linux/virt/kvm/arm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/bug.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/kvm_host.h>
  24#include <linux/list.h>
  25#include <linux/module.h>
  26#include <linux/vmalloc.h>
  27#include <linux/fs.h>
  28#include <linux/mman.h>
  29#include <linux/sched.h>
  30#include <linux/kvm.h>
  31#include <linux/kvm_irqfd.h>
  32#include <linux/irqbypass.h>
  33#include <linux/sched/stat.h>
  34#include <trace/events/kvm.h>
  35#include <kvm/arm_pmu.h>
  36#include <kvm/arm_psci.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include "trace.h"
  40
  41#include <linux/uaccess.h>
  42#include <asm/ptrace.h>
  43#include <asm/mman.h>
  44#include <asm/tlbflush.h>
  45#include <asm/cacheflush.h>
  46#include <asm/cpufeature.h>
  47#include <asm/virt.h>
  48#include <asm/kvm_arm.h>
  49#include <asm/kvm_asm.h>
  50#include <asm/kvm_mmu.h>
  51#include <asm/kvm_emulate.h>
  52#include <asm/kvm_coproc.h>
  53#include <asm/sections.h>
  54
  55#ifdef REQUIRES_VIRT
  56__asm__(".arch_extension        virt");
  57#endif
  58
  59DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
  60static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  61
  62/* Per-CPU variable containing the currently running vcpu. */
  63static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  64
  65/* The VMID used in the VTTBR */
  66static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  67static u32 kvm_next_vmid;
  68static unsigned int kvm_vmid_bits __read_mostly;
  69static DEFINE_SPINLOCK(kvm_vmid_lock);
  70
  71static bool vgic_present;
  72
  73static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  74
  75static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  76{
  77        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  78}
  79
  80DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  81
  82/**
  83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  84 * Must be called from non-preemptible context
  85 */
  86struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  87{
  88        return __this_cpu_read(kvm_arm_running_vcpu);
  89}
  90
  91/**
  92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  93 */
  94struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  95{
  96        return &kvm_arm_running_vcpu;
  97}
  98
  99int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 100{
 101        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 102}
 103
 104int kvm_arch_hardware_setup(void)
 105{
 106        return 0;
 107}
 108
 109void kvm_arch_check_processor_compat(void *rtn)
 110{
 111        *(int *)rtn = 0;
 112}
 113
 114
 115/**
 116 * kvm_arch_init_vm - initializes a VM data structure
 117 * @kvm:        pointer to the KVM struct
 118 */
 119int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 120{
 121        int ret, cpu;
 122
 123        ret = kvm_arm_setup_stage2(kvm, type);
 124        if (ret)
 125                return ret;
 126
 127        kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
 128        if (!kvm->arch.last_vcpu_ran)
 129                return -ENOMEM;
 130
 131        for_each_possible_cpu(cpu)
 132                *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
 133
 134        ret = kvm_alloc_stage2_pgd(kvm);
 135        if (ret)
 136                goto out_fail_alloc;
 137
 138        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 139        if (ret)
 140                goto out_free_stage2_pgd;
 141
 142        kvm_vgic_early_init(kvm);
 143
 144        /* Mark the initial VMID generation invalid */
 145        kvm->arch.vmid_gen = 0;
 146
 147        /* The maximum number of VCPUs is limited by the host's GIC model */
 148        kvm->arch.max_vcpus = vgic_present ?
 149                                kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 150
 151        return ret;
 152out_free_stage2_pgd:
 153        kvm_free_stage2_pgd(kvm);
 154out_fail_alloc:
 155        free_percpu(kvm->arch.last_vcpu_ran);
 156        kvm->arch.last_vcpu_ran = NULL;
 157        return ret;
 158}
 159
 160bool kvm_arch_has_vcpu_debugfs(void)
 161{
 162        return false;
 163}
 164
 165int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 166{
 167        return 0;
 168}
 169
 170vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 171{
 172        return VM_FAULT_SIGBUS;
 173}
 174
 175
 176/**
 177 * kvm_arch_destroy_vm - destroy the VM data structure
 178 * @kvm:        pointer to the KVM struct
 179 */
 180void kvm_arch_destroy_vm(struct kvm *kvm)
 181{
 182        int i;
 183
 184        kvm_vgic_destroy(kvm);
 185
 186        free_percpu(kvm->arch.last_vcpu_ran);
 187        kvm->arch.last_vcpu_ran = NULL;
 188
 189        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 190                if (kvm->vcpus[i]) {
 191                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 192                        kvm->vcpus[i] = NULL;
 193                }
 194        }
 195        atomic_set(&kvm->online_vcpus, 0);
 196}
 197
 198int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 199{
 200        int r;
 201        switch (ext) {
 202        case KVM_CAP_IRQCHIP:
 203                r = vgic_present;
 204                break;
 205        case KVM_CAP_IOEVENTFD:
 206        case KVM_CAP_DEVICE_CTRL:
 207        case KVM_CAP_USER_MEMORY:
 208        case KVM_CAP_SYNC_MMU:
 209        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 210        case KVM_CAP_ONE_REG:
 211        case KVM_CAP_ARM_PSCI:
 212        case KVM_CAP_ARM_PSCI_0_2:
 213        case KVM_CAP_READONLY_MEM:
 214        case KVM_CAP_MP_STATE:
 215        case KVM_CAP_IMMEDIATE_EXIT:
 216        case KVM_CAP_VCPU_EVENTS:
 217                r = 1;
 218                break;
 219        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 220                r = 1;
 221                break;
 222        case KVM_CAP_NR_VCPUS:
 223                r = num_online_cpus();
 224                break;
 225        case KVM_CAP_MAX_VCPUS:
 226                r = KVM_MAX_VCPUS;
 227                break;
 228        case KVM_CAP_NR_MEMSLOTS:
 229                r = KVM_USER_MEM_SLOTS;
 230                break;
 231        case KVM_CAP_MSI_DEVID:
 232                if (!kvm)
