sk, frag->page.p,
2341                                                     frag->page_offset + offset,
2342                                                     slen, MSG_DONTWAIT);
2343                        if (ret <= 0)
2344                                goto error;
2345
2346                        len -= ret;
2347                        offset += ret;
2348                        slen -= ret;
2349                }
2350
2351                offset = 0;
2352        }
2353
2354        if (len) {
2355                /* Process any frag lists */
2356
2357                if (skb == head) {
2358                        if (skb_has_frag_list(skb)) {
2359                                skb = skb_shinfo(skb)->frag_list;
2360                                goto do_frag_list;
2361                        }
2362                } else if (skb->next) {
2363                        skb = skb->next;
2364                        goto do_frag_list;
2365                }
2366        }
2367
2368out:
2369        return orig_len - len;
2370
2371error:
2372        return orig_len == len ? ret : orig_len - len;
2373}
2374EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2375
2376/**
2377 *      skb_store_bits - store bits from kernel buffer to skb
2378 *      @skb: destination buffer
2379 *      @offset: offset in destination
2380 *      @from: source buffer
2381 *      @len: number of bytes to copy
2382 *
2383 *      Copy the specified number of bytes from the source buffer to the
2384 *      destination skb.  This function handles all the messy bits of
2385 *      traversing fragment lists and such.
2386 */
2387
2388int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2389{
2390        int start = skb_headlen(skb);
2391        struct sk_buff *frag_iter;
2392        int i, copy;
2393
2394        if (offset > (int)skb->len - len)
2395                goto fault;
2396
2397        if ((copy = start - offset) > 0) {
2398                if (copy > len)
2399                        copy = len;
2400                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2401                if ((len -= copy) == 0)
2402                        return 0;
2403                offset += copy;
2404                from += copy;
2405        }
2406
2407        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2408                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2409                int end;
2410
2411                WARN_ON(start > offset + len);
2412
2413                end = start + skb_frag_size(frag);
2414                if ((copy = end - offset) > 0) {
2415                        u32 p_off, p_len, copied;
2416                        struct page *p;
2417                        u8 *vaddr;
2418
2419                        if (copy > len)
2420                                copy = len;
2421
2422                        skb_frag_foreach_page(frag,
2423                                              frag->page_offset + offset - start,
2424                                              copy, p, p_off, p_len, copied) {
2425                                vaddr = kmap_atomic(p);
2426                                memcpy(vaddr + p_off, from + copied, p_len);
2427                                kunmap_atomic(vaddr);
2428                        }
2429
2430                        if ((len -= copy) == 0)
2431                                return 0;
2432                        offset += copy;
2433                        from += copy;
2434                }
2435                start = end;
2436        }
2437
2438        skb_walk_frags(skb, frag_iter) {
2439                int end;
2440
2441                WARN_ON(start > offset + len);
2442
2443                end = start + frag_iter->len;
2444                if ((copy = end - offset) > 0) {
2445                        if (copy > len)
2446                                copy = len;
2447                        if (skb_store_bits(frag_iter, offset - start,
2448                                           from, copy))
2449                                goto fault;
2450                        if ((len -= copy) == 0)
2451                                return 0;
2452                        offset += copy;
2453                        from += copy;
2454                }
2455                start = end;
2456        }
2457        if (!len)
2458                return 0;
2459
2460fault:
2461        return -EFAULT;
2462}
2463EXPORT_SYMBOL(skb_store_bits);
2464
2465/* Checksum skb data. */
2466__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2467                      __wsum csum, const struct skb_checksum_ops *ops)
2468{
2469        int start = skb_headlen(skb);
2470        int i, copy = start - offset;
2471        struct sk_buff *frag_iter;
2472        int pos = 0;
2473
2474        /* Checksum header. */
2475        if (copy > 0) {
2476                if (copy > len)
2477                        copy = len;
2478                csum = ops->update(skb->data + offset, copy, csum);
2479                if ((len -= copy) == 0)
2480                        return csum;
2481                offset += copy;
2482                pos     = copy;
2483        }
2484
2485        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2486                int end;
2487                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2488
2489                WARN_ON(start > offset + len);
2490
2491                end = start + skb_frag_size(frag);
2492                if ((copy = end - offset) > 0) {
2493                        u32 p_off, p_len, copied;
2494                        struct page *p;
2495                        __wsum csum2;
2496                        u8 *vaddr;
2497
2498                        if (copy > len)
2499                                copy = len;
2500
2501                        skb_frag_foreach_page(frag,
2502                                              frag->page_offset + offset - start,
2503                                              copy, p, p_off, p_len, copied) {
2504                                vaddr = kmap_atomic(p);
2505                                csum2 = ops->update(vaddr + p_off, p_len, 0);
2506                                kunmap_atomic(vaddr);
2507                                csum = ops->combine(csum, csum2, pos, p_len);
2508                                pos += p_len;
2509                        }
2510
2511                        if (!(len -= copy))
2512                                return csum;
2513                        offset += copy;
2514                }
2515                start = end;
2516        }
2517
2518        skb_walk_frags(skb, frag_iter) {
2519                int end;
2520
2521                WARN_ON(start > offset + len);
2522
2523                end = start + frag_iter->len;
2524                if ((copy = end - offset) > 0) {
2525                        __wsum csum2;
2526                        if (copy > len)
2527                                copy = len;
2528                        csum2 = __skb_checksum(frag_iter, offset - start,
2529                                               copy, 0, ops);
2530                        csum = ops->combine(csum, csum2, pos, copy);
2531                        if ((len -= copy) == 0)
2532                                return csum;
2533                        offset += copy;
2534                        pos    += copy;
2535                }
2536                start = end;
2537        }
2538        BUG_ON(len);
2539
2540        return csum;
2541}
2542EXPORT_SYMBOL(__skb_checksum);
2543
2544__wsum skb_checksum(const struct sk_buff *skb, int offset,
2545                    int len, __wsum csum)
2546{
2547        const struct skb_checksum_ops ops = {
2548                .update  = csum_partial_ext,
2549                .combine = csum_block_add_ext,
2550        };
2551
2552        return __skb_checksum(skb, offset, len, csum, &ops);
2553}
2554EXPORT_SYMBOL(skb_checksum);
2555
2556/* Both of above in one bottle. */
2557
2558__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2559                                    u8 *to, int len, __wsum csum)
2560{
2561        int start = skb_headlen(skb);
2562        int i, copy = start - offset;
2563        struct sk_buff *frag_iter;
2564        int pos = 0;
2565
2566        /* Copy header. */
2567        if (copy > 0) {
2568                if (copy > len)
2569                        copy = len;
2570                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2571                                                 copy, csum);
2572                if ((len -= copy) == 0)
2573                        return csum;
2574                offset += copy;
2575                to     += copy;
2576                pos     = copy;
2577        }
2578
2579        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580                int end;
2581
2582                WARN_ON(start > offset + len);
2583
2584                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585                if ((copy = end - offset) > 0) {
2586                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2587                        u32 p_off, p_len, copied;
2588                        struct page *p;
2589                        __wsum csum2;
2590                        u8 *vaddr;
2591
2592                        if (copy > len)
2593                                copy = len;
2594
2595                        skb_frag_foreach_page(frag,
2596                                              frag->page_offset + offset - start,
2597                                              copy, p, p_off, p_len, copied) {
2598                                vaddr = kmap_atomic(p);
2599                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2600                                                                  to + copied,
2601                                                                  p_len, 0);
2602                                kunmap_atomic(vaddr);
2603                                csum = csum_block_add(csum, csum2, pos);
2604                                pos += p_len;
2605                        }
2606
2607                        if (!(len -= copy))
2608                                return csum;
2609                        offset += copy;
2610                        to     += copy;
2611                }
2612                start = end;
2613        }
2614
2615        skb_walk_frags(skb, frag_iter) {
2616                __wsum csum2;
2617                int end;
2618
2619                WARN_ON(start > offset + len);
2620
2621                end = start + frag_iter->len;
2622                if ((copy = end - offset) > 0) {
2623                        if (copy > len)
2624                                copy = len;
2625                        csum2 = skb_copy_and_csum_bits(frag_iter,
2626                                                       offset - start,
2627                                                       to, copy, 0);
2628                        csum = csum_block_add(csum, csum2, pos);
2629                        if ((len -= copy) == 0)
2630                                return csum;
2631                        offset += copy;
2632                        to     += copy;
2633                        pos    += copy;
2634                }
2635                start = end;
2636        }
2637        BUG_ON(len);
2638        return csum;
2639}
2640EXPORT_SYMBOL(skb_copy_and_csum_bits);
2641
2642__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2643{
2644        __sum16 sum;
2645
2646        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2647        /* See comments in __skb_checksum_complete(). */
2648        if (likely(!sum)) {
2649                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2650                    !skb->csum_complete_sw)
2651                        netdev_rx_csum_fault(skb->dev, skb);
2652        }
2653        if (!skb_shared(skb))
2654                skb->csum_valid = !sum;
2655        return sum;
2656}
2657EXPORT_SYMBOL(__skb_checksum_complete_head);
2658
2659/* This function assumes skb->csum already holds pseudo header's checksum,
2660 * which has been changed from the hardware checksum, for example, by
2661 * __skb_checksum_validate_complete(). And, the original skb->csum must
2662 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2663 *
2664 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2665 * zero. The new checksum is stored back into skb->csum unless the skb is
2666 * shared.
2667 */
2668__sum16 __skb_checksum_complete(struct sk_buff *skb)
2669{
2670        __wsum csum;
2671        __sum16 sum;
2672
2673        csum = skb_checksum(skb, 0, skb->len, 0);
2674
2675        sum = csum_fold(csum_add(skb->csum, csum));
2676        /* This check is inverted, because we already knew the hardware
2677         * checksum is invalid before calling this function. So, if the
2678         * re-computed checksum is valid instead, then we have a mismatch
2679         * between the original skb->csum and skb_checksum(). This means either
2680         * the original hardware checksum is incorrect or we screw up skb->csum
2681         * when moving skb->data around.
2682         */
2683        if (likely(!sum)) {
2684                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2685                    !skb->csum_complete_sw)
2686                        netdev_rx_csum_fault(skb->dev, skb);
2687        }
2688
2689        if (!skb_shared(skb)) {
2690                /* Save full packet checksum */
2691                skb->csum = csum;
2692                skb->ip_summed = CHECKSUM_COMPLETE;
2693                skb->csum_complete_sw = 1;
2694                skb->csum_valid = !sum;
2695        }
2696
2697        return sum;
2698}
2699EXPORT_SYMBOL(__skb_checksum_complete);
2700
2701static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2702{
2703        net_warn_ratelimited(
2704                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2705                __func__);
2706        return 0;
2707}
2708
2709static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2710                                       int offset, int len)
2711{
2712        net_warn_ratelimited(
2713                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2714                __func__);
2715        return 0;
2716}
2717
2718static const struct skb_checksum_ops default_crc32c_ops = {
2719        .update  = warn_crc32c_csum_update,
2720        .combine = warn_crc32c_csum_combine,
2721};
2722
2723const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2724        &default_crc32c_ops;
2725EXPORT_SYMBOL(crc32c_csum_stub);
2726
2727 /**
2728 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2729 *      @from: source buffer
2730 *
2731 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2732 *      into skb_zerocopy().
2733 */
2734unsigned int
2735skb_zerocopy_headlen(const struct sk_buff *from)
2736{
2737        unsigned int hlen = 0;
2738
2739        if (!from->head_frag ||
2740            skb_headlen(from) < L1_CACHE_BYTES ||
2741            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2742                hlen = skb_headlen(from);
2743
2744        if (skb_has_frag_list(from))
2745                hlen = from->len;
2746
2747        return hlen;
2748}
2749EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2750
2751/**
2752 *      skb_zerocopy - Zero copy skb to skb
2753 *      @to: destination buffer
2754 *      @from: source buffer
2755 *      @len: number of bytes to copy from source buffer
2756 *      @hlen: size of linear headroom in destination buffer
2757 *
2758 *      Copies up to `len` bytes from `from` to `to` by creating references
2759 *      to the frags in the source buffer.
2760 *
2761 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2762 *      headroom in the `to` buffer.
