linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <linux/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define  RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h, struct cache_detail *detail)
  45{
  46        time_t now = seconds_since_boot();
  47        INIT_HLIST_NODE(&h->cache_list);
  48        h->flags = 0;
  49        kref_init(&h->ref);
  50        h->expiry_time = now + CACHE_NEW_EXPIRY;
  51        if (now <= detail->flush_time)
  52                /* ensure it isn't already expired */
  53                now = detail->flush_time + 1;
  54        h->last_refresh = now;
  55}
  56
  57static void cache_fresh_locked(struct cache_head *head, time_t expiry,
  58                                struct cache_detail *detail);
  59static void cache_fresh_unlocked(struct cache_head *head,
  60                                struct cache_detail *detail);
  61
  62static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
  63                                                struct cache_head *key,
  64                                                int hash)
  65{
  66        struct hlist_head *head = &detail->hash_table[hash];
  67        struct cache_head *tmp;
  68
  69        rcu_read_lock();
  70        hlist_for_each_entry_rcu(tmp, head, cache_list) {
  71                if (detail->match(tmp, key)) {
  72                        if (cache_is_expired(detail, tmp))
  73                                continue;
  74                        tmp = cache_get_rcu(tmp);
  75                        rcu_read_unlock();
  76                        return tmp;
  77                }
  78        }
  79        rcu_read_unlock();
  80        return NULL;
  81}
  82
  83static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
  84                                                 struct cache_head *key,
  85                                                 int hash)
  86{
  87        struct cache_head *new, *tmp, *freeme = NULL;
  88        struct hlist_head *head = &detail->hash_table[hash];
  89
  90        new = detail->alloc();
  91        if (!new)
  92                return NULL;
  93        /* must fully initialise 'new', else
  94         * we might get lose if we need to
  95         * cache_put it soon.
  96         */
  97        cache_init(new, detail);
  98        detail->init(new, key);
  99
 100        spin_lock(&detail->hash_lock);
 101
 102        /* check if entry appeared while we slept */
 103        hlist_for_each_entry_rcu(tmp, head, cache_list) {
 104                if (detail->match(tmp, key)) {
 105                        if (cache_is_expired(detail, tmp)) {
 106                                hlist_del_init_rcu(&tmp->cache_list);
 107                                detail->entries --;
 108                                cache_fresh_locked(tmp, 0, detail);
 109                                freeme = tmp;
 110                                break;
 111                        }
 112                        cache_get(tmp);
 113                        spin_unlock(&detail->hash_lock);
 114                        cache_put(new, detail);
 115                        return tmp;
 116                }
 117        }
 118
 119        hlist_add_head_rcu(&new->cache_list, head);
 120        detail->entries++;
 121        cache_get(new);
 122        spin_unlock(&detail->hash_lock);
 123
 124        if (freeme) {
 125                cache_fresh_unlocked(freeme, detail);
 126                cache_put(freeme, detail);
 127        }
 128        return new;
 129}
 130
 131struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
 132                                           struct cache_head *key, int hash)
 133{
 134        struct cache_head *ret;
 135
 136        ret = sunrpc_cache_find_rcu(detail, key, hash);
 137        if (ret)
 138                return ret;
 139        /* Didn't find anything, insert an empty entry */
 140        return sunrpc_cache_add_entry(detail, key, hash);
 141}
 142EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
 143
 144static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 145
 146static void cache_fresh_locked(struct cache_head *head, time_t expiry,
 147                               struct cache_detail *detail)
 148{
 149        time_t now = seconds_since_boot();
 150        if (now <= detail->flush_time)
 151                /* ensure it isn't immediately treated as expired */
 152                now = detail->flush_time + 1;
 153        head->expiry_time = expiry;
 154        head->last_refresh = now;
 155        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 156        set_bit(CACHE_VALID, &head->flags);
 157}
 158
 159static void cache_fresh_unlocked(struct cache_head *head,
 160                                 struct cache_detail *detail)
 161{
 162        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 163                cache_revisit_request(head);
 164                cache_dequeue(detail, head);
 165        }
 166}
 167
 168struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 169                                       struct cache_head *new, struct cache_head *old, int hash)
 170{
 171        /* The 'old' entry is to be replaced by 'new'.
 172         * If 'old' is not VALID, we update it directly,
 173         * otherwise we need to replace it
 174         */
 175        struct cache_head *tmp;
 176
 177        if (!test_bit(CACHE_VALID, &old->flags)) {
 178                spin_lock(&detail->hash_lock);
 179                if (!test_bit(CACHE_VALID, &old->flags)) {
 180                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 181                                set_bit(CACHE_NEGATIVE, &old->flags);
 182                        else
 183                                detail->update(old, new);
 184                        cache_fresh_locked(old, new->expiry_time, detail);
 185                        spin_unlock(&detail->hash_lock);
 186                        cache_fresh_unlocked(old, detail);
 187                        return old;
 188                }
 189                spin_unlock(&detail->hash_lock);
 190        }
 191        /* We need to insert a new entry */
 192        tmp = detail->alloc();
 193        if (!tmp) {
 194                cache_put(old, detail);
 195                return NULL;
 196        }
 197        cache_init(tmp, detail);
 198        detail->init(tmp, old);
 199
 200        spin_lock(&detail->hash_lock);
 201        if (test_bit(CACHE_NEGATIVE, &new->flags))
 202                set_bit(CACHE_NEGATIVE, &tmp->flags);
 203        else
 204                detail->update(tmp, new);
 205        hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 206        detail->entries++;
 207        cache_get(tmp);
 208        cache_fresh_locked(tmp, new->expiry_time, detail);
 209        cache_fresh_locked(old, 0, detail);
 210        spin_unlock(&detail->hash_lock);
 211        cache_fresh_unlocked(tmp, detail);
 212        cache_fresh_unlocked(old, detail);
 213        cache_put(old, detail);
 214        return tmp;
 215}
 216EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 217
 218static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 219{
 220        if (cd->cache_upcall)
 221                return cd->cache_upcall(cd, h);
 222        return sunrpc_cache_pipe_upcall(cd, h);
 223}
 224
 225static inline int cache_is_valid(struct cache_head *h)
 226{
 227        if (!test_bit(CACHE_VALID, &h->flags))
 228                return -EAGAIN;
 229        else {
 230                /* entry is valid */
 231                if (test_bit(CACHE_NEGATIVE, &h->flags))
 232                        return -ENOENT;
 233                else {
 234                        /*
 235                         * In combination with write barrier in
 236                         * sunrpc_cache_update, ensures that anyone
 237                         * using the cache entry after this sees the
 238                         * updated contents:
 239                         */
 240                        smp_rmb();
 241                        return 0;
 242                }
 243        }
 244}
 245
 246static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 247{
 248        int rv;
 249
 250        spin_lock(&detail->hash_lock);
 251        rv = cache_is_valid(h);
 252        if (rv == -EAGAIN) {
 253                set_bit(CACHE_NEGATIVE, &h->flags);
 254                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 255                                   detail);
 256                rv = -ENOENT;
 257        }
 258        spin_unlock(&detail->hash_lock);
 259        cache_fresh_unlocked(h, detail);
 260        return rv;
 261}
 262
 263/*
 264 * This is the generic cache management routine for all
 265 * the authentication caches.
