linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
  22
  23#include <linux/sunrpc/clnt.h>
  24
  25#include "sunrpc.h"
  26
  27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  28#define RPCDBG_FACILITY         RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE      (2048)
  38#define RPC_BUFFER_POOLSIZE     (8)
  39#define RPC_TASK_POOLSIZE       (8)
  40static struct kmem_cache        *rpc_task_slabp __read_mostly;
  41static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  42static mempool_t        *rpc_task_mempool __read_mostly;
  43static mempool_t        *rpc_buffer_mempool __read_mostly;
  44
  45static void                     rpc_async_schedule(struct work_struct *);
  46static void                      rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(struct timer_list *t);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue __read_mostly;
  58struct workqueue_struct *xprtiod_workqueue __read_mostly;
  59
  60/*
  61 * Disable the timer for a given RPC task. Should be called with
  62 * queue->lock and bh_disabled in order to avoid races within
  63 * rpc_run_timer().
  64 */
  65static void
  66__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  67{
  68        if (task->tk_timeout == 0)
  69                return;
  70        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  71        task->tk_timeout = 0;
  72        list_del(&task->u.tk_wait.timer_list);
  73        if (list_empty(&queue->timer_list.list))
  74                del_timer(&queue->timer_list.timer);
  75}
  76
  77static void
  78rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  79{
  80        queue->timer_list.expires = expires;
  81        mod_timer(&queue->timer_list.timer, expires);
  82}
  83
  84/*
  85 * Set up a timer for the current task.
  86 */
  87static void
  88__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  89{
  90        if (!task->tk_timeout)
  91                return;
  92
  93        dprintk("RPC: %5u setting alarm for %u ms\n",
  94                task->tk_pid, jiffies_to_msecs(task->tk_timeout));
  95
  96        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  97        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  98                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  99        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 100}
 101
 102static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 103{
 104        if (queue->priority != priority) {
 105                queue->priority = priority;
 106                queue->nr = 1U << priority;
 107        }
 108}
 109
 110static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 111{
 112        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 113}
 114
 115/*
 116 * Add a request to a queue list
 117 */
 118static void
 119__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 120{
 121        struct rpc_task *t;
 122
 123        list_for_each_entry(t, q, u.tk_wait.list) {
 124                if (t->tk_owner == task->tk_owner) {
 125                        list_add_tail(&task->u.tk_wait.links,
 126                                        &t->u.tk_wait.links);
 127                        /* Cache the queue head in task->u.tk_wait.list */
 128                        task->u.tk_wait.list.next = q;
 129                        task->u.tk_wait.list.prev = NULL;
 130                        return;
 131                }
 132        }
 133        INIT_LIST_HEAD(&task->u.tk_wait.links);
 134        list_add_tail(&task->u.tk_wait.list, q);
 135}
 136
 137/*
 138 * Remove request from a queue list
 139 */
 140static void
 141__rpc_list_dequeue_task(struct rpc_task *task)
 142{
 143        struct list_head *q;
 144        struct rpc_task *t;
 145
 146        if (task->u.tk_wait.list.prev == NULL) {
 147                list_del(&task->u.tk_wait.links);
 148                return;
 149        }
 150        if (!list_empty(&task->u.tk_wait.links)) {
 151                t = list_first_entry(&task->u.tk_wait.links,
 152                                struct rpc_task,
 153                                u.tk_wait.links);
 154                /* Assume __rpc_list_enqueue_task() cached the queue head */
 155                q = t->u.tk_wait.list.next;
 156                list_add_tail(&t->u.tk_wait.list, q);
 157                list_del(&task->u.tk_wait.links);
 158        }
 159        list_del(&task->u.tk_wait.list);
 160}
 161
 162/*
 163 * Add new request to a priority queue.
 164 */
 165static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 166                struct rpc_task *task,
 167                unsigned char queue_priority)
 168{
 169        if (unlikely(queue_priority > queue->maxpriority))
 170                queue_priority = queue->maxpriority;
 171        __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 172}
 173
 174/*
 175 * Add new request to wait queue.
 176 *
 177 * Swapper tasks always get inserted at the head of the queue.
 178 * This should avoid many nasty memory deadlocks and hopefully
 179 * improve overall performance.