2763 *
2764 *      Return value:
2765 *      0: everything is OK
2766 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2767 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2768 */
2769int
2770skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2771{
2772        int i, j = 0;
2773        int plen = 0; /* length of skb->head fragment */
2774        int ret;
2775        struct page *page;
2776        unsigned int offset;
2777
2778        BUG_ON(!from->head_frag && !hlen);
2779
2780        /* dont bother with small payloads */
2781        if (len <= skb_tailroom(to))
2782                return skb_copy_bits(from, 0, skb_put(to, len), len);
2783
2784        if (hlen) {
2785                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2786                if (unlikely(ret))
2787                        return ret;
2788                len -= hlen;
2789        } else {
2790                plen = min_t(int, skb_headlen(from), len);
2791                if (plen) {
2792                        page = virt_to_head_page(from->head);
2793                        offset = from->data - (unsigned char *)page_address(page);
2794                        __skb_fill_page_desc(to, 0, page, offset, plen);
2795                        get_page(page);
2796                        j = 1;
2797                        len -= plen;
2798                }
2799        }
2800
2801        to->truesize += len + plen;
2802        to->len += len + plen;
2803        to->data_len += len + plen;
2804
2805        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2806                skb_tx_error(from);
2807                return -ENOMEM;
2808        }
2809        skb_zerocopy_clone(to, from, GFP_ATOMIC);
2810
2811        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2812                if (!len)
2813                        break;
2814                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2815                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2816                len -= skb_shinfo(to)->frags[j].size;
2817                skb_frag_ref(to, j);
2818                j++;
2819        }
2820        skb_shinfo(to)->nr_frags = j;
2821
2822        return 0;
2823}
2824EXPORT_SYMBOL_GPL(skb_zerocopy);
2825
2826void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2827{
2828        __wsum csum;
2829        long csstart;
2830
2831        if (skb->ip_summed == CHECKSUM_PARTIAL)
2832                csstart = skb_checksum_start_offset(skb);
2833        else
2834                csstart = skb_headlen(skb);
2835
2836        BUG_ON(csstart > skb_headlen(skb));
2837
2838        skb_copy_from_linear_data(skb, to, csstart);
2839
2840        csum = 0;
2841        if (csstart != skb->len)
2842                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2843                                              skb->len - csstart, 0);
2844
2845        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2846                long csstuff = csstart + skb->csum_offset;
2847
2848                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2849        }
2850}
2851EXPORT_SYMBOL(skb_copy_and_csum_dev);
2852
2853/**
2854 *      skb_dequeue - remove from the head of the queue
2855 *      @list: list to dequeue from
2856 *
2857 *      Remove the head of the list. The list lock is taken so the function
2858 *      may be used safely with other locking list functions. The head item is
2859 *      returned or %NULL if the list is empty.
2860 */
2861
2862struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2863{
2864        unsigned long flags;
2865        struct sk_buff *result;
2866
2867        spin_lock_irqsave(&list->lock, flags);
2868        result = __skb_dequeue(list);
2869        spin_unlock_irqrestore(&list->lock, flags);
2870        return result;
2871}
2872EXPORT_SYMBOL(skb_dequeue);
2873
2874/**
2875 *      skb_dequeue_tail - remove from the tail of the queue
2876 *      @list: list to dequeue from
2877 *
2878 *      Remove the tail of the list. The list lock is taken so the function
2879 *      may be used safely with other locking list functions. The tail item is
2880 *      returned or %NULL if the list is empty.
2881 */
2882struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2883{
2884        unsigned long flags;
2885        struct sk_buff *result;
2886
2887        spin_lock_irqsave(&list->lock, flags);
2888        result = __skb_dequeue_tail(list);
2889        spin_unlock_irqrestore(&list->lock, flags);
2890        return result;
2891}
2892EXPORT_SYMBOL(skb_dequeue_tail);
2893
2894/**
2895 *      skb_queue_purge - empty a list
2896 *      @list: list to empty
2897 *
2898 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2899 *      the list and one reference dropped. This function takes the list
2900 *      lock and is atomic with respect to other list locking functions.
2901 */
2902void skb_queue_purge(struct sk_buff_head *list)
2903{
2904        struct sk_buff *skb;
2905        while ((skb = skb_dequeue(list)) != NULL)
2906                kfree_skb(skb);
2907}
2908EXPORT_SYMBOL(skb_queue_purge);
2909
2910/**
2911 *      skb_rbtree_purge - empty a skb rbtree
2912 *      @root: root of the rbtree to empty
2913 *      Return value: the sum of truesizes of all purged skbs.
2914 *
2915 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2916 *      the list and one reference dropped. This function does not take
2917 *      any lock. Synchronization should be handled by the caller (e.g., TCP
2918 *      out-of-order queue is protected by the socket lock).
2919 */
2920unsigned int skb_rbtree_purge(struct rb_root *root)
2921{
2922        struct rb_node *p = rb_first(root);
2923        unsigned int sum = 0;
2924
2925        while (p) {
2926                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2927
2928                p = rb_next(p);
2929                rb_erase(&skb->rbnode, root);
2930                sum += skb->truesize;
2931                kfree_skb(skb);
2932        }
2933        return sum;
2934}
2935
2936/**
2937 *      skb_queue_head - queue a buffer at the list head
2938 *      @list: list to use
2939 *      @newsk: buffer to queue
2940 *
2941 *      Queue a buffer at the start of the list. This function takes the
2942 *      list lock and can be used safely with other locking &sk_buff functions
2943 *      safely.
2944 *
2945 *      A buffer cannot be placed on two lists at the same time.
2946 */
2947void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2948{
2949        unsigned long flags;
2950
2951        spin_lock_irqsave(&list->lock, flags);
2952        __skb_queue_head(list, newsk);
2953        spin_unlock_irqrestore(&list->lock, flags);
2954}
2955EXPORT_SYMBOL(skb_queue_head);
2956
2957/**
2958 *      skb_queue_tail - queue a buffer at the list tail
2959 *      @list: list to use
2960 *      @newsk: buffer to queue
2961 *
2962 *      Queue a buffer at the tail of the list. This function takes the
2963 *      list lock and can be used safely with other locking &sk_buff functions
2964 *      safely.
2965 *
2966 *      A buffer cannot be placed on two lists at the same time.
2967 */
2968void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2969{
2970        unsigned long flags;
2971
2972        spin_lock_irqsave(&list->lock, flags);
2973        __skb_queue_tail(list, newsk);
2974        spin_unlock_irqrestore(&list->lock, flags);
2975}
2976EXPORT_SYMBOL(skb_queue_tail);
2977
2978/**
2979 *      skb_unlink      -       remove a buffer from a list
2980 *      @skb: buffer to remove
2981 *      @list: list to use
2982 *
2983 *      Remove a packet from a list. The list locks are taken and this
2984 *      function is atomic with respect to other list locked calls
2985 *
2986 *      You must know what list the SKB is on.
2987 */
2988void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2989{
2990        unsigned long flags;
2991
2992        spin_lock_irqsave(&list->lock, flags);
2993        __skb_unlink(skb, list);
2994        spin_unlock_irqrestore(&list->lock, flags);
2995}
2996EXPORT_SYMBOL(skb_unlink);
2997
2998/**
2999 *      skb_append      -       append a buffer
3000 *      @old: buffer to insert after
3001 *      @newsk: buffer to insert
3002 *      @list: list to use
3003 *
3004 *      Place a packet after a given packet in a list. The list locks are taken
3005 *      and this function is atomic with respect to other list locked calls.
3006 *      A buffer cannot be placed on two lists at the same time.
3007 */
3008void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3009{
3010        unsigned long flags;
3011
3012        spin_lock_irqsave(&list->lock, flags);
3013        __skb_queue_after(list, old, newsk);
3014        spin_unlock_irqrestore(&list->lock, flags);
3015}
3016EXPORT_SYMBOL(skb_append);
3017
3018static inline void skb_split_inside_header(struct sk_buff *skb,
3019                                           struct sk_buff* skb1,
3020                                           const u32 len, const int pos)
3021{
3022        int i;
3023
3024        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3025                                         pos - len);
3026        /* And move data appendix as is. */
3027        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3028                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3029
3030        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3031        skb_shinfo(skb)->nr_frags  = 0;
3032        skb1->data_len             = skb->data_len;
3033        skb1->len                  += skb1->data_len;
3034        skb->data_len              = 0;
3035        skb->len                   = len;
3036        skb_set_tail_pointer(skb, len);
3037}
3038
3039static inline void skb_split_no_header(struct sk_buff *skb,
3040                                       struct sk_buff* skb1,
3041                                       const u32 len, int pos)
3042{
3043        int i, k = 0;
3044        const int nfrags = skb_shinfo(skb)->nr_frags;
3045
3046        skb_shinfo(skb)->nr_frags = 0;
3047        skb1->len                 = skb1->data_len = skb->len - len;
3048        skb->len                  = len;
3049        skb->data_len             = len - pos;
3050
3051        for (i = 0; i < nfrags; i++) {
3052                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3053
3054                if (pos + size > len) {
3055                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3056
3057                        if (pos < len) {
3058                                /* Split frag.
3059                                 * We have two variants in this case:
3060                                 * 1. Move all the frag to the second
3061                                 *    part, if it is possible. F.e.
3062                                 *    this approach is mandatory for TUX,
3063                                 *    where splitting is expensive.
3064                                 * 2. Split is accurately. We make this.
3065                                 */
3066                                skb_frag_ref(skb, i);
3067                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3068                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3069                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3070                                skb_shinfo(skb)->nr_frags++;
3071                        }
3072                        k++;
3073                } else
3074                        skb_shinfo(skb)->nr_frags++;
3075                pos += size;
3076        }
3077        skb_shinfo(skb1)->nr_frags = k;
3078}
3079
3080/**
3081 * skb_split - Split fragmented skb to two parts at length len.
3082 * @skb: the buffer to split
3083 * @skb1: the buffer to receive the second part
3084 * @len: new length for skb
3085 */
3086void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3087{
3088        int pos = skb_headlen(skb);
3089
3090        skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3091                                      SKBTX_SHARED_FRAG;
3092        skb_zerocopy_clone(skb1, skb, 0);
3093        if (len < pos)  /* Split line is inside header. */
3094                skb_split_inside_header(skb, skb1, len, pos);
3095        else            /* Second chunk has no header, nothing to copy. */
3096                skb_split_no_header(skb, skb1, len, pos);
3097}
3098EXPORT_SYMBOL(skb_split);
3099
3100/* Shifting from/to a cloned skb is a no-go.
3101 *
3102 * Caller cannot keep skb_shinfo related pointers past calling here!
3103 */
3104static int skb_prepare_for_shift(struct sk_buff *skb)
3105{
3106        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3107}
3108
3109/**
3110 * skb_shift - Shifts paged data partially from skb to another
3111 * @tgt: buffer into which tail data gets added
3112 * @skb: buffer from which the paged data comes from
3113 * @shiftlen: shift up to this many bytes
3114 *
3115 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3116 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3117 * It's up to caller to free skb if everything was shifted.
3118 *
3119 * If @tgt runs out of frags, the whole operation is aborted.
3120 *
3121 * Skb cannot include anything else but paged data while tgt is allowed
3122 * to have non-paged data as well.
3123 *
3124 * TODO: full sized shift could be optimized but that would need
3125 * specialized skb free'er to handle frags without up-to-date nr_frags.