 266 * It checks the currency of a cache item and will (later)
 267 * initiate an upcall to fill it if needed.
 268 *
 269 *
 270 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 271 * -EAGAIN if upcall is pending and request has been queued
 272 * -ETIMEDOUT if upcall failed or request could not be queue or
 273 *           upcall completed but item is still invalid (implying that
 274 *           the cache item has been replaced with a newer one).
 275 * -ENOENT if cache entry was negative
 276 */
 277int cache_check(struct cache_detail *detail,
 278                    struct cache_head *h, struct cache_req *rqstp)
 279{
 280        int rv;
 281        long refresh_age, age;
 282
 283        /* First decide return status as best we can */
 284        rv = cache_is_valid(h);
 285
 286        /* now see if we want to start an upcall */
 287        refresh_age = (h->expiry_time - h->last_refresh);
 288        age = seconds_since_boot() - h->last_refresh;
 289
 290        if (rqstp == NULL) {
 291                if (rv == -EAGAIN)
 292                        rv = -ENOENT;
 293        } else if (rv == -EAGAIN ||
 294                   (h->expiry_time != 0 && age > refresh_age/2)) {
 295                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 296                                refresh_age, age);
 297                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 298                        switch (cache_make_upcall(detail, h)) {
 299                        case -EINVAL:
 300                                rv = try_to_negate_entry(detail, h);
 301                                break;
 302                        case -EAGAIN:
 303                                cache_fresh_unlocked(h, detail);
 304                                break;
 305                        }
 306                }
 307        }
 308
 309        if (rv == -EAGAIN) {
 310                if (!cache_defer_req(rqstp, h)) {
 311                        /*
 312                         * Request was not deferred; handle it as best
 313                         * we can ourselves:
 314                         */
 315                        rv = cache_is_valid(h);
 316                        if (rv == -EAGAIN)
 317                                rv = -ETIMEDOUT;
 318                }
 319        }
 320        if (rv)
 321                cache_put(h, detail);
 322        return rv;
 323}
 324EXPORT_SYMBOL_GPL(cache_check);
 325
 326/*
 327 * caches need to be periodically cleaned.
 328 * For this we maintain a list of cache_detail and
 329 * a current pointer into that list and into the table
 330 * for that entry.
 331 *
 332 * Each time cache_clean is called it finds the next non-empty entry
 333 * in the current table and walks the list in that entry
 334 * looking for entries that can be removed.
 335 *
 336 * An entry gets removed if:
 337 * - The expiry is before current time
 338 * - The last_refresh time is before the flush_time for that cache
 339 *
 340 * later we might drop old entries with non-NEVER expiry if that table
 341 * is getting 'full' for some definition of 'full'
 342 *
 343 * The question of "how often to scan a table" is an interesting one
 344 * and is answered in part by the use of the "nextcheck" field in the
 345 * cache_detail.
 346 * When a scan of a table begins, the nextcheck field is set to a time
 347 * that is well into the future.
 348 * While scanning, if an expiry time is found that is earlier than the
 349 * current nextcheck time, nextcheck is set to that expiry time.
 350 * If the flush_time is ever set to a time earlier than the nextcheck
 351 * time, the nextcheck time is then set to that flush_time.
 352 *
 353 * A table is then only scanned if the current time is at least
 354 * the nextcheck time.
 355 *
 356 */
 357
 358static LIST_HEAD(cache_list);
 359static DEFINE_SPINLOCK(cache_list_lock);
 360static struct cache_detail *current_detail;
 361static int current_index;
 362
 363static void do_cache_clean(struct work_struct *work);
 364static struct delayed_work cache_cleaner;
 365
 366void sunrpc_init_cache_detail(struct cache_detail *cd)
 367{
 368        spin_lock_init(&cd->hash_lock);
 369        INIT_LIST_HEAD(&cd->queue);
 370        spin_lock(&cache_list_lock);
 371        cd->nextcheck = 0;
 372        cd->entries = 0;
 373        atomic_set(&cd->readers, 0);
 374        cd->last_close = 0;
 375        cd->last_warn = -1;
 376        list_add(&cd->others, &cache_list);
 377        spin_unlock(&cache_list_lock);
 378
 379        /* start the cleaning process */
 380        queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
 381}
 382EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 383
 384void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 385{
 386        cache_purge(cd);
 387        spin_lock(&cache_list_lock);
 388        spin_lock(&cd->hash_lock);
 389        if (current_detail == cd)
 390                current_detail = NULL;
 391        list_del_init(&cd->others);
 392        spin_unlock(&cd->hash_lock);
 393        spin_unlock(&cache_list_lock);
 394        if (list_empty(&cache_list)) {
 395                /* module must be being unloaded so its safe to kill the worker */
 396                cancel_delayed_work_sync(&cache_cleaner);
 397        }
 398}
 399EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 400
 401/* clean cache tries to find something to clean
 402 * and cleans it.
 403 * It returns 1 if it cleaned something,
 404 *            0 if it didn't find anything this time
 405 *           -1 if it fell off the end of the list.
 406 */
 407static int cache_clean(void)
 408{
 409        int rv = 0;
 410        struct list_head *next;
 411
 412        spin_lock(&cache_list_lock);
 413
 414        /* find a suitable table if we don't already have one */
 415        while (current_detail == NULL ||
 416            current_index >= current_detail->hash_size) {
 417                if (current_detail)
 418                        next = current_detail->others.next;
 419                else
 420                        next = cache_list.next;
 421                if (next == &cache_list) {
 422                        current_detail = NULL;
 423                        spin_unlock(&cache_list_lock);
 424                        return -1;
 425                }
 426                current_detail = list_entry(next, struct cache_detail, others);
 427                if (current_detail->nextcheck > seconds_since_boot())
 428                        current_index = current_detail->hash_size;
 429                else {
 430                        current_index = 0;
 431                        current_detail->nextcheck = seconds_since_boot()+30*60;
 432                }
 433        }
 434
 435        /* find a non-empty bucket in the table */
 436        while (current_detail &&
 437               current_index < current_detail->hash_size &&
 438               hlist_empty(&current_detail->hash_table[current_index]))
 439                current_index++;
 440
 441        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 442
 443        if (current_detail && current_index < current_detail->hash_size) {
 444                struct cache_head *ch = NULL;
 445                struct cache_detail *d;
 446                struct hlist_head *head;
 447                struct hlist_node *tmp;
 448
 449                spin_lock(&current_detail->hash_lock);
 450
 451                /* Ok, now to clean this strand */
 452
 453                head = &current_detail->hash_table[current_index];
 454                hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 455                        if (current_detail->nextcheck > ch->expiry_time)
 456                                current_detail->nextcheck = ch->expiry_time+1;
 457                        if (!cache_is_expired(current_detail, ch))
 458                                continue;
 459
 460                        hlist_del_init_rcu(&ch->cache_list);
 461                        current_detail->entries--;
 462                        rv = 1;
 463                        break;
 464                }
 465
 466                spin_unlock(&current_detail->hash_lock);
 467                d = current_detail;
 468                if (!ch)
 469                        current_index ++;
 470                spin_unlock(&cache_list_lock);
 471                if (ch) {
 472                        set_bit(CACHE_CLEANED, &ch->flags);
 473                        cache_fresh_unlocked(ch, d);
 474                        cache_put(ch, d);
 475                }
 476        } else
 477                spin_unlock(&cache_list_lock);
 478
 479        return rv;
 480}
 481
 482/*
 483 * We want to regularly clean the cache, so we need to schedule some work ...