 180 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 181 */
 182static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 183                struct rpc_task *task,
 184                unsigned char queue_priority)
 185{
 186        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 187        if (RPC_IS_QUEUED(task))
 188                return;
 189
 190        if (RPC_IS_PRIORITY(queue))
 191                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 192        else if (RPC_IS_SWAPPER(task))
 193                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 194        else
 195                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 196        task->tk_waitqueue = queue;
 197        queue->qlen++;
 198        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 199        smp_wmb();
 200        rpc_set_queued(task);
 201
 202        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 203                        task->tk_pid, queue, rpc_qname(queue));
 204}
 205
 206/*
 207 * Remove request from a priority queue.
 208 */
 209static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 210{
 211        __rpc_list_dequeue_task(task);
 212}
 213
 214/*
 215 * Remove request from queue.
 216 * Note: must be called with spin lock held.
 217 */
 218static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 219{
 220        __rpc_disable_timer(queue, task);
 221        if (RPC_IS_PRIORITY(queue))
 222                __rpc_remove_wait_queue_priority(task);
 223        else
 224                list_del(&task->u.tk_wait.list);
 225        queue->qlen--;
 226        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 227                        task->tk_pid, queue, rpc_qname(queue));
 228}
 229
 230static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 231{
 232        int i;
 233
 234        spin_lock_init(&queue->lock);
 235        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 236                INIT_LIST_HEAD(&queue->tasks[i]);
 237        queue->maxpriority = nr_queues - 1;
 238        rpc_reset_waitqueue_priority(queue);
 239        queue->qlen = 0;
 240        timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
 241        INIT_LIST_HEAD(&queue->timer_list.list);
 242        rpc_assign_waitqueue_name(queue, qname);
 243}
 244
 245void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 246{
 247        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 248}
 249EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 250
 251void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 252{
 253        __rpc_init_priority_wait_queue(queue, qname, 1);
 254}
 255EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 256
 257void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 258{
 259        del_timer_sync(&queue->timer_list.timer);
 260}
 261EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 262
 263static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 264{
 265        freezable_schedule_unsafe();
 266        if (signal_pending_state(mode, current))
 267                return -ERESTARTSYS;
 268        return 0;
 269}
 270
 271#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 272static void rpc_task_set_debuginfo(struct rpc_task *task)
 273{
 274        static atomic_t rpc_pid;
 275
 276        task->tk_pid = atomic_inc_return(&rpc_pid);
 277}
 278#else
 279static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 280{
 281}
 282#endif
 283
 284static void rpc_set_active(struct rpc_task *task)
 285{
 286        rpc_task_set_debuginfo(task);
 287        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 288        trace_rpc_task_begin(task, NULL);
 289}
 290
 291/*
 292 * Mark an RPC call as having completed by clearing the 'active' bit
 293 * and then waking up all tasks that were sleeping.
 294 */
 295static int rpc_complete_task(struct rpc_task *task)
 296{
 297        void *m = &task->tk_runstate;
 298        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 299        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 300        unsigned long flags;
 301        int ret;
 302
 303        trace_rpc_task_complete(task, NULL);
 304
 305        spin_lock_irqsave(&wq->lock, flags);
 306        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 307        ret = atomic_dec_and_test(&task->tk_count);
 308        if (waitqueue_active(wq))
 309                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 310        spin_unlock_irqrestore(&wq->lock, flags);
 311        return ret;
 312}
 313
 314/*
 315 * Allow callers to wait for completion of an RPC call
 316 *
 317 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 318 * to enforce taking of the wq->lock and hence avoid races with
 319 * rpc_complete_task().
 320 */
 321int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 322{
 323        if (action == NULL)
 324                action = rpc_wait_bit_killable;
 325        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 326                        action, TASK_KILLABLE);
 327}
 328EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 329
 330/*
 331 * Make an RPC task runnable.
 332 *
 333 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 334 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 335 * the wait queue operation.
 336 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 337 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 338 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 339 * the RPC_TASK_RUNNING flag.
 340 */
 341static void rpc_make_runnable(struct workqueue_struct *wq,
 342                struct rpc_task *task)
 343{
 344        bool need_wakeup = !rpc_test_and_set_running(task);
 345
 346        rpc_clear_queued(task);
 347        if (!need_wakeup)
 348                return;
 349        if (RPC_IS_ASYNC(task)) {
 350                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 351                queue_work(wq, &task->u.tk_work);
 352        } else
 353                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 354}
 355
 356/*
 357 * Prepare for sleeping on a wait queue.
 358 * By always appending tasks to the list we ensure FIFO behavior.