3126 */
3127int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3128{
3129        int from, to, merge, todo;
3130        struct skb_frag_struct *fragfrom, *fragto;
3131
3132        BUG_ON(shiftlen > skb->len);
3133
3134        if (skb_headlen(skb))
3135                return 0;
3136        if (skb_zcopy(tgt) || skb_zcopy(skb))
3137                return 0;
3138
3139        todo = shiftlen;
3140        from = 0;
3141        to = skb_shinfo(tgt)->nr_frags;
3142        fragfrom = &skb_shinfo(skb)->frags[from];
3143
3144        /* Actual merge is delayed until the point when we know we can
3145         * commit all, so that we don't have to undo partial changes
3146         */
3147        if (!to ||
3148            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3149                              fragfrom->page_offset)) {
3150                merge = -1;
3151        } else {
3152                merge = to - 1;
3153
3154                todo -= skb_frag_size(fragfrom);
3155                if (todo < 0) {
3156                        if (skb_prepare_for_shift(skb) ||
3157                            skb_prepare_for_shift(tgt))
3158                                return 0;
3159
3160                        /* All previous frag pointers might be stale! */
3161                        fragfrom = &skb_shinfo(skb)->frags[from];
3162                        fragto = &skb_shinfo(tgt)->frags[merge];
3163
3164                        skb_frag_size_add(fragto, shiftlen);
3165                        skb_frag_size_sub(fragfrom, shiftlen);
3166                        fragfrom->page_offset += shiftlen;
3167
3168                        goto onlymerged;
3169                }
3170
3171                from++;
3172        }
3173
3174        /* Skip full, not-fitting skb to avoid expensive operations */
3175        if ((shiftlen == skb->len) &&
3176            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3177                return 0;
3178
3179        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3180                return 0;
3181
3182        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3183                if (to == MAX_SKB_FRAGS)
3184                        return 0;
3185
3186                fragfrom = &skb_shinfo(skb)->frags[from];
3187                fragto = &skb_shinfo(tgt)->frags[to];
3188
3189                if (todo >= skb_frag_size(fragfrom)) {
3190                        *fragto = *fragfrom;
3191                        todo -= skb_frag_size(fragfrom);
3192                        from++;
3193                        to++;
3194
3195                } else {
3196                        __skb_frag_ref(fragfrom);
3197                        fragto->page = fragfrom->page;
3198                        fragto->page_offset = fragfrom->page_offset;
3199                        skb_frag_size_set(fragto, todo);
3200
3201                        fragfrom->page_offset += todo;
3202                        skb_frag_size_sub(fragfrom, todo);
3203                        todo = 0;
3204
3205                        to++;
3206                        break;
3207                }
3208        }
3209
3210        /* Ready to "commit" this state change to tgt */
3211        skb_shinfo(tgt)->nr_frags = to;
3212
3213        if (merge >= 0) {
3214                fragfrom = &skb_shinfo(skb)->frags[0];
3215                fragto = &skb_shinfo(tgt)->frags[merge];
3216
3217                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3218                __skb_frag_unref(fragfrom);
3219        }
3220
3221        /* Reposition in the original skb */
3222        to = 0;
3223        while (from < skb_shinfo(skb)->nr_frags)
3224                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3225        skb_shinfo(skb)->nr_frags = to;
3226
3227        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3228
3229onlymerged:
3230        /* Most likely the tgt won't ever need its checksum anymore, skb on
3231         * the other hand might need it if it needs to be resent
3232         */
3233        tgt->ip_summed = CHECKSUM_PARTIAL;
3234        skb->ip_summed = CHECKSUM_PARTIAL;
3235
3236        /* Yak, is it really working this way? Some helper please? */
3237        skb->len -= shiftlen;
3238        skb->data_len -= shiftlen;
3239        skb->truesize -= shiftlen;
3240        tgt->len += shiftlen;
3241        tgt->data_len += shiftlen;
3242        tgt->truesize += shiftlen;
3243
3244        return shiftlen;
3245}
3246
3247/**
3248 * skb_prepare_seq_read - Prepare a sequential read of skb data
3249 * @skb: the buffer to read
3250 * @from: lower offset of data to be read
3251 * @to: upper offset of data to be read
3252 * @st: state variable
3253 *
3254 * Initializes the specified state variable. Must be called before
3255 * invoking skb_seq_read() for the first time.
3256 */
3257void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3258                          unsigned int to, struct skb_seq_state *st)
3259{
3260        st->lower_offset = from;
3261        st->upper_offset = to;
3262        st->root_skb = st->cur_skb = skb;
3263        st->frag_idx = st->stepped_offset = 0;
3264        st->frag_data = NULL;
3265}
3266EXPORT_SYMBOL(skb_prepare_seq_read);
3267
3268/**
3269 * skb_seq_read - Sequentially read skb data
3270 * @consumed: number of bytes consumed by the caller so far
3271 * @data: destination pointer for data to be returned
3272 * @st: state variable
3273 *
3274 * Reads a block of skb data at @consumed relative to the
3275 * lower offset specified to skb_prepare_seq_read(). Assigns
3276 * the head of the data block to @data and returns the length
3277 * of the block or 0 if the end of the skb data or the upper
3278 * offset has been reached.
3279 *
3280 * The caller is not required to consume all of the data
3281 * returned, i.e. @consumed is typically set to the number
3282 * of bytes already consumed and the next call to
3283 * skb_seq_read() will return the remaining part of the block.
3284 *
3285 * Note 1: The size of each block of data returned can be arbitrary,
3286 *       this limitation is the cost for zerocopy sequential
3287 *       reads of potentially non linear data.
3288 *
3289 * Note 2: Fragment lists within fragments are not implemented
3290 *       at the moment, state->root_skb could be replaced with
3291 *       a stack for this purpose.
3292 */
3293unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3294                          struct skb_seq_state *st)
3295{
3296        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3297        skb_frag_t *frag;
3298
3299        if (unlikely(abs_offset >= st->upper_offset)) {
3300                if (st->frag_data) {
3301                        kunmap_atomic(st->frag_data);
3302                        st->frag_data = NULL;
3303                }
3304                return 0;
3305        }
3306
3307next_skb:
3308        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3309
3310        if (abs_offset < block_limit && !st->frag_data) {
3311                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3312                return block_limit - abs_offset;
3313        }
3314
3315        if (st->frag_idx == 0 && !st->frag_data)
3316                st->stepped_offset += skb_headlen(st->cur_skb);
3317
3318        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3319                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3320                block_limit = skb_frag_size(frag) + st->stepped_offset;
3321
3322                if (abs_offset < block_limit) {
3323                        if (!st->frag_data)
3324                                st->frag_data = kmap_atomic(skb_frag_page(frag));
3325
3326                        *data = (u8 *) st->frag_data + frag->page_offset +
3327                                (abs_offset - st->stepped_offset);
3328
3329                        return block_limit - abs_offset;
3330                }
3331
3332                if (st->frag_data) {
3333                        kunmap_atomic(st->frag_data);
3334                        st->frag_data = NULL;
3335                }
3336
3337                st->frag_idx++;
3338                st->stepped_offset += skb_frag_size(frag);
3339        }
3340
3341        if (st->frag_data) {
3342                kunmap_atomic(st->frag_data);
3343                st->frag_data = NULL;
3344        }
3345
3346        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3347                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3348                st->frag_idx = 0;
3349                goto next_skb;
3350        } else if (st->cur_skb->next) {
3351                st->cur_skb = st->cur_skb->next;
3352                st->frag_idx = 0;
3353                goto next_skb;
3354        }
3355
3356        return 0;
3357}
3358EXPORT_SYMBOL(skb_seq_read);
3359
3360/**
3361 * skb_abort_seq_read - Abort a sequential read of skb data
3362 * @st: state variable
3363 *
3364 * Must be called if skb_seq_read() was not called until it
3365 * returned 0.
3366 */
3367void skb_abort_seq_read(struct skb_seq_state *st)
3368{
3369        if (st->frag_data)
3370                kunmap_atomic(st->frag_data);
3371}
3372EXPORT_SYMBOL(skb_abort_seq_read);
3373
3374#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3375
3376static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3377                                          struct ts_config *conf,
3378                                          struct ts_state *state)
3379{
3380        return skb_seq_read(offset, text, TS_SKB_CB(state));
3381}
3382
3383static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3384{
3385        skb_abort_seq_read(TS_SKB_CB(state));
3386}
3387
3388/**
3389 * skb_find_text - Find a text pattern in skb data
3390 * @skb: the buffer to look in
3391 * @from: search offset
3392 * @to: search limit
3393 * @config: textsearch configuration
3394 *
3395 * Finds a pattern in the skb data according to the specified
3396 * textsearch configuration. Use textsearch_next() to retrieve
3397 * subsequent occurrences of the pattern. Returns the offset
3398 * to the first occurrence or UINT_MAX if no match was found.
3399 */
3400unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3401                           unsigned int to, struct ts_config *config)
3402{
3403        struct ts_state state;
3404        unsigned int ret;
3405
3406        config->get_next_block = skb_ts_get_next_block;
3407        config->finish = skb_ts_finish;
3408
3409        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3410
3411        ret = textsearch_find(config, &state);
3412        return (ret <= to - from ? ret : UINT_MAX);
3413}
3414EXPORT_SYMBOL(skb_find_text);
3415
3416int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3417                         int offset, size_t size)
3418{
3419        int i = skb_shinfo(skb)->nr_frags;
3420
3421        if (skb_can_coalesce(skb, i, page, offset)) {
3422                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3423        } else if (i < MAX_SKB_FRAGS) {
3424                get_page(page);
3425                skb_fill_page_desc(skb, i, page, offset, size);
3426        } else {
3427                return -EMSGSIZE;
3428        }
3429
3430        return 0;
3431}
3432EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3433
3434/**
3435 *      skb_pull_rcsum - pull skb and update receive checksum
3436 *      @skb: buffer to update
3437 *      @len: length of data pulled
3438 *
3439 *      This function performs an skb_pull on the packet and updates
3440 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3441 *      receive path processing instead of skb_pull unless you know
3442 *      that the checksum difference is zero (e.g., a valid IP header)
3443 *      or you are setting ip_summed to CHECKSUM_NONE.
3444 */
3445void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3446{
3447        unsigned char *data = skb->data;
3448
3449        BUG_ON(len > skb->len);
3450        __skb_pull(skb, len);
3451        skb_postpull_rcsum(skb, data, len);
3452        return skb->data;
3453}
3454EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3455
3456static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3457{
3458        skb_frag_t head_frag;
3459        struct page *page;
3460
3461        page = virt_to_head_page(frag_skb->head);
3462        head_frag.page.p = page;
3463        head_frag.page_offset = frag_skb->data -
3464                (unsigned char *)page_address(page);
3465        head_frag.size = skb_headlen(frag_skb);
3466        return head_frag;
3467}
3468
3469/**
3470 *      skb_segment - Perform protocol segmentation on skb.
3471 *      @head_skb: buffer to segment
3472 *      @features: features for the output path (see dev->features)
3473 *
3474 *      This function performs segmentation on the given skb.  It returns
3475 *      a pointer to the first in a list of new skbs for the segments.
3476 *      In case of error it returns ERR_PTR(err).
3477 */
3478struct sk_buff *skb_segment(struct sk_buff *head_skb,
3479                            netdev_features_t features)
3480{
3481        struct sk_buff *segs = NULL;
3482        struct sk_buff *tail = NULL;
3483        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3484        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3485        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3486        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3487        struct sk_buff *frag_skb = head_skb;
3488        unsigned int offset = doffset;
3489        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3490        unsigned int partial_segs = 0;
3491        unsigned int headroom;
3492        unsigned int len = head_skb->len;
3493        __be16 proto;
3494        bool csum, sg;
3495        int nfrags = skb_shinfo(head_skb)->nr_frags;
3496        int err = -ENOMEM;
3497        int i = 0;
3498        int pos;
3499        int dummy;
3500
3501        __skb_push(head_skb, doffset);
3502        proto = skb_network_protocol(head_skb, &dummy);
3503        if (unlikely(!proto))
3504                return ERR_PTR(-EINVAL);
3505
3506        sg = !!(features & NETIF_F_SG);
3507        csum = !!can_checksum_protocol(features, proto);
3508
3509        if (sg && csum && (mss != GSO_BY_FRAGS))  {
3510                if (!(features & NETIF_F_GSO_PARTIAL)) {
3511                        struct sk_buff *iter;
3512                        unsigned int frag_len;
3513
3514                        if (!list_skb ||
3515                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3516                                goto normal;
3517
3518                        /* If we get here then all the required
3519                         * GSO features except frag_list are supported.
3520                         * Try to split the SKB to multiple GSO SKBs
3521                         * with no frag_list.
3522                         * Currently we can do that only when the buffers don't
3523                         * have a linear part and all the buffers except
3524                         * the last are of the same length.
3525                         */
3526                        frag_len = list_skb->len;
3527                        skb_walk_frags(head_skb, iter) {
3528                                if (frag_len != iter->len && iter->next)
3529                                        goto normal;
3530                                if (skb_headlen(iter) && !iter->head_frag)
3531                                        goto normal;
3532
3533                                len -= iter->len;
3534                        }
3535
3536                        if (len != frag_len)
3537                                goto normal;
3538                }
3539
3540                /* GSO partial only requires that we trim off any excess that
3541                 * doesn't fit into an MSS sized block, so take care of that
3542                 * now.
