linux/net/ipv4/tcp_bbr.c
<<
>>
Prefs
   1/* Bottleneck Bandwidth and RTT (BBR) congestion control
   2 *
   3 * BBR congestion control computes the sending rate based on the delivery
   4 * rate (throughput) estimated from ACKs. In a nutshell:
   5 *
   6 *   On each ACK, update our model of the network path:
   7 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
   8 *      min_rtt = windowed_min(rtt, 10 seconds)
   9 *   pacing_rate = pacing_gain * bottleneck_bandwidth
  10 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
  11 *
  12 * The core algorithm does not react directly to packet losses or delays,
  13 * although BBR may adjust the size of next send per ACK when loss is
  14 * observed, or adjust the sending rate if it estimates there is a
  15 * traffic policer, in order to keep the drop rate reasonable.
  16 *
  17 * Here is a state transition diagram for BBR:
  18 *
  19 *             |
  20 *             V
  21 *    +---> STARTUP  ----+
  22 *    |        |         |
  23 *    |        V         |
  24 *    |      DRAIN   ----+
  25 *    |        |         |
  26 *    |        V         |
  27 *    +---> PROBE_BW ----+
  28 *    |      ^    |      |
  29 *    |      |    |      |
  30 *    |      +----+      |
  31 *    |                  |
  32 *    +---- PROBE_RTT <--+
  33 *
  34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
  35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
  36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
  37 * A long-lived BBR flow spends the vast majority of its time remaining
  38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
  39 * in a fair manner, with a small, bounded queue. *If* a flow has been
  40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
  41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
  42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
  43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
  44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
  45 * otherwise we enter STARTUP to try to fill the pipe.
  46 *
  47 * BBR is described in detail in:
  48 *   "BBR: Congestion-Based Congestion Control",
  49 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
  50 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
  51 *
  52 * There is a public e-mail list for discussing BBR development and testing:
  53 *   https://groups.google.com/forum/#!forum/bbr-dev
  54 *
  55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
  56 * otherwise TCP stack falls back to an internal pacing using one high
  57 * resolution timer per TCP socket and may use more resources.
  58 */
  59#include <linux/module.h>
  60#include <net/tcp.h>
  61#include <linux/inet_diag.h>
  62#include <linux/inet.h>
  63#include <linux/random.h>
  64#include <linux/win_minmax.h>
  65
  66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
  67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
  68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
  69 * Since the minimum window is >=4 packets, the lower bound isn't
  70 * an issue. The upper bound isn't an issue with existing technologies.
  71 */
  72#define BW_SCALE 24
  73#define BW_UNIT (1 << BW_SCALE)
  74
  75#define BBR_SCALE 8     /* scaling factor for fractions in BBR (e.g. gains) */
  76#define BBR_UNIT (1 << BBR_SCALE)
  77
  78/* BBR has the following modes for deciding how fast to send: */
  79enum bbr_mode {
  80        BBR_STARTUP,    /* ramp up sending rate rapidly to fill pipe */
  81        BBR_DRAIN,      /* drain any queue created during startup */
  82        BBR_PROBE_BW,   /* discover, share bw: pace around estimated bw */
  83        BBR_PROBE_RTT,  /* cut inflight to min to probe min_rtt */
  84};
  85
  86/* BBR congestion control block */
  87struct bbr {
  88        u32     min_rtt_us;             /* min RTT in min_rtt_win_sec window */
  89        u32     min_rtt_stamp;          /* timestamp of min_rtt_us */
  90        u32     probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
  91        struct minmax bw;       /* Max recent delivery rate in pkts/uS << 24 */
  92        u32     rtt_cnt;            /* count of packet-timed rounds elapsed */
  93        u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
  94        u64     cycle_mstamp;        /* time of this cycle phase start */
  95        u32     mode:3,              /* current bbr_mode in state machine */
  96                prev_ca_state:3,     /* CA state on previous ACK */
  97                packet_conservation:1,  /* use packet conservation? */
  98                round_start:1,       /* start of packet-timed tx->ack round? */
  99                idle_restart:1,      /* restarting after idle? */
 100                probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
 101                unused:13,
 102                lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
 103                lt_rtt_cnt:7,        /* round trips in long-term interval */
 104                lt_use_bw:1;         /* use lt_bw as our bw estimate? */
 105        u32     lt_bw;               /* LT est delivery rate in pkts/uS << 24 */
 106        u32     lt_last_delivered;   /* LT intvl start: tp->delivered */
 107        u32     lt_last_stamp;       /* LT intvl start: tp->delivered_mstamp */
 108        u32     lt_last_lost;        /* LT intvl start: tp->lost */
 109        u32     pacing_gain:10, /* current gain for setting pacing rate */
 110                cwnd_gain:10,   /* current gain for setting cwnd */
 111                full_bw_reached:1,   /* reached full bw in Startup? */
 112                full_bw_cnt:2,  /* number of rounds without large bw gains */
 113                cycle_idx:3,    /* current index in pacing_gain cycle array */
 114                has_seen_rtt:1, /* have we seen an RTT sample yet? */
 115                unused_b:5;
 116        u32     prior_cwnd;     /* prior cwnd upon entering loss recovery */
 117        u32     full_bw;        /* recent bw, to estimate if pipe is full */
 118};
 119
 120#define CYCLE_LEN       8       /* number of phases in a pacing gain cycle */
 121
 122/* Window length of bw filter (in rounds): */
 123static const int bbr_bw_rtts = CYCLE_LEN + 2;
 124/* Window length of min_rtt filter (in sec): */
 125static const u32 bbr_min_rtt_win_sec = 10;
 126/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
 127static const u32 bbr_probe_rtt_mode_ms = 200;
 128/* Skip TSO below the following bandwidth (bits/sec): */
 129static const int bbr_min_tso_rate = 1200000;
 130
 131/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
 132 * In order to help drive the network toward lower queues and low latency while
 133 * maintaining high utilization, the average pacing rate aims to be slightly
 134 * lower than the estimated bandwidth. This is an important aspect of the
 135 * design.