 359 * NB: An RPC task will only receive interrupt-driven events as long
 360 * as it's on a wait queue.
 361 */
 362static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 363                struct rpc_task *task,
 364                rpc_action action,
 365                unsigned char queue_priority)
 366{
 367        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 368                        task->tk_pid, rpc_qname(q), jiffies);
 369
 370        trace_rpc_task_sleep(task, q);
 371
 372        __rpc_add_wait_queue(q, task, queue_priority);
 373
 374        WARN_ON_ONCE(task->tk_callback != NULL);
 375        task->tk_callback = action;
 376        __rpc_add_timer(q, task);
 377}
 378
 379void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 380                                rpc_action action)
 381{
 382        /* We shouldn't ever put an inactive task to sleep */
 383        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 384        if (!RPC_IS_ACTIVATED(task)) {
 385                task->tk_status = -EIO;
 386                rpc_put_task_async(task);
 387                return;
 388        }
 389
 390        /*
 391         * Protect the queue operations.
 392         */
 393        spin_lock_bh(&q->lock);
 394        __rpc_sleep_on_priority(q, task, action, task->tk_priority);
 395        spin_unlock_bh(&q->lock);
 396}
 397EXPORT_SYMBOL_GPL(rpc_sleep_on);
 398
 399void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 400                rpc_action action, int priority)
 401{
 402        /* We shouldn't ever put an inactive task to sleep */
 403        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 404        if (!RPC_IS_ACTIVATED(task)) {
 405                task->tk_status = -EIO;
 406                rpc_put_task_async(task);
 407                return;
 408        }
 409
 410        /*
 411         * Protect the queue operations.
 412         */
 413        spin_lock_bh(&q->lock);
 414        __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 415        spin_unlock_bh(&q->lock);
 416}
 417EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 418
 419/**
 420 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 421 * @wq: workqueue on which to run task
 422 * @queue: wait queue
 423 * @task: task to be woken up
 424 *
 425 * Caller must hold queue->lock, and have cleared the task queued flag.
 426 */
 427static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 428                struct rpc_wait_queue *queue,
 429                struct rpc_task *task)
 430{
 431        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 432                        task->tk_pid, jiffies);
 433
 434        /* Has the task been executed yet? If not, we cannot wake it up! */
 435        if (!RPC_IS_ACTIVATED(task)) {
 436                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 437                return;
 438        }
 439
 440        trace_rpc_task_wakeup(task, queue);
 441
 442        __rpc_remove_wait_queue(queue, task);
 443
 444        rpc_make_runnable(wq, task);
 445
 446        dprintk("RPC:       __rpc_wake_up_task done\n");
 447}
 448
 449/*
 450 * Wake up a queued task while the queue lock is being held
 451 */
 452static struct rpc_task *
 453rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 454                struct rpc_wait_queue *queue, struct rpc_task *task,
 455                bool (*action)(struct rpc_task *, void *), void *data)
 456{
 457        if (RPC_IS_QUEUED(task)) {
 458                smp_rmb();
 459                if (task->tk_waitqueue == queue) {
 460                        if (action == NULL || action(task, data)) {
 461                                __rpc_do_wake_up_task_on_wq(wq, queue, task);
 462                                return task;
 463                        }
 464                }
 465        }
 466        return NULL;
 467}
 468
 469static void
 470rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
 471                struct rpc_wait_queue *queue, struct rpc_task *task)
 472{
 473        rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
 474}
 475
 476/*
 477 * Wake up a queued task while the queue lock is being held
 478 */
 479static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 480{
 481        rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
 482}
 483
 484/*
 485 * Wake up a task on a specific queue
 486 */
 487void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
 488                struct rpc_wait_queue *queue,
 489                struct rpc_task *task)
 490{
 491        if (!RPC_IS_QUEUED(task))
 492                return;
 493        spin_lock_bh(&queue->lock);
 494        rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
 495        spin_unlock_bh(&queue->lock);
 496}
 497
 498/*
 499 * Wake up a task on a specific queue
 500 */
 501void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 502{
 503        if (!RPC_IS_QUEUED(task))
 504                return;
 505        spin_lock_bh(&queue->lock);
 506        rpc_wake_up_task_queue_locked(queue, task);
 507        spin_unlock_bh(&queue->lock);
 508}
 509EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 510
 511static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 512{
 513        task->tk_status = *(int *)status;
 514        return true;
 515}
 516
 517static void
 518rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 519                struct rpc_task *task, int status)
 520{
 521        rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 522                        task, rpc_task_action_set_status, &status);
 523}
 524
 525/**
 526 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 527 * @queue: pointer to rpc_wait_queue
 528 * @task: pointer to rpc_task
 529 * @status: integer error value
 530 *
 531 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 532 * set to the value of @status.