3543                 */
3544                partial_segs = len / mss;
3545                if (partial_segs > 1)
3546                        mss *= partial_segs;
3547                else
3548                        partial_segs = 0;
3549        }
3550
3551normal:
3552        headroom = skb_headroom(head_skb);
3553        pos = skb_headlen(head_skb);
3554
3555        do {
3556                struct sk_buff *nskb;
3557                skb_frag_t *nskb_frag;
3558                int hsize;
3559                int size;
3560
3561                if (unlikely(mss == GSO_BY_FRAGS)) {
3562                        len = list_skb->len;
3563                } else {
3564                        len = head_skb->len - offset;
3565                        if (len > mss)
3566                                len = mss;
3567                }
3568
3569                hsize = skb_headlen(head_skb) - offset;
3570                if (hsize < 0)
3571                        hsize = 0;
3572                if (hsize > len || !sg)
3573                        hsize = len;
3574
3575                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3576                    (skb_headlen(list_skb) == len || sg)) {
3577                        BUG_ON(skb_headlen(list_skb) > len);
3578
3579                        i = 0;
3580                        nfrags = skb_shinfo(list_skb)->nr_frags;
3581                        frag = skb_shinfo(list_skb)->frags;
3582                        frag_skb = list_skb;
3583                        pos += skb_headlen(list_skb);
3584
3585                        while (pos < offset + len) {
3586                                BUG_ON(i >= nfrags);
3587
3588                                size = skb_frag_size(frag);
3589                                if (pos + size > offset + len)
3590                                        break;
3591
3592                                i++;
3593                                pos += size;
3594                                frag++;
3595                        }
3596
3597                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3598                        list_skb = list_skb->next;
3599
3600                        if (unlikely(!nskb))
3601                                goto err;
3602
3603                        if (unlikely(pskb_trim(nskb, len))) {
3604                                kfree_skb(nskb);
3605                                goto err;
3606                        }
3607
3608                        hsize = skb_end_offset(nskb);
3609                        if (skb_cow_head(nskb, doffset + headroom)) {
3610                                kfree_skb(nskb);
3611                                goto err;
3612                        }
3613
3614                        nskb->truesize += skb_end_offset(nskb) - hsize;
3615                        skb_release_head_state(nskb);
3616                        __skb_push(nskb, doffset);
3617                } else {
3618                        nskb = __alloc_skb(hsize + doffset + headroom,
3619                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3620                                           NUMA_NO_NODE);
3621
3622                        if (unlikely(!nskb))
3623                                goto err;
3624
3625                        skb_reserve(nskb, headroom);
3626                        __skb_put(nskb, doffset);
3627                }
3628
3629                if (segs)
3630                        tail->next = nskb;
3631                else
3632                        segs = nskb;
3633                tail = nskb;
3634
3635                __copy_skb_header(nskb, head_skb);
3636
3637                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3638                skb_reset_mac_len(nskb);
3639
3640                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3641                                                 nskb->data - tnl_hlen,
3642                                                 doffset + tnl_hlen);
3643
3644                if (nskb->len == len + doffset)
3645                        goto perform_csum_check;
3646
3647                if (!sg) {
3648                        if (!nskb->remcsum_offload)
3649                                nskb->ip_summed = CHECKSUM_NONE;
3650                        SKB_GSO_CB(nskb)->csum =
3651                                skb_copy_and_csum_bits(head_skb, offset,
3652                                                       skb_put(nskb, len),
3653                                                       len, 0);
3654                        SKB_GSO_CB(nskb)->csum_start =
3655                                skb_headroom(nskb) + doffset;
3656                        continue;
3657                }
3658
3659                nskb_frag = skb_shinfo(nskb)->frags;
3660
3661                skb_copy_from_linear_data_offset(head_skb, offset,
3662                                                 skb_put(nskb, hsize), hsize);
3663
3664                skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3665                                              SKBTX_SHARED_FRAG;
3666
3667                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3668                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3669                        goto err;
3670
3671                while (pos < offset + len) {
3672                        if (i >= nfrags) {
3673                                i = 0;
3674                                nfrags = skb_shinfo(list_skb)->nr_frags;
3675                                frag = skb_shinfo(list_skb)->frags;
3676                                frag_skb = list_skb;
3677                                if (!skb_headlen(list_skb)) {
3678                                        BUG_ON(!nfrags);
3679                                } else {
3680                                        BUG_ON(!list_skb->head_frag);
3681
3682                                        /* to make room for head_frag. */
3683                                        i--;
3684                                        frag--;
3685                                }
3686                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3687                                    skb_zerocopy_clone(nskb, frag_skb,
3688                                                       GFP_ATOMIC))
3689                                        goto err;
3690
3691                                list_skb = list_skb->next;
3692                        }
3693
3694                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3695                                     MAX_SKB_FRAGS)) {
3696                                net_warn_ratelimited(
3697                                        "skb_segment: too many frags: %u %u\n",
3698                                        pos, mss);
3699                                err = -EINVAL;
3700                                goto err;
3701                        }
3702
3703                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3704                        __skb_frag_ref(nskb_frag);
3705                        size = skb_frag_size(nskb_frag);
3706
3707                        if (pos < offset) {
3708                                nskb_frag->page_offset += offset - pos;
3709                                skb_frag_size_sub(nskb_frag, offset - pos);
3710                        }
3711
3712                        skb_shinfo(nskb)->nr_frags++;
3713
3714                        if (pos + size <= offset + len) {
3715                                i++;
3716                                frag++;
3717                                pos += size;
3718                        } else {
3719                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3720                                goto skip_fraglist;
3721                        }
3722
3723                        nskb_frag++;
3724                }
3725
3726skip_fraglist:
3727                nskb->data_len = len - hsize;
3728                nskb->len += nskb->data_len;
3729                nskb->truesize += nskb->data_len;
3730
3731perform_csum_check:
3732                if (!csum) {
3733                        if (skb_has_shared_frag(nskb) &&
3734                            __skb_linearize(nskb))
3735                                goto err;
3736
3737                        if (!nskb->remcsum_offload)
3738                                nskb->ip_summed = CHECKSUM_NONE;
3739                        SKB_GSO_CB(nskb)->csum =
3740                                skb_checksum(nskb, doffset,
3741                                             nskb->len - doffset, 0);
3742                        SKB_GSO_CB(nskb)->csum_start =
3743                                skb_headroom(nskb) + doffset;
3744                }
3745        } while ((offset += len) < head_skb->len);
3746
3747        /* Some callers want to get the end of the list.
3748         * Put it in segs->prev to avoid walking the list.
3749         * (see validate_xmit_skb_list() for example)
3750         */
3751        segs->prev = tail;
3752
3753        if (partial_segs) {
3754                struct sk_buff *iter;
3755                int type = skb_shinfo(head_skb)->gso_type;
3756                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3757
3758                /* Update type to add partial and then remove dodgy if set */
3759                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3760                type &= ~SKB_GSO_DODGY;
3761
3762                /* Update GSO info and prepare to start updating headers on
3763                 * our way back down the stack of protocols.
3764                 */
3765                for (iter = segs; iter; iter = iter->next) {
3766                        skb_shinfo(iter)->gso_size = gso_size;
3767                        skb_shinfo(iter)->gso_segs = partial_segs;
3768                        skb_shinfo(iter)->gso_type = type;
3769                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3770                }
3771
3772                if (tail->len - doffset <= gso_size)
3773                        skb_shinfo(tail)->gso_size = 0;
3774                else if (tail != segs)
3775                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3776        }
3777
3778        /* Following permits correct backpressure, for protocols
3779         * using skb_set_owner_w().
3780         * Idea is to tranfert ownership from head_skb to last segment.
3781         */
3782        if (head_skb->destructor == sock_wfree) {
3783                swap(tail->truesize, head_skb->truesize);
3784                swap(tail->destructor, head_skb->destructor);
3785                swap(tail->sk, head_skb->sk);
3786        }
3787        return segs;
3788
3789err:
3790        kfree_skb_list(segs);
3791        return ERR_PTR(err);
3792}
3793EXPORT_SYMBOL_GPL(skb_segment);
3794
3795int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3796{
3797        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3798        unsigned int offset = skb_gro_offset(skb);
3799        unsigned int headlen = skb_headlen(skb);
3800        unsigned int len = skb_gro_len(skb);
3801        unsigned int delta_truesize;
3802        struct sk_buff *lp;
3803
3804        if (unlikely(p->len + len >= 65536))
3805                return -E2BIG;
3806
3807        lp = NAPI_GRO_CB(p)->last;
3808        pinfo = skb_shinfo(lp);
3809
3810        if (headlen <= offset) {
3811                skb_frag_t *frag;
3812                skb_frag_t *frag2;
3813                int i = skbinfo->nr_frags;
3814                int nr_frags = pinfo->nr_frags + i;
3815
3816                if (nr_frags > MAX_SKB_FRAGS)
3817                        goto merge;
3818
3819                offset -= headlen;
3820                pinfo->nr_frags = nr_frags;
3821                skbinfo->nr_frags = 0;
3822
3823                frag = pinfo->frags + nr_frags;
3824                frag2 = skbinfo->frags + i;
3825                do {
3826                        *--frag = *--frag2;
3827                } while (--i);
3828
3829                frag->page_offset += offset;
3830                skb_frag_size_sub(frag, offset);
3831
3832                /* all fragments truesize : remove (head size + sk_buff) */
3833                delta_truesize = skb->truesize -
3834                                 SKB_TRUESIZE(skb_end_offset(skb));
3835
3836                skb->truesize -= skb->data_len;
3837                skb->len -= skb->data_len;
3838                skb->data_len = 0;
3839
3840                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3841                goto done;
3842        } else if (skb->head_frag) {
3843                int nr_frags = pinfo->nr_frags;
3844                skb_frag_t *frag = pinfo->frags + nr_frags;
3845                struct page *page = virt_to_head_page(skb->head);
3846                unsigned int first_size = headlen - offset;
3847                unsigned int first_offset;
3848
3849                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3850                        goto merge;
3851
3852                first_offset = skb->data -
3853                               (unsigned char *)page_address(page) +
3854                               offset;
3855
3856                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3857
3858                frag->page.p      = page;
3859                frag->page_offset = first_offset;
3860                skb_frag_size_set(frag, first_size);
3861
3862                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3863                /* We dont need to clear skbinfo->nr_frags here */
3864
3865                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3866                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3867                goto done;
3868        }
3869
3870merge:
3871        delta_truesize = skb->truesize;
3872        if (offset > headlen) {
3873                unsigned int eat = offset - headlen;
3874
3875                skbinfo->frags[0].page_offset += eat;
3876                skb_frag_size_sub(&skbinfo->frags[0], eat);
3877                skb->data_len -= eat;
3878                skb->len -= eat;
3879                offset = headlen;
3880        }
3881
3882        __skb_pull(skb, offset);
3883
3884        if (NAPI_GRO_CB(p)->last == p)
3885                skb_shinfo(p)->frag_list = skb;
3886        else
3887                NAPI_GRO_CB(p)->last->next = skb;
3888        NAPI_GRO_CB(p)->last = skb;
3889        __skb_header_release(skb);
3890        lp = p;
3891
3892done:
3893        NAPI_GRO_CB(p)->count++;
3894        p->data_len += len;
3895        p->truesize += delta_truesize;
3896        p->len += len;
3897        if (lp != p) {
3898                lp->data_len += len;
3899                lp->truesize += delta_truesize;
3900                lp->len += len;
3901        }
3902        NAPI_GRO_CB(skb)->same_flow = 1;
3903        return 0;
3904}
3905EXPORT_SYMBOL_GPL(skb_gro_receive);
3906
3907#ifdef CONFIG_SKB_EXTENSIONS
3908#define SKB_EXT_ALIGN_VALUE     8
3909#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3910
3911static const u8 skb_ext_type_len[] = {
3912#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3913        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3914#endif
3915#ifdef CONFIG_XFRM
3916        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3917#endif
3918};
3919
3920static __always_inline unsigned int skb_ext_total_length(void)
3921{
3922        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3923#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3924                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3925#endif
3926#ifdef CONFIG_XFRM
3927                skb_ext_type_len[SKB_EXT_SEC_PATH] +
3928#endif
3929                0;
3930}
3931
3932static void skb_extensions_init(void)
3933{
3934        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3935        BUILD_BUG_ON(skb_ext_total_length() > 255);
3936
3937        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
3938                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
3939                                             0,
3940                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3941                                             NULL);
3942}
3943#else
3944static void skb_extensions_init(void) {}
3945#endif
3946
3947void __init skb_init(void)
3948{
3949        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3950                                              sizeof(struct sk_buff),
3951                                              0,
3952                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3953                                              offsetof(struct sk_buff, cb),
3954                                              sizeof_field(struct sk_buff, cb),
3955                                              NULL);
3956        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3957                                                sizeof(struct sk_buff_fclones),
3958                                                0,
3959                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3960                                                NULL);
3961        skb_extensions_init();
3962}
3963
3964static int
3965__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3966               unsigned int recursion_level)
3967{
3968        int start = skb_headlen(skb);
3969        int i, copy = start - offset;
3970        struct sk_buff *frag_iter;
3971        int elt = 0;
3972
3973        if (unlikely(recursion_level >= 24))
3974                return -EMSGSIZE;
3975
3976        if (copy > 0) {
3977                if (copy > len)
3978                        copy = len;
3979                sg_set_buf(sg, skb->data + offset, copy);
3980                elt++;
3981                if ((len -= copy) == 0)
3982                        return elt;
3983                offset += copy;
3984        }
3985
3986        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3987                int end;
3988
3989                WARN_ON(start > offset + len);
3990
3991                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3992                if ((copy = end - offset) > 0) {
3993                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3994                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3995                                return -EMSGSIZE;
3996
3997                        if (copy > len)
3998                                copy = len;
3999                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4000                                        frag->page_offset+offset-start);
4001                        elt++;
4002                        if (!(len -= copy))
4003                                return elt;
4004                        offset += copy;
4005                }
4006                start = end;
4007        }
4008
4009        skb_walk_frags(skb, frag_iter) {
4010                int end, ret;
4011
4012                WARN_ON(start > offset + len);
4013
4014                end = start + frag_iter->len;
4015                if ((copy = end - offset) > 0) {
4016                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4017                                return -EMSGSIZE;
4018
4019                        if (copy > len)
4020                                copy = len;
4021                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4022                                              copy, recursion_level + 1);
4023                        if (unlikely(ret < 0))
4024                                return ret;
4025                        elt += ret;
4026                        if ((len -= copy) == 0)
4027                                return elt;
4028                        offset += copy;
4029                }
4030                start = end;
4031        }
4032        BUG_ON(len);
4033        return elt;
4034}
4035
4036/**
4037 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4038 *      @skb: Socket buffer containing the buffers to be mapped
4039 *      @sg: The scatter-gather list to map into
4040 *      @offset: The offset into the buffer's contents to start mapping
4041 *      @len: Length of buffer space to be mapped
4042 *
4043 *      Fill the specified scatter-gather list with mappings/pointers into a
4044 *      region of the buffer space attached to a socket buffer. Returns either
4045 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4046 *      could not fit.
