linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *      PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*      I think it would be in everyone's best interest to follow this
  24 *      guidelines when writing PDC wrappers:
  25 *
  26 *       - the name of the pdc wrapper should match one of the macros
  27 *         used for the first two arguments
  28 *       - don't use caps for random parts of the name
  29 *       - use the static PDC result buffers and "copyout" to structs
  30 *         supplied by the caller to encapsulate alignment restrictions
  31 *       - hold pdc_lock while in PDC or using static result buffers
  32 *       - use __pa() to convert virtual (kernel) pointers to physical
  33 *         ones.
  34 *       - the name of the struct used for pdc return values should equal
  35 *         one of the macros used for the first two arguments to the
  36 *         corresponding PDC call
  37 *       - keep the order of arguments
  38 *       - don't be smart (setting trailing NUL bytes for strings, return
  39 *         something useful even if the call failed) unless you are sure
  40 *         it's not going to affect functionality or performance
  41 *
  42 *      Example:
  43 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *      {
  45 *              int retval;
  46 *
  47 *              spin_lock_irq(&pdc_lock);
  48 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *              convert_to_wide(pdc_result);
  50 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *              spin_unlock_irq(&pdc_lock);
  52 *
  53 *              return retval;
  54 *      }
  55 *                                      prumpf  991016  
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>      /* for boot_cpu_data */
  71
  72#if defined(BOOTLOADER)
  73# undef  spin_lock_irqsave
  74# define spin_lock_irqsave(a, b) { b = 1; }
  75# undef  spin_unlock_irqrestore
  76# define spin_unlock_irqrestore(a, b)
  77#else
  78static DEFINE_SPINLOCK(pdc_lock);
  79#endif
  80
  81extern unsigned long pdc_result[NUM_PDC_RESULT];
  82extern unsigned long pdc_result2[NUM_PDC_RESULT];
  83
  84#ifdef CONFIG_64BIT
  85#define WIDE_FIRMWARE 0x1
  86#define NARROW_FIRMWARE 0x2
  87
  88/* Firmware needs to be initially set to narrow to determine the 
  89 * actual firmware width. */
  90int parisc_narrow_firmware __read_mostly = 1;
  91#endif
  92
  93/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  94 * and MEM_PDC calls are always the same width as the OS.
  95 * Some PAT boxes may have 64-bit IODC I/O.
  96 *
  97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  99 * This allowed wide kernels to run on Cxxx boxes.
 100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
 101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
 102 */
 103
 104#ifdef CONFIG_64BIT
 105long real64_call(unsigned long function, ...);
 106#endif
 107long real32_call(unsigned long function, ...);
 108
 109#ifdef CONFIG_64BIT
 110#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 111#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 112#else
 113#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 114#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 115#endif
 116
 117
 118/**
 119 * f_extend - Convert PDC addresses to kernel addresses.
 120 * @address: Address returned from PDC.
 121 *
 122 * This function is used to convert PDC addresses into kernel addresses
 123 * when the PDC address size and kernel address size are different.
 124 */
 125static unsigned long f_extend(unsigned long address)
 126{
 127#ifdef CONFIG_64BIT
 128        if(unlikely(parisc_narrow_firmware)) {
 129                if((address & 0xff000000) == 0xf0000000)
 130                        return 0xf0f0f0f000000000UL | (u32)address;
 131
 132                if((address & 0xf0000000) == 0xf0000000)
 133                        return 0xffffffff00000000UL | (u32)address;
 134        }
 135#endif
 136        return address;
 137}
 138
 139/**
 140 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 141 * @address: The return buffer from PDC.
 142 *
 143 * This function is used to convert the return buffer addresses retrieved from PDC
 144 * into kernel addresses when the PDC address size and kernel address size are
 145 * different.
 146 */
 147static void convert_to_wide(unsigned long *addr)
 148{
 149#ifdef CONFIG_64BIT
 150        int i;
 151        unsigned int *p = (unsigned int *)addr;
 152
 153        if (unlikely(parisc_narrow_firmware)) {
 154                for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 155                        addr[i] = p[i];
 156        }
 157#endif
 158}
 159
 160#ifdef CONFIG_64BIT
 161void set_firmware_width_unlocked(void)
 162{
 163        int ret;
 164
 165        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 166                __pa(pdc_result), 0);
 167        convert_to_wide(pdc_result);
 168        if (pdc_result[0] != NARROW_FIRMWARE)
 169                parisc_narrow_firmware = 0;
 170}
 171        
 172/**
 173 * set_firmware_width - Determine if the firmware is wide or narrow.