 136 */
 137static const int bbr_pacing_margin_percent = 1;
 138
 139/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 140 * that will allow a smoothly increasing pacing rate that will double each RTT
 141 * and send the same number of packets per RTT that an un-paced, slow-starting
 142 * Reno or CUBIC flow would:
 143 */
 144static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
 145/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 146 * the queue created in BBR_STARTUP in a single round:
 147 */
 148static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
 149/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
 150static const int bbr_cwnd_gain  = BBR_UNIT * 2;
 151/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
 152static const int bbr_pacing_gain[] = {
 153        BBR_UNIT * 5 / 4,       /* probe for more available bw */
 154        BBR_UNIT * 3 / 4,       /* drain queue and/or yield bw to other flows */
 155        BBR_UNIT, BBR_UNIT, BBR_UNIT,   /* cruise at 1.0*bw to utilize pipe, */
 156        BBR_UNIT, BBR_UNIT, BBR_UNIT    /* without creating excess queue... */
 157};
 158/* Randomize the starting gain cycling phase over N phases: */
 159static const u32 bbr_cycle_rand = 7;
 160
 161/* Try to keep at least this many packets in flight, if things go smoothly. For
 162 * smooth functioning, a sliding window protocol ACKing every other packet
 163 * needs at least 4 packets in flight:
 164 */
 165static const u32 bbr_cwnd_min_target = 4;
 166
 167/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
 168/* If bw has increased significantly (1.25x), there may be more bw available: */
 169static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
 170/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
 171static const u32 bbr_full_bw_cnt = 3;
 172
 173/* "long-term" ("LT") bandwidth estimator parameters... */
 174/* The minimum number of rounds in an LT bw sampling interval: */
 175static const u32 bbr_lt_intvl_min_rtts = 4;
 176/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
 177static const u32 bbr_lt_loss_thresh = 50;
 178/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
 179static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
 180/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
 181static const u32 bbr_lt_bw_diff = 4000 / 8;
 182/* If we estimate we're policed, use lt_bw for this many round trips: */
 183static const u32 bbr_lt_bw_max_rtts = 48;
 184
 185static void bbr_check_probe_rtt_done(struct sock *sk);
 186
 187/* Do we estimate that STARTUP filled the pipe? */
 188static bool bbr_full_bw_reached(const struct sock *sk)
 189{
 190        const struct bbr *bbr = inet_csk_ca(sk);
 191
 192        return bbr->full_bw_reached;
 193}
 194
 195/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
 196static u32 bbr_max_bw(const struct sock *sk)
 197{
 198        struct bbr *bbr = inet_csk_ca(sk);
 199
 200        return minmax_get(&bbr->bw);
 201}
 202
 203/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
 204static u32 bbr_bw(const struct sock *sk)
 205{
 206        struct bbr *bbr = inet_csk_ca(sk);
 207
 208        return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
 209}
 210
 211/* Return rate in bytes per second, optionally with a gain.