 484 */
 485static void do_cache_clean(struct work_struct *work)
 486{
 487        int delay = 5;
 488        if (cache_clean() == -1)
 489                delay = round_jiffies_relative(30*HZ);
 490
 491        if (list_empty(&cache_list))
 492                delay = 0;
 493
 494        if (delay)
 495                queue_delayed_work(system_power_efficient_wq,
 496                                   &cache_cleaner, delay);
 497}
 498
 499
 500/*
 501 * Clean all caches promptly.  This just calls cache_clean
 502 * repeatedly until we are sure that every cache has had a chance to
 503 * be fully cleaned
 504 */
 505void cache_flush(void)
 506{
 507        while (cache_clean() != -1)
 508                cond_resched();
 509        while (cache_clean() != -1)
 510                cond_resched();
 511}
 512EXPORT_SYMBOL_GPL(cache_flush);
 513
 514void cache_purge(struct cache_detail *detail)
 515{
 516        struct cache_head *ch = NULL;
 517        struct hlist_head *head = NULL;
 518        struct hlist_node *tmp = NULL;
 519        int i = 0;
 520
 521        spin_lock(&detail->hash_lock);
 522        if (!detail->entries) {
 523                spin_unlock(&detail->hash_lock);
 524                return;
 525        }
 526
 527        dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
 528        for (i = 0; i < detail->hash_size; i++) {
 529                head = &detail->hash_table[i];
 530                hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 531                        hlist_del_init_rcu(&ch->cache_list);
 532                        detail->entries--;
 533
 534                        set_bit(CACHE_CLEANED, &ch->flags);
 535                        spin_unlock(&detail->hash_lock);
 536                        cache_fresh_unlocked(ch, detail);
 537                        cache_put(ch, detail);
 538                        spin_lock(&detail->hash_lock);
 539                }
 540        }
 541        spin_unlock(&detail->hash_lock);
 542}
 543EXPORT_SYMBOL_GPL(cache_purge);
 544
 545
 546/*
 547 * Deferral and Revisiting of Requests.
 548 *
 549 * If a cache lookup finds a pending entry, we
 550 * need to defer the request and revisit it later.
 551 * All deferred requests are stored in a hash table,
 552 * indexed by "struct cache_head *".
 553 * As it may be wasteful to store a whole request
 554 * structure, we allow the request to provide a
 555 * deferred form, which must contain a
 556 * 'struct cache_deferred_req'
 557 * This cache_deferred_req contains a method to allow
 558 * it to be revisited when cache info is available
 559 */
 560
 561#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 562#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 563
 564#define DFR_MAX 300     /* ??? */
 565
 566static DEFINE_SPINLOCK(cache_defer_lock);
 567static LIST_HEAD(cache_defer_list);
 568static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 569static int cache_defer_cnt;
 570
 571static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 572{
 573        hlist_del_init(&dreq->hash);
 574        if (!list_empty(&dreq->recent)) {
 575                list_del_init(&dreq->recent);
 576                cache_defer_cnt--;
 577        }
 578}
 579
 580static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 581{
 582        int hash = DFR_HASH(item);
 583
 584        INIT_LIST_HEAD(&dreq->recent);
 585        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 586}
 587
 588static void setup_deferral(struct cache_deferred_req *dreq,
 589                           struct cache_head *item,
 590                           int count_me)
 591{
 592
 593        dreq->item = item;
 594
 595        spin_lock(&cache_defer_lock);
 596
 597        __hash_deferred_req(dreq, item);
 598
 599        if (count_me) {
 600                cache_defer_cnt++;
 601                list_add(&dreq->recent, &cache_defer_list);
 602        }
 603
 604        spin_unlock(&cache_defer_lock);
 605
 606}
 607
 608struct thread_deferred_req {
 609        struct cache_deferred_req handle;
 610        struct completion completion;
 611};
 612
 613static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 614{
 615        struct thread_deferred_req *dr =
 616                container_of(dreq, struct thread_deferred_req, handle);
 617        complete(&dr->completion);
 618}
 619
 620static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 621{
 622        struct thread_deferred_req sleeper;
 623        struct cache_deferred_req *dreq = &sleeper.handle;
 624
 625        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 626        dreq->revisit = cache_restart_thread;
 627
 628        setup_deferral(dreq, item, 0);
 629
 630        if (!test_bit(CACHE_PENDING, &item->flags) ||
 631            wait_for_completion_interruptible_timeout(
 632                    &sleeper.completion, req->thread_wait) <= 0) {
 633                /* The completion wasn't completed, so we need
 634                 * to clean up
 635                 */
 636                spin_lock(&cache_defer_lock);
 637                if (!hlist_unhashed(&sleeper.handle.hash)) {
 638                        __unhash_deferred_req(&sleeper.handle);
 639                        spin_unlock(&cache_defer_lock);
 640                } else {
 641                        /* cache_revisit_request already removed
 642                         * this from the hash table, but hasn't
 643                         * called ->revisit yet.  It will very soon
 644                         * and we need to wait for it.
 645                         */
 646                        spin_unlock(&cache_defer_lock);
 647                        wait_for_completion(&sleeper.completion);
 648                }
 649        }
 650}
 651
 652static void cache_limit_defers(void)
 653{
 654        /* Make sure we haven't exceed the limit of allowed deferred
 655         * requests.
 656         */
 657        struct cache_deferred_req *discard = NULL;
 658
 659        if (cache_defer_cnt <= DFR_MAX)
 660                return;
 661
 662        spin_lock(&cache_defer_lock);
 663
 664        /* Consider removing either the first or the last */
 665        if (cache_defer_cnt > DFR_MAX) {
 666                if (prandom_u32() & 1)
 667                        discard = list_entry(cache_defer_list.next,
 668                                             struct cache_deferred_req, recent);
 669                else
 670                        discard = list_entry(cache_defer_list.prev,
 671                                             struct cache_deferred_req, recent);
 672                __unhash_deferred_req(discard);
 673        }
 674        spin_unlock(&cache_defer_lock);
 675        if (discard)
 676                discard->revisit(discard, 1);
 677}
 678
 679/* Return true if and only if a deferred request is queued. */
 680static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 681{
 682        struct cache_deferred_req *dreq;
 683
 684        if (req->thread_wait) {
 685                cache_wait_req(req, item);
 686                if (!test_bit(CACHE_PENDING, &item->flags))
 687                        return false;
 688        }
 689        dreq = req->defer(req);
 690        if (dreq == NULL)
 691                return false;
 692        setup_deferral(dreq, item, 1);
 693        if (!test_bit(CACHE_PENDING, &item->flags))
 694                /* Bit could have been cleared before we managed to
 695                 * set up the deferral, so need to revisit just in case
 696                 */
 697                cache_revisit_request(item);
 698
 699        cache_limit_defers();
 700        return true;
 701}
 702
 703static void cache_revisit_request(struct cache_head *item)
 704{
 705        struct cache_deferred_req *dreq;
 706        struct list_head pending;
 707        struct hlist_node *tmp;
 708        int hash = DFR_HASH(item);
 709
 710        INIT_LIST_HEAD(&pending);
 711        spin_lock(&cache_defer_lock);
 712
 713        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 714                if (dreq->item == item) {
 715                        __unhash_deferred_req(dreq);
 716                        list_add(&dreq->recent, &pending);
 717                }
 718
 719        spin_unlock(&cache_defer_lock);
 720
 721        while (!list_empty(&pending)) {
 722                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 723                list_del_init(&dreq->recent);
 724                dreq->revisit(dreq, 0);
 725        }
 726}
 727
 728void cache_clean_deferred(void *owner)
 729{
 730        struct cache_deferred_req *dreq, *tmp;
 731        struct list_head pending;
 732
 733
 734        INIT_LIST_HEAD(&pending);
 735        spin_lock(&cache_defer_lock);
 736
 737        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 738                if (dreq->owner == owner) {
 739                        __unhash_deferred_req(dreq);
 740                        list_add(&dreq->recent, &pending);
 741                }
 742        }
 743        spin_unlock(&cache_defer_lock);
 744
 745        while (!list_empty(&pending)) {
 746                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 747                list_del_init(&dreq->recent);
 748                dreq->revisit(dreq, 1);
 749        }
 750}
 751
 752/*
 753 * communicate with user-space
 754 *
 755 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
 756 * On read, you get a full request, or block.