 174 * 
 175 * This function must be called before any pdc_* function that uses the
 176 * convert_to_wide function.
 177 */
 178void set_firmware_width(void)
 179{
 180        unsigned long flags;
 181        spin_lock_irqsave(&pdc_lock, flags);
 182        set_firmware_width_unlocked();
 183        spin_unlock_irqrestore(&pdc_lock, flags);
 184}
 185#else
 186void set_firmware_width_unlocked(void)
 187{
 188        return;
 189}
 190
 191void set_firmware_width(void)
 192{
 193        return;
 194}
 195#endif /*CONFIG_64BIT*/
 196
 197
 198#if !defined(BOOTLOADER)
 199/**
 200 * pdc_emergency_unlock - Unlock the linux pdc lock
 201 *
 202 * This call unlocks the linux pdc lock in case we need some PDC functions
 203 * (like pdc_add_valid) during kernel stack dump.
 204 */
 205void pdc_emergency_unlock(void)
 206{
 207        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 208        if (spin_is_locked(&pdc_lock))
 209                spin_unlock(&pdc_lock);
 210}
 211
 212
 213/**
 214 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 215 * @address: Address to be verified.
 216 *
 217 * This PDC call attempts to read from the specified address and verifies
 218 * if the address is valid.
 219 * 
 220 * The return value is PDC_OK (0) in case accessing this address is valid.
 221 */
 222int pdc_add_valid(unsigned long address)
 223{
 224        int retval;
 225        unsigned long flags;
 226
 227        spin_lock_irqsave(&pdc_lock, flags);
 228        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 229        spin_unlock_irqrestore(&pdc_lock, flags);
 230
 231        return retval;
 232}
 233EXPORT_SYMBOL(pdc_add_valid);
 234
 235/**
 236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 237 * @instr: Pointer to variable which will get instruction opcode.
 238 *
 239 * The return value is PDC_OK (0) in case call succeeded.
 240 */
 241int __init pdc_instr(unsigned int *instr)
 242{
 243        int retval;
 244        unsigned long flags;
 245
 246        spin_lock_irqsave(&pdc_lock, flags);
 247        retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 248        convert_to_wide(pdc_result);
 249        *instr = pdc_result[0];
 250        spin_unlock_irqrestore(&pdc_lock, flags);
 251
 252        return retval;
 253}
 254
 255/**
 256 * pdc_chassis_info - Return chassis information.
 257 * @result: The return buffer.
 258 * @chassis_info: The memory buffer address.
 259 * @len: The size of the memory buffer address.
 260 *
 261 * An HVERSION dependent call for returning the chassis information.
 262 */
 263int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 264{
 265        int retval;
 266        unsigned long flags;
 267
 268        spin_lock_irqsave(&pdc_lock, flags);
 269        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 270        memcpy(&pdc_result2, led_info, len);
 271        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 272                              __pa(pdc_result), __pa(pdc_result2), len);
 273        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 274        memcpy(led_info, pdc_result2, len);
 275        spin_unlock_irqrestore(&pdc_lock, flags);
 276
 277        return retval;
 278}
 279
 280/**
 281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 282 * @retval: -1 on error, 0 on success. Other value are PDC errors
 283 * 
 284 * Must be correctly formatted or expect system crash
 285 */
 286#ifdef CONFIG_64BIT
 287int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 288{
 289        int retval = 0;
 290        unsigned long flags;
 291        
 292        if (!is_pdc_pat())
 293                return -1;
 294
 295        spin_lock_irqsave(&pdc_lock, flags);
 296        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 297        spin_unlock_irqrestore(&pdc_lock, flags);
 298
 299        return retval;
 300}
 301#endif
 302
 303/**
 304 * pdc_chassis_disp - Updates chassis code
 305 * @retval: -1 on error, 0 on success
 306 */
 307int pdc_chassis_disp(unsigned long disp)
 308{
 309        int retval = 0;
 310        unsigned long flags;
 311
 312        spin_lock_irqsave(&pdc_lock, flags);
 313        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 314        spin_unlock_irqrestore(&pdc_lock, flags);
 315
 316        return retval;
 317}
 318
 319/**
 320 * pdc_chassis_warn - Fetches chassis warnings
 321 * @retval: -1 on error, 0 on success
 322 */
 323int pdc_chassis_warn(unsigned long *warn)
 324{
 325        int retval = 0;
 326        unsigned long flags;
 327
 328        spin_lock_irqsave(&pdc_lock, flags);
 329        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 330        *warn = pdc_result[0];
 331        spin_unlock_irqrestore(&pdc_lock, flags);
 332
 333        return retval;
 334}
 335
 336int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 337{
 338        int ret;
 339
 340        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 341        convert_to_wide(pdc_result);
 342        pdc_coproc_info->ccr_functional = pdc_result[0];
 343        pdc_coproc_info->ccr_present = pdc_result[1];
 344        pdc_coproc_info->revision = pdc_result[17];
 345        pdc_coproc_info->model = pdc_result[18];
 346
 347        return ret;
 348}
 349
 350/**
 351 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 352 * @pdc_coproc_info: Return buffer address.