 212 * The order here is chosen carefully to avoid overflow of u64. This should
 213 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 214 */
 215static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
 216{
 217        unsigned int mss = tcp_sk(sk)->mss_cache;
 218
 219        rate *= mss;
 220        rate *= gain;
 221        rate >>= BBR_SCALE;
 222        rate *= USEC_PER_SEC / 100 * (100 - bbr_pacing_margin_percent);
 223        return rate >> BW_SCALE;
 224}
 225
 226/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
 227static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
 228{
 229        u64 rate = bw;
 230
 231        rate = bbr_rate_bytes_per_sec(sk, rate, gain);
 232        rate = min_t(u64, rate, sk->sk_max_pacing_rate);
 233        return rate;
 234}
 235
 236/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
 237static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
 238{
 239        struct tcp_sock *tp = tcp_sk(sk);
 240        struct bbr *bbr = inet_csk_ca(sk);
 241        u64 bw;
 242        u32 rtt_us;
 243
 244        if (tp->srtt_us) {              /* any RTT sample yet? */
 245                rtt_us = max(tp->srtt_us >> 3, 1U);
 246                bbr->has_seen_rtt = 1;
 247        } else {                         /* no RTT sample yet */
 248                rtt_us = USEC_PER_MSEC;  /* use nominal default RTT */
 249        }
 250        bw = (u64)tp->snd_cwnd * BW_UNIT;
 251        do_div(bw, rtt_us);
 252        sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
 253}
 254
 255/* Pace using current bw estimate and a gain factor. */
 256static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
 257{
 258        struct tcp_sock *tp = tcp_sk(sk);
 259        struct bbr *bbr = inet_csk_ca(sk);
 260        unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
 261
 262        if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
 263                bbr_init_pacing_rate_from_rtt(sk);
 264        if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
 265                sk->sk_pacing_rate = rate;
 266}
 267
 268/* override sysctl_tcp_min_tso_segs */
 269static u32 bbr_min_tso_segs(struct sock *sk)
 270{
 271        return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
 272}
 273
 274static u32 bbr_tso_segs_goal(struct sock *sk)
 275{
 276        struct tcp_sock *tp = tcp_sk(sk);
 277        u32 segs, bytes;
 278
 279        /* Sort of tcp_tso_autosize() but ignoring
 280         * driver provided sk_gso_max_size.
 281         */
 282        bytes = min_t(unsigned long, sk->sk_pacing_rate >> sk->sk_pacing_shift,
 283                      GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
 284        segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
 285
 286        return min(segs, 0x7FU);
 287}
 288
 289/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
 290static void bbr_save_cwnd(struct sock *sk)
 291{
 292        struct tcp_sock *tp = tcp_sk(sk);
 293        struct bbr *bbr = inet_csk_ca(sk);
 294
 295        if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
 296                bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
 297        else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
 298                bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
 299}
 300
 301static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
 302{
 303        struct tcp_sock *tp = tcp_sk(sk);
 304        struct bbr *bbr = inet_csk_ca(sk);
 305
 306        if (event == CA_EVENT_TX_START && tp->app_limited) {
 307                bbr->idle_restart = 1;
 308                /* Avoid pointless buffer overflows: pace at est. bw if we don't
 309                 * need more speed (we're restarting from idle and app-limited).
 310                 */
 311                if (bbr->mode == BBR_PROBE_BW)
 312                        bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
 313                else if (bbr->mode == BBR_PROBE_RTT)
 314                        bbr_check_probe_rtt_done(sk);
 315        }
 316}
 317
 318/* Find target cwnd. Right-size the cwnd based on min RTT and the
 319 * estimated bottleneck bandwidth:
 320 *
 321 * cwnd = bw * min_rtt * gain = BDP * gain
 322 *
 323 * The key factor, gain, controls the amount of queue. While a small gain
 324 * builds a smaller queue, it becomes more vulnerable to noise in RTT
 325 * measurements (e.g., delayed ACKs or other ACK compression effects). This
 326 * noise may cause BBR to under-estimate the rate.
 327 *
 328 * To achieve full performance in high-speed paths, we budget enough cwnd to
 329 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 330 *   - one skb in sending host Qdisc,
 331 *   - one skb in sending host TSO/GSO engine
 332 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 333 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 334 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 335 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 336 * full even with ACK-every-other-packet delayed ACKs.
 337 */
 338static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
 339{
 340        struct bbr *bbr = inet_csk_ca(sk);
 341        u32 cwnd;
 342        u64 w;
 343
 344        /* If we've never had a valid RTT sample, cap cwnd at the initial
 345         * default. This should only happen when the connection is not using TCP
 346         * timestamps and has retransmitted all of the SYN/SYNACK/data packets
 347         * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
 348         * case we need to slow-start up toward something safe: TCP_INIT_CWND.
