linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/hotplug.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/interrupt.h>
  18#include <linux/cache.h>
  19#include <linux/profile.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/cpu.h>
  24#include <linux/seq_file.h>
  25#include <linux/irq.h>
  26#include <linux/nmi.h>
  27#include <linux/percpu.h>
  28#include <linux/clockchips.h>
  29#include <linux/completion.h>
  30#include <linux/cpufreq.h>
  31#include <linux/irq_work.h>
  32
  33#include <linux/atomic.h>
  34#include <asm/bugs.h>
  35#include <asm/smp.h>
  36#include <asm/cacheflush.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
  39#include <asm/exception.h>
  40#include <asm/idmap.h>
  41#include <asm/topology.h>
  42#include <asm/mmu_context.h>
  43#include <asm/pgtable.h>
  44#include <asm/pgalloc.h>
  45#include <asm/procinfo.h>
  46#include <asm/processor.h>
  47#include <asm/sections.h>
  48#include <asm/tlbflush.h>
  49#include <asm/ptrace.h>
  50#include <asm/smp_plat.h>
  51#include <asm/virt.h>
  52#include <asm/mach/arch.h>
  53#include <asm/mpu.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/ipi.h>
  57
  58/*
  59 * as from 2.5, kernels no longer have an init_tasks structure
  60 * so we need some other way of telling a new secondary core
  61 * where to place its SVC stack
  62 */
  63struct secondary_data secondary_data;
  64
  65enum ipi_msg_type {
  66        IPI_WAKEUP,
  67        IPI_TIMER,
  68        IPI_RESCHEDULE,
  69        IPI_CALL_FUNC,
  70        IPI_CPU_STOP,
  71        IPI_IRQ_WORK,
  72        IPI_COMPLETION,
  73        IPI_CPU_BACKTRACE,
  74        /*
  75         * SGI8-15 can be reserved by secure firmware, and thus may
  76         * not be usable by the kernel. Please keep the above limited
  77         * to at most 8 entries.
  78         */
  79};
  80
  81static DECLARE_COMPLETION(cpu_running);
  82
  83static struct smp_operations smp_ops __ro_after_init;
  84
  85void __init smp_set_ops(const struct smp_operations *ops)
  86{
  87        if (ops)
  88                smp_ops = *ops;
  89};
  90
  91static unsigned long get_arch_pgd(pgd_t *pgd)
  92{
  93#ifdef CONFIG_ARM_LPAE
  94        return __phys_to_pfn(virt_to_phys(pgd));
  95#else
  96        return virt_to_phys(pgd);
  97#endif
  98}
  99
 100#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 101static int secondary_biglittle_prepare(unsigned int cpu)
 102{
 103        if (!cpu_vtable[cpu])
 104                cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
 105
 106        return cpu_vtable[cpu] ? 0 : -ENOMEM;
 107}
 108
 109static void secondary_biglittle_init(void)
 110{
 111        init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
 112}
 113#else
 114static int secondary_biglittle_prepare(unsigned int cpu)
 115{
 116        return 0;
 117}
 118
 119static void secondary_biglittle_init(void)
 120{
 121}
 122#endif
 123
 124int __cpu_up(unsigned int cpu, struct task_struct *idle)
 125{
 126        int ret;
 127
 128        if (!smp_ops.smp_boot_secondary)
 129                return -ENOSYS;
 130
 131        ret = secondary_biglittle_prepare(cpu);
 132        if (ret)
 133                return ret;
 134
 135        /*
 136         * We need to tell the secondary core where to find
 137         * its stack and the page tables.
 138         */
 139        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 140#ifdef CONFIG_ARM_MPU
 141        secondary_data.mpu_rgn_info = &mpu_rgn_info;
 142#endif
 143
 144#ifdef CONFIG_MMU
 145        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 146        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 147#endif
 148        sync_cache_w(&secondary_data);
 149
 150        /*
 151         * Now bring the CPU into our world.