 233                        r = -EINVAL;
 234                else
 235                        r = kvm->arch.vgic.msis_require_devid;
 236                break;
 237        case KVM_CAP_ARM_USER_IRQ:
 238                /*
 239                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 240                 * (bump this number if adding more devices)
 241                 */
 242                r = 1;
 243                break;
 244        default:
 245                r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
 246                break;
 247        }
 248        return r;
 249}
 250
 251long kvm_arch_dev_ioctl(struct file *filp,
 252                        unsigned int ioctl, unsigned long arg)
 253{
 254        return -EINVAL;
 255}
 256
 257struct kvm *kvm_arch_alloc_vm(void)
 258{
 259        if (!has_vhe())
 260                return kzalloc(sizeof(struct kvm), GFP_KERNEL);
 261
 262        return vzalloc(sizeof(struct kvm));
 263}
 264
 265void kvm_arch_free_vm(struct kvm *kvm)
 266{
 267        if (!has_vhe())
 268                kfree(kvm);
 269        else
 270                vfree(kvm);
 271}
 272
 273struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 274{
 275        int err;
 276        struct kvm_vcpu *vcpu;
 277
 278        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 279                err = -EBUSY;
 280                goto out;
 281        }
 282
 283        if (id >= kvm->arch.max_vcpus) {
 284                err = -EINVAL;
 285                goto out;
 286        }
 287
 288        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 289        if (!vcpu) {
 290                err = -ENOMEM;
 291                goto out;
 292        }
 293
 294        err = kvm_vcpu_init(vcpu, kvm, id);
 295        if (err)
 296                goto free_vcpu;
 297
 298        err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 299        if (err)
 300                goto vcpu_uninit;
 301
 302        return vcpu;
 303vcpu_uninit:
 304        kvm_vcpu_uninit(vcpu);
 305free_vcpu:
 306        kmem_cache_free(kvm_vcpu_cache, vcpu);
 307out:
 308        return ERR_PTR(err);
 309}
 310
 311void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 312{
 313}
 314
 315void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 316{
 317        if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 318                static_branch_dec(&userspace_irqchip_in_use);
 319
 320        kvm_mmu_free_memory_caches(vcpu);
 321        kvm_timer_vcpu_terminate(vcpu);
 322        kvm_pmu_vcpu_destroy(vcpu);
 323        kvm_vcpu_uninit(vcpu);
 324        kmem_cache_free(kvm_vcpu_cache, vcpu);
 325}
 326
 327void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 328{
 329        kvm_arch_vcpu_free(vcpu);
 330}
 331
 332int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 333{
 334        return kvm_timer_is_pending(vcpu);
 335}
 336
 337void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 338{
 339        kvm_timer_schedule(vcpu);
 340        kvm_vgic_v4_enable_doorbell(vcpu);
 341}
 342
 343void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 344{
 345        kvm_timer_unschedule(vcpu);
 346        kvm_vgic_v4_disable_doorbell(vcpu);
 347}
 348
 349int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 350{
 351        /* Force users to call KVM_ARM_VCPU_INIT */
 352        vcpu->arch.target = -1;
 353        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 354
 355        /* Set up the timer */
 356        kvm_timer_vcpu_init(vcpu);
 357
 358        kvm_arm_reset_debug_ptr(vcpu);
 359
 360        return kvm_vgic_vcpu_init(vcpu);
 361}
 362
 363void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 364{
 365        int *last_ran;
 366
 367        last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
 368
 369        /*
 370         * We might get preempted before the vCPU actually runs, but
 371         * over-invalidation doesn't affect correctness.
 372         */
 373        if (*last_ran != vcpu->vcpu_id) {
 374                kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
 375                *last_ran = vcpu->vcpu_id;
 376        }
 377
 378        vcpu->cpu = cpu;
 379        vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
 380
 381        kvm_arm_set_running_vcpu(vcpu);
 382        kvm_vgic_load(vcpu);
 383        kvm_timer_vcpu_load(vcpu);
 384        kvm_vcpu_load_sysregs(vcpu);
 385        kvm_arch_vcpu_load_fp(vcpu);
 386
 387        if (single_task_running())
 388                vcpu_clear_wfe_traps(vcpu);
 389        else
 390                vcpu_set_wfe_traps(vcpu);
 391}
 392
 393void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 394{
 395        kvm_arch_vcpu_put_fp(vcpu);
 396        kvm_vcpu_put_sysregs(vcpu);
 397        kvm_timer_vcpu_put(vcpu);
 398        kvm_vgic_put(vcpu);
 399
 400        vcpu->cpu = -1;
 401
 402        kvm_arm_set_running_vcpu(NULL);
 403}
 404
 405static void vcpu_power_off(struct kvm_vcpu *vcpu)
 406{
 407        vcpu->arch.power_off = true;
 408        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 409        kvm_vcpu_kick(vcpu);
 410}
 411
 412int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 413                                    struct kvm_mp_state *mp_state)
 414{
 415        if (vcpu->arch.power_off)
 416                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 417        else
 418                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 419
 420        return 0;
 421}
 422
 423int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 424                                    struct kvm_mp_state *mp_state)
 425{
 426        int ret = 0;
 427
 428        switch (mp_state->mp_state) {
 429        case KVM_MP_STATE_RUNNABLE:
 430                vcpu->arch.power_off = false;
 431                break;
 432        case KVM_MP_STATE_STOPPED:
 433                vcpu_power_off(vcpu);
 434                break;
 435        default:
 436                ret = -EINVAL;
 437        }
 438
 439        return ret;
 440}
 441
 442/**
 443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 444 * @v:          The VCPU pointer
 445 *
 446 * If the guest CPU is not waiting for interrupts or an interrupt line is
 447 * asserted, the CPU is by definition runnable.