 349         */
 350        if (unlikely(bbr->min_rtt_us == ~0U))    /* no valid RTT samples yet? */
 351                return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
 352
 353        w = (u64)bw * bbr->min_rtt_us;
 354
 355        /* Apply a gain to the given value, then remove the BW_SCALE shift. */
 356        cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
 357
 358        /* Allow enough full-sized skbs in flight to utilize end systems. */
 359        cwnd += 3 * bbr_tso_segs_goal(sk);
 360
 361        /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
 362        cwnd = (cwnd + 1) & ~1U;
 363
 364        /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
 365        if (bbr->mode == BBR_PROBE_BW && gain > BBR_UNIT)
 366                cwnd += 2;
 367
 368        return cwnd;
 369}
 370
 371/* With pacing at lower layers, there's often less data "in the network" than
 372 * "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
 373 * we often have several skbs queued in the pacing layer with a pre-scheduled
 374 * earliest departure time (EDT). BBR adapts its pacing rate based on the
 375 * inflight level that it estimates has already been "baked in" by previous
 376 * departure time decisions. We calculate a rough estimate of the number of our
 377 * packets that might be in the network at the earliest departure time for the
 378 * next skb scheduled:
 379 *   in_network_at_edt = inflight_at_edt - (EDT - now) * bw
 380 * If we're increasing inflight, then we want to know if the transmit of the
 381 * EDT skb will push inflight above the target, so inflight_at_edt includes
 382 * bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
 383 * then estimate if inflight will sink too low just before the EDT transmit.
 384 */
 385static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
 386{
 387        struct tcp_sock *tp = tcp_sk(sk);
 388        struct bbr *bbr = inet_csk_ca(sk);
 389        u64 now_ns, edt_ns, interval_us;
 390        u32 interval_delivered, inflight_at_edt;
 391
 392        now_ns = tp->tcp_clock_cache;
 393        edt_ns = max(tp->tcp_wstamp_ns, now_ns);
 394        interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
 395        interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
 396        inflight_at_edt = inflight_now;
 397        if (bbr->pacing_gain > BBR_UNIT)              /* increasing inflight */
 398                inflight_at_edt += bbr_tso_segs_goal(sk);  /* include EDT skb */
 399        if (interval_delivered >= inflight_at_edt)
 400                return 0;
 401        return inflight_at_edt - interval_delivered;
 402}
 403
 404/* An optimization in BBR to reduce losses: On the first round of recovery, we
 405 * follow the packet conservation principle: send P packets per P packets acked.
 406 * After that, we slow-start and send at most 2*P packets per P packets acked.
 407 * After recovery finishes, or upon undo, we restore the cwnd we had when
 408 * recovery started (capped by the target cwnd based on estimated BDP).
 409 *
 410 * TODO(ycheng/ncardwell): implement a rate-based approach.
 411 */
 412static bool bbr_set_cwnd_to_recover_or_restore(
 413        struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
 414{
 415        struct tcp_sock *tp = tcp_sk(sk);
 416        struct bbr *bbr = inet_csk_ca(sk);
 417        u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
 418        u32 cwnd = tp->snd_cwnd;
 419
 420        /* An ACK for P pkts should release at most 2*P packets. We do this
 421         * in two steps. First, here we deduct the number of lost packets.
 422         * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
 423         */
 424        if (rs->losses > 0)
 425                cwnd = max_t(s32, cwnd - rs->losses, 1);
 426
 427        if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
 428                /* Starting 1st round of Recovery, so do packet conservation. */
 429                bbr->packet_conservation = 1;
 430                bbr->next_rtt_delivered = tp->delivered;  /* start round now */
 431                /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
 432                cwnd = tcp_packets_in_flight(tp) + acked;
 433        } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
 434                /* Exiting loss recovery; restore cwnd saved before recovery. */
 435                cwnd = max(cwnd, bbr->prior_cwnd);
 436                bbr->packet_conservation = 0;
 437        }
 438        bbr->prev_ca_state = state;
 439
 440        if (bbr->packet_conservation) {
 441                *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
 442                return true;    /* yes, using packet conservation */
 443        }
 444        *new_cwnd = cwnd;
 445        return false;
 446}
 447
 448/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 449 * has drawn us down below target), or snap down to target if we're above it.
 450 */
 451static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
 452                         u32 acked, u32 bw, int gain)
 453{
 454        struct tcp_sock *tp = tcp_sk(sk);
 455        struct bbr *bbr = inet_csk_ca(sk);
 456        u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
 457
 458        if (!acked)
 459                goto done;  /* no packet fully ACKed; just apply caps */
 460
 461        if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
 462                goto done;
 463
 464        /* If we're below target cwnd, slow start cwnd toward target cwnd. */
 465        target_cwnd = bbr_target_cwnd(sk, bw, gain);
 466        if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
 467                cwnd = min(cwnd + acked, target_cwnd);
 468        else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
 469                cwnd = cwnd + acked;
 470        cwnd = max(cwnd, bbr_cwnd_min_target);
 471
 472done:
 473        tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);   /* apply global cap */
 474        if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
 475                tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
 476}
 477
 478/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
 479static bool bbr_is_next_cycle_phase(struct sock *sk,
 480                                    const struct rate_sample *rs)
 481{
 482        struct tcp_sock *tp = tcp_sk(sk);
 483        struct bbr *bbr = inet_csk_ca(sk);
 484        bool is_full_length =
 485                tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
 486                bbr->min_rtt_us;
 487        u32 inflight, bw;
 488
 489        /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
 490         * use the pipe without increasing the queue.