 152         */
 153        ret = smp_ops.smp_boot_secondary(cpu, idle);
 154        if (ret == 0) {
 155                /*
 156                 * CPU was successfully started, wait for it
 157                 * to come online or time out.
 158                 */
 159                wait_for_completion_timeout(&cpu_running,
 160                                                 msecs_to_jiffies(1000));
 161
 162                if (!cpu_online(cpu)) {
 163                        pr_crit("CPU%u: failed to come online\n", cpu);
 164                        ret = -EIO;
 165                }
 166        } else {
 167                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 168        }
 169
 170
 171        memset(&secondary_data, 0, sizeof(secondary_data));
 172        return ret;
 173}
 174
 175/* platform specific SMP operations */
 176void __init smp_init_cpus(void)
 177{
 178        if (smp_ops.smp_init_cpus)
 179                smp_ops.smp_init_cpus();
 180}
 181
 182int platform_can_secondary_boot(void)
 183{
 184        return !!smp_ops.smp_boot_secondary;
 185}
 186
 187int platform_can_cpu_hotplug(void)
 188{
 189#ifdef CONFIG_HOTPLUG_CPU
 190        if (smp_ops.cpu_kill)
 191                return 1;
 192#endif
 193
 194        return 0;
 195}
 196
 197#ifdef CONFIG_HOTPLUG_CPU
 198static int platform_cpu_kill(unsigned int cpu)
 199{
 200        if (smp_ops.cpu_kill)
 201                return smp_ops.cpu_kill(cpu);
 202        return 1;
 203}
 204
 205static int platform_cpu_disable(unsigned int cpu)
 206{
 207        if (smp_ops.cpu_disable)
 208                return smp_ops.cpu_disable(cpu);
 209
 210        return 0;
 211}
 212
 213int platform_can_hotplug_cpu(unsigned int cpu)
 214{
 215        /* cpu_die must be specified to support hotplug */
 216        if (!smp_ops.cpu_die)
 217                return 0;
 218
 219        if (smp_ops.cpu_can_disable)
 220                return smp_ops.cpu_can_disable(cpu);
 221
 222        /*
 223         * By default, allow disabling all CPUs except the first one,
 224         * since this is special on a lot of platforms, e.g. because
 225         * of clock tick interrupts.
 226         */
 227        return cpu != 0;
 228}
 229
 230/*
 231 * __cpu_disable runs on the processor to be shutdown.
 232 */
 233int __cpu_disable(void)
 234{
 235        unsigned int cpu = smp_processor_id();
 236        int ret;
 237
 238        ret = platform_cpu_disable(cpu);
 239        if (ret)
 240                return ret;
 241
 242        /*
 243         * Take this CPU offline.  Once we clear this, we can't return,
 244         * and we must not schedule until we're ready to give up the cpu.
 245         */
 246        set_cpu_online(cpu, false);
 247
 248        /*
 249         * OK - migrate IRQs away from this CPU
 250         */
 251        irq_migrate_all_off_this_cpu();
 252
 253        /*
 254         * Flush user cache and TLB mappings, and then remove this CPU
 255         * from the vm mask set of all processes.
 256         *
 257         * Caches are flushed to the Level of Unification Inner Shareable
 258         * to write-back dirty lines to unified caches shared by all CPUs.
 259         */
 260        flush_cache_louis();
 261        local_flush_tlb_all();
 262
 263        return 0;
 264}
 265
 266static DECLARE_COMPLETION(cpu_died);
 267
 268/*
 269 * called on the thread which is asking for a CPU to be shutdown -
 270 * waits until shutdown has completed, or it is timed out.
 271 */
 272void __cpu_die(unsigned int cpu)
 273{
 274        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 275                pr_err("CPU%u: cpu didn't die\n", cpu);
 276                return;
 277        }
 278        pr_debug("CPU%u: shutdown\n", cpu);
 279
 280        clear_tasks_mm_cpumask(cpu);
 281        /*
 282         * platform_cpu_kill() is generally expected to do the powering off
 283         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 284         * be done by the CPU which is dying in preference to supporting
 285         * this call, but that means there is _no_ synchronisation between
 286         * the requesting CPU and the dying CPU actually losing power.