 448 */
 449int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 450{
 451        bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
 452        return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
 453                && !v->arch.power_off && !v->arch.pause);
 454}
 455
 456bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 457{
 458        return vcpu_mode_priv(vcpu);
 459}
 460
 461/* Just ensure a guest exit from a particular CPU */
 462static void exit_vm_noop(void *info)
 463{
 464}
 465
 466void force_vm_exit(const cpumask_t *mask)
 467{
 468        preempt_disable();
 469        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 470        preempt_enable();
 471}
 472
 473/**
 474 * need_new_vmid_gen - check that the VMID is still valid
 475 * @kvm: The VM's VMID to check
 476 *
 477 * return true if there is a new generation of VMIDs being used
 478 *
 479 * The hardware supports only 256 values with the value zero reserved for the
 480 * host, so we check if an assigned value belongs to a previous generation,
 481 * which which requires us to assign a new value. If we're the first to use a
 482 * VMID for the new generation, we must flush necessary caches and TLBs on all
 483 * CPUs.
 484 */
 485static bool need_new_vmid_gen(struct kvm *kvm)
 486{
 487        u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
 488        smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
 489        return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
 490}
 491
 492/**
 493 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 494 * @kvm The guest that we are about to run
 495 *
 496 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 497 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 498 * caches and TLBs.
 499 */
 500static void update_vttbr(struct kvm *kvm)
 501{
 502        phys_addr_t pgd_phys;
 503        u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
 504
 505        if (!need_new_vmid_gen(kvm))
 506                return;
 507
 508        spin_lock(&kvm_vmid_lock);
 509
 510        /*
 511         * We need to re-check the vmid_gen here to ensure that if another vcpu
 512         * already allocated a valid vmid for this vm, then this vcpu should
 513         * use the same vmid.
 514         */
 515        if (!need_new_vmid_gen(kvm)) {
 516                spin_unlock(&kvm_vmid_lock);
 517                return;
 518        }
 519
 520        /* First user of a new VMID generation? */
 521        if (unlikely(kvm_next_vmid == 0)) {
 522                atomic64_inc(&kvm_vmid_gen);
 523                kvm_next_vmid = 1;
 524
 525                /*
 526                 * On SMP we know no other CPUs can use this CPU's or each
 527                 * other's VMID after force_vm_exit returns since the
 528                 * kvm_vmid_lock blocks them from reentry to the guest.
 529                 */
 530                force_vm_exit(cpu_all_mask);
 531                /*
 532                 * Now broadcast TLB + ICACHE invalidation over the inner
 533                 * shareable domain to make sure all data structures are
 534                 * clean.
 535                 */
 536                kvm_call_hyp(__kvm_flush_vm_context);
 537        }
 538
 539        kvm->arch.vmid = kvm_next_vmid;
 540        kvm_next_vmid++;
 541        kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 542
 543        /* update vttbr to be used with the new vmid */
 544        pgd_phys = virt_to_phys(kvm->arch.pgd);
 545        BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
 546        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 547        kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
 548
 549        smp_wmb();
 550        WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
 551
 552        spin_unlock(&kvm_vmid_lock);
 553}
 554
 555static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 556{
 557        struct kvm *kvm = vcpu->kvm;
 558        int ret = 0;
 559
 560        if (likely(vcpu->arch.has_run_once))
 561                return 0;
 562
 563        vcpu->arch.has_run_once = true;
 564
 565        if (likely(irqchip_in_kernel(kvm))) {
 566                /*
 567                 * Map the VGIC hardware resources before running a vcpu the
 568                 * first time on this VM.
 569                 */
 570                if (unlikely(!vgic_ready(kvm))) {
 571                        ret = kvm_vgic_map_resources(kvm);
 572                        if (ret)
 573                                return ret;
 574                }
 575        } else {
 576                /*
 577                 * Tell the rest of the code that there are userspace irqchip
 578                 * VMs in the wild.
 579                 */
 580                static_branch_inc(&userspace_irqchip_in_use);
 581        }
 582
 583        ret = kvm_timer_enable(vcpu);
 584        if (ret)
 585                return ret;
 586
 587        ret = kvm_arm_pmu_v3_enable(vcpu);
 588
 589        return ret;
 590}
 591
 592bool kvm_arch_intc_initialized(struct kvm *kvm)
 593{
 594        return vgic_initialized(kvm);
 595}
 596
 597void kvm_arm_halt_guest(struct kvm *kvm)
 598{
 599        int i;
 600        struct kvm_vcpu *vcpu;
 601
 602        kvm_for_each_vcpu(i, vcpu, kvm)
 603                vcpu->arch.pause = true;
 604        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 605}
 606
 607void kvm_arm_resume_guest(struct kvm *kvm)
 608{
 609        int i;
 610        struct kvm_vcpu *vcpu;
 611
 612        kvm_for_each_vcpu(i, vcpu, kvm) {
 613                vcpu->arch.pause = false;
 614                swake_up_one(kvm_arch_vcpu_wq(vcpu));
 615        }
 616}
 617
 618static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
 619{
 620        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 621
 622        swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
 623                                       (!vcpu->arch.pause)));
 624
 625        if (vcpu->arch.power_off || vcpu->arch.pause) {
 626                /* Awaken to handle a signal, request we sleep again later. */
 627                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 628        }
 629
 630        /*
 631         * Make sure we will observe a potential reset request if we've
 632         * observed a change to the power state. Pairs with the smp_wmb() in
 633         * kvm_psci_vcpu_on().
 634         */
 635        smp_rmb();
 636}
 637
 638static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 639{
 640        return vcpu->arch.target >= 0;
 641}
 642
 643static void check_vcpu_requests(struct kvm_vcpu *vcpu)
 644{
 645        if (kvm_request_pending(vcpu)) {
 646                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 647                        vcpu_req_sleep(vcpu);
 648
 649                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
 650                        kvm_reset_vcpu(vcpu);
 651
 652                /*
 653                 * Clear IRQ_PENDING requests that were made to guarantee
 654                 * that a VCPU sees new virtual interrupts.