 757 * On write, an update request is processed.
 758 * Poll works if anything to read, and always allows write.
 759 *
 760 * Implemented by linked list of requests.  Each open file has
 761 * a ->private that also exists in this list.  New requests are added
 762 * to the end and may wakeup and preceding readers.
 763 * New readers are added to the head.  If, on read, an item is found with
 764 * CACHE_UPCALLING clear, we free it from the list.
 765 *
 766 */
 767
 768static DEFINE_SPINLOCK(queue_lock);
 769static DEFINE_MUTEX(queue_io_mutex);
 770
 771struct cache_queue {
 772        struct list_head        list;
 773        int                     reader; /* if 0, then request */
 774};
 775struct cache_request {
 776        struct cache_queue      q;
 777        struct cache_head       *item;
 778        char                    * buf;
 779        int                     len;
 780        int                     readers;
 781};
 782struct cache_reader {
 783        struct cache_queue      q;
 784        int                     offset; /* if non-0, we have a refcnt on next request */
 785};
 786
 787static int cache_request(struct cache_detail *detail,
 788                               struct cache_request *crq)
 789{
 790        char *bp = crq->buf;
 791        int len = PAGE_SIZE;
 792
 793        detail->cache_request(detail, crq->item, &bp, &len);
 794        if (len < 0)
 795                return -EAGAIN;
 796        return PAGE_SIZE - len;
 797}
 798
 799static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 800                          loff_t *ppos, struct cache_detail *cd)
 801{
 802        struct cache_reader *rp = filp->private_data;
 803        struct cache_request *rq;
 804        struct inode *inode = file_inode(filp);
 805        int err;
 806
 807        if (count == 0)
 808                return 0;
 809
 810        inode_lock(inode); /* protect against multiple concurrent
 811                              * readers on this file */
 812 again:
 813        spin_lock(&queue_lock);
 814        /* need to find next request */
 815        while (rp->q.list.next != &cd->queue &&
 816               list_entry(rp->q.list.next, struct cache_queue, list)
 817               ->reader) {
 818                struct list_head *next = rp->q.list.next;
 819                list_move(&rp->q.list, next);
 820        }
 821        if (rp->q.list.next == &cd->queue) {
 822                spin_unlock(&queue_lock);
 823                inode_unlock(inode);
 824                WARN_ON_ONCE(rp->offset);
 825                return 0;
 826        }
 827        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 828        WARN_ON_ONCE(rq->q.reader);
 829        if (rp->offset == 0)
 830                rq->readers++;
 831        spin_unlock(&queue_lock);
 832
 833        if (rq->len == 0) {
 834                err = cache_request(cd, rq);
 835                if (err < 0)
 836                        goto out;
 837                rq->len = err;
 838        }
 839
 840        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 841                err = -EAGAIN;
 842                spin_lock(&queue_lock);
 843                list_move(&rp->q.list, &rq->q.list);
 844                spin_unlock(&queue_lock);
 845        } else {
 846                if (rp->offset + count > rq->len)
 847                        count = rq->len - rp->offset;
 848                err = -EFAULT;
 849                if (copy_to_user(buf, rq->buf + rp->offset, count))
 850                        goto out;
 851                rp->offset += count;
 852                if (rp->offset >= rq->len) {
 853                        rp->offset = 0;
 854                        spin_lock(&queue_lock);
 855                        list_move(&rp->q.list, &rq->q.list);
 856                        spin_unlock(&queue_lock);
 857                }
 858                err = 0;
 859        }
 860 out:
 861        if (rp->offset == 0) {
 862                /* need to release rq */
 863                spin_lock(&queue_lock);
 864                rq->readers--;
 865                if (rq->readers == 0 &&
 866                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 867                        list_del(&rq->q.list);
 868                        spin_unlock(&queue_lock);
 869                        cache_put(rq->item, cd);
 870                        kfree(rq->buf);
 871                        kfree(rq);
 872                } else
 873                        spin_unlock(&queue_lock);
 874        }
 875        if (err == -EAGAIN)
 876                goto again;
 877        inode_unlock(inode);
 878        return err ? err :  count;
 879}
 880
 881static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 882                                 size_t count, struct cache_detail *cd)
 883{
 884        ssize_t ret;
 885
 886        if (count == 0)
 887                return -EINVAL;
 888        if (copy_from_user(kaddr, buf, count))
 889                return -EFAULT;
 890        kaddr[count] = '\0';
 891        ret = cd->cache_parse(cd, kaddr, count);
 892        if (!ret)
 893                ret = count;
 894        return ret;
 895}
 896
 897static ssize_t cache_slow_downcall(const char __user *buf,
 898                                   size_t count, struct cache_detail *cd)
 899{
 900        static char write_buf[8192]; /* protected by queue_io_mutex */
 901        ssize_t ret = -EINVAL;
 902
 903        if (count >= sizeof(write_buf))
 904                goto out;
 905        mutex_lock(&queue_io_mutex);
 906        ret = cache_do_downcall(write_buf, buf, count, cd);
 907        mutex_unlock(&queue_io_mutex);
 908out:
 909        return ret;
 910}
 911
 912static ssize_t cache_downcall(struct address_space *mapping,
 913                              const char __user *buf,
 914                              size_t count, struct cache_detail *cd)
 915{
 916        struct page *page;
 917        char *kaddr;
 918        ssize_t ret = -ENOMEM;
 919
 920        if (count >= PAGE_SIZE)
 921                goto out_slow;
 922
 923        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 924        if (!page)
 925                goto out_slow;
 926
 927        kaddr = kmap(page);
 928        ret = cache_do_downcall(kaddr, buf, count, cd);
 929        kunmap(page);
 930        unlock_page(page);
 931        put_page(page);
 932        return ret;
 933out_slow:
 934        return cache_slow_downcall(buf, count, cd);
 935}
 936
 937static ssize_t cache_write(struct file *filp, const char __user *buf,
 938                           size_t count, loff_t *ppos,
 939                           struct cache_detail *cd)
 940{
 941        struct address_space *mapping = filp->f_mapping;
 942        struct inode *inode = file_inode(filp);
 943        ssize_t ret = -EINVAL;
 944
 945        if (!cd->cache_parse)
 946                goto out;
 947
 948        inode_lock(inode);
 949        ret = cache_downcall(mapping, buf, count, cd);
 950        inode_unlock(inode);
 951out:
 952        return ret;
 953}
 954
 955static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 956
 957static __poll_t cache_poll(struct file *filp, poll_table *wait,
 958                               struct cache_detail *cd)
 959{
 960        __poll_t mask;
 961        struct cache_reader *rp = filp->private_data;
 962        struct cache_queue *cq;
 963
 964        poll_wait(filp, &queue_wait, wait);
 965
 966        /* alway allow write */