 287         */
 288        if (!platform_cpu_kill(cpu))
 289                pr_err("CPU%u: unable to kill\n", cpu);
 290}
 291
 292/*
 293 * Called from the idle thread for the CPU which has been shutdown.
 294 *
 295 * Note that we disable IRQs here, but do not re-enable them
 296 * before returning to the caller. This is also the behaviour
 297 * of the other hotplug-cpu capable cores, so presumably coming
 298 * out of idle fixes this.
 299 */
 300void arch_cpu_idle_dead(void)
 301{
 302        unsigned int cpu = smp_processor_id();
 303
 304        idle_task_exit();
 305
 306        local_irq_disable();
 307
 308        /*
 309         * Flush the data out of the L1 cache for this CPU.  This must be
 310         * before the completion to ensure that data is safely written out
 311         * before platform_cpu_kill() gets called - which may disable
 312         * *this* CPU and power down its cache.
 313         */
 314        flush_cache_louis();
 315
 316        /*
 317         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 318         * this returns, power and/or clocks can be removed at any point
 319         * from this CPU and its cache by platform_cpu_kill().
 320         */
 321        complete(&cpu_died);
 322
 323        /*
 324         * Ensure that the cache lines associated with that completion are
 325         * written out.  This covers the case where _this_ CPU is doing the
 326         * powering down, to ensure that the completion is visible to the
 327         * CPU waiting for this one.
 328         */
 329        flush_cache_louis();
 330
 331        /*
 332         * The actual CPU shutdown procedure is at least platform (if not
 333         * CPU) specific.  This may remove power, or it may simply spin.
 334         *
 335         * Platforms are generally expected *NOT* to return from this call,
 336         * although there are some which do because they have no way to
 337         * power down the CPU.  These platforms are the _only_ reason we
 338         * have a return path which uses the fragment of assembly below.
 339         *
 340         * The return path should not be used for platforms which can
 341         * power off the CPU.
 342         */
 343        if (smp_ops.cpu_die)
 344                smp_ops.cpu_die(cpu);
 345
 346        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 347                cpu);
 348
 349        /*
 350         * Do not return to the idle loop - jump back to the secondary
 351         * cpu initialisation.  There's some initialisation which needs
 352         * to be repeated to undo the effects of taking the CPU offline.
 353         */
 354        __asm__("mov    sp, %0\n"
 355        "       mov     fp, #0\n"
 356        "       b       secondary_start_kernel"
 357                :
 358                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 359}
 360#endif /* CONFIG_HOTPLUG_CPU */
 361
 362/*
 363 * Called by both boot and secondaries to move global data into
 364 * per-processor storage.
 365 */
 366static void smp_store_cpu_info(unsigned int cpuid)
 367{
 368        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 369
 370        cpu_info->loops_per_jiffy = loops_per_jiffy;
 371        cpu_info->cpuid = read_cpuid_id();
 372
 373        store_cpu_topology(cpuid);
 374}
 375
 376/*
 377 * This is the secondary CPU boot entry.  We're using this CPUs
 378 * idle thread stack, but a set of temporary page tables.
 379 */
 380asmlinkage void secondary_start_kernel(void)
 381{
 382        struct mm_struct *mm = &init_mm;
 383        unsigned int cpu;
 384
 385        secondary_biglittle_init();
 386
 387        /*
 388         * The identity mapping is uncached (strongly ordered), so
 389         * switch away from it before attempting any exclusive accesses.
 390         */
 391        cpu_switch_mm(mm->pgd, mm);
 392        local_flush_bp_all();
 393        enter_lazy_tlb(mm, current);
 394        local_flush_tlb_all();
 395
 396        /*
 397         * All kernel threads share the same mm context; grab a
 398         * reference and switch to it.