 655                 */
 656                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 657        }
 658}
 659
 660/**
 661 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 662 * @vcpu:       The VCPU pointer
 663 * @run:        The kvm_run structure pointer used for userspace state exchange
 664 *
 665 * This function is called through the VCPU_RUN ioctl called from user space. It
 666 * will execute VM code in a loop until the time slice for the process is used
 667 * or some emulation is needed from user space in which case the function will
 668 * return with return value 0 and with the kvm_run structure filled in with the
 669 * required data for the requested emulation.
 670 */
 671int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 672{
 673        int ret;
 674
 675        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 676                return -ENOEXEC;
 677
 678        ret = kvm_vcpu_first_run_init(vcpu);
 679        if (ret)
 680                return ret;
 681
 682        if (run->exit_reason == KVM_EXIT_MMIO) {
 683                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 684                if (ret)
 685                        return ret;
 686        }
 687
 688        if (run->immediate_exit)
 689                return -EINTR;
 690
 691        vcpu_load(vcpu);
 692
 693        kvm_sigset_activate(vcpu);
 694
 695        ret = 1;
 696        run->exit_reason = KVM_EXIT_UNKNOWN;
 697        while (ret > 0) {
 698                /*
 699                 * Check conditions before entering the guest
 700                 */
 701                cond_resched();
 702
 703                update_vttbr(vcpu->kvm);
 704
 705                check_vcpu_requests(vcpu);
 706
 707                /*
 708                 * Preparing the interrupts to be injected also
 709                 * involves poking the GIC, which must be done in a
 710                 * non-preemptible context.
 711                 */
 712                preempt_disable();
 713
 714                kvm_pmu_flush_hwstate(vcpu);
 715
 716                local_irq_disable();
 717
 718                kvm_vgic_flush_hwstate(vcpu);
 719
 720                /*
 721                 * Exit if we have a signal pending so that we can deliver the
 722                 * signal to user space.
 723                 */
 724                if (signal_pending(current)) {
 725                        ret = -EINTR;
 726                        run->exit_reason = KVM_EXIT_INTR;
 727                }
 728
 729                /*
 730                 * If we're using a userspace irqchip, then check if we need
 731                 * to tell a userspace irqchip about timer or PMU level
 732                 * changes and if so, exit to userspace (the actual level
 733                 * state gets updated in kvm_timer_update_run and
 734                 * kvm_pmu_update_run below).
 735                 */
 736                if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 737                        if (kvm_timer_should_notify_user(vcpu) ||
 738                            kvm_pmu_should_notify_user(vcpu)) {
 739                                ret = -EINTR;
 740                                run->exit_reason = KVM_EXIT_INTR;
 741                        }
 742                }
 743
 744                /*
 745                 * Ensure we set mode to IN_GUEST_MODE after we disable
 746                 * interrupts and before the final VCPU requests check.
 747                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 748                 * Documentation/virtual/kvm/vcpu-requests.rst
 749                 */
 750                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 751
 752                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 753                    kvm_request_pending(vcpu)) {
 754                        vcpu->mode = OUTSIDE_GUEST_MODE;
 755                        isb(); /* Ensure work in x_flush_hwstate is committed */
 756                        kvm_pmu_sync_hwstate(vcpu);
 757                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 758                                kvm_timer_sync_hwstate(vcpu);
 759                        kvm_vgic_sync_hwstate(vcpu);
 760                        local_irq_enable();
 761                        preempt_enable();
 762                        continue;
 763                }
 764
 765                kvm_arm_setup_debug(vcpu);
 766
 767                /**************************************************************
 768                 * Enter the guest
 769                 */
 770                trace_kvm_entry(*vcpu_pc(vcpu));
 771                guest_enter_irqoff();
 772
 773                if (has_vhe()) {
 774                        kvm_arm_vhe_guest_enter();
 775                        ret = kvm_vcpu_run_vhe(vcpu);
 776                        kvm_arm_vhe_guest_exit();
 777                } else {
 778                        ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
 779                }
 780
 781                vcpu->mode = OUTSIDE_GUEST_MODE;
 782                vcpu->stat.exits++;
 783                /*
 784                 * Back from guest
 785                 *************************************************************/
 786
 787                kvm_arm_clear_debug(vcpu);
 788
 789                /*
 790                 * We must sync the PMU state before the vgic state so
 791                 * that the vgic can properly sample the updated state of the
 792                 * interrupt line.
 793                 */
 794                kvm_pmu_sync_hwstate(vcpu);
 795
 796                /*
 797                 * Sync the vgic state before syncing the timer state because
 798                 * the timer code needs to know if the virtual timer
 799                 * interrupts are active.
 800                 */
 801                kvm_vgic_sync_hwstate(vcpu);
 802
 803                /*
 804                 * Sync the timer hardware state before enabling interrupts as
 805                 * we don't want vtimer interrupts to race with syncing the
 806                 * timer virtual interrupt state.
 807                 */
 808                if (static_branch_unlikely(&userspace_irqchip_in_use))
 809                        kvm_timer_sync_hwstate(vcpu);
 810
 811                kvm_arch_vcpu_ctxsync_fp(vcpu);
 812
 813                /*
 814                 * We may have taken a host interrupt in HYP mode (ie
 815                 * while executing the guest). This interrupt is still
 816                 * pending, as we haven't serviced it yet!
 817                 *
 818                 * We're now back in SVC mode, with interrupts
 819                 * disabled.  Enabling the interrupts now will have
 820                 * the effect of taking the interrupt again, in SVC
 821                 * mode this time.
 822                 */
 823                local_irq_enable();
 824
 825                /*
 826                 * We do local_irq_enable() before calling guest_exit() so
 827                 * that if a timer interrupt hits while running the guest we
 828                 * account that tick as being spent in the guest.  We enable
 829                 * preemption after calling guest_exit() so that if we get
 830                 * preempted we make sure ticks after that is not counted as
 831                 * guest time.