 353 *
 354 * This PDC call returns the presence and status of all the coprocessors
 355 * attached to the processor.
 356 */
 357int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 358{
 359        int ret;
 360        unsigned long flags;
 361
 362        spin_lock_irqsave(&pdc_lock, flags);
 363        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 364        spin_unlock_irqrestore(&pdc_lock, flags);
 365
 366        return ret;
 367}
 368
 369/**
 370 * pdc_iodc_read - Read data from the modules IODC.
 371 * @actcnt: The actual number of bytes.
 372 * @hpa: The HPA of the module for the iodc read.
 373 * @index: The iodc entry point.
 374 * @iodc_data: A buffer memory for the iodc options.
 375 * @iodc_data_size: Size of the memory buffer.
 376 *
 377 * This PDC call reads from the IODC of the module specified by the hpa
 378 * argument.
 379 */
 380int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 381                  void *iodc_data, unsigned int iodc_data_size)
 382{
 383        int retval;
 384        unsigned long flags;
 385
 386        spin_lock_irqsave(&pdc_lock, flags);
 387        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 388                              index, __pa(pdc_result2), iodc_data_size);
 389        convert_to_wide(pdc_result);
 390        *actcnt = pdc_result[0];
 391        memcpy(iodc_data, pdc_result2, iodc_data_size);
 392        spin_unlock_irqrestore(&pdc_lock, flags);
 393
 394        return retval;
 395}
 396EXPORT_SYMBOL(pdc_iodc_read);
 397
 398/**
 399 * pdc_system_map_find_mods - Locate unarchitected modules.
 400 * @pdc_mod_info: Return buffer address.
 401 * @mod_path: pointer to dev path structure.
 402 * @mod_index: fixed address module index.
 403 *
 404 * To locate and identify modules which reside at fixed I/O addresses, which
 405 * do not self-identify via architected bus walks.
 406 */
 407int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 408                             struct pdc_module_path *mod_path, long mod_index)
 409{
 410        int retval;
 411        unsigned long flags;
 412
 413        spin_lock_irqsave(&pdc_lock, flags);
 414        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 415                              __pa(pdc_result2), mod_index);
 416        convert_to_wide(pdc_result);
 417        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 418        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 419        spin_unlock_irqrestore(&pdc_lock, flags);
 420
 421        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 422        return retval;
 423}
 424
 425/**
 426 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 427 * @pdc_addr_info: Return buffer address.
 428 * @mod_index: Fixed address module index.
 429 * @addr_index: Address range index.
 430 * 
 431 * Retrieve additional information about subsequent address ranges for modules
 432 * with multiple address ranges.  
 433 */
 434int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 435                              long mod_index, long addr_index)
 436{
 437        int retval;
 438        unsigned long flags;
 439
 440        spin_lock_irqsave(&pdc_lock, flags);
 441        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 442                              mod_index, addr_index);
 443        convert_to_wide(pdc_result);
 444        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 445        spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 448        return retval;
 449}
 450
 451/**
 452 * pdc_model_info - Return model information about the processor.
 453 * @model: The return buffer.
 454 *
 455 * Returns the version numbers, identifiers, and capabilities from the processor module.
 456 */
 457int pdc_model_info(struct pdc_model *model) 
 458{
 459        int retval;
 460        unsigned long flags;
 461
 462        spin_lock_irqsave(&pdc_lock, flags);
 463        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 464        convert_to_wide(pdc_result);
 465        memcpy(model, pdc_result, sizeof(*model));
 466        spin_unlock_irqrestore(&pdc_lock, flags);
 467
 468        return retval;
 469}
 470
 471/**
 472 * pdc_model_sysmodel - Get the system model name.
 473 * @name: A char array of at least 81 characters.
 474 *
 475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 477 * on HP/UX.