4047 */
4048int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4049{
4050        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4051
4052        if (nsg <= 0)
4053                return nsg;
4054
4055        sg_mark_end(&sg[nsg - 1]);
4056
4057        return nsg;
4058}
4059EXPORT_SYMBOL_GPL(skb_to_sgvec);
4060
4061/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4062 * sglist without mark the sg which contain last skb data as the end.
4063 * So the caller can mannipulate sg list as will when padding new data after
4064 * the first call without calling sg_unmark_end to expend sg list.
4065 *
4066 * Scenario to use skb_to_sgvec_nomark:
4067 * 1. sg_init_table
4068 * 2. skb_to_sgvec_nomark(payload1)
4069 * 3. skb_to_sgvec_nomark(payload2)
4070 *
4071 * This is equivalent to:
4072 * 1. sg_init_table
4073 * 2. skb_to_sgvec(payload1)
4074 * 3. sg_unmark_end
4075 * 4. skb_to_sgvec(payload2)
4076 *
4077 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4078 * is more preferable.
4079 */
4080int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4081                        int offset, int len)
4082{
4083        return __skb_to_sgvec(skb, sg, offset, len, 0);
4084}
4085EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4086
4087
4088
4089/**
4090 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4091 *      @skb: The socket buffer to check.
4092 *      @tailbits: Amount of trailing space to be added
4093 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4094 *
4095 *      Make sure that the data buffers attached to a socket buffer are
4096 *      writable. If they are not, private copies are made of the data buffers
4097 *      and the socket buffer is set to use these instead.
4098 *
4099 *      If @tailbits is given, make sure that there is space to write @tailbits
4100 *      bytes of data beyond current end of socket buffer.  @trailer will be
4101 *      set to point to the skb in which this space begins.
4102 *
4103 *      The number of scatterlist elements required to completely map the
4104 *      COW'd and extended socket buffer will be returned.
4105 */
4106int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4107{
4108        int copyflag;
4109        int elt;
4110        struct sk_buff *skb1, **skb_p;
4111
4112        /* If skb is cloned or its head is paged, reallocate
4113         * head pulling out all the pages (pages are considered not writable
4114         * at the moment even if they are anonymous).
4115         */
4116        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4117            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4118                return -ENOMEM;
4119
4120        /* Easy case. Most of packets will go this way. */
4121        if (!skb_has_frag_list(skb)) {
4122                /* A little of trouble, not enough of space for trailer.
4123                 * This should not happen, when stack is tuned to generate
4124                 * good frames. OK, on miss we reallocate and reserve even more
4125                 * space, 128 bytes is fair. */
4126
4127                if (skb_tailroom(skb) < tailbits &&
4128                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4129                        return -ENOMEM;
4130
4131                /* Voila! */
4132                *trailer = skb;
4133                return 1;
4134        }
4135
4136        /* Misery. We are in troubles, going to mincer fragments... */
4137
4138        elt = 1;
4139        skb_p = &skb_shinfo(skb)->frag_list;
4140        copyflag = 0;
4141
4142        while ((skb1 = *skb_p) != NULL) {
4143                int ntail = 0;
4144
4145                /* The fragment is partially pulled by someone,
4146                 * this can happen on input. Copy it and everything
4147                 * after it. */
4148
4149                if (skb_shared(skb1))
4150                        copyflag = 1;
4151
4152                /* If the skb is the last, worry about trailer. */
4153
4154                if (skb1->next == NULL && tailbits) {
4155                        if (skb_shinfo(skb1)->nr_frags ||
4156                            skb_has_frag_list(skb1) ||
4157                            skb_tailroom(skb1) < tailbits)
4158                                ntail = tailbits + 128;
4159                }
4160
4161                if (copyflag ||
4162                    skb_cloned(skb1) ||
4163                    ntail ||
4164                    skb_shinfo(skb1)->nr_frags ||
4165                    skb_has_frag_list(skb1)) {
4166                        struct sk_buff *skb2;
4167
4168                        /* Fuck, we are miserable poor guys... */
4169                        if (ntail == 0)
4170                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4171                        else
4172                                skb2 = skb_copy_expand(skb1,
4173                                                       skb_headroom(skb1),
4174                                                       ntail,
4175                                                       GFP_ATOMIC);
4176                        if (unlikely(skb2 == NULL))
4177                                return -ENOMEM;
4178
4179                        if (skb1->sk)
4180                                skb_set_owner_w(skb2, skb1->sk);
4181
4182                        /* Looking around. Are we still alive?
4183                         * OK, link new skb, drop old one */
4184
4185                        skb2->next = skb1->next;
4186                        *skb_p = skb2;
4187                        kfree_skb(skb1);
4188                        skb1 = skb2;
4189                }
4190                elt++;
4191                *trailer = skb1;
4192                skb_p = &skb1->next;
4193        }
4194
4195        return elt;
4196}
4197EXPORT_SYMBOL_GPL(skb_cow_data);
4198
4199static void sock_rmem_free(struct sk_buff *skb)
4200{
4201        struct sock *sk = skb->sk;
4202
4203        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4204}
4205
4206static void skb_set_err_queue(struct sk_buff *skb)
4207{
4208        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4209         * So, it is safe to (mis)use it to mark skbs on the error queue.
4210         */
4211        skb->pkt_type = PACKET_OUTGOING;
4212        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4213}
4214
4215/*
4216 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4217 */
4218int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4219{
4220        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4221            (unsigned int)sk->sk_rcvbuf)
4222                return -ENOMEM;
4223
4224        skb_orphan(skb);
4225        skb->sk = sk;
4226        skb->destructor = sock_rmem_free;
4227        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4228        skb_set_err_queue(skb);
4229
4230        /* before exiting rcu section, make sure dst is refcounted */
4231        skb_dst_force(skb);
4232
4233        skb_queue_tail(&sk->sk_error_queue, skb);
4234        if (!sock_flag(sk, SOCK_DEAD))
4235                sk->sk_error_report(sk);
4236        return 0;
4237}
4238EXPORT_SYMBOL(sock_queue_err_skb);
4239
4240static bool is_icmp_err_skb(const struct sk_buff *skb)
4241{
4242        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4243                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4244}
4245
4246struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4247{
4248        struct sk_buff_head *q = &sk->sk_error_queue;
4249        struct sk_buff *skb, *skb_next = NULL;
4250        bool icmp_next = false;
4251        unsigned long flags;
4252
4253        spin_lock_irqsave(&q->lock, flags);
4254        skb = __skb_dequeue(q);
4255        if (skb && (skb_next = skb_peek(q))) {
4256                icmp_next = is_icmp_err_skb(skb_next);
4257                if (icmp_next)
4258                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4259        }
4260        spin_unlock_irqrestore(&q->lock, flags);
4261
4262        if (is_icmp_err_skb(skb) && !icmp_next)
4263                sk->sk_err = 0;
4264
4265        if (skb_next)
4266                sk->sk_error_report(sk);
4267
4268        return skb;
4269}
4270EXPORT_SYMBOL(sock_dequeue_err_skb);
4271
4272/**
4273 * skb_clone_sk - create clone of skb, and take reference to socket
4274 * @skb: the skb to clone
4275 *
4276 * This function creates a clone of a buffer that holds a reference on
4277 * sk_refcnt.  Buffers created via this function are meant to be
4278 * returned using sock_queue_err_skb, or free via kfree_skb.
4279 *
4280 * When passing buffers allocated with this function to sock_queue_err_skb
4281 * it is necessary to wrap the call with sock_hold/sock_put in order to
4282 * prevent the socket from being released prior to being enqueued on
4283 * the sk_error_queue.
4284 */
4285struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4286{
4287        struct sock *sk = skb->sk;
4288        struct sk_buff *clone;
4289
4290        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4291                return NULL;
4292
4293        clone = skb_clone(skb, GFP_ATOMIC);
4294        if (!clone) {
4295                sock_put(sk);
4296                return NULL;
4297        }
4298
4299        clone->sk = sk;
4300        clone->destructor = sock_efree;
4301
4302        return clone;
4303}
4304EXPORT_SYMBOL(skb_clone_sk);
4305
4306static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4307                                        struct sock *sk,
4308                                        int tstype,
4309                                        bool opt_stats)
4310{
4311        struct sock_exterr_skb *serr;
4312        int err;
4313
4314        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4315
4316        serr = SKB_EXT_ERR(skb);
4317        memset(serr, 0, sizeof(*serr));
4318        serr->ee.ee_errno = ENOMSG;
4319        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4320        serr->ee.ee_info = tstype;
4321        serr->opt_stats = opt_stats;
4322        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4323        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4324                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4325                if (sk->sk_protocol == IPPROTO_TCP &&
4326                    sk->sk_type == SOCK_STREAM)
4327                        serr->ee.ee_data -= sk->sk_tskey;
4328        }
4329
4330        err = sock_queue_err_skb(sk, skb);
4331
4332        if (err)
4333                kfree_skb(skb);
4334}
4335
4336static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4337{
4338        bool ret;
4339
4340        if (likely(sysctl_tstamp_allow_data || tsonly))
4341                return true;
4342
4343        read_lock_bh(&sk->sk_callback_lock);
4344        ret = sk->sk_socket && sk->sk_socket->file &&
4345              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4346        read_unlock_bh(&sk->sk_callback_lock);
4347        return ret;
4348}
4349
4350void skb_complete_tx_timestamp(struct sk_buff *skb,
4351                               struct skb_shared_hwtstamps *hwtstamps)
4352{
4353        struct sock *sk = skb->sk;
4354
4355        if (!skb_may_tx_timestamp(sk, false))
4356                goto err;
4357
4358        /* Take a reference to prevent skb_orphan() from freeing the socket,
4359         * but only if the socket refcount is not zero.
4360         */
4361        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4362                *skb_hwtstamps(skb) = *hwtstamps;
4363                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4364                sock_put(sk);
4365                return;
4366        }
4367
4368err:
4369        kfree_skb(skb);
4370}
4371EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4372
4373void __skb_tstamp_tx(struct sk_buff *orig_skb,
4374                     struct skb_shared_hwtstamps *hwtstamps,
4375                     struct sock *sk, int tstype)
4376{
4377        struct sk_buff *skb;
4378        bool tsonly, opt_stats = false;
4379
4380        if (!sk)
4381                return;
4382
4383        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4384            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4385                return;
4386
4387        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4388        if (!skb_may_tx_timestamp(sk, tsonly))
4389                return;
4390
4391        if (tsonly) {
4392#ifdef CONFIG_INET
4393                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4394                    sk->sk_protocol == IPPROTO_TCP &&
4395                    sk->sk_type == SOCK_STREAM) {
4396                        skb = tcp_get_timestamping_opt_stats(sk);
4397                        opt_stats = true;
4398                } else
4399#endif
4400                        skb = alloc_skb(0, GFP_ATOMIC);
4401        } else {
4402                skb = skb_clone(orig_skb, GFP_ATOMIC);
4403        }
4404        if (!skb)
4405                return;
4406
4407        if (tsonly) {
4408                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4409                                             SKBTX_ANY_TSTAMP;
4410                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4411        }
4412
4413        if (hwtstamps)
4414                *skb_hwtstamps(skb) = *hwtstamps;
4415        else
4416                skb->tstamp = ktime_get_real();
4417
4418        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4419}
4420EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4421
4422void skb_tstamp_tx(struct sk_buff *orig_skb,
4423                   struct skb_shared_hwtstamps *hwtstamps)
4424{
4425        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4426                               SCM_TSTAMP_SND);
4427}
4428EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4429
4430void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4431{
4432        struct sock *sk = skb->sk;
4433        struct sock_exterr_skb *serr;
4434        int err = 1;
4435
4436        skb->wifi_acked_valid = 1;
4437        skb->wifi_acked = acked;
4438
4439        serr = SKB_EXT_ERR(skb);
4440        memset(serr, 0, sizeof(*serr));
4441        serr->ee.ee_errno = ENOMSG;
4442        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4443
4444        /* Take a reference to prevent skb_orphan() from freeing the socket,
4445         * but only if the socket refcount is not zero.