 832                 */
 833                guest_exit();
 834                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 835
 836                /* Exit types that need handling before we can be preempted */
 837                handle_exit_early(vcpu, run, ret);
 838
 839                preempt_enable();
 840
 841                ret = handle_exit(vcpu, run, ret);
 842        }
 843
 844        /* Tell userspace about in-kernel device output levels */
 845        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
 846                kvm_timer_update_run(vcpu);
 847                kvm_pmu_update_run(vcpu);
 848        }
 849
 850        kvm_sigset_deactivate(vcpu);
 851
 852        vcpu_put(vcpu);
 853        return ret;
 854}
 855
 856static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 857{
 858        int bit_index;
 859        bool set;
 860        unsigned long *hcr;
 861
 862        if (number == KVM_ARM_IRQ_CPU_IRQ)
 863                bit_index = __ffs(HCR_VI);
 864        else /* KVM_ARM_IRQ_CPU_FIQ */
 865                bit_index = __ffs(HCR_VF);
 866
 867        hcr = vcpu_hcr(vcpu);
 868        if (level)
 869                set = test_and_set_bit(bit_index, hcr);
 870        else
 871                set = test_and_clear_bit(bit_index, hcr);
 872
 873        /*
 874         * If we didn't change anything, no need to wake up or kick other CPUs
 875         */
 876        if (set == level)
 877                return 0;
 878
 879        /*
 880         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 881         * trigger a world-switch round on the running physical CPU to set the
 882         * virtual IRQ/FIQ fields in the HCR appropriately.
 883         */
 884        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 885        kvm_vcpu_kick(vcpu);
 886
 887        return 0;
 888}
 889
 890int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 891                          bool line_status)
 892{
 893        u32 irq = irq_level->irq;
 894        unsigned int irq_type, vcpu_idx, irq_num;
 895        int nrcpus = atomic_read(&kvm->online_vcpus);
 896        struct kvm_vcpu *vcpu = NULL;
 897        bool level = irq_level->level;
 898
 899        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 900        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 901        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 902
 903        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 904
 905        switch (irq_type) {
 906        case KVM_ARM_IRQ_TYPE_CPU:
 907                if (irqchip_in_kernel(kvm))
 908                        return -ENXIO;
 909
 910                if (vcpu_idx >= nrcpus)
 911                        return -EINVAL;
 912
 913                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 914                if (!vcpu)
 915                        return -EINVAL;
 916
 917                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 918                        return -EINVAL;
 919
 920                return vcpu_interrupt_line(vcpu, irq_num, level);
 921        case KVM_ARM_IRQ_TYPE_PPI:
 922                if (!irqchip_in_kernel(kvm))
 923                        return -ENXIO;
 924
 925                if (vcpu_idx >= nrcpus)
 926                        return -EINVAL;
 927
 928                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 929                if (!vcpu)
 930                        return -EINVAL;
 931
 932                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 933                        return -EINVAL;
 934
 935                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
 936        case KVM_ARM_IRQ_TYPE_SPI:
 937                if (!irqchip_in_kernel(kvm))
 938                        return -ENXIO;
 939
 940                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 941                        return -EINVAL;
 942
 943                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
 944        }
 945
 946        return -EINVAL;
 947}
 948
 949static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 950                               const struct kvm_vcpu_init *init)
 951{
 952        unsigned int i;
 953        int phys_target = kvm_target_cpu();
 954
 955        if (init->target != phys_target)
 956                return -EINVAL;
 957
 958        /*
 959         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 960         * use the same target.
 961         */
 962        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 963                return -EINVAL;
 964
 965        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 966        for (i = 0; i < sizeof(init->features) * 8; i++) {
 967                bool set = (init->features[i / 32] & (1 << (i % 32)));
 968
 969                if (set && i >= KVM_VCPU_MAX_FEATURES)
 970                        return -ENOENT;
 971
 972                /*
 973                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 974                 * use the same feature set.
 975                 */
 976                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 977                    test_bit(i, vcpu->arch.features) != set)
 978                        return -EINVAL;
 979
 980                if (set)
 981                        set_bit(i, vcpu->arch.features);
 982        }
 983
 984        vcpu->arch.target = phys_target;
 985
 986        /* Now we know what it is, we can reset it. */
 987        return kvm_reset_vcpu(vcpu);
 988}
 989
 990
 991static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 992                                         struct kvm_vcpu_init *init)
 993{
 994        int ret;
 995
 996        ret = kvm_vcpu_set_target(vcpu, init);
 997        if (ret)
 998                return ret;
 999
1000        /*
1001         * Ensure a rebooted VM will fault in RAM pages and detect if the
1002         * guest MMU is turned off and flush the caches as needed.
1003         */
1004        if (vcpu->arch.has_run_once)
1005                stage2_unmap_vm(vcpu->kvm);
1006
1007        vcpu_reset_hcr(vcpu);
1008
1009        /*
1010         * Handle the "start in power-off" case.