 399         */
 400        cpu = smp_processor_id();
 401        mmgrab(mm);
 402        current->active_mm = mm;
 403        cpumask_set_cpu(cpu, mm_cpumask(mm));
 404
 405        cpu_init();
 406
 407#ifndef CONFIG_MMU
 408        setup_vectors_base();
 409#endif
 410        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 411
 412        preempt_disable();
 413        trace_hardirqs_off();
 414
 415        /*
 416         * Give the platform a chance to do its own initialisation.
 417         */
 418        if (smp_ops.smp_secondary_init)
 419                smp_ops.smp_secondary_init(cpu);
 420
 421        notify_cpu_starting(cpu);
 422
 423        calibrate_delay();
 424
 425        smp_store_cpu_info(cpu);
 426
 427        /*
 428         * OK, now it's safe to let the boot CPU continue.  Wait for
 429         * the CPU migration code to notice that the CPU is online
 430         * before we continue - which happens after __cpu_up returns.
 431         */
 432        set_cpu_online(cpu, true);
 433
 434        check_other_bugs();
 435
 436        complete(&cpu_running);
 437
 438        local_irq_enable();
 439        local_fiq_enable();
 440        local_abt_enable();
 441
 442        /*
 443         * OK, it's off to the idle thread for us
 444         */
 445        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 446}
 447
 448void __init smp_cpus_done(unsigned int max_cpus)
 449{
 450        int cpu;
 451        unsigned long bogosum = 0;
 452
 453        for_each_online_cpu(cpu)
 454                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 455
 456        printk(KERN_INFO "SMP: Total of %d processors activated "
 457               "(%lu.%02lu BogoMIPS).\n",
 458               num_online_cpus(),
 459               bogosum / (500000/HZ),
 460               (bogosum / (5000/HZ)) % 100);
 461
 462        hyp_mode_check();
 463}
 464
 465void __init smp_prepare_boot_cpu(void)
 466{
 467        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 468}
 469
 470void __init smp_prepare_cpus(unsigned int max_cpus)
 471{
 472        unsigned int ncores = num_possible_cpus();
 473
 474        init_cpu_topology();
 475
 476        smp_store_cpu_info(smp_processor_id());
 477
 478        /*
 479         * are we trying to boot more cores than exist?
 480         */
 481        if (max_cpus > ncores)
 482                max_cpus = ncores;
 483        if (ncores > 1 && max_cpus) {
 484                /*
 485                 * Initialise the present map, which describes the set of CPUs
 486                 * actually populated at the present time. A platform should
 487                 * re-initialize the map in the platforms smp_prepare_cpus()
 488                 * if present != possible (e.g. physical hotplug).
 489                 */
 490                init_cpu_present(cpu_possible_mask);
 491
 492                /*
 493                 * Initialise the SCU if there are more than one CPU
 494                 * and let them know where to start.