 967        mask = EPOLLOUT | EPOLLWRNORM;
 968
 969        if (!rp)
 970                return mask;
 971
 972        spin_lock(&queue_lock);
 973
 974        for (cq= &rp->q; &cq->list != &cd->queue;
 975             cq = list_entry(cq->list.next, struct cache_queue, list))
 976                if (!cq->reader) {
 977                        mask |= EPOLLIN | EPOLLRDNORM;
 978                        break;
 979                }
 980        spin_unlock(&queue_lock);
 981        return mask;
 982}
 983
 984static int cache_ioctl(struct inode *ino, struct file *filp,
 985                       unsigned int cmd, unsigned long arg,
 986                       struct cache_detail *cd)
 987{
 988        int len = 0;
 989        struct cache_reader *rp = filp->private_data;
 990        struct cache_queue *cq;
 991
 992        if (cmd != FIONREAD || !rp)
 993                return -EINVAL;
 994
 995        spin_lock(&queue_lock);
 996
 997        /* only find the length remaining in current request,
 998         * or the length of the next request
 999         */
1000        for (cq= &rp->q; &cq->list != &cd->queue;
1001             cq = list_entry(cq->list.next, struct cache_queue, list))
1002                if (!cq->reader) {
1003                        struct cache_request *cr =
1004                                container_of(cq, struct cache_request, q);
1005                        len = cr->len - rp->offset;
1006                        break;
1007                }
1008        spin_unlock(&queue_lock);
1009
1010        return put_user(len, (int __user *)arg);
1011}
1012
1013static int cache_open(struct inode *inode, struct file *filp,
1014                      struct cache_detail *cd)
1015{
1016        struct cache_reader *rp = NULL;
1017
1018        if (!cd || !try_module_get(cd->owner))
1019                return -EACCES;
1020        nonseekable_open(inode, filp);
1021        if (filp->f_mode & FMODE_READ) {
1022                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1023                if (!rp) {
1024                        module_put(cd->owner);
1025                        return -ENOMEM;
1026                }
1027                rp->offset = 0;
1028                rp->q.reader = 1;
1029                atomic_inc(&cd->readers);
1030                spin_lock(&queue_lock);
1031                list_add(&rp->q.list, &cd->queue);
1032                spin_unlock(&queue_lock);
1033        }
1034        filp->private_data = rp;
1035        return 0;
1036}
1037
1038static int cache_release(struct inode *inode, struct file *filp,
1039                         struct cache_detail *cd)
1040{
1041        struct cache_reader *rp = filp->private_data;
1042
1043        if (rp) {
1044                spin_lock(&queue_lock);
1045                if (rp->offset) {
1046                        struct cache_queue *cq;
1047                        for (cq= &rp->q; &cq->list != &cd->queue;
1048                             cq = list_entry(cq->list.next, struct cache_queue, list))
1049                                if (!cq->reader) {
1050                                        container_of(cq, struct cache_request, q)
1051                                                ->readers--;
1052                                        break;
1053                                }
1054                        rp->offset = 0;
1055                }
1056                list_del(&rp->q.list);
1057                spin_unlock(&queue_lock);
1058
1059                filp->private_data = NULL;
1060                kfree(rp);
1061
1062                cd->last_close = seconds_since_boot();
1063                atomic_dec(&cd->readers);
1064        }
1065        module_put(cd->owner);
1066        return 0;
1067}
1068
1069
1070
1071static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1072{
1073        struct cache_queue *cq, *tmp;
1074        struct cache_request *cr;
1075        struct list_head dequeued;
1076
1077        INIT_LIST_HEAD(&dequeued);
1078        spin_lock(&queue_lock);
1079        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1080                if (!cq->reader) {
1081                        cr = container_of(cq, struct cache_request, q);
1082                        if (cr->item != ch)
1083                                continue;
1084                        if (test_bit(CACHE_PENDING, &ch->flags))
1085                                /* Lost a race and it is pending again */
1086                                break;
1087                        if (cr->readers != 0)
1088                                continue;
1089                        list_move(&cr->q.list, &dequeued);
1090                }
1091        spin_unlock(&queue_lock);
1092        while (!list_empty(&dequeued)) {
1093                cr = list_entry(dequeued.next, struct cache_request, q.list);
1094                list_del(&cr->q.list);
1095                cache_put(cr->item, detail);
1096                kfree(cr->buf);
1097                kfree(cr);
1098        }
1099}
1100
1101/*
1102 * Support routines for text-based upcalls.
1103 * Fields are separated by spaces.
1104 * Fields are either mangled to quote space tab newline slosh with slosh
1105 * or a hexified with a leading \x
1106 * Record is terminated with newline.
1107 *
1108 */
1109
1110void qword_add(char **bpp, int *lp, char *str)
1111{
1112        char *bp = *bpp;
1113        int len = *lp;
1114        int ret;
1115
1116        if (len < 0) return;
1117
1118        ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1119        if (ret >= len) {
1120                bp += len;
1121                len = -1;
1122        } else {
1123                bp += ret;
1124                len -= ret;
1125                *bp++ = ' ';
1126                len--;
1127        }
1128        *bpp = bp;
1129        *lp = len;
1130}
1131EXPORT_SYMBOL_GPL(qword_add);
1132
1133void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1134{
1135        char *bp = *bpp;
1136        int len = *lp;
1137
1138        if (len < 0) return;
1139
1140        if (len > 2) {
1141                *bp++ = '\\';
1142                *bp++ = 'x';
1143                len -= 2;
1144                while (blen && len >= 2) {
1145                        bp = hex_byte_pack(bp, *buf++);
1146                        len -= 2;
1147                        blen--;
1148                }
1149        }
1150        if (blen || len<1) len = -1;
1151        else {
1152                *bp++ = ' ';
1153                len--;
1154        }
1155        *bpp = bp;
1156        *lp = len;
1157}
1158EXPORT_SYMBOL_GPL(qword_addhex);
1159
1160static void warn_no_listener(struct cache_detail *detail)
1161{
1162        if (detail->last_warn != detail->last_close) {
1163                detail->last_warn = detail->last_close;
1164                if (detail->warn_no_listener)
1165                        detail->warn_no_listener(detail, detail->last_close != 0);
1166        }
1167}
1168
1169static bool cache_listeners_exist(struct cache_detail *detail)
1170{
1171        if (atomic_read(&detail->readers))
1172                return true;
1173        if (detail->last_close == 0)
1174                /* This cache was never opened */
1175                return false;
1176        if (detail->last_close < seconds_since_boot() - 30)
1177                /*
1178                 * We allow for the possibility that someone might
1179                 * restart a userspace daemon without restarting the
1180                 * server; but after 30 seconds, we give up.