 478 */
 479int pdc_model_sysmodel(char *name)
 480{
 481        int retval;
 482        unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 486                              OS_ID_HPUX, __pa(name));
 487        convert_to_wide(pdc_result);
 488
 489        if (retval == PDC_OK) {
 490                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 491        } else {
 492                name[0] = 0;
 493        }
 494        spin_unlock_irqrestore(&pdc_lock, flags);
 495
 496        return retval;
 497}
 498
 499/**
 500 * pdc_model_versions - Identify the version number of each processor.
 501 * @cpu_id: The return buffer.
 502 * @id: The id of the processor to check.
 503 *
 504 * Returns the version number for each processor component.
 505 *
 506 * This comment was here before, but I do not know what it means :( -RB
 507 * id: 0 = cpu revision, 1 = boot-rom-version
 508 */
 509int pdc_model_versions(unsigned long *versions, int id)
 510{
 511        int retval;
 512        unsigned long flags;
 513
 514        spin_lock_irqsave(&pdc_lock, flags);
 515        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 516        convert_to_wide(pdc_result);
 517        *versions = pdc_result[0];
 518        spin_unlock_irqrestore(&pdc_lock, flags);
 519
 520        return retval;
 521}
 522
 523/**
 524 * pdc_model_cpuid - Returns the CPU_ID.
 525 * @cpu_id: The return buffer.
 526 *
 527 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 528 * the processor module.
 529 */
 530int pdc_model_cpuid(unsigned long *cpu_id)
 531{
 532        int retval;
 533        unsigned long flags;
 534
 535        spin_lock_irqsave(&pdc_lock, flags);
 536        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 537        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 538        convert_to_wide(pdc_result);
 539        *cpu_id = pdc_result[0];
 540        spin_unlock_irqrestore(&pdc_lock, flags);
 541
 542        return retval;
 543}
 544
 545/**
 546 * pdc_model_capabilities - Returns the platform capabilities.
 547 * @capabilities: The return buffer.
 548 *
 549 * Returns information about platform support for 32- and/or 64-bit
 550 * OSes, IO-PDIR coherency, and virtual aliasing.
 551 */
 552int pdc_model_capabilities(unsigned long *capabilities)
 553{
 554        int retval;
 555        unsigned long flags;
 556
 557        spin_lock_irqsave(&pdc_lock, flags);
 558        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 559        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 560        convert_to_wide(pdc_result);
 561        if (retval == PDC_OK) {
 562                *capabilities = pdc_result[0];
 563        } else {
 564                *capabilities = PDC_MODEL_OS32;
 565        }
 566        spin_unlock_irqrestore(&pdc_lock, flags);
 567
 568        return retval;
 569}
 570
 571/**
 572 * pdc_model_platform_info - Returns machine product and serial number.
 573 * @orig_prod_num: Return buffer for original product number.
 574 * @current_prod_num: Return buffer for current product number.
 575 * @serial_no: Return buffer for serial number.
 576 *
 577 * Returns strings containing the original and current product numbers and the
 578 * serial number of the system.
 579 */
 580int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 581                char *serial_no)
 582{
 583        int retval;
 584        unsigned long flags;
 585
 586        spin_lock_irqsave(&pdc_lock, flags);
 587        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 588                __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 589        convert_to_wide(pdc_result);
 590        spin_unlock_irqrestore(&pdc_lock, flags);
 591
 592        return retval;
 593}
 594
 595/**
 596 * pdc_cache_info - Return cache and TLB information.
 597 * @cache_info: The return buffer.
 598 *
 599 * Returns information about the processor's cache and TLB.
 600 */
 601int pdc_cache_info(struct pdc_cache_info *cache_info)
 602{
 603        int retval;
 604        unsigned long flags;
 605
 606        spin_lock_irqsave(&pdc_lock, flags);
 607        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 608        convert_to_wide(pdc_result);
 609        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 610        spin_unlock_irqrestore(&pdc_lock, flags);
 611
 612        return retval;
 613}
 614
 615/**
 616 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 617 * @space_bits: Should be 0, if not, bad mojo!
 618 *
 619 * Returns information about Space ID hashing.
 620 */
 621int pdc_spaceid_bits(unsigned long *space_bits)
 622{
 623        int retval;
 624        unsigned long flags;
 625
 626        spin_lock_irqsave(&pdc_lock, flags);
 627        pdc_result[0] = 0;
 628        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 629        convert_to_wide(pdc_result);
 630        *space_bits = pdc_result[0];
 631        spin_unlock_irqrestore(&pdc_lock, flags);
 632
 633        return retval;
 634}
 635
 636#ifndef CONFIG_PA20
 637/**
 638 * pdc_btlb_info - Return block TLB information.