1011         */
1012        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1013                vcpu_power_off(vcpu);
1014        else
1015                vcpu->arch.power_off = false;
1016
1017        return 0;
1018}
1019
1020static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1021                                 struct kvm_device_attr *attr)
1022{
1023        int ret = -ENXIO;
1024
1025        switch (attr->group) {
1026        default:
1027                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1028                break;
1029        }
1030
1031        return ret;
1032}
1033
1034static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1035                                 struct kvm_device_attr *attr)
1036{
1037        int ret = -ENXIO;
1038
1039        switch (attr->group) {
1040        default:
1041                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1042                break;
1043        }
1044
1045        return ret;
1046}
1047
1048static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1049                                 struct kvm_device_attr *attr)
1050{
1051        int ret = -ENXIO;
1052
1053        switch (attr->group) {
1054        default:
1055                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1056                break;
1057        }
1058
1059        return ret;
1060}
1061
1062static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1063                                   struct kvm_vcpu_events *events)
1064{
1065        memset(events, 0, sizeof(*events));
1066
1067        return __kvm_arm_vcpu_get_events(vcpu, events);
1068}
1069
1070static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1071                                   struct kvm_vcpu_events *events)
1072{
1073        int i;
1074
1075        /* check whether the reserved field is zero */
1076        for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1077                if (events->reserved[i])
1078                        return -EINVAL;
1079
1080        /* check whether the pad field is zero */
1081        for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1082                if (events->exception.pad[i])
1083                        return -EINVAL;
1084
1085        return __kvm_arm_vcpu_set_events(vcpu, events);
1086}
1087
1088long kvm_arch_vcpu_ioctl(struct file *filp,
1089                         unsigned int ioctl, unsigned long arg)
1090{
1091        struct kvm_vcpu *vcpu = filp->private_data;
1092        void __user *argp = (void __user *)arg;
1093        struct kvm_device_attr attr;
1094        long r;
1095
1096        switch (ioctl) {
1097        case KVM_ARM_VCPU_INIT: {
1098                struct kvm_vcpu_init init;
1099
1100                r = -EFAULT;
1101                if (copy_from_user(&init, argp, sizeof(init)))
1102                        break;
1103
1104                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1105                break;
1106        }
1107        case KVM_SET_ONE_REG:
1108        case KVM_GET_ONE_REG: {
1109                struct kvm_one_reg reg;
1110
1111                r = -ENOEXEC;
1112                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1113                        break;
1114
1115                r = -EFAULT;
1116                if (copy_from_user(&reg, argp, sizeof(reg)))
1117                        break;
1118
1119                if (ioctl == KVM_SET_ONE_REG)
1120                        r = kvm_arm_set_reg(vcpu, &reg);
1121                else
1122                        r = kvm_arm_get_reg(vcpu, &reg);
1123                break;
1124        }
1125        case KVM_GET_REG_LIST: {
1126                struct kvm_reg_list __user *user_list = argp;
1127                struct kvm_reg_list reg_list;
1128                unsigned n;
1129
1130                r = -ENOEXEC;
1131                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1132                        break;
1133
1134                r = -EFAULT;
1135                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1136                        break;
1137                n = reg_list.n;
1138                reg_list.n = kvm_arm_num_regs(vcpu);
1139                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1140                        break;
1141                r = -E2BIG;
1142                if (n < reg_list.n)
1143                        break;
1144                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1145                break;
1146        }
1147        case KVM_SET_DEVICE_ATTR: {
1148                r = -EFAULT;
1149                if (copy_from_user(&attr, argp, sizeof(attr)))
1150                        break;
1151                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1152                break;
1153        }
1154        case KVM_GET_DEVICE_ATTR: {
1155                r = -EFAULT;
1156                if (copy_from_user(&attr, argp, sizeof(attr)))
1157                        break;
1158                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1159                break;
1160        }
1161        case KVM_HAS_DEVICE_ATTR: {
1162                r = -EFAULT;
1163                if (copy_from_user(&attr, argp, sizeof(attr)))
1164                        break;
1165                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1166                break;
1167        }
1168        case KVM_GET_VCPU_EVENTS: {
1169                struct kvm_vcpu_events events;
1170
1171                if (kvm_arm_vcpu_get_events(vcpu, &events))
1172                        return -EINVAL;
1173
1174                if (copy_to_user(argp, &events, sizeof(events)))
1175                        return -EFAULT;
1176
1177                return 0;
1178        }
1179        case KVM_SET_VCPU_EVENTS: {
1180                struct kvm_vcpu_events events;
1181
1182                if (copy_from_user(&events, argp, sizeof(events)))
1183                        return -EFAULT;
1184
1185                return kvm_arm_vcpu_set_events(vcpu, &events);
1186        }
1187        default:
1188                r = -EINVAL;
1189        }
1190
1191        return r;
1192}
1193
1194/**
1195 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1196 * @kvm: kvm instance
1197 * @log: slot id and address to which we copy the log
1198 *
1199 * Steps 1-4 below provide general overview of dirty page logging. See
1200 * kvm_get_dirty_log_protect() function description for additional details.
1201 *
1202 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1203 * always flush the TLB (step 4) even if previous step failed  and the dirty
1204 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1205 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1206 * writes will be marked dirty for next log read.
1207 *
1208 *   1. Take a snapshot of the bit and clear it if needed.
1209 *   2. Write protect the corresponding page.
1210 *   3. Copy the snapshot to the userspace.
1211 *   4. Flush TLB's if needed.