 491         */
 492        if (bbr->pacing_gain == BBR_UNIT)
 493                return is_full_length;          /* just use wall clock time */
 494
 495        inflight = bbr_packets_in_net_at_edt(sk, rs->prior_in_flight);
 496        bw = bbr_max_bw(sk);
 497
 498        /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
 499         * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
 500         * small (e.g. on a LAN). We do not persist if packets are lost, since
 501         * a path with small buffers may not hold that much.
 502         */
 503        if (bbr->pacing_gain > BBR_UNIT)
 504                return is_full_length &&
 505                        (rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
 506                         inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
 507
 508        /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
 509         * probing didn't find more bw. If inflight falls to match BDP then we
 510         * estimate queue is drained; persisting would underutilize the pipe.
 511         */
 512        return is_full_length ||
 513                inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
 514}
 515
 516static void bbr_advance_cycle_phase(struct sock *sk)
 517{
 518        struct tcp_sock *tp = tcp_sk(sk);
 519        struct bbr *bbr = inet_csk_ca(sk);
 520
 521        bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
 522        bbr->cycle_mstamp = tp->delivered_mstamp;
 523}
 524
 525/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
 526static void bbr_update_cycle_phase(struct sock *sk,
 527                                   const struct rate_sample *rs)
 528{
 529        struct bbr *bbr = inet_csk_ca(sk);
 530
 531        if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
 532                bbr_advance_cycle_phase(sk);
 533}
 534
 535static void bbr_reset_startup_mode(struct sock *sk)
 536{
 537        struct bbr *bbr = inet_csk_ca(sk);
 538
 539        bbr->mode = BBR_STARTUP;
 540}
 541
 542static void bbr_reset_probe_bw_mode(struct sock *sk)
 543{
 544        struct bbr *bbr = inet_csk_ca(sk);
 545
 546        bbr->mode = BBR_PROBE_BW;
 547        bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
 548        bbr_advance_cycle_phase(sk);    /* flip to next phase of gain cycle */
 549}
 550
 551static void bbr_reset_mode(struct sock *sk)
 552{
 553        if (!bbr_full_bw_reached(sk))
 554                bbr_reset_startup_mode(sk);
 555        else
 556                bbr_reset_probe_bw_mode(sk);
 557}
 558
 559/* Start a new long-term sampling interval. */
 560static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
 561{
 562        struct tcp_sock *tp = tcp_sk(sk);
 563        struct bbr *bbr = inet_csk_ca(sk);
 564
 565        bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
 566        bbr->lt_last_delivered = tp->delivered;
 567        bbr->lt_last_lost = tp->lost;
 568        bbr->lt_rtt_cnt = 0;
 569}
 570
 571/* Completely reset long-term bandwidth sampling. */
 572static void bbr_reset_lt_bw_sampling(struct sock *sk)
 573{
 574        struct bbr *bbr = inet_csk_ca(sk);
 575
 576        bbr->lt_bw = 0;
 577        bbr->lt_use_bw = 0;
 578        bbr->lt_is_sampling = false;
 579        bbr_reset_lt_bw_sampling_interval(sk);
 580}
 581
 582/* Long-term bw sampling interval is done. Estimate whether we're policed. */
 583static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
 584{
 585        struct bbr *bbr = inet_csk_ca(sk);
 586        u32 diff;
 587
 588        if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
 589                /* Is new bw close to the lt_bw from the previous interval? */
 590                diff = abs(bw - bbr->lt_bw);
 591                if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
 592                    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
 593                     bbr_lt_bw_diff)) {
 594                        /* All criteria are met; estimate we're policed. */
 595                        bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
 596                        bbr->lt_use_bw = 1;
 597                        bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
 598                        bbr->lt_rtt_cnt = 0;
 599                        return;
 600                }
 601        }
 602        bbr->lt_bw = bw;
 603        bbr_reset_lt_bw_sampling_interval(sk);
 604}
 605
 606/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 607 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 608 * explicitly models their policed rate, to reduce unnecessary losses. We
 609 * estimate that we're policed if we see 2 consecutive sampling intervals with
 610 * consistent throughput and high packet loss. If we think we're being policed,
 611 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 612 */
 613static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
 614{
 615        struct tcp_sock *tp = tcp_sk(sk);
 616        struct bbr *bbr = inet_csk_ca(sk);
 617        u32 lost, delivered;
 618        u64 bw;
 619        u32 t;
 620
 621        if (bbr->lt_use_bw) {   /* already using long-term rate, lt_bw? */
 622                if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
 623                    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
 624                        bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
 625                        bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
 626                }
 627                return;
 628        }
 629
 630        /* Wait for the first loss before sampling, to let the policer exhaust
 631         * its tokens and estimate the steady-state rate allowed by the policer.