 533 */
 534void
 535rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 536                struct rpc_task *task, int status)
 537{
 538        if (!RPC_IS_QUEUED(task))
 539                return;
 540        spin_lock_bh(&queue->lock);
 541        rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 542        spin_unlock_bh(&queue->lock);
 543}
 544
 545/*
 546 * Wake up the next task on a priority queue.
 547 */
 548static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 549{
 550        struct list_head *q;
 551        struct rpc_task *task;
 552
 553        /*
 554         * Service a batch of tasks from a single owner.
 555         */
 556        q = &queue->tasks[queue->priority];
 557        if (!list_empty(q) && --queue->nr) {
 558                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 559                goto out;
 560        }
 561
 562        /*
 563         * Service the next queue.
 564         */
 565        do {
 566                if (q == &queue->tasks[0])
 567                        q = &queue->tasks[queue->maxpriority];
 568                else
 569                        q = q - 1;
 570                if (!list_empty(q)) {
 571                        task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 572                        goto new_queue;
 573                }
 574        } while (q != &queue->tasks[queue->priority]);
 575
 576        rpc_reset_waitqueue_priority(queue);
 577        return NULL;
 578
 579new_queue:
 580        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 581out:
 582        return task;
 583}
 584
 585static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 586{
 587        if (RPC_IS_PRIORITY(queue))
 588                return __rpc_find_next_queued_priority(queue);
 589        if (!list_empty(&queue->tasks[0]))
 590                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 591        return NULL;
 592}
 593
 594/*
 595 * Wake up the first task on the wait queue.
 596 */
 597struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 598                struct rpc_wait_queue *queue,
 599                bool (*func)(struct rpc_task *, void *), void *data)
 600{
 601        struct rpc_task *task = NULL;
 602
 603        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 604                        queue, rpc_qname(queue));
 605        spin_lock_bh(&queue->lock);
 606        task = __rpc_find_next_queued(queue);
 607        if (task != NULL)
 608                task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 609                                task, func, data);
 610        spin_unlock_bh(&queue->lock);
 611
 612        return task;
 613}
 614
 615/*
 616 * Wake up the first task on the wait queue.
 617 */
 618struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 619                bool (*func)(struct rpc_task *, void *), void *data)
 620{
 621        return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 622}
 623EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 624
 625static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 626{
 627        return true;
 628}
 629
 630/*
 631 * Wake up the next task on the wait queue.
 632*/
 633struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 634{
 635        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 636}
 637EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 638
 639/**
 640 * rpc_wake_up - wake up all rpc_tasks
 641 * @queue: rpc_wait_queue on which the tasks are sleeping
 642 *
 643 * Grabs queue->lock
 644 */
 645void rpc_wake_up(struct rpc_wait_queue *queue)
 646{
 647        struct list_head *head;
 648
 649        spin_lock_bh(&queue->lock);
 650        head = &queue->tasks[queue->maxpriority];
 651        for (;;) {
 652                while (!list_empty(head)) {
 653                        struct rpc_task *task;
 654                        task = list_first_entry(head,
 655                                        struct rpc_task,
 656                                        u.tk_wait.list);
 657                        rpc_wake_up_task_queue_locked(queue, task);
 658                }
 659                if (head == &queue->tasks[0])
 660                        break;
 661                head--;
 662        }
 663        spin_unlock_bh(&queue->lock);
 664}
 665EXPORT_SYMBOL_GPL(rpc_wake_up);
 666
 667/**
 668 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 669 * @queue: rpc_wait_queue on which the tasks are sleeping
 670 * @status: status value to set
 671 *
 672 * Grabs queue->lock
 673 */
 674void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 675{
 676        struct list_head *head;
 677
 678        spin_lock_bh(&queue->lock);
 679        head = &queue->tasks[queue->maxpriority];
 680        for (;;) {
 681                while (!list_empty(head)) {
 682                        struct rpc_task *task;