1181                 */
1182                 return false;
1183        return true;
1184}
1185
1186/*
1187 * register an upcall request to user-space and queue it up for read() by the
1188 * upcall daemon.
1189 *
1190 * Each request is at most one page long.
1191 */
1192int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1193{
1194
1195        char *buf;
1196        struct cache_request *crq;
1197        int ret = 0;
1198
1199        if (!detail->cache_request)
1200                return -EINVAL;
1201
1202        if (!cache_listeners_exist(detail)) {
1203                warn_no_listener(detail);
1204                return -EINVAL;
1205        }
1206        if (test_bit(CACHE_CLEANED, &h->flags))
1207                /* Too late to make an upcall */
1208                return -EAGAIN;
1209
1210        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1211        if (!buf)
1212                return -EAGAIN;
1213
1214        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1215        if (!crq) {
1216                kfree(buf);
1217                return -EAGAIN;
1218        }
1219
1220        crq->q.reader = 0;
1221        crq->buf = buf;
1222        crq->len = 0;
1223        crq->readers = 0;
1224        spin_lock(&queue_lock);
1225        if (test_bit(CACHE_PENDING, &h->flags)) {
1226                crq->item = cache_get(h);
1227                list_add_tail(&crq->q.list, &detail->queue);
1228        } else
1229                /* Lost a race, no longer PENDING, so don't enqueue */
1230                ret = -EAGAIN;
1231        spin_unlock(&queue_lock);
1232        wake_up(&queue_wait);
1233        if (ret == -EAGAIN) {
1234                kfree(buf);
1235                kfree(crq);
1236        }
1237        return ret;
1238}
1239EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1240
1241/*
1242 * parse a message from user-space and pass it
1243 * to an appropriate cache
1244 * Messages are, like requests, separated into fields by
1245 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1246 *
1247 * Message is
1248 *   reply cachename expiry key ... content....
1249 *
1250 * key and content are both parsed by cache
1251 */
1252
1253int qword_get(char **bpp, char *dest, int bufsize)
1254{
1255        /* return bytes copied, or -1 on error */
1256        char *bp = *bpp;
1257        int len = 0;
1258
1259        while (*bp == ' ') bp++;
1260
1261        if (bp[0] == '\\' && bp[1] == 'x') {
1262                /* HEX STRING */
1263                bp += 2;
1264                while (len < bufsize - 1) {
1265                        int h, l;
1266
1267                        h = hex_to_bin(bp[0]);
1268                        if (h < 0)
1269                                break;
1270
1271                        l = hex_to_bin(bp[1]);
1272                        if (l < 0)
1273                                break;
1274
1275                        *dest++ = (h << 4) | l;
1276                        bp += 2;
1277                        len++;
1278                }
1279        } else {
1280                /* text with \nnn octal quoting */
1281                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1282                        if (*bp == '\\' &&
1283                            isodigit(bp[1]) && (bp[1] <= '3') &&
1284                            isodigit(bp[2]) &&
1285                            isodigit(bp[3])) {
1286                                int byte = (*++bp -'0');
1287                                bp++;
1288                                byte = (byte << 3) | (*bp++ - '0');
1289                                byte = (byte << 3) | (*bp++ - '0');
1290                                *dest++ = byte;
1291                                len++;
1292                        } else {
1293                                *dest++ = *bp++;
1294                                len++;
1295                        }
1296                }
1297        }
1298
1299        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1300                return -1;
1301        while (*bp == ' ') bp++;
1302        *bpp = bp;
1303        *dest = '\0';
1304        return len;
1305}
1306EXPORT_SYMBOL_GPL(qword_get);
1307
1308
1309/*
1310 * support /proc/net/rpc/$CACHENAME/content
1311 * as a seqfile.
1312 * We call ->cache_show passing NULL for the item to
1313 * get a header, then pass each real item in the cache
1314 */
1315
1316static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1317{
1318        loff_t n = *pos;
1319        unsigned int hash, entry;
1320        struct cache_head *ch;
1321        struct cache_detail *cd = m->private;
1322
1323        if (!n--)
1324                return SEQ_START_TOKEN;
1325        hash = n >> 32;
1326        entry = n & ((1LL<<32) - 1);
1327
1328        hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1329                if (!entry--)
1330                        return ch;
1331        n &= ~((1LL<<32) - 1);
1332        do {
1333                hash++;
1334                n += 1LL<<32;
1335        } while(hash < cd->hash_size &&
1336                hlist_empty(&cd->hash_table[hash]));
1337        if (hash >= cd->hash_size)
1338                return NULL;
1339        *pos = n+1;
1340        return hlist_entry_safe(rcu_dereference_raw(
1341                                hlist_first_rcu(&cd->hash_table[hash])),
1342                                struct cache_head, cache_list);
1343}
1344
1345static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1346{
1347        struct cache_head *ch = p;
1348        int hash = (*pos >> 32);
1349        struct cache_detail *cd = m->private;
1350
1351        if (p == SEQ_START_TOKEN)
1352                hash = 0;
1353        else if (ch->cache_list.next == NULL) {
1354                hash++;
1355                *pos += 1LL<<32;
1356        } else {
1357                ++*pos;
1358                return hlist_entry_safe(rcu_dereference_raw(
1359                                        hlist_next_rcu(&ch->cache_list)),
1360                                        struct cache_head, cache_list);
1361        }
1362        *pos &= ~((1LL<<32) - 1);
1363        while (hash < cd->hash_size &&
1364               hlist_empty(&cd->hash_table[hash])) {
1365                hash++;
1366                *pos += 1LL<<32;
1367        }
1368        if (hash >= cd->hash_size)
1369                return NULL;
1370        ++*pos;
1371        return hlist_entry_safe(rcu_dereference_raw(
1372                                hlist_first_rcu(&cd->hash_table[hash])),
1373                                struct cache_head, cache_list);
1374}
1375EXPORT_SYMBOL_GPL(cache_seq_next);
1376
1377void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1378        __acquires(RCU)
1379{
1380        rcu_read_lock();
1381        return __cache_seq_start(m, pos);
1382}
1383EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1384
1385void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1386{
1387        return cache_seq_next(file, p, pos);
1388}
1389EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1390
1391void cache_seq_stop_rcu(struct seq_file *m, void *p)
1392        __releases(RCU)
1393{
1394        rcu_read_unlock();
1395}
1396EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1397
1398static int c_show(struct seq_file *m, void *p)
1399{
1400        struct cache_head *cp = p;
1401        struct cache_detail *cd = m->private;
1402
1403        if (p == SEQ_START_TOKEN)
1404                return cd->cache_show(m, cd, NULL);
1405
1406        ifdebug(CACHE)
1407                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1408                           convert_to_wallclock(cp->expiry_time),
1409                           kref_read(&cp->ref), cp->flags);
1410        cache_get(cp);
1411        if (cache_check(cd, cp, NULL))
1412                /* cache_check does a cache_put on failure */
1413                seq_printf(m, "# ");
1414        else {
1415                if (cache_is_expired(cd, cp))