 632         * Starting samples earlier includes bursts that over-estimate the bw.
 633         */
 634        if (!bbr->lt_is_sampling) {
 635                if (!rs->losses)
 636                        return;
 637                bbr_reset_lt_bw_sampling_interval(sk);
 638                bbr->lt_is_sampling = true;
 639        }
 640
 641        /* To avoid underestimates, reset sampling if we run out of data. */
 642        if (rs->is_app_limited) {
 643                bbr_reset_lt_bw_sampling(sk);
 644                return;
 645        }
 646
 647        if (bbr->round_start)
 648                bbr->lt_rtt_cnt++;      /* count round trips in this interval */
 649        if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
 650                return;         /* sampling interval needs to be longer */
 651        if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
 652                bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
 653                return;
 654        }
 655
 656        /* End sampling interval when a packet is lost, so we estimate the
 657         * policer tokens were exhausted. Stopping the sampling before the
 658         * tokens are exhausted under-estimates the policed rate.
 659         */
 660        if (!rs->losses)
 661                return;
 662
 663        /* Calculate packets lost and delivered in sampling interval. */
 664        lost = tp->lost - bbr->lt_last_lost;
 665        delivered = tp->delivered - bbr->lt_last_delivered;
 666        /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
 667        if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
 668                return;
 669
 670        /* Find average delivery rate in this sampling interval. */
 671        t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
 672        if ((s32)t < 1)
 673                return;         /* interval is less than one ms, so wait */
 674        /* Check if can multiply without overflow */
 675        if (t >= ~0U / USEC_PER_MSEC) {
 676                bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
 677                return;
 678        }
 679        t *= USEC_PER_MSEC;
 680        bw = (u64)delivered * BW_UNIT;
 681        do_div(bw, t);
 682        bbr_lt_bw_interval_done(sk, bw);
 683}
 684
 685/* Estimate the bandwidth based on how fast packets are delivered */
 686static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
 687{
 688        struct tcp_sock *tp = tcp_sk(sk);
 689        struct bbr *bbr = inet_csk_ca(sk);
 690        u64 bw;
 691
 692        bbr->round_start = 0;
 693        if (rs->delivered < 0 || rs->interval_us <= 0)
 694                return; /* Not a valid observation */
 695
 696        /* See if we've reached the next RTT */
 697        if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
 698                bbr->next_rtt_delivered = tp->delivered;
 699                bbr->rtt_cnt++;
 700                bbr->round_start = 1;
 701                bbr->packet_conservation = 0;
 702        }
 703
 704        bbr_lt_bw_sampling(sk, rs);
 705
 706        /* Divide delivered by the interval to find a (lower bound) bottleneck
 707         * bandwidth sample. Delivered is in packets and interval_us in uS and
 708         * ratio will be <<1 for most connections. So delivered is first scaled.
 709         */
 710        bw = (u64)rs->delivered * BW_UNIT;
 711        do_div(bw, rs->interval_us);
 712
 713        /* If this sample is application-limited, it is likely to have a very
 714         * low delivered count that represents application behavior rather than
 715         * the available network rate. Such a sample could drag down estimated
 716         * bw, causing needless slow-down. Thus, to continue to send at the
 717         * last measured network rate, we filter out app-limited samples unless
 718         * they describe the path bw at least as well as our bw model.
 719         *
 720         * So the goal during app-limited phase is to proceed with the best
 721         * network rate no matter how long. We automatically leave this
 722         * phase when app writes faster than the network can deliver :)
 723         */
 724        if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
 725                /* Incorporate new sample into our max bw filter. */
 726                minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
 727        }
 728}
 729
 730/* Estimate when the pipe is full, using the change in delivery rate: BBR
 731 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 732 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 733 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 734 * higher rwin, 3: we get higher delivery rate samples. Or transient
 735 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 736 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 737 */
 738static void bbr_check_full_bw_reached(struct sock *sk,
 739                                      const struct rate_sample *rs)
 740{
 741        struct bbr *bbr = inet_csk_ca(sk);
 742        u32 bw_thresh;
 743
 744        if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
 745                return;
 746
 747        bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
 748        if (bbr_max_bw(sk) >= bw_thresh) {
 749                bbr->full_bw = bbr_max_bw(sk);
 750                bbr->full_bw_cnt = 0;
 751                return;
 752        }
 753        ++bbr->full_bw_cnt;
 754        bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
 755}
 756
 757/* If pipe is probably full, drain the queue and then enter steady-state. */
 758static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
 759{
 760        struct bbr *bbr = inet_csk_ca(sk);
 761
 762        if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
 763                bbr->mode = BBR_DRAIN;  /* drain queue we created */
 764                tcp_sk(sk)->snd_ssthresh =
 765                                bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT);
 766        }       /* fall through to check if in-flight is already small: */
 767        if (bbr->mode == BBR_DRAIN &&
 768            bbr_packets_in_net_at_edt(sk, tcp_packets_in_flight(tcp_sk(sk))) <=
 769            bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
 770                bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
 771}
 772
 773static void bbr_check_probe_rtt_done(struct sock *sk)
 774{
 775        struct tcp_sock *tp = tcp_sk(sk);
 776        struct bbr *bbr = inet_csk_ca(sk);
 777
 778        if (!(bbr->probe_rtt_done_stamp &&
 779              after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
 780                return;
 781
 782        bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
 783        tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
 784        bbr_reset_mode(sk);
 785}
 786
 787/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 788 * periodically drain the bottleneck queue, to converge to measure the true
 789 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 790 * small (reducing queuing delay and packet loss) and achieve fairness among
 791 * BBR flows.