 683                        task = list_first_entry(head,
 684                                        struct rpc_task,
 685                                        u.tk_wait.list);
 686                        task->tk_status = status;
 687                        rpc_wake_up_task_queue_locked(queue, task);
 688                }
 689                if (head == &queue->tasks[0])
 690                        break;
 691                head--;
 692        }
 693        spin_unlock_bh(&queue->lock);
 694}
 695EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 696
 697static void __rpc_queue_timer_fn(struct timer_list *t)
 698{
 699        struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
 700        struct rpc_task *task, *n;
 701        unsigned long expires, now, timeo;
 702
 703        spin_lock(&queue->lock);
 704        expires = now = jiffies;
 705        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 706                timeo = task->u.tk_wait.expires;
 707                if (time_after_eq(now, timeo)) {
 708                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 709                        task->tk_status = -ETIMEDOUT;
 710                        rpc_wake_up_task_queue_locked(queue, task);
 711                        continue;
 712                }
 713                if (expires == now || time_after(expires, timeo))
 714                        expires = timeo;
 715        }
 716        if (!list_empty(&queue->timer_list.list))
 717                rpc_set_queue_timer(queue, expires);
 718        spin_unlock(&queue->lock);
 719}
 720
 721static void __rpc_atrun(struct rpc_task *task)
 722{
 723        if (task->tk_status == -ETIMEDOUT)
 724                task->tk_status = 0;
 725}
 726
 727/*
 728 * Run a task at a later time
 729 */
 730void rpc_delay(struct rpc_task *task, unsigned long delay)
 731{
 732        task->tk_timeout = delay;
 733        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 734}
 735EXPORT_SYMBOL_GPL(rpc_delay);
 736
 737/*
 738 * Helper to call task->tk_ops->rpc_call_prepare
 739 */
 740void rpc_prepare_task(struct rpc_task *task)
 741{
 742        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 743}
 744
 745static void
 746rpc_init_task_statistics(struct rpc_task *task)
 747{
 748        /* Initialize retry counters */
 749        task->tk_garb_retry = 2;
 750        task->tk_cred_retry = 2;
 751        task->tk_rebind_retry = 2;
 752
 753        /* starting timestamp */
 754        task->tk_start = ktime_get();
 755}
 756
 757static void
 758rpc_reset_task_statistics(struct rpc_task *task)
 759{
 760        task->tk_timeouts = 0;
 761        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 762
 763        rpc_init_task_statistics(task);
 764}
 765
 766/*
 767 * Helper that calls task->tk_ops->rpc_call_done if it exists
 768 */
 769void rpc_exit_task(struct rpc_task *task)
 770{
 771        task->tk_action = NULL;
 772        if (task->tk_ops->rpc_call_done != NULL) {
 773                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 774                if (task->tk_action != NULL) {
 775                        WARN_ON(RPC_ASSASSINATED(task));
 776                        /* Always release the RPC slot and buffer memory */
 777                        xprt_release(task);
 778                        rpc_reset_task_statistics(task);
 779                }
 780        }
 781}
 782
 783void rpc_exit(struct rpc_task *task, int status)
 784{
 785        task->tk_status = status;
 786        task->tk_action = rpc_exit_task;
 787        if (RPC_IS_QUEUED(task))
 788                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 789}
 790EXPORT_SYMBOL_GPL(rpc_exit);
 791
 792void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 793{
 794        if (ops->rpc_release != NULL)
 795                ops->rpc_release(calldata);
 796}
 797
 798/*
 799 * This is the RPC `scheduler' (or rather, the finite state machine).
 800 */
 801static void __rpc_execute(struct rpc_task *task)
 802{
 803        struct rpc_wait_queue *queue;
 804        int task_is_async = RPC_IS_ASYNC(task);
 805        int status = 0;
 806
 807        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 808                        task->tk_pid, task->tk_flags);
 809
 810        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 811        if (RPC_IS_QUEUED(task))
 812                return;
 813
 814        for (;;) {
 815                void (*do_action)(struct rpc_task *);
 816
 817                /*
 818                 * Perform the next FSM step or a pending callback.
 819                 *
 820                 * tk_action may be NULL if the task has been killed.
 821                 * In particular, note that rpc_killall_tasks may
 822                 * do this at any time, so beware when dereferencing.