1416                        seq_printf(m, "# ");
1417                cache_put(cp, cd);
1418        }
1419
1420        return cd->cache_show(m, cd, cp);
1421}
1422
1423static const struct seq_operations cache_content_op = {
1424        .start  = cache_seq_start_rcu,
1425        .next   = cache_seq_next_rcu,
1426        .stop   = cache_seq_stop_rcu,
1427        .show   = c_show,
1428};
1429
1430static int content_open(struct inode *inode, struct file *file,
1431                        struct cache_detail *cd)
1432{
1433        struct seq_file *seq;
1434        int err;
1435
1436        if (!cd || !try_module_get(cd->owner))
1437                return -EACCES;
1438
1439        err = seq_open(file, &cache_content_op);
1440        if (err) {
1441                module_put(cd->owner);
1442                return err;
1443        }
1444
1445        seq = file->private_data;
1446        seq->private = cd;
1447        return 0;
1448}
1449
1450static int content_release(struct inode *inode, struct file *file,
1451                struct cache_detail *cd)
1452{
1453        int ret = seq_release(inode, file);
1454        module_put(cd->owner);
1455        return ret;
1456}
1457
1458static int open_flush(struct inode *inode, struct file *file,
1459                        struct cache_detail *cd)
1460{
1461        if (!cd || !try_module_get(cd->owner))
1462                return -EACCES;
1463        return nonseekable_open(inode, file);
1464}
1465
1466static int release_flush(struct inode *inode, struct file *file,
1467                        struct cache_detail *cd)
1468{
1469        module_put(cd->owner);
1470        return 0;
1471}
1472
1473static ssize_t read_flush(struct file *file, char __user *buf,
1474                          size_t count, loff_t *ppos,
1475                          struct cache_detail *cd)
1476{
1477        char tbuf[22];
1478        size_t len;
1479
1480        len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1481                        convert_to_wallclock(cd->flush_time));
1482        return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1483}
1484
1485static ssize_t write_flush(struct file *file, const char __user *buf,
1486                           size_t count, loff_t *ppos,
1487                           struct cache_detail *cd)
1488{
1489        char tbuf[20];
1490        char *ep;
1491        time_t now;
1492
1493        if (*ppos || count > sizeof(tbuf)-1)
1494                return -EINVAL;
1495        if (copy_from_user(tbuf, buf, count))
1496                return -EFAULT;
1497        tbuf[count] = 0;
1498        simple_strtoul(tbuf, &ep, 0);
1499        if (*ep && *ep != '\n')
1500                return -EINVAL;
1501        /* Note that while we check that 'buf' holds a valid number,
1502         * we always ignore the value and just flush everything.
1503         * Making use of the number leads to races.
1504         */
1505
1506        now = seconds_since_boot();
1507        /* Always flush everything, so behave like cache_purge()
1508         * Do this by advancing flush_time to the current time,
1509         * or by one second if it has already reached the current time.
1510         * Newly added cache entries will always have ->last_refresh greater
1511         * that ->flush_time, so they don't get flushed prematurely.
1512         */
1513
1514        if (cd->flush_time >= now)
1515                now = cd->flush_time + 1;
1516
1517        cd->flush_time = now;
1518        cd->nextcheck = now;
1519        cache_flush();
1520
1521        *ppos += count;
1522        return count;
1523}
1524
1525static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1526                                 size_t count, loff_t *ppos)
1527{
1528        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1529
1530        return cache_read(filp, buf, count, ppos, cd);
1531}
1532
1533static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1534                                  size_t count, loff_t *ppos)
1535{
1536        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1537
1538        return cache_write(filp, buf, count, ppos, cd);
1539}
1540
1541static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1542{
1543        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1544
1545        return cache_poll(filp, wait, cd);
1546}
1547
1548static long cache_ioctl_procfs(struct file *filp,
1549                               unsigned int cmd, unsigned long arg)
1550{
1551        struct inode *inode = file_inode(filp);
1552        struct cache_detail *cd = PDE_DATA(inode);
1553
1554        return cache_ioctl(inode, filp, cmd, arg, cd);
1555}
1556
1557static int cache_open_procfs(struct inode *inode, struct file *filp)
1558{
1559        struct cache_detail *cd = PDE_DATA(inode);
1560
1561        return cache_open(inode, filp, cd);
1562}
1563
1564static int cache_release_procfs(struct inode *inode, struct file *filp)
1565{
1566        struct cache_detail *cd = PDE_DATA(inode);
1567
1568        return cache_release(inode, filp, cd);
1569}
1570
1571static const struct file_operations cache_file_operations_procfs = {
1572        .owner          = THIS_MODULE,
1573        .llseek         = no_llseek,
1574        .read           = cache_read_procfs,
1575        .write          = cache_write_procfs,
1576        .poll           = cache_poll_procfs,
1577        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1578        .open           = cache_open_procfs,
1579        .release        = cache_release_procfs,
1580};
1581
1582static int content_open_procfs(struct inode *inode, struct file *filp)
1583{
1584        struct cache_detail *cd = PDE_DATA(inode);
1585
1586        return content_open(inode, filp, cd);
1587}
1588
1589static int content_release_procfs(struct inode *inode, struct file *filp)
1590{
1591        struct cache_detail *cd = PDE_DATA(inode);
1592
1593        return content_release(inode, filp, cd);
1594}
1595
1596static const struct file_operations content_file_operations_procfs = {
1597        .open           = content_open_procfs,
1598        .read           = seq_read,
1599        .llseek         = seq_lseek,
1600        .release        = content_release_procfs,
1601};
1602
1603static int open_flush_procfs(struct inode *inode, struct file *filp)
1604{
1605        struct cache_detail *cd = PDE_DATA(inode);
1606
1607        return open_flush(inode, filp, cd);
1608}
1609
1610static int release_flush_procfs(struct inode *inode, struct file *filp)
1611{
1612        struct cache_detail *cd = PDE_DATA(inode);
1613
1614        return release_flush(inode, filp, cd);
1615}
1616
1617static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1618                            size_t count, loff_t *ppos)
1619{
1620        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1621
1622        return read_flush(filp, buf, count, ppos, cd);
1623}
1624
1625static ssize_t write_flush_procfs(struct file *filp,
1626                                  const char __user *buf,
1627                                  size_t count, loff_t *ppos)
1628{
1629        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1630
1631        return write_flush(filp, buf, count, ppos, cd);
1632}
1633
1634static const struct file_operations cache_flush_operations_procfs = {
1635        .open           = open_flush_procfs,
1636        .read           = read_flush_procfs,
1637        .write          = write_flush_procfs,
1638        .release        = release_flush_procfs,
1639        .llseek         = no_llseek,
1640};
1641
1642static void remove_cache_proc_entries(struct cache_detail *cd)
1643{
1644        if (cd->procfs) {
1645                proc_remove(cd->procfs);
1646                cd->procfs = NULL;
1647        }
1648}
1649
1650#ifdef CONFIG_PROC_FS
1651static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1652{
1653        struct proc_dir_entry *p;
1654        struct sunrpc_net *sn;
1655
1656        sn = net_generic(net, sunrpc_net_id);