 792 *
 793 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 794 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 795 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 796 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 797 * re-enter the previous mode. BBR uses 200ms to approximately bound the
 798 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 799 *
 800 * Note that flows need only pay 2% if they are busy sending over the last 10
 801 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 802 * natural silences or low-rate periods within 10 seconds where the rate is low
 803 * enough for long enough to drain its queue in the bottleneck. We pick up
 804 * these min RTT measurements opportunistically with our min_rtt filter. :-)
 805 */
 806static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
 807{
 808        struct tcp_sock *tp = tcp_sk(sk);
 809        struct bbr *bbr = inet_csk_ca(sk);
 810        bool filter_expired;
 811
 812        /* Track min RTT seen in the min_rtt_win_sec filter window: */
 813        filter_expired = after(tcp_jiffies32,
 814                               bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
 815        if (rs->rtt_us >= 0 &&
 816            (rs->rtt_us <= bbr->min_rtt_us ||
 817             (filter_expired && !rs->is_ack_delayed))) {
 818                bbr->min_rtt_us = rs->rtt_us;
 819                bbr->min_rtt_stamp = tcp_jiffies32;
 820        }
 821
 822        if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
 823            !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
 824                bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
 825                bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
 826                bbr->probe_rtt_done_stamp = 0;
 827        }
 828
 829        if (bbr->mode == BBR_PROBE_RTT) {
 830                /* Ignore low rate samples during this mode. */
 831                tp->app_limited =
 832                        (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
 833                /* Maintain min packets in flight for max(200 ms, 1 round). */
 834                if (!bbr->probe_rtt_done_stamp &&
 835                    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
 836                        bbr->probe_rtt_done_stamp = tcp_jiffies32 +
 837                                msecs_to_jiffies(bbr_probe_rtt_mode_ms);
 838                        bbr->probe_rtt_round_done = 0;
 839                        bbr->next_rtt_delivered = tp->delivered;
 840                } else if (bbr->probe_rtt_done_stamp) {
 841                        if (bbr->round_start)
 842                                bbr->probe_rtt_round_done = 1;
 843                        if (bbr->probe_rtt_round_done)
 844                                bbr_check_probe_rtt_done(sk);
 845                }
 846        }
 847        /* Restart after idle ends only once we process a new S/ACK for data */
 848        if (rs->delivered > 0)
 849                bbr->idle_restart = 0;
 850}
 851
 852static void bbr_update_gains(struct sock *sk)
 853{
 854        struct bbr *bbr = inet_csk_ca(sk);
 855
 856        switch (bbr->mode) {
 857        case BBR_STARTUP:
 858                bbr->pacing_gain = bbr_high_gain;
 859                bbr->cwnd_gain   = bbr_high_gain;
 860                break;
 861        case BBR_DRAIN:
 862                bbr->pacing_gain = bbr_drain_gain;      /* slow, to drain */
 863                bbr->cwnd_gain   = bbr_high_gain;       /* keep cwnd */
 864                break;
 865        case BBR_PROBE_BW:
 866                bbr->pacing_gain = (bbr->lt_use_bw ?