 823                 */
 824                do_action = task->tk_action;
 825                if (task->tk_callback) {
 826                        do_action = task->tk_callback;
 827                        task->tk_callback = NULL;
 828                }
 829                if (!do_action)
 830                        break;
 831                trace_rpc_task_run_action(task, do_action);
 832                do_action(task);
 833
 834                /*
 835                 * Lockless check for whether task is sleeping or not.
 836                 */
 837                if (!RPC_IS_QUEUED(task))
 838                        continue;
 839                /*
 840                 * The queue->lock protects against races with
 841                 * rpc_make_runnable().
 842                 *
 843                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 844                 * rpc_task, rpc_make_runnable() can assign it to a
 845                 * different workqueue. We therefore cannot assume that the
 846                 * rpc_task pointer may still be dereferenced.
 847                 */
 848                queue = task->tk_waitqueue;
 849                spin_lock_bh(&queue->lock);
 850                if (!RPC_IS_QUEUED(task)) {
 851                        spin_unlock_bh(&queue->lock);
 852                        continue;
 853                }
 854                rpc_clear_running(task);
 855                spin_unlock_bh(&queue->lock);
 856                if (task_is_async)
 857                        return;
 858
 859                /* sync task: sleep here */
 860                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 861                status = out_of_line_wait_on_bit(&task->tk_runstate,
 862                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 863                                TASK_KILLABLE);
 864                if (status == -ERESTARTSYS) {
 865                        /*
 866                         * When a sync task receives a signal, it exits with
 867                         * -ERESTARTSYS. In order to catch any callbacks that
 868                         * clean up after sleeping on some queue, we don't
 869                         * break the loop here, but go around once more.
 870                         */
 871                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 872                        task->tk_flags |= RPC_TASK_KILLED;
 873                        rpc_exit(task, -ERESTARTSYS);
 874                }
 875                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 876        }
 877
 878        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 879                        task->tk_status);
 880        /* Release all resources associated with the task */
 881        rpc_release_task(task);
 882}
 883
 884/*
 885 * User-visible entry point to the scheduler.
 886 *
 887 * This may be called recursively if e.g. an async NFS task updates
 888 * the attributes and finds that dirty pages must be flushed.
 889 * NOTE: Upon exit of this function the task is guaranteed to be
 890 *       released. In particular note that tk_release() will have
 891 *       been called, so your task memory may have been freed.
 892 */
 893void rpc_execute(struct rpc_task *task)
 894{
 895        bool is_async = RPC_IS_ASYNC(task);
 896
 897        rpc_set_active(task);
 898        rpc_make_runnable(rpciod_workqueue, task);
 899        if (!is_async)
 900                __rpc_execute(task);
 901}
 902
 903static void rpc_async_schedule(struct work_struct *work)
 904{
 905        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 906}
 907
 908/**
 909 * rpc_malloc - allocate RPC buffer resources
 910 * @task: RPC task
 911 *
 912 * A single memory region is allocated, which is split between the
 913 * RPC call and RPC reply that this task is being used for. When
 914 * this RPC is retired, the memory is released by calling rpc_free.
 915 *
 916 * To prevent rpciod from hanging, this allocator never sleeps,
 917 * returning -ENOMEM and suppressing warning if the request cannot
 918 * be serviced immediately. The caller can arrange to sleep in a
 919 * way that is safe for rpciod.
 920 *
 921 * Most requests are 'small' (under 2KiB) and can be serviced from a
 922 * mempool, ensuring that NFS reads and writes can always proceed,
 923 * and that there is good locality of reference for these buffers.
 924 *
 925 * In order to avoid memory starvation triggering more writebacks of
 926 * NFS requests, we avoid using GFP_KERNEL.