1657        cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1658        if (cd->procfs == NULL)
1659                goto out_nomem;
1660
1661        p = proc_create_data("flush", S_IFREG | 0600,
1662                             cd->procfs, &cache_flush_operations_procfs, cd);
1663        if (p == NULL)
1664                goto out_nomem;
1665
1666        if (cd->cache_request || cd->cache_parse) {
1667                p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1668                                     &cache_file_operations_procfs, cd);
1669                if (p == NULL)
1670                        goto out_nomem;
1671        }
1672        if (cd->cache_show) {
1673                p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1674                                     &content_file_operations_procfs, cd);
1675                if (p == NULL)
1676                        goto out_nomem;
1677        }
1678        return 0;
1679out_nomem:
1680        remove_cache_proc_entries(cd);
1681        return -ENOMEM;
1682}
1683#else /* CONFIG_PROC_FS */
1684static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1685{
1686        return 0;
1687}
1688#endif
1689
1690void __init cache_initialize(void)
1691{
1692        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1693}
1694
1695int cache_register_net(struct cache_detail *cd, struct net *net)
1696{
1697        int ret;
1698
1699        sunrpc_init_cache_detail(cd);
1700        ret = create_cache_proc_entries(cd, net);
1701        if (ret)
1702                sunrpc_destroy_cache_detail(cd);
1703        return ret;
1704}
1705EXPORT_SYMBOL_GPL(cache_register_net);
1706
1707void cache_unregister_net(struct cache_detail *cd, struct net *net)
1708{
1709        remove_cache_proc_entries(cd);
1710        sunrpc_destroy_cache_detail(cd);
1711}
1712EXPORT_SYMBOL_GPL(cache_unregister_net);
1713
1714struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1715{
1716        struct cache_detail *cd;
1717        int i;
1718
1719        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1720        if (cd == NULL)
1721                return ERR_PTR(-ENOMEM);
1722
1723        cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1724                                 GFP_KERNEL);
1725        if (cd->hash_table == NULL) {
1726                kfree(cd);
1727                return ERR_PTR(-ENOMEM);
1728        }
1729
1730        for (i = 0; i < cd->hash_size; i++)
1731                INIT_HLIST_HEAD(&cd->hash_table[i]);
1732        cd->net = net;
1733        return cd;
1734}
1735EXPORT_SYMBOL_GPL(cache_create_net);
1736
1737void cache_destroy_net(struct cache_detail *cd, struct net *net)
1738{
1739        kfree(cd->hash_table);
1740        kfree(cd);
1741}
1742EXPORT_SYMBOL_GPL(cache_destroy_net);
1743
1744static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1745                                 size_t count, loff_t *ppos)
1746{
1747        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1748
1749        return cache_read(filp, buf, count, ppos, cd);
1750}
1751
1752static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1753                                  size_t count, loff_t *ppos)
1754{
1755        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1756
1757        return cache_write(filp, buf, count, ppos, cd);
1758}
1759
1760static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1761{
1762        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1763
1764        return cache_poll(filp, wait, cd);
1765}
1766
1767static long cache_ioctl_pipefs(struct file *filp,
1768                              unsigned int cmd, unsigned long arg)
1769{
1770        struct inode *inode = file_inode(filp);
1771        struct cache_detail *cd = RPC_I(inode)->private;
1772
1773        return cache_ioctl(inode, filp, cmd, arg, cd);
1774}
1775
1776static int cache_open_pipefs(struct inode *inode, struct file *filp)
1777{
1778        struct cache_detail *cd = RPC_I(inode)->private;
1779
1780        return cache_open(inode, filp, cd);
1781}
1782
1783static int cache_release_pipefs(struct inode *inode, struct file *filp)
1784{
1785        struct cache_detail *cd = RPC_I(inode)->private;
1786
1787        return cache_release(inode, filp, cd);
1788}
1789
1790const struct file_operations cache_file_operations_pipefs = {
1791        .owner          = THIS_MODULE,
1792        .llseek         = no_llseek,
1793        .read           = cache_read_pipefs,
1794        .write          = cache_write_pipefs,
1795        .poll           = cache_poll_pipefs,
1796        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1797        .open           = cache_open_pipefs,
1798        .release        = cache_release_pipefs,
1799};
1800
1801static int content_open_pipefs(struct inode *inode, struct file *filp)
1802{
1803        struct cache_detail *cd = RPC_I(inode)->private;
1804
1805        return content_open(inode, filp, cd);
1806}
1807
1808static int content_release_pipefs(struct inode *inode, struct file *filp)
1809{
1810        struct cache_detail *cd = RPC_I(inode)->private;
1811
1812        return content_release(inode, filp, cd);
1813}
1814
1815const struct file_operations content_file_operations_pipefs = {
1816        .open           = content_open_pipefs,
1817        .read           = seq_read,
1818        .llseek         = seq_lseek,
1819        .release        = content_release_pipefs,
1820};
1821
1822static int open_flush_pipefs(struct inode *inode, struct file *filp)
1823{
1824        struct cache_detail *cd = RPC_I(inode)->private;
1825
1826        return open_flush(inode, filp, cd);
1827}
1828
1829static int release_flush_pipefs(struct inode *inode, struct file *filp)
1830{
1831        struct cache_detail *cd = RPC_I(inode)->private;
1832
1833        return release_flush(inode, filp, cd);
1834}
1835
1836static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1837                            size_t count, loff_t *ppos)
1838{
1839        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1840
1841        return read_flush(filp, buf, count, ppos, cd);
1842}
1843
1844static ssize_t write_flush_pipefs(struct file *filp,
1845                                  const char __user *buf,
1846                                  size_t count, loff_t *ppos)
1847{
1848        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1849
1850        return write_flush(filp, buf, count, ppos, cd);
1851}
1852
1853const struct file_operations cache_flush_operations_pipefs = {
1854        .open           = open_flush_pipefs,
1855        .read           = read_flush_pipefs,
1856        .write          = write_flush_pipefs,
1857        .release        = release_flush_pipefs,
1858        .llseek         = no_llseek,
1859};
1860
1861int sunrpc_cache_register_pipefs(struct dentry *parent,
1862                                 const char *name, umode_t umode,
1863                                 struct cache_detail *cd)
1864{
1865        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1866        if (IS_ERR(dir))
1867                return PTR_ERR(dir);
1868        cd->pipefs = dir;
1869        return 0;
1870}
1871EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1872
1873void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1874{
1875        if (cd->pipefs) {
1876                rpc_remove_cache_dir(cd->pipefs);
1877                cd->pipefs = NULL;
1878        }
1879}
1880EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1881
1882void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1883{
1884        spin_lock(&cd->hash_lock);
1885        if (!hlist_unhashed(&h->cache_list)){
1886                hlist_del_init_rcu(&h->cache_list);
1887                cd->entries--;
1888                spin_unlock(&cd->hash_lock);
1889                cache_put(h, cd);
1890        } else
1891                spin_unlock(&cd->hash_lock);
1892}
1893EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1894