4446         */
4447        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4448                err = sock_queue_err_skb(sk, skb);
4449                sock_put(sk);
4450        }
4451        if (err)
4452                kfree_skb(skb);
4453}
4454EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4455
4456/**
4457 * skb_partial_csum_set - set up and verify partial csum values for packet
4458 * @skb: the skb to set
4459 * @start: the number of bytes after skb->data to start checksumming.
4460 * @off: the offset from start to place the checksum.
4461 *
4462 * For untrusted partially-checksummed packets, we need to make sure the values
4463 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4464 *
4465 * This function checks and sets those values and skb->ip_summed: if this
4466 * returns false you should drop the packet.
4467 */
4468bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4469{
4470        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4471        u32 csum_start = skb_headroom(skb) + (u32)start;
4472
4473        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4474                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4475                                     start, off, skb_headroom(skb), skb_headlen(skb));
4476                return false;
4477        }
4478        skb->ip_summed = CHECKSUM_PARTIAL;
4479        skb->csum_start = csum_start;
4480        skb->csum_offset = off;
4481        skb_set_transport_header(skb, start);
4482        return true;
4483}
4484EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4485
4486static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4487                               unsigned int max)
4488{
4489        if (skb_headlen(skb) >= len)
4490                return 0;
4491
4492        /* If we need to pullup then pullup to the max, so we
4493         * won't need to do it again.
4494         */
4495        if (max > skb->len)
4496                max = skb->len;
4497
4498        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4499                return -ENOMEM;
4500
4501        if (skb_headlen(skb) < len)
4502                return -EPROTO;
4503
4504        return 0;
4505}
4506
4507#define MAX_TCP_HDR_LEN (15 * 4)
4508
4509static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4510                                      typeof(IPPROTO_IP) proto,
4511                                      unsigned int off)
4512{
4513        switch (proto) {
4514                int err;
4515
4516        case IPPROTO_TCP:
4517                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4518                                          off + MAX_TCP_HDR_LEN);
4519                if (!err && !skb_partial_csum_set(skb, off,
4520                                                  offsetof(struct tcphdr,
4521                                                           check)))
4522                        err = -EPROTO;
4523                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4524
4525        case IPPROTO_UDP:
4526                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4527                                          off + sizeof(struct udphdr));
4528                if (!err && !skb_partial_csum_set(skb, off,
4529                                                  offsetof(struct udphdr,
4530                                                           check)))
4531                        err = -EPROTO;
4532                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4533        }
4534
4535        return ERR_PTR(-EPROTO);
4536}
4537
4538/* This value should be large enough to cover a tagged ethernet header plus
4539 * maximally sized IP and TCP or UDP headers.
4540 */
4541#define MAX_IP_HDR_LEN 128
4542
4543static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4544{
4545        unsigned int off;
4546        bool fragment;
4547        __sum16 *csum;
4548        int err;
4549
4550        fragment = false;
4551
4552        err = skb_maybe_pull_tail(skb,
4553                                  sizeof(struct iphdr),
4554                                  MAX_IP_HDR_LEN);
4555        if (err < 0)
4556                goto out;
4557
4558        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4559                fragment = true;
4560
4561        off = ip_hdrlen(skb);
4562
4563        err = -EPROTO;
4564
4565        if (fragment)
4566                goto out;
4567
4568        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4569        if (IS_ERR(csum))
4570                return PTR_ERR(csum);
4571
4572        if (recalculate)
4573                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4574                                           ip_hdr(skb)->daddr,
4575                                           skb->len - off,
4576                                           ip_hdr(skb)->protocol, 0);
4577        err = 0;
4578
4579out:
4580        return err;
4581}
4582
4583/* This value should be large enough to cover a tagged ethernet header plus
4584 * an IPv6 header, all options, and a maximal TCP or UDP header.
4585 */
4586#define MAX_IPV6_HDR_LEN 256
4587
4588#define OPT_HDR(type, skb, off) \
4589        (type *)(skb_network_header(skb) + (off))
4590
4591static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4592{
4593        int err;
4594        u8 nexthdr;
4595        unsigned int off;
4596        unsigned int len;
4597        bool fragment;
4598        bool done;
4599        __sum16 *csum;
4600
4601        fragment = false;
4602        done = false;
4603
4604        off = sizeof(struct ipv6hdr);
4605
4606        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4607        if (err < 0)
4608                goto out;
4609
4610        nexthdr = ipv6_hdr(skb)->nexthdr;
4611
4612        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4613        while (off <= len && !done) {
4614                switch (nexthdr) {
4615                case IPPROTO_DSTOPTS:
4616                case IPPROTO_HOPOPTS:
4617                case IPPROTO_ROUTING: {
4618                        struct ipv6_opt_hdr *hp;
4619
4620                        err = skb_maybe_pull_tail(skb,
4621                                                  off +
4622                                                  sizeof(struct ipv6_opt_hdr),
4623                                                  MAX_IPV6_HDR_LEN);
4624                        if (err < 0)
4625                                goto out;
4626
4627                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4628                        nexthdr = hp->nexthdr;
4629                        off += ipv6_optlen(hp);
4630                        break;
4631                }
4632                case IPPROTO_AH: {
4633                        struct ip_auth_hdr *hp;
4634
4635                        err = skb_maybe_pull_tail(skb,
4636                                                  off +
4637                                                  sizeof(struct ip_auth_hdr),
4638                                                  MAX_IPV6_HDR_LEN);
4639                        if (err < 0)
4640                                goto out;
4641
4642                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4643                        nexthdr = hp->nexthdr;
4644                        off += ipv6_authlen(hp);
4645                        break;
4646                }
4647                case IPPROTO_FRAGMENT: {
4648                        struct frag_hdr *hp;
4649
4650                        err = skb_maybe_pull_tail(skb,
4651                                                  off +
4652                                                  sizeof(struct frag_hdr),
4653                                                  MAX_IPV6_HDR_LEN);
4654                        if (err < 0)
4655                                goto out;
4656
4657                        hp = OPT_HDR(struct frag_hdr, skb, off);
4658
4659                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4660                                fragment = true;
4661
4662                        nexthdr = hp->nexthdr;
4663                        off += sizeof(struct frag_hdr);
4664                        break;
4665                }
4666                default:
4667                        done = true;
4668                        break;
4669                }
4670        }
4671
4672        err = -EPROTO;
4673
4674        if (!done || fragment)
4675                goto out;
4676
4677        csum = skb_checksum_setup_ip(skb, nexthdr, off);
4678        if (IS_ERR(csum))
4679                return PTR_ERR(csum);
4680
4681        if (recalculate)
4682                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4683                                         &ipv6_hdr(skb)->daddr,
4684                                         skb->len - off, nexthdr, 0);
4685        err = 0;
4686
4687out:
4688        return err;
4689}
4690
4691/**
4692 * skb_checksum_setup - set up partial checksum offset
4693 * @skb: the skb to set up
4694 * @recalculate: if true the pseudo-header checksum will be recalculated
4695 */
4696int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4697{
4698        int err;
4699
4700        switch (skb->protocol) {
4701        case htons(ETH_P_IP):
4702                err = skb_checksum_setup_ipv4(skb, recalculate);
4703                break;
4704
4705        case htons(ETH_P_IPV6):
4706                err = skb_checksum_setup_ipv6(skb, recalculate);
4707                break;
4708
4709        default:
4710                err = -EPROTO;
4711                break;
4712        }
4713
4714        return err;
4715}
4716EXPORT_SYMBOL(skb_checksum_setup);
4717
4718/**
4719 * skb_checksum_maybe_trim - maybe trims the given skb
4720 * @skb: the skb to check
4721 * @transport_len: the data length beyond the network header
4722 *
4723 * Checks whether the given skb has data beyond the given transport length.
4724 * If so, returns a cloned skb trimmed to this transport length.
4725 * Otherwise returns the provided skb. Returns NULL in error cases
4726 * (e.g. transport_len exceeds skb length or out-of-memory).
4727 *
4728 * Caller needs to set the skb transport header and free any returned skb if it
4729 * differs from the provided skb.
4730 */
4731static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4732                                               unsigned int transport_len)
4733{
4734        struct sk_buff *skb_chk;
4735        unsigned int len = skb_transport_offset(skb) + transport_len;
4736        int ret;
4737
4738        if (skb->len < len)
4739                return NULL;
4740        else if (skb->len == len)
4741                return skb;
4742
4743        skb_chk = skb_clone(skb, GFP_ATOMIC);
4744        if (!skb_chk)
4745                return NULL;
4746
4747        ret = pskb_trim_rcsum(skb_chk, len);
4748        if (ret) {
4749                kfree_skb(skb_chk);
4750                return NULL;
4751        }
4752
4753        return skb_chk;
4754}
4755
4756/**
4757 * skb_checksum_trimmed - validate checksum of an skb
4758 * @skb: the skb to check
4759 * @transport_len: the data length beyond the network header
4760 * @skb_chkf: checksum function to use
4761 *
4762 * Applies the given checksum function skb_chkf to the provided skb.
4763 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4764 *
4765 * If the skb has data beyond the given transport length, then a
4766 * trimmed & cloned skb is checked and returned.
4767 *
4768 * Caller needs to set the skb transport header and free any returned skb if it
4769 * differs from the provided skb.
4770 */
4771struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4772                                     unsigned int transport_len,
4773                                     __sum16(*skb_chkf)(struct sk_buff *skb))
4774{
4775        struct sk_buff *skb_chk;
4776        unsigned int offset = skb_transport_offset(skb);
4777        __sum16 ret;
4778
4779        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4780        if (!skb_chk)
4781                goto err;
4782
4783        if (!pskb_may_pull(skb_chk, offset))
4784                goto err;
4785
4786        skb_pull_rcsum(skb_chk, offset);
4787        ret = skb_chkf(skb_chk);
4788        skb_push_rcsum(skb_chk, offset);
4789
4790        if (ret)
4791                goto err;
4792
4793        return skb_chk;
4794
4795err:
4796        if (skb_chk && skb_chk != skb)
4797                kfree_skb(skb_chk);
4798
4799        return NULL;
4800
4801}
4802EXPORT_SYMBOL(skb_checksum_trimmed);
4803
4804void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4805{
4806        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4807                             skb->dev->name);
4808}
4809EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4810
4811void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4812{
4813        if (head_stolen) {
4814                skb_release_head_state(skb);
4815                kmem_cache_free(skbuff_head_cache, skb);
4816        } else {
4817                __kfree_skb(skb);
4818        }
4819}
4820EXPORT_SYMBOL(kfree_skb_partial);
4821
4822/**
4823 * skb_try_coalesce - try to merge skb to prior one
4824 * @to: prior buffer
4825 * @from: buffer to add
4826 * @fragstolen: pointer to boolean
4827 * @delta_truesize: how much more was allocated than was requested
4828 */
4829bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4830                      bool *fragstolen, int *delta_truesize)
4831{
4832        struct skb_shared_info *to_shinfo, *from_shinfo;
4833        int i, delta, len = from->len;
4834
4835        *fragstolen = false;
4836
4837        if (skb_cloned(to))
4838                return false;
4839
4840        if (len <= skb_tailroom(to)) {
4841                if (len)
4842                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4843                *delta_truesize = 0;
4844                return true;
4845        }
4846
4847        to_shinfo = skb_shinfo(to);
4848        from_shinfo = skb_shinfo(from);
4849        if (to_shinfo->frag_list || from_shinfo->frag_list)
4850                return false;
4851        if (skb_zcopy(to) || skb_zcopy(from))
4852                return false;
4853
4854        if (skb_headlen(from) != 0) {
4855                struct page *page;
4856                unsigned int offset;
4857
4858                if (to_shinfo->nr_frags +
4859                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4860                        return false;
4861
4862                if (skb_head_is_locked(from))
4863                        return false;
4864
4865                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4866
4867                page = virt_to_head_page(from->head);
4868                offset = from->data - (unsigned char *)page_address(page);
4869
4870                skb_fill_page_desc(to, to_shinfo->nr_frags,
4871                                   page, offset, skb_headlen(from));
4872                *fragstolen = true;
4873        } else {
4874                if (to_shinfo->nr_frags +
4875                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4876                        return false;
4877
4878                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4879        }
4880
4881        WARN_ON_ONCE(delta < len);
4882
4883        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4884               from_shinfo->frags,
4885               from_shinfo->nr_frags * sizeof(skb_frag_t));
4886        to_shinfo->nr_frags += from_shinfo->nr_frags;
4887
4888        if (!skb_cloned(from))
4889                from_shinfo->nr_frags = 0;
4890
4891        /* if the skb is not cloned this does nothing
4892         * since we set nr_frags to 0.