 927 */
 928int rpc_malloc(struct rpc_task *task)
 929{
 930        struct rpc_rqst *rqst = task->tk_rqstp;
 931        size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
 932        struct rpc_buffer *buf;
 933        gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
 934
 935        if (RPC_IS_SWAPPER(task))
 936                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
 937
 938        size += sizeof(struct rpc_buffer);
 939        if (size <= RPC_BUFFER_MAXSIZE)
 940                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 941        else
 942                buf = kmalloc(size, gfp);
 943
 944        if (!buf)
 945                return -ENOMEM;
 946
 947        buf->len = size;
 948        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 949                        task->tk_pid, size, buf);
 950        rqst->rq_buffer = buf->data;
 951        rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
 952        return 0;
 953}
 954EXPORT_SYMBOL_GPL(rpc_malloc);
 955
 956/**
 957 * rpc_free - free RPC buffer resources allocated via rpc_malloc
 958 * @task: RPC task
 959 *
 960 */
 961void rpc_free(struct rpc_task *task)
 962{
 963        void *buffer = task->tk_rqstp->rq_buffer;
 964        size_t size;
 965        struct rpc_buffer *buf;
 966
 967        buf = container_of(buffer, struct rpc_buffer, data);
 968        size = buf->len;
 969
 970        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 971                        size, buf);
 972
 973        if (size <= RPC_BUFFER_MAXSIZE)
 974                mempool_free(buf, rpc_buffer_mempool);
 975        else
 976                kfree(buf);
 977}
 978EXPORT_SYMBOL_GPL(rpc_free);
 979
 980/*
 981 * Creation and deletion of RPC task structures
 982 */
 983static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 984{
 985        memset(task, 0, sizeof(*task));
 986        atomic_set(&task->tk_count, 1);
 987        task->tk_flags  = task_setup_data->flags;
 988        task->tk_ops = task_setup_data->callback_ops;
 989        task->tk_calldata = task_setup_data->callback_data;
 990        INIT_LIST_HEAD(&task->tk_task);
 991
 992        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 993        task->tk_owner = current->tgid;
 994
 995        /* Initialize workqueue for async tasks */
 996        task->tk_workqueue = task_setup_data->workqueue;
 997
 998        task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
 999
1000        task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1001
1002        if (task->tk_ops->rpc_call_prepare != NULL)
1003                task->tk_action = rpc_prepare_task;
1004
1005        rpc_init_task_statistics(task);
1006
1007        dprintk("RPC:       new task initialized, procpid %u\n",
1008                                task_pid_nr(current));
1009}
1010
1011static struct rpc_task *
1012rpc_alloc_task(void)
1013{
1014        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
1015}
1016
1017/*
1018 * Create a new task for the specified client.
1019 */
1020struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1021{
1022        struct rpc_task *task = setup_data->task;
1023        unsigned short flags = 0;
1024
1025        if (task == NULL) {
1026                task = rpc_alloc_task();
1027                flags = RPC_TASK_DYNAMIC;
1028        }
1029
1030        rpc_init_task(task, setup_data);
1031        task->tk_flags |= flags;
1032        dprintk("RPC:       allocated task %p\n", task);
1033        return task;
1034}
1035
1036/*
1037 * rpc_free_task - release rpc task and perform cleanups
1038 *
1039 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1040 * in order to work around a workqueue dependency issue.
1041 *
1042 * Tejun Heo states:
1043 * "Workqueue currently considers two work items to be the same if they're
1044 * on the same address and won't execute them concurrently - ie. it
1045 * makes a work item which is queued again while being executed wait
1046 * for the previous execution to complete.
1047 *
1048 * If a work function frees the work item, and then waits for an event
1049 * which should be performed by another work item and *that* work item
1050 * recycles the freed work item, it can create a false dependency loop.
1051 * There really is no reliable way to detect this short of verifying
1052 * every memory free."
1053 *
1054 */
1055static void rpc_free_task(struct rpc_task *task)
1056{
1057        unsigned short tk_flags = task->tk_flags;
1058
1059        put_rpccred(task->tk_op_cred);
1060        rpc_release_calldata(task->tk_ops, task->tk_calldata);
1061
1062        if (tk_flags & RPC_TASK_DYNAMIC) {
1063                dprintk("RPC: %5u freeing task\n", task->tk_pid);
1064                mempool_free(task, rpc_task_mempool);
1065        }
1066}
1067
1068static void rpc_async_release(struct work_struct *work)
1069{
1070        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1071}
1072
1073static void rpc_release_resources_task(struct rpc_task *task)
1074{
1075        xprt_release(task);
1076        if (task->tk_msg.rpc_cred) {
1077                put_cred(task->tk_msg.rpc_cred);
1078                task->tk_msg.rpc_cred = NULL;
1079        }
1080        rpc_task_release_client(task);
1081}
1082
1083static void rpc_final_put_task(struct rpc_task *task,
1084                struct workqueue_struct *q)
1085{
1086        if (q != NULL) {
1087                INIT_WORK(&task->u.tk_work, rpc_async_release);
1088                queue_work(q, &task->u.tk_work);
1089        } else
1090                rpc_free_task(task);
1091}
1092
1093static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1094{
1095        if (atomic_dec_and_test(&task->tk_count)) {
1096                rpc_release_resources_task(task);
1097                rpc_final_put_task(task, q);
1098        }
1099}
1100
1101void rpc_put_task(struct rpc_task *task)
1102{
1103        rpc_do_put_task(task, NULL);
1104}
1105EXPORT_SYMBOL_GPL(rpc_put_task);
1106
1107void rpc_put_task_async(struct rpc_task *task)
1108{
1109        rpc_do_put_task(task, task->tk_workqueue);
1110}
1111EXPORT_SYMBOL_GPL(rpc_put_task_async);
1112
1113static void rpc_release_task(struct rpc_task *task)
1114{
1115        dprintk("RPC: %5u release task\n", task->tk_pid);
1116
1117        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1118
1119        rpc_release_resources_task(task);
1120
1121        /*
1122         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1123         * so it should be safe to use task->tk_count as a test for whether
1124         * or not any other processes still hold references to our rpc_task.