 867                                    BBR_UNIT :
 868                                    bbr_pacing_gain[bbr->cycle_idx]);
 869                bbr->cwnd_gain   = bbr_cwnd_gain;
 870                break;
 871        case BBR_PROBE_RTT:
 872                bbr->pacing_gain = BBR_UNIT;
 873                bbr->cwnd_gain   = BBR_UNIT;
 874                break;
 875        default:
 876                WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
 877                break;
 878        }
 879}
 880
 881static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
 882{
 883        bbr_update_bw(sk, rs);
 884        bbr_update_cycle_phase(sk, rs);
 885        bbr_check_full_bw_reached(sk, rs);
 886        bbr_check_drain(sk, rs);
 887        bbr_update_min_rtt(sk, rs);
 888        bbr_update_gains(sk);
 889}
 890
 891static void bbr_main(struct sock *sk, const struct rate_sample *rs)
 892{
 893        struct bbr *bbr = inet_csk_ca(sk);
 894        u32 bw;
 895
 896        bbr_update_model(sk, rs);
 897
 898        bw = bbr_bw(sk);
 899        bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
 900        bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
 901}
 902
 903static void bbr_init(struct sock *sk)
 904{
 905        struct tcp_sock *tp = tcp_sk(sk);
 906        struct bbr *bbr = inet_csk_ca(sk);
 907
 908        bbr->prior_cwnd = 0;
 909        tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 910        bbr->rtt_cnt = 0;
 911        bbr->next_rtt_delivered = 0;
 912        bbr->prev_ca_state = TCP_CA_Open;
 913        bbr->packet_conservation = 0;
 914
 915        bbr->probe_rtt_done_stamp = 0;
 916        bbr->probe_rtt_round_done = 0;
 917        bbr->min_rtt_us = tcp_min_rtt(tp);
 918        bbr->min_rtt_stamp = tcp_jiffies32;
 919
 920        minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
 921
 922        bbr->has_seen_rtt = 0;
 923        bbr_init_pacing_rate_from_rtt(sk);
 924
 925        bbr->round_start = 0;
 926        bbr->idle_restart = 0;
 927        bbr->full_bw_reached = 0;
 928        bbr->full_bw = 0;
 929        bbr->full_bw_cnt = 0;
 930        bbr->cycle_mstamp = 0;
 931        bbr->cycle_idx = 0;
 932        bbr_reset_lt_bw_sampling(sk);
 933        bbr_reset_startup_mode(sk);
 934
 935        cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
 936}
 937
 938static u32 bbr_sndbuf_expand(struct sock *sk)
 939{
 940        /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
 941        return 3;
 942}
 943
 944/* In theory BBR does not need to undo the cwnd since it does not
 945 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
 946 */
 947static u32 bbr_undo_cwnd(struct sock *sk)
 948{
 949        struct bbr *bbr = inet_csk_ca(sk);
 950
 951        bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
 952        bbr->full_bw_cnt = 0;
 953        bbr_reset_lt_bw_sampling(sk);
 954        return tcp_sk(sk)->snd_cwnd;
 955}
 956
 957/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
 958static u32 bbr_ssthresh(struct sock *sk)
 959{
 960        bbr_save_cwnd(sk);
 961        return tcp_sk(sk)->snd_ssthresh;
 962}
 963
 964static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
 965                           union tcp_cc_info *info)
 966{
 967        if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
 968            ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
 969                struct tcp_sock *tp = tcp_sk(sk);
 970                struct bbr *bbr = inet_csk_ca(sk);
 971                u64 bw = bbr_bw(sk);
 972
 973                bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
 974                memset(&info->bbr, 0, sizeof(info->bbr));
 975                info->bbr.bbr_bw_lo             = (u32)bw;
 976                info->bbr.bbr_bw_hi             = (u32)(bw >> 32);
 977                info->bbr.bbr_min_rtt           = bbr->min_rtt_us;
 978                info->bbr.bbr_pacing_gain       = bbr->pacing_gain;
 979                info->bbr.bbr_cwnd_gain         = bbr->cwnd_gain;
 980                *attr = INET_DIAG_BBRINFO;
 981                return sizeof(info->bbr);
 982        }
 983        return 0;
 984}
 985
 986static void bbr_set_state(struct sock *sk, u8 new_state)
 987{
 988        struct bbr *bbr = inet_csk_ca(sk);
 989
 990        if (new_state == TCP_CA_Loss) {
 991                struct rate_sample rs = { .losses = 1 };
 992
 993                bbr->prev_ca_state = TCP_CA_Loss;
 994                bbr->full_bw = 0;
 995                bbr->round_start = 1;   /* treat RTO like end of a round */
 996                bbr_lt_bw_sampling(sk, &rs);
 997        }
 998}
 999
1000static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
1001        .flags          = TCP_CONG_NON_RESTRICTED,
1002        .name           = "bbr",
1003        .owner          = THIS_MODULE,
1004        .init           = bbr_init,
1005        .cong_control   = bbr_main,
1006        .sndbuf_expand  = bbr_sndbuf_expand,
1007        .undo_cwnd      = bbr_undo_cwnd,
1008        .cwnd_event     = bbr_cwnd_event,
1009        .ssthresh       = bbr_ssthresh,
1010        .min_tso_segs   = bbr_min_tso_segs,
1011        .get_info       = bbr_get_info,
1012        .set_state      = bbr_set_state,
1013};
1014
1015static int __init bbr_register(void)
1016{
1017        BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
1018        return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1019}
1020
1021static void __exit bbr_unregister(void)
1022{
1023        tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1024}
1025
1026module_init(bbr_register);
1027module_exit(bbr_unregister);
1028
1029MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1030MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1031MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1032MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1033MODULE_LICENSE("Dual BSD/GPL");
1034MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
1035