4893         */
4894        for (i = 0; i < from_shinfo->nr_frags; i++)
4895                __skb_frag_ref(&from_shinfo->frags[i]);
4896
4897        to->truesize += delta;
4898        to->len += len;
4899        to->data_len += len;
4900
4901        *delta_truesize = delta;
4902        return true;
4903}
4904EXPORT_SYMBOL(skb_try_coalesce);
4905
4906/**
4907 * skb_scrub_packet - scrub an skb
4908 *
4909 * @skb: buffer to clean
4910 * @xnet: packet is crossing netns
4911 *
4912 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4913 * into/from a tunnel. Some information have to be cleared during these
4914 * operations.
4915 * skb_scrub_packet can also be used to clean a skb before injecting it in
4916 * another namespace (@xnet == true). We have to clear all information in the
4917 * skb that could impact namespace isolation.
4918 */
4919void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4920{
4921        skb->pkt_type = PACKET_HOST;
4922        skb->skb_iif = 0;
4923        skb->ignore_df = 0;
4924        skb_dst_drop(skb);
4925        secpath_reset(skb);
4926        nf_reset(skb);
4927        nf_reset_trace(skb);
4928
4929#ifdef CONFIG_NET_SWITCHDEV
4930        skb->offload_fwd_mark = 0;
4931        skb->offload_l3_fwd_mark = 0;
4932#endif
4933
4934        if (!xnet)
4935                return;
4936
4937        ipvs_reset(skb);
4938        skb->mark = 0;
4939        skb->tstamp = 0;
4940}
4941EXPORT_SYMBOL_GPL(skb_scrub_packet);
4942
4943/**
4944 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4945 *
4946 * @skb: GSO skb
4947 *
4948 * skb_gso_transport_seglen is used to determine the real size of the
4949 * individual segments, including Layer4 headers (TCP/UDP).
4950 *
4951 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4952 */
4953static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4954{
4955        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4956        unsigned int thlen = 0;
4957
4958        if (skb->encapsulation) {
4959                thlen = skb_inner_transport_header(skb) -
4960                        skb_transport_header(skb);
4961
4962                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4963                        thlen += inner_tcp_hdrlen(skb);
4964        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4965                thlen = tcp_hdrlen(skb);
4966        } else if (unlikely(skb_is_gso_sctp(skb))) {
4967                thlen = sizeof(struct sctphdr);
4968        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4969                thlen = sizeof(struct udphdr);
4970        }
4971        /* UFO sets gso_size to the size of the fragmentation
4972         * payload, i.e. the size of the L4 (UDP) header is already
4973         * accounted for.
4974         */
4975        return thlen + shinfo->gso_size;
4976}
4977
4978/**
4979 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4980 *
4981 * @skb: GSO skb
4982 *
4983 * skb_gso_network_seglen is used to determine the real size of the
4984 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4985 *
4986 * The MAC/L2 header is not accounted for.
4987 */
4988static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4989{
4990        unsigned int hdr_len = skb_transport_header(skb) -
4991                               skb_network_header(skb);
4992
4993        return hdr_len + skb_gso_transport_seglen(skb);
4994}
4995
4996/**
4997 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4998 *
4999 * @skb: GSO skb
5000 *
5001 * skb_gso_mac_seglen is used to determine the real size of the
5002 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5003 * headers (TCP/UDP).
5004 */
5005static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5006{
5007        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5008
5009        return hdr_len + skb_gso_transport_seglen(skb);
5010}
5011
5012/**
5013 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5014 *
5015 * There are a couple of instances where we have a GSO skb, and we
5016 * want to determine what size it would be after it is segmented.
5017 *
5018 * We might want to check:
5019 * -    L3+L4+payload size (e.g. IP forwarding)
5020 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5021 *
5022 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5023 *
5024 * @skb: GSO skb
5025 *
5026 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5027 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5028 *
5029 * @max_len: The maximum permissible length.
5030 *
5031 * Returns true if the segmented length <= max length.
5032 */
5033static inline bool skb_gso_size_check(const struct sk_buff *skb,
5034                                      unsigned int seg_len,
5035                                      unsigned int max_len) {
5036        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5037        const struct sk_buff *iter;
5038
5039        if (shinfo->gso_size != GSO_BY_FRAGS)
5040                return seg_len <= max_len;
5041
5042        /* Undo this so we can re-use header sizes */
5043        seg_len -= GSO_BY_FRAGS;
5044
5045        skb_walk_frags(skb, iter) {
5046                if (seg_len + skb_headlen(iter) > max_len)
5047                        return false;
5048        }
5049
5050        return true;
5051}
5052
5053/**
5054 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5055 *
5056 * @skb: GSO skb
5057 * @mtu: MTU to validate against
5058 *
5059 * skb_gso_validate_network_len validates if a given skb will fit a
5060 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5061 * payload.
5062 */
5063bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5064{
5065        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5066}
5067EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5068
5069/**
5070 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5071 *
5072 * @skb: GSO skb
5073 * @len: length to validate against
5074 *
5075 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5076 * length once split, including L2, L3 and L4 headers and the payload.
5077 */
5078bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5079{
5080        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5081}
5082EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5083
5084static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5085{
5086        int mac_len;
5087
5088        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5089                kfree_skb(skb);
5090                return NULL;
5091        }
5092
5093        mac_len = skb->data - skb_mac_header(skb);
5094        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5095                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5096                        mac_len - VLAN_HLEN - ETH_TLEN);
5097        }
5098        skb->mac_header += VLAN_HLEN;
5099        return skb;
5100}
5101
5102struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5103{
5104        struct vlan_hdr *vhdr;
5105        u16 vlan_tci;
5106
5107        if (unlikely(skb_vlan_tag_present(skb))) {
5108                /* vlan_tci is already set-up so leave this for another time */
5109                return skb;
5110        }
5111
5112        skb = skb_share_check(skb, GFP_ATOMIC);
5113        if (unlikely(!skb))
5114                goto err_free;
5115
5116        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5117                goto err_free;
5118
5119        vhdr = (struct vlan_hdr *)skb->data;
5120        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5121        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5122
5123        skb_pull_rcsum(skb, VLAN_HLEN);
5124        vlan_set_encap_proto(skb, vhdr);
5125
5126        skb = skb_reorder_vlan_header(skb);
5127        if (unlikely(!skb))
5128                goto err_free;
5129
5130        skb_reset_network_header(skb);
5131        skb_reset_transport_header(skb);
5132        skb_reset_mac_len(skb);
5133
5134        return skb;
5135
5136err_free:
5137        kfree_skb(skb);
5138        return NULL;
5139}
5140EXPORT_SYMBOL(skb_vlan_untag);
5141
5142int skb_ensure_writable(struct sk_buff *skb, int write_len)
5143{
5144        if (!pskb_may_pull(skb, write_len))
5145                return -ENOMEM;
5146
5147        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5148                return 0;
5149
5150        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5151}
5152EXPORT_SYMBOL(skb_ensure_writable);
5153
5154/* remove VLAN header from packet and update csum accordingly.
5155 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5156 */
5157int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5158{
5159        struct vlan_hdr *vhdr;
5160        int offset = skb->data - skb_mac_header(skb);
5161        int err;
5162
5163        if (WARN_ONCE(offset,
5164                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5165                      offset)) {
5166                return -EINVAL;
5167        }
5168
5169        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5170        if (unlikely(err))
5171                return err;
5172
5173        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5174
5175        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5176        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5177
5178        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5179        __skb_pull(skb, VLAN_HLEN);
5180
5181        vlan_set_encap_proto(skb, vhdr);
5182        skb->mac_header += VLAN_HLEN;
5183
5184        if (skb_network_offset(skb) < ETH_HLEN)
5185                skb_set_network_header(skb, ETH_HLEN);
5186
5187        skb_reset_mac_len(skb);
5188
5189        return err;
5190}
5191EXPORT_SYMBOL(__skb_vlan_pop);
5192
5193/* Pop a vlan tag either from hwaccel or from payload.
5194 * Expects skb->data at mac header.
5195 */
5196int skb_vlan_pop(struct sk_buff *skb)
5197{
5198        u16 vlan_tci;
5199        __be16 vlan_proto;
5200        int err;
5201
5202        if (likely(skb_vlan_tag_present(skb))) {
5203                __vlan_hwaccel_clear_tag(skb);
5204        } else {
5205                if (unlikely(!eth_type_vlan(skb->protocol)))
5206                        return 0;
5207
5208                err = __skb_vlan_pop(skb, &vlan_tci);
5209                if (err)
5210                        return err;
5211        }
5212        /* move next vlan tag to hw accel tag */
5213        if (likely(!eth_type_vlan(skb->protocol)))
5214                return 0;
5215
5216        vlan_proto = skb->protocol;
5217        err = __skb_vlan_pop(skb, &vlan_tci);
5218        if (unlikely(err))
5219                return err;
5220
5221        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5222        return 0;
5223}
5224EXPORT_SYMBOL(skb_vlan_pop);
5225
5226/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5227 * Expects skb->data at mac header.
5228 */
5229int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5230{
5231        if (skb_vlan_tag_present(skb)) {
5232                int offset = skb->data - skb_mac_header(skb);
5233                int err;
5234
5235                if (WARN_ONCE(offset,
5236                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5237                              offset)) {
5238                        return -EINVAL;
5239                }
5240
5241                err = __vlan_insert_tag(skb, skb->vlan_proto,
5242                                        skb_vlan_tag_get(skb));
5243                if (err)
5244                        return err;
5245
5246                skb->protocol = skb->vlan_proto;
5247                skb->mac_len += VLAN_HLEN;
5248
5249                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5250        }
5251        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5252        return 0;
5253}
5254EXPORT_SYMBOL(skb_vlan_push);
5255
5256/**
5257 * alloc_skb_with_frags - allocate skb with page frags
5258 *
5259 * @header_len: size of linear part
5260 * @data_len: needed length in frags
5261 * @max_page_order: max page order desired.
5262 * @errcode: pointer to error code if any
5263 * @gfp_mask: allocation mask
5264 *
5265 * This can be used to allocate a paged skb, given a maximal order for frags.
5266 */
5267struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5268                                     unsigned long data_len,
5269                                     int max_page_order,
5270                                     int *errcode,
5271                                     gfp_t gfp_mask)
5272{
5273        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5274        unsigned long chunk;
5275        struct sk_buff *skb;
5276        struct page *page;
5277        int i;
5278
5279        *errcode = -EMSGSIZE;
5280        /* Note this test could be relaxed, if we succeed to allocate
5281         * high order pages...