1212 */
1213int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1214{
1215        bool flush = false;
1216        int r;
1217
1218        mutex_lock(&kvm->slots_lock);
1219
1220        r = kvm_get_dirty_log_protect(kvm, log, &flush);
1221
1222        if (flush)
1223                kvm_flush_remote_tlbs(kvm);
1224
1225        mutex_unlock(&kvm->slots_lock);
1226        return r;
1227}
1228
1229int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1230{
1231        bool flush = false;
1232        int r;
1233
1234        mutex_lock(&kvm->slots_lock);
1235
1236        r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1237
1238        if (flush)
1239                kvm_flush_remote_tlbs(kvm);
1240
1241        mutex_unlock(&kvm->slots_lock);
1242        return r;
1243}
1244
1245static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1246                                        struct kvm_arm_device_addr *dev_addr)
1247{
1248        unsigned long dev_id, type;
1249
1250        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1251                KVM_ARM_DEVICE_ID_SHIFT;
1252        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1253                KVM_ARM_DEVICE_TYPE_SHIFT;
1254
1255        switch (dev_id) {
1256        case KVM_ARM_DEVICE_VGIC_V2:
1257                if (!vgic_present)
1258                        return -ENXIO;
1259                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1260        default:
1261                return -ENODEV;
1262        }
1263}
1264
1265long kvm_arch_vm_ioctl(struct file *filp,
1266                       unsigned int ioctl, unsigned long arg)
1267{
1268        struct kvm *kvm = filp->private_data;
1269        void __user *argp = (void __user *)arg;
1270
1271        switch (ioctl) {
1272        case KVM_CREATE_IRQCHIP: {
1273                int ret;
1274                if (!vgic_present)
1275                        return -ENXIO;
1276                mutex_lock(&kvm->lock);
1277                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1278                mutex_unlock(&kvm->lock);
1279                return ret;
1280        }
1281        case KVM_ARM_SET_DEVICE_ADDR: {
1282                struct kvm_arm_device_addr dev_addr;
1283
1284                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1285                        return -EFAULT;
1286                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1287        }
1288        case KVM_ARM_PREFERRED_TARGET: {
1289                int err;
1290                struct kvm_vcpu_init init;
1291
1292                err = kvm_vcpu_preferred_target(&init);
1293                if (err)
1294                        return err;
1295
1296                if (copy_to_user(argp, &init, sizeof(init)))
1297                        return -EFAULT;
1298
1299                return 0;
1300        }
1301        default:
1302                return -EINVAL;
1303        }
1304}
1305
1306static void cpu_init_hyp_mode(void *dummy)
1307{
1308        phys_addr_t pgd_ptr;
1309        unsigned long hyp_stack_ptr;
1310        unsigned long stack_page;
1311        unsigned long vector_ptr;
1312
1313        /* Switch from the HYP stub to our own HYP init vector */
1314        __hyp_set_vectors(kvm_get_idmap_vector());
1315
1316        pgd_ptr = kvm_mmu_get_httbr();
1317        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1318        hyp_stack_ptr = stack_page + PAGE_SIZE;
1319        vector_ptr = (unsigned long)kvm_get_hyp_vector();
1320
1321        __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1322        __cpu_init_stage2();
1323}
1324
1325static void cpu_hyp_reset(void)
1326{
1327        if (!is_kernel_in_hyp_mode())
1328                __hyp_reset_vectors();
1329}
1330
1331static void cpu_hyp_reinit(void)
1332{
1333        cpu_hyp_reset();
1334
1335        if (is_kernel_in_hyp_mode())
1336                kvm_timer_init_vhe();
1337        else
1338                cpu_init_hyp_mode(NULL);
1339
1340        kvm_arm_init_debug();
1341
1342        if (vgic_present)
1343                kvm_vgic_init_cpu_hardware();
1344}
1345
1346static void _kvm_arch_hardware_enable(void *discard)
1347{
1348        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1349                cpu_hyp_reinit();
1350                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1351        }
1352}
1353
1354int kvm_arch_hardware_enable(void)
1355{
1356        _kvm_arch_hardware_enable(NULL);
1357        return 0;
1358}
1359
1360static void _kvm_arch_hardware_disable(void *discard)
1361{
1362        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1363                cpu_hyp_reset();
1364                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1365        }
1366}
1367
1368void kvm_arch_hardware_disable(void)
1369{
1370        _kvm_arch_hardware_disable(NULL);
1371}
1372
1373#ifdef CONFIG_CPU_PM
1374static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1375                                    unsigned long cmd,
1376                                    void *v)
1377{
1378        /*
1379         * kvm_arm_hardware_enabled is left with its old value over
1380         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1381         * re-enable hyp.
1382         */
1383        switch (cmd) {
1384        case CPU_PM_ENTER:
1385                if (__this_cpu_read(kvm_arm_hardware_enabled))
1386                        /*
1387                         * don't update kvm_arm_hardware_enabled here
1388                         * so that the hardware will be re-enabled
1389                         * when we resume. See below.
1390                         */
1391                        cpu_hyp_reset();
1392
1393                return NOTIFY_OK;
1394        case CPU_PM_ENTER_FAILED:
1395        case CPU_PM_EXIT:
1396                if (__this_cpu_read(kvm_arm_hardware_enabled))
1397                        /* The hardware was enabled before suspend. */
1398                        cpu_hyp_reinit();
1399
1400                return NOTIFY_OK;
1401
1402        default:
1403                return NOTIFY_DONE;
1404        }
1405}
1406
1407static struct notifier_block hyp_init_cpu_pm_nb = {
1408        .notifier_call = hyp_init_cpu_pm_notifier,
1409};
1410
1411static void __init hyp_cpu_pm_init(void)
1412{
1413        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1414}
1415static void __init hyp_cpu_pm_exit(void)
1416{
1417        cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1418}
1419#else
1420static inline void hyp_cpu_pm_init(void)
1421{
1422}
1423static inline void hyp_cpu_pm_exit(void)
1424{
1425}
1426#endif
1427
1428static int init_common_resources(void)
1429{
1430        /* set size of VMID supported by CPU */
1431        kvm_vmid_bits = kvm_get_vmid_bits();
1432        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1433
1434        kvm_set_ipa_limit();
1435
1436        return 0;
1437}
1438
1439static int init_subsystems(void)
1440{
1441        int err = 0;
1442
1443        /*
1444         * Enable hardware so that subsystem initialisation can access EL2.