 495                 */
 496                if (smp_ops.smp_prepare_cpus)
 497                        smp_ops.smp_prepare_cpus(max_cpus);
 498        }
 499}
 500
 501static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 502
 503void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 504{
 505        if (!__smp_cross_call)
 506                __smp_cross_call = fn;
 507}
 508
 509static const char *ipi_types[NR_IPI] __tracepoint_string = {
 510#define S(x,s)  [x] = s
 511        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 512        S(IPI_TIMER, "Timer broadcast interrupts"),
 513        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 514        S(IPI_CALL_FUNC, "Function call interrupts"),
 515        S(IPI_CPU_STOP, "CPU stop interrupts"),
 516        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 517        S(IPI_COMPLETION, "completion interrupts"),
 518};
 519
 520static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 521{
 522        trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
 523        __smp_cross_call(target, ipinr);
 524}
 525
 526void show_ipi_list(struct seq_file *p, int prec)
 527{
 528        unsigned int cpu, i;
 529
 530        for (i = 0; i < NR_IPI; i++) {
 531                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 532
 533                for_each_online_cpu(cpu)
 534                        seq_printf(p, "%10u ",
 535                                   __get_irq_stat(cpu, ipi_irqs[i]));
 536
 537                seq_printf(p, " %s\n", ipi_types[i]);
 538        }
 539}
 540
 541u64 smp_irq_stat_cpu(unsigned int cpu)
 542{
 543        u64 sum = 0;
 544        int i;
 545
 546        for (i = 0; i < NR_IPI; i++)
 547                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 548
 549        return sum;
 550}
 551
 552void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 553{
 554        smp_cross_call(mask, IPI_CALL_FUNC);
 555}
 556
 557void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 558{
 559        smp_cross_call(mask, IPI_WAKEUP);
 560}
 561
 562void arch_send_call_function_single_ipi(int cpu)
 563{
 564        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 565}
 566
 567#ifdef CONFIG_IRQ_WORK
 568void arch_irq_work_raise(void)
 569{
 570        if (arch_irq_work_has_interrupt())
 571                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 572}
 573#endif
 574
 575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 576void tick_broadcast(const struct cpumask *mask)
 577{
 578        smp_cross_call(mask, IPI_TIMER);
 579}
 580#endif
 581
 582static DEFINE_RAW_SPINLOCK(stop_lock);
 583
 584/*
 585 * ipi_cpu_stop - handle IPI from smp_send_stop()
 586 */
 587static void ipi_cpu_stop(unsigned int cpu)
 588{
 589        if (system_state <= SYSTEM_RUNNING) {
 590                raw_spin_lock(&stop_lock);
 591                pr_crit("CPU%u: stopping\n", cpu);
 592                dump_stack();
 593                raw_spin_unlock(&stop_lock);
 594        }
 595
 596        set_cpu_online(cpu, false);
 597
 598        local_fiq_disable();
 599        local_irq_disable();
 600
 601        while (1) {
 602                cpu_relax();
 603                wfe();
 604        }
 605}
 606
 607static DEFINE_PER_CPU(struct completion *, cpu_completion);
 608
 609int register_ipi_completion(struct completion *completion, int cpu)
 610{
 611        per_cpu(cpu_completion, cpu) = completion;
 612        return IPI_COMPLETION;
 613}
 614
 615static void ipi_complete(unsigned int cpu)
 616{
 617        complete(per_cpu(cpu_completion, cpu));
 618}
 619
 620/*
 621 * Main handler for inter-processor interrupts
 622 */
 623asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 624{
 625        handle_IPI(ipinr, regs);
 626}
 627
 628void handle_IPI(int ipinr, struct pt_regs *regs)
 629{
 630        unsigned int cpu = smp_processor_id();
 631        struct pt_regs *old_regs = set_irq_regs(regs);
 632
 633        if ((unsigned)ipinr < NR_IPI) {
 634                trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 635                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 636        }
 637
 638        switch (ipinr) {
 639        case IPI_WAKEUP:
 640                break;
 641
 642#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 643        case IPI_TIMER:
 644                irq_enter();
 645                tick_receive_broadcast();
 646                irq_exit();
 647                break;
 648#endif
 649
 650        case IPI_RESCHEDULE:
 651                scheduler_ipi();
 652                break;
 653
 654        case IPI_CALL_FUNC:
 655                irq_enter();
 656                generic_smp_call_function_interrupt();
 657                irq_exit();
 658                break;
 659
 660        case IPI_CPU_STOP:
 661                irq_enter();