1125         */
1126        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1127                /* Wake up anyone who may be waiting for task completion */
1128                if (!rpc_complete_task(task))
1129                        return;
1130        } else {
1131                if (!atomic_dec_and_test(&task->tk_count))
1132                        return;
1133        }
1134        rpc_final_put_task(task, task->tk_workqueue);
1135}
1136
1137int rpciod_up(void)
1138{
1139        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1140}
1141
1142void rpciod_down(void)
1143{
1144        module_put(THIS_MODULE);
1145}
1146
1147/*
1148 * Start up the rpciod workqueue.
1149 */
1150static int rpciod_start(void)
1151{
1152        struct workqueue_struct *wq;
1153
1154        /*
1155         * Create the rpciod thread and wait for it to start.
1156         */
1157        dprintk("RPC:       creating workqueue rpciod\n");
1158        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1159        if (!wq)
1160                goto out_failed;
1161        rpciod_workqueue = wq;
1162        /* Note: highpri because network receive is latency sensitive */
1163        wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1164        if (!wq)
1165                goto free_rpciod;
1166        xprtiod_workqueue = wq;
1167        return 1;
1168free_rpciod:
1169        wq = rpciod_workqueue;
1170        rpciod_workqueue = NULL;
1171        destroy_workqueue(wq);
1172out_failed:
1173        return 0;
1174}
1175
1176static void rpciod_stop(void)
1177{
1178        struct workqueue_struct *wq = NULL;
1179
1180        if (rpciod_workqueue == NULL)
1181                return;
1182        dprintk("RPC:       destroying workqueue rpciod\n");
1183
1184        wq = rpciod_workqueue;
1185        rpciod_workqueue = NULL;
1186        destroy_workqueue(wq);
1187        wq = xprtiod_workqueue;
1188        xprtiod_workqueue = NULL;
1189        destroy_workqueue(wq);
1190}
1191
1192void
1193rpc_destroy_mempool(void)
1194{
1195        rpciod_stop();
1196        mempool_destroy(rpc_buffer_mempool);
1197        mempool_destroy(rpc_task_mempool);
1198        kmem_cache_destroy(rpc_task_slabp);
1199        kmem_cache_destroy(rpc_buffer_slabp);
1200        rpc_destroy_wait_queue(&delay_queue);
1201}
1202
1203int
1204rpc_init_mempool(void)
1205{
1206        /*
1207         * The following is not strictly a mempool initialisation,
1208         * but there is no harm in doing it here
1209         */
1210        rpc_init_wait_queue(&delay_queue, "delayq");
1211        if (!rpciod_start())
1212                goto err_nomem;
1213
1214        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1215                                             sizeof(struct rpc_task),
1216                                             0, SLAB_HWCACHE_ALIGN,
1217                                             NULL);
1218        if (!rpc_task_slabp)
1219                goto err_nomem;
1220        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1221                                             RPC_BUFFER_MAXSIZE,
1222                                             0, SLAB_HWCACHE_ALIGN,
1223                                             NULL);
1224        if (!rpc_buffer_slabp)
1225                goto err_nomem;
1226        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1227                                                    rpc_task_slabp);
1228        if (!rpc_task_mempool)
1229                goto err_nomem;
1230        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1231                                                      rpc_buffer_slabp);
1232        if (!rpc_buffer_mempool)
1233                goto err_nomem;
1234        return 0;
1235err_nomem:
1236        rpc_destroy_mempool();
1237        return -ENOMEM;
1238}
1239