1445         */
1446        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1447
1448        /*
1449         * Register CPU lower-power notifier
1450         */
1451        hyp_cpu_pm_init();
1452
1453        /*
1454         * Init HYP view of VGIC
1455         */
1456        err = kvm_vgic_hyp_init();
1457        switch (err) {
1458        case 0:
1459                vgic_present = true;
1460                break;
1461        case -ENODEV:
1462        case -ENXIO:
1463                vgic_present = false;
1464                err = 0;
1465                break;
1466        default:
1467                goto out;
1468        }
1469
1470        /*
1471         * Init HYP architected timer support
1472         */
1473        err = kvm_timer_hyp_init(vgic_present);
1474        if (err)
1475                goto out;
1476
1477        kvm_perf_init();
1478        kvm_coproc_table_init();
1479
1480out:
1481        on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1482
1483        return err;
1484}
1485
1486static void teardown_hyp_mode(void)
1487{
1488        int cpu;
1489
1490        free_hyp_pgds();
1491        for_each_possible_cpu(cpu)
1492                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1493        hyp_cpu_pm_exit();
1494}
1495
1496/**
1497 * Inits Hyp-mode on all online CPUs
1498 */
1499static int init_hyp_mode(void)
1500{
1501        int cpu;
1502        int err = 0;
1503
1504        /*
1505         * Allocate Hyp PGD and setup Hyp identity mapping
1506         */
1507        err = kvm_mmu_init();
1508        if (err)
1509                goto out_err;
1510
1511        /*
1512         * Allocate stack pages for Hypervisor-mode
1513         */
1514        for_each_possible_cpu(cpu) {
1515                unsigned long stack_page;
1516
1517                stack_page = __get_free_page(GFP_KERNEL);
1518                if (!stack_page) {
1519                        err = -ENOMEM;
1520                        goto out_err;
1521                }
1522
1523                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1524        }
1525
1526        /*
1527         * Map the Hyp-code called directly from the host
1528         */
1529        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1530                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1531        if (err) {
1532                kvm_err("Cannot map world-switch code\n");
1533                goto out_err;
1534        }
1535
1536        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1537                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1538        if (err) {
1539                kvm_err("Cannot map rodata section\n");
1540                goto out_err;
1541        }
1542
1543        err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1544                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1545        if (err) {
1546                kvm_err("Cannot map bss section\n");
1547                goto out_err;
1548        }
1549
1550        err = kvm_map_vectors();
1551        if (err) {
1552                kvm_err("Cannot map vectors\n");
1553                goto out_err;
1554        }
1555
1556        /*
1557         * Map the Hyp stack pages
1558         */
1559        for_each_possible_cpu(cpu) {
1560                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1561                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1562                                          PAGE_HYP);
1563
1564                if (err) {
1565                        kvm_err("Cannot map hyp stack\n");
1566                        goto out_err;
1567                }
1568        }
1569
1570        for_each_possible_cpu(cpu) {
1571                kvm_cpu_context_t *cpu_ctxt;
1572
1573                cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1574                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1575
1576                if (err) {
1577                        kvm_err("Cannot map host CPU state: %d\n", err);
1578                        goto out_err;
1579                }
1580        }
1581
1582        err = hyp_map_aux_data();
1583        if (err)
1584                kvm_err("Cannot map host auxilary data: %d\n", err);
1585
1586        return 0;
1587
1588out_err:
1589        teardown_hyp_mode();
1590        kvm_err("error initializing Hyp mode: %d\n", err);
1591        return err;
1592}
1593
1594static void check_kvm_target_cpu(void *ret)
1595{
1596        *(int *)ret = kvm_target_cpu();
1597}
1598
1599struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1600{
1601        struct kvm_vcpu *vcpu;
1602        int i;
1603
1604        mpidr &= MPIDR_HWID_BITMASK;
1605        kvm_for_each_vcpu(i, vcpu, kvm) {
1606                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1607                        return vcpu;
1608        }
1609        return NULL;
1610}
1611
1612bool kvm_arch_has_irq_bypass(void)
1613{
1614        return true;
1615}
1616
1617int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1618                                      struct irq_bypass_producer *prod)
1619{
1620        struct kvm_kernel_irqfd *irqfd =
1621                container_of(cons, struct kvm_kernel_irqfd, consumer);
1622
1623        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1624                                          &irqfd->irq_entry);
1625}
1626void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1627                                      struct irq_bypass_producer *prod)
1628{
1629        struct kvm_kernel_irqfd *irqfd =
1630                container_of(cons, struct kvm_kernel_irqfd, consumer);
1631
1632        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1633                                     &irqfd->irq_entry);
1634}
1635
1636void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1637{
1638        struct kvm_kernel_irqfd *irqfd =
1639                container_of(cons, struct kvm_kernel_irqfd, consumer);
1640
1641        kvm_arm_halt_guest(irqfd->kvm);
1642}
1643
1644void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1645{
1646        struct kvm_kernel_irqfd *irqfd =
1647                container_of(cons, struct kvm_kernel_irqfd, consumer);
1648
1649        kvm_arm_resume_guest(irqfd->kvm);
1650}
1651
1652/**
1653 * Initialize Hyp-mode and memory mappings on all CPUs.
1654 */
1655int kvm_arch_init(void *opaque)
1656{
1657        int err;
1658        int ret, cpu;
1659        bool in_hyp_mode;
1660
1661        if (!is_hyp_mode_available()) {
1662                kvm_info("HYP mode not available\n");
1663                return -ENODEV;
1664        }
1665
1666        in_hyp_mode = is_kernel_in_hyp_mode();
1667
1668        if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1669                kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1670                return -ENODEV;
1671        }
1672
1673        for_each_online_cpu(cpu) {
1674                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1675                if (ret < 0) {
1676                        kvm_err("Error, CPU %d not supported!\n", cpu);
1677                        return -ENODEV;
1678                }
1679        }
1680
1681        err = init_common_resources();
1682        if (err)
1683                return err;
1684
1685        if (!in_hyp_mode) {
1686                err = init_hyp_mode();
1687                if (err)
1688                        goto out_err;
1689        }
1690
1691        err = init_subsystems();
1692        if (err)
1693                goto out_hyp;
1694
1695        if (in_hyp_mode)
1696                kvm_info("VHE mode initialized successfully\n");
1697        else
1698                kvm_info("Hyp mode initialized successfully\n");
1699
1700        return 0;
1701
1702out_hyp:
1703        if (!in_hyp_mode)
1704                teardown_hyp_mode();
1705out_err:
1706        return err;
1707}
1708
1709/* NOP: Compiling as a module not supported */
1710void kvm_arch_exit(void)
1711{
1712        kvm_perf_teardown();
1713}
1714
1715static int arm_init(void)
1716{
1717        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1718        return rc;
1719}
1720
1721module_init(arm_init);
1722