 662                ipi_cpu_stop(cpu);
 663                irq_exit();
 664                break;
 665
 666#ifdef CONFIG_IRQ_WORK
 667        case IPI_IRQ_WORK:
 668                irq_enter();
 669                irq_work_run();
 670                irq_exit();
 671                break;
 672#endif
 673
 674        case IPI_COMPLETION:
 675                irq_enter();
 676                ipi_complete(cpu);
 677                irq_exit();
 678                break;
 679
 680        case IPI_CPU_BACKTRACE:
 681                printk_nmi_enter();
 682                irq_enter();
 683                nmi_cpu_backtrace(regs);
 684                irq_exit();
 685                printk_nmi_exit();
 686                break;
 687
 688        default:
 689                pr_crit("CPU%u: Unknown IPI message 0x%x\n",
 690                        cpu, ipinr);
 691                break;
 692        }
 693
 694        if ((unsigned)ipinr < NR_IPI)
 695                trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 696        set_irq_regs(old_regs);
 697}
 698
 699void smp_send_reschedule(int cpu)
 700{
 701        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 702}
 703
 704void smp_send_stop(void)
 705{
 706        unsigned long timeout;
 707        struct cpumask mask;
 708
 709        cpumask_copy(&mask, cpu_online_mask);
 710        cpumask_clear_cpu(smp_processor_id(), &mask);
 711        if (!cpumask_empty(&mask))
 712                smp_cross_call(&mask, IPI_CPU_STOP);
 713
 714        /* Wait up to one second for other CPUs to stop */
 715        timeout = USEC_PER_SEC;
 716        while (num_online_cpus() > 1 && timeout--)
 717                udelay(1);
 718
 719        if (num_online_cpus() > 1)
 720                pr_warn("SMP: failed to stop secondary CPUs\n");
 721}
 722
 723/* In case panic() and panic() called at the same time on CPU1 and CPU2,
 724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
 725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
 726 * kdump fails. So split out the panic_smp_self_stop() and add
 727 * set_cpu_online(smp_processor_id(), false).
 728 */
 729void panic_smp_self_stop(void)
 730{
 731        pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
 732                 smp_processor_id());
 733        set_cpu_online(smp_processor_id(), false);
 734        while (1)
 735                cpu_relax();
 736}
 737
 738/*
 739 * not supported here
 740 */
 741int setup_profiling_timer(unsigned int multiplier)
 742{
 743        return -EINVAL;
 744}
 745
 746#ifdef CONFIG_CPU_FREQ
 747
 748static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 749static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 750static unsigned long global_l_p_j_ref;
 751static unsigned long global_l_p_j_ref_freq;
 752
 753static int cpufreq_callback(struct notifier_block *nb,
 754                                        unsigned long val, void *data)
 755{
 756        struct cpufreq_freqs *freq = data;
 757        int cpu = freq->cpu;
 758
 759        if (freq->flags & CPUFREQ_CONST_LOOPS)
 760                return NOTIFY_OK;
 761
 762        if (!per_cpu(l_p_j_ref, cpu)) {
 763                per_cpu(l_p_j_ref, cpu) =
 764                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 765                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 766                if (!global_l_p_j_ref) {
 767                        global_l_p_j_ref = loops_per_jiffy;
 768                        global_l_p_j_ref_freq = freq->old;
 769                }
 770        }
 771
 772        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 773            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 774                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 775                                                global_l_p_j_ref_freq,
 776                                                freq->new);
 777                per_cpu(cpu_data, cpu).loops_per_jiffy =
 778                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 779                                        per_cpu(l_p_j_ref_freq, cpu),
 780                                        freq->new);
 781        }
 782        return NOTIFY_OK;
 783}
 784
 785static struct notifier_block cpufreq_notifier = {
 786        .notifier_call  = cpufreq_callback,
 787};
 788
 789static int __init register_cpufreq_notifier(void)
 790{
 791        return cpufreq_register_notifier(&cpufreq_notifier,
 792                                                CPUFREQ_TRANSITION_NOTIFIER);
 793}
 794core_initcall(register_cpufreq_notifier);
 795
 796#endif
 797
 798static void raise_nmi(cpumask_t *mask)
 799{
 800        smp_cross_call(mask, IPI_CPU_BACKTRACE);
 801}
 802
 803void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 804{
 805        nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
 806}
 807