5282         */
5283        if (npages > MAX_SKB_FRAGS)
5284                return NULL;
5285
5286        *errcode = -ENOBUFS;
5287        skb = alloc_skb(header_len, gfp_mask);
5288        if (!skb)
5289                return NULL;
5290
5291        skb->truesize += npages << PAGE_SHIFT;
5292
5293        for (i = 0; npages > 0; i++) {
5294                int order = max_page_order;
5295
5296                while (order) {
5297                        if (npages >= 1 << order) {
5298                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5299                                                   __GFP_COMP |
5300                                                   __GFP_NOWARN,
5301                                                   order);
5302                                if (page)
5303                                        goto fill_page;
5304                                /* Do not retry other high order allocations */
5305                                order = 1;
5306                                max_page_order = 0;
5307                        }
5308                        order--;
5309                }
5310                page = alloc_page(gfp_mask);
5311                if (!page)
5312                        goto failure;
5313fill_page:
5314                chunk = min_t(unsigned long, data_len,
5315                              PAGE_SIZE << order);
5316                skb_fill_page_desc(skb, i, page, 0, chunk);
5317                data_len -= chunk;
5318                npages -= 1 << order;
5319        }
5320        return skb;
5321
5322failure:
5323        kfree_skb(skb);
5324        return NULL;
5325}
5326EXPORT_SYMBOL(alloc_skb_with_frags);
5327
5328/* carve out the first off bytes from skb when off < headlen */
5329static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5330                                    const int headlen, gfp_t gfp_mask)
5331{
5332        int i;
5333        int size = skb_end_offset(skb);
5334        int new_hlen = headlen - off;
5335        u8 *data;
5336
5337        size = SKB_DATA_ALIGN(size);
5338
5339        if (skb_pfmemalloc(skb))
5340                gfp_mask |= __GFP_MEMALLOC;
5341        data = kmalloc_reserve(size +
5342                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5343                               gfp_mask, NUMA_NO_NODE, NULL);
5344        if (!data)
5345                return -ENOMEM;
5346
5347        size = SKB_WITH_OVERHEAD(ksize(data));
5348
5349        /* Copy real data, and all frags */
5350        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5351        skb->len -= off;
5352
5353        memcpy((struct skb_shared_info *)(data + size),
5354               skb_shinfo(skb),
5355               offsetof(struct skb_shared_info,
5356                        frags[skb_shinfo(skb)->nr_frags]));
5357        if (skb_cloned(skb)) {
5358                /* drop the old head gracefully */
5359                if (skb_orphan_frags(skb, gfp_mask)) {
5360                        kfree(data);
5361                        return -ENOMEM;
5362                }
5363                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5364                        skb_frag_ref(skb, i);
5365                if (skb_has_frag_list(skb))
5366                        skb_clone_fraglist(skb);
5367                skb_release_data(skb);
5368        } else {
5369                /* we can reuse existing recount- all we did was
5370                 * relocate values
5371                 */
5372                skb_free_head(skb);
5373        }
5374
5375        skb->head = data;
5376        skb->data = data;
5377        skb->head_frag = 0;
5378#ifdef NET_SKBUFF_DATA_USES_OFFSET
5379        skb->end = size;
5380#else
5381        skb->end = skb->head + size;
5382#endif
5383        skb_set_tail_pointer(skb, skb_headlen(skb));
5384        skb_headers_offset_update(skb, 0);
5385        skb->cloned = 0;
5386        skb->hdr_len = 0;
5387        skb->nohdr = 0;
5388        atomic_set(&skb_shinfo(skb)->dataref, 1);
5389
5390        return 0;
5391}
5392
5393static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5394
5395/* carve out the first eat bytes from skb's frag_list. May recurse into
5396 * pskb_carve()
5397 */
5398static int pskb_carve_frag_list(struct sk_buff *skb,
5399                                struct skb_shared_info *shinfo, int eat,
5400                                gfp_t gfp_mask)
5401{
5402        struct sk_buff *list = shinfo->frag_list;
5403        struct sk_buff *clone = NULL;
5404        struct sk_buff *insp = NULL;
5405
5406        do {
5407                if (!list) {
5408                        pr_err("Not enough bytes to eat. Want %d\n", eat);
5409                        return -EFAULT;
5410                }
5411                if (list->len <= eat) {
5412                        /* Eaten as whole. */
5413                        eat -= list->len;
5414                        list = list->next;
5415                        insp = list;
5416                } else {
5417                        /* Eaten partially. */
5418                        if (skb_shared(list)) {
5419                                clone = skb_clone(list, gfp_mask);
5420                                if (!clone)
5421                                        return -ENOMEM;
5422                                insp = list->next;
5423                                list = clone;
5424                        } else {
5425                                /* This may be pulled without problems. */
5426                                insp = list;
5427                        }
5428                        if (pskb_carve(list, eat, gfp_mask) < 0) {
5429                                kfree_skb(clone);
5430                                return -ENOMEM;
5431                        }
5432                        break;
5433                }
5434        } while (eat);
5435
5436        /* Free pulled out fragments. */
5437        while ((list = shinfo->frag_list) != insp) {
5438                shinfo->frag_list = list->next;
5439                kfree_skb(list);
5440        }
5441        /* And insert new clone at head. */
5442        if (clone) {
5443                clone->next = list;
5444                shinfo->frag_list = clone;
5445        }
5446        return 0;
5447}
5448
5449/* carve off first len bytes from skb. Split line (off) is in the
5450 * non-linear part of skb
5451 */
5452static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5453                                       int pos, gfp_t gfp_mask)
5454{
5455        int i, k = 0;
5456        int size = skb_end_offset(skb);
5457        u8 *data;
5458        const int nfrags = skb_shinfo(skb)->nr_frags;
5459        struct skb_shared_info *shinfo;
5460
5461        size = SKB_DATA_ALIGN(size);
5462
5463        if (skb_pfmemalloc(skb))
5464                gfp_mask |= __GFP_MEMALLOC;
5465        data = kmalloc_reserve(size +
5466                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5467                               gfp_mask, NUMA_NO_NODE, NULL);
5468        if (!data)
5469                return -ENOMEM;
5470
5471        size = SKB_WITH_OVERHEAD(ksize(data));
5472
5473        memcpy((struct skb_shared_info *)(data + size),
5474               skb_shinfo(skb), offsetof(struct skb_shared_info,
5475                                         frags[skb_shinfo(skb)->nr_frags]));
5476        if (skb_orphan_frags(skb, gfp_mask)) {
5477                kfree(data);
5478                return -ENOMEM;
5479        }
5480        shinfo = (struct skb_shared_info *)(data + size);
5481        for (i = 0; i < nfrags; i++) {
5482                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5483
5484                if (pos + fsize > off) {
5485                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5486
5487                        if (pos < off) {
5488                                /* Split frag.
5489                                 * We have two variants in this case:
5490                                 * 1. Move all the frag to the second
5491                                 *    part, if it is possible. F.e.
5492                                 *    this approach is mandatory for TUX,
5493                                 *    where splitting is expensive.
5494                                 * 2. Split is accurately. We make this.
5495                                 */
5496                                shinfo->frags[0].page_offset += off - pos;
5497                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
5498                        }
5499                        skb_frag_ref(skb, i);
5500                        k++;
5501                }
5502                pos += fsize;
5503        }
5504        shinfo->nr_frags = k;
5505        if (skb_has_frag_list(skb))
5506                skb_clone_fraglist(skb);
5507
5508        if (k == 0) {
5509                /* split line is in frag list */
5510                pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5511        }
5512        skb_release_data(skb);
5513
5514        skb->head = data;
5515        skb->head_frag = 0;
5516        skb->data = data;
5517#ifdef NET_SKBUFF_DATA_USES_OFFSET
5518        skb->end = size;
5519#else
5520        skb->end = skb->head + size;
5521#endif
5522        skb_reset_tail_pointer(skb);
5523        skb_headers_offset_update(skb, 0);
5524        skb->cloned   = 0;
5525        skb->hdr_len  = 0;
5526        skb->nohdr    = 0;
5527        skb->len -= off;
5528        skb->data_len = skb->len;
5529        atomic_set(&skb_shinfo(skb)->dataref, 1);
5530        return 0;
5531}
5532
5533/* remove len bytes from the beginning of the skb */
5534static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5535{
5536        int headlen = skb_headlen(skb);
5537
5538        if (len < headlen)
5539                return pskb_carve_inside_header(skb, len, headlen, gfp);
5540        else
5541                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5542}
5543
5544/* Extract to_copy bytes starting at off from skb, and return this in
5545 * a new skb
5546 */
5547struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5548                             int to_copy, gfp_t gfp)
5549{
5550        struct sk_buff  *clone = skb_clone(skb, gfp);
5551
5552        if (!clone)
5553                return NULL;
5554
5555        if (pskb_carve(clone, off, gfp) < 0 ||
5556            pskb_trim(clone, to_copy)) {
5557                kfree_skb(clone);
5558                return NULL;
5559        }
5560        return clone;
5561}
5562EXPORT_SYMBOL(pskb_extract);
5563
5564/**
5565 * skb_condense - try to get rid of fragments/frag_list if possible
5566 * @skb: buffer
5567 *
5568 * Can be used to save memory before skb is added to a busy queue.
5569 * If packet has bytes in frags and enough tail room in skb->head,
5570 * pull all of them, so that we can free the frags right now and adjust
5571 * truesize.
5572 * Notes:
5573 *      We do not reallocate skb->head thus can not fail.
5574 *      Caller must re-evaluate skb->truesize if needed.
5575 */
5576void skb_condense(struct sk_buff *skb)
5577{
5578        if (skb->data_len) {
5579                if (skb->data_len > skb->end - skb->tail ||
5580                    skb_cloned(skb))
5581                        return;
5582
5583                /* Nice, we can free page frag(s) right now */
5584                __pskb_pull_tail(skb, skb->data_len);
5585        }
5586        /* At this point, skb->truesize might be over estimated,
5587         * because skb had a fragment, and fragments do not tell
5588         * their truesize.
5589         * When we pulled its content into skb->head, fragment
5590         * was freed, but __pskb_pull_tail() could not possibly
5591         * adjust skb->truesize, not knowing the frag truesize.
5592         */
5593        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5594}
5595
5596#ifdef CONFIG_SKB_EXTENSIONS
5597static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5598{
5599        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5600}
5601
5602static struct skb_ext *skb_ext_alloc(void)
5603{
5604        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5605
5606        if (new) {
5607                memset(new->offset, 0, sizeof(new->offset));
5608                refcount_set(&new->refcnt, 1);
5609        }
5610
5611        return new;
5612}
5613
5614static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5615                                         unsigned int old_active)
5616{
5617        struct skb_ext *new;
5618
5619        if (refcount_read(&old->refcnt) == 1)
5620                return old;
5621
5622        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5623        if (!new)
5624                return NULL;
5625
5626        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5627        refcount_set(&new->refcnt, 1);
5628
5629#ifdef CONFIG_XFRM
5630        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5631                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5632                unsigned int i;
5633
5634                for (i = 0; i < sp->len; i++)
5635                        xfrm_state_hold(sp->xvec[i]);
5636        }
5637#endif
5638        __skb_ext_put(old);
5639        return new;
5640}
5641
5642/**
5643 * skb_ext_add - allocate space for given extension, COW if needed
5644 * @skb: buffer
5645 * @id: extension to allocate space for
5646 *
5647 * Allocates enough space for the given extension.
5648 * If the extension is already present, a pointer to that extension
5649 * is returned.
5650 *
5651 * If the skb was cloned, COW applies and the returned memory can be
5652 * modified without changing the extension space of clones buffers.
5653 *
5654 * Returns pointer to the extension or NULL on allocation failure.
5655 */
5656void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5657{
5658        struct skb_ext *new, *old = NULL;
5659        unsigned int newlen, newoff;
5660
5661        if (skb->active_extensions) {
5662                old = skb->extensions;
5663
5664                new = skb_ext_maybe_cow(old, skb->active_extensions);
5665                if (!new)
5666                        return NULL;
5667
5668                if (__skb_ext_exist(new, id))
5669                        goto set_active;
5670
5671                newoff = new->chunks;
5672        } else {
5673                newoff = SKB_EXT_CHUNKSIZEOF(*new);
5674
5675                new = skb_ext_alloc();
5676                if (!new)
5677                        return NULL;
5678        }
5679
5680        newlen = newoff + skb_ext_type_len[id];
5681        new->chunks = newlen;
5682        new->offset[id] = newoff;
5683set_active:
5684        skb->extensions = new;
5685        skb->active_extensions |= 1 << id;
5686        return skb_ext_get_ptr(new, id);
5687}
5688EXPORT_SYMBOL(skb_ext_add);
5689
5690#ifdef CONFIG_XFRM
5691static void skb_ext_put_sp(struct sec_path *sp)
5692{
5693        unsigned int i;
5694
5695        for (i = 0; i < sp->len; i++)
5696                xfrm_state_put(sp->xvec[i]);
5697}
5698#endif
5699
5700void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5701{
5702        struct skb_ext *ext = skb->extensions;
5703
5704        skb->active_extensions &= ~(1 << id);
5705        if (skb->active_extensions == 0) {
5706                skb->extensions = NULL;
5707                __skb_ext_put(ext);
5708#ifdef CONFIG_XFRM
5709        } else if (id == SKB_EXT_SEC_PATH &&
5710                   refcount_read(&ext->refcnt) == 1) {
5711                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5712
5713                skb_ext_put_sp(sp);
5714                sp->len = 0;
5715#endif
5716        }
5717}
5718EXPORT_SYMBOL(__skb_ext_del);
5719
5720void __skb_ext_put(struct skb_ext *ext)
5721{
5722        /* If this is last clone, nothing can increment
5723         * it after check passes.  Avoids one atomic op.
5724         */
5725        if (refcount_read(&ext->refcnt) == 1)
5726                goto free_now;
5727
5728        if (!refcount_dec_and_test(&ext->refcnt))
5729                return;
5730free_now:
5731#ifdef CONFIG_XFRM
5732        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5733                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5734#endif
5735
5736        kmem_cache_free(skbuff_ext_cache, ext);
5737}
5738EXPORT_SYMBOL(__skb_ext_put);
5739#endif /* CONFIG_SKB_EXTENSIONS */
5740