 639 * @btlb: The return buffer.
 640 *
 641 * Returns information about the hardware Block TLB.
 642 */
 643int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 644{
 645        int retval;
 646        unsigned long flags;
 647
 648        spin_lock_irqsave(&pdc_lock, flags);
 649        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 650        memcpy(btlb, pdc_result, sizeof(*btlb));
 651        spin_unlock_irqrestore(&pdc_lock, flags);
 652
 653        if(retval < 0) {
 654                btlb->max_size = 0;
 655        }
 656        return retval;
 657}
 658
 659/**
 660 * pdc_mem_map_hpa - Find fixed module information.  
 661 * @address: The return buffer
 662 * @mod_path: pointer to dev path structure.
 663 *
 664 * This call was developed for S700 workstations to allow the kernel to find
 665 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 666 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 667 * call.
 668 *
 669 * This call is supported by all existing S700 workstations (up to  Gecko).
 670 */
 671int pdc_mem_map_hpa(struct pdc_memory_map *address,
 672                struct pdc_module_path *mod_path)
 673{
 674        int retval;
 675        unsigned long flags;
 676
 677        spin_lock_irqsave(&pdc_lock, flags);
 678        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 679        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 680                                __pa(pdc_result2));
 681        memcpy(address, pdc_result, sizeof(*address));
 682        spin_unlock_irqrestore(&pdc_lock, flags);
 683
 684        return retval;
 685}
 686#endif  /* !CONFIG_PA20 */
 687
 688/**
 689 * pdc_lan_station_id - Get the LAN address.
 690 * @lan_addr: The return buffer.
 691 * @hpa: The network device HPA.
 692 *
 693 * Get the LAN station address when it is not directly available from the LAN hardware.
 694 */
 695int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 696{
 697        int retval;
 698        unsigned long flags;
 699
 700        spin_lock_irqsave(&pdc_lock, flags);
 701        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 702                        __pa(pdc_result), hpa);
 703        if (retval < 0) {
 704                /* FIXME: else read MAC from NVRAM */
 705                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 706        } else {
 707                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 708        }
 709        spin_unlock_irqrestore(&pdc_lock, flags);
 710
 711        return retval;
 712}
 713EXPORT_SYMBOL(pdc_lan_station_id);
 714
 715/**
 716 * pdc_stable_read - Read data from Stable Storage.
 717 * @staddr: Stable Storage address to access.
 718 * @memaddr: The memory address where Stable Storage data shall be copied.
 719 * @count: number of bytes to transfer. count is multiple of 4.
 720 *
 721 * This PDC call reads from the Stable Storage address supplied in staddr
 722 * and copies count bytes to the memory address memaddr.
 723 * The call will fail if staddr+count > PDC_STABLE size.
 724 */
 725int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 726{
 727       int retval;
 728        unsigned long flags;
 729
 730       spin_lock_irqsave(&pdc_lock, flags);
 731       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 732               __pa(pdc_result), count);
 733       convert_to_wide(pdc_result);
 734       memcpy(memaddr, pdc_result, count);
 735       spin_unlock_irqrestore(&pdc_lock, flags);
 736
 737       return retval;
 738}
 739EXPORT_SYMBOL(pdc_stable_read);
 740
 741/**
 742 * pdc_stable_write - Write data to Stable Storage.
 743 * @staddr: Stable Storage address to access.
 744 * @memaddr: The memory address where Stable Storage data shall be read from.
 745 * @count: number of bytes to transfer. count is multiple of 4.
 746 *
 747 * This PDC call reads count bytes from the supplied memaddr address,
 748 * and copies count bytes to the Stable Storage address staddr.
 749 * The call will fail if staddr+count > PDC_STABLE size.
 750 */
 751int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 752{
 753       int retval;
 754        unsigned long flags;
 755
 756       spin_lock_irqsave(&pdc_lock, flags);
 757       memcpy(pdc_result, memaddr, count);
 758       convert_to_wide(pdc_result);
 759       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 760               __pa(pdc_result), count);
 761       spin_unlock_irqrestore(&pdc_lock, flags);
 762
 763       return retval;
 764}
 765EXPORT_SYMBOL(pdc_stable_write);
 766
 767/**
 768 * pdc_stable_get_size - Get Stable Storage size in bytes.
 769 * @size: pointer where the size will be stored.
 770 *
 771 * This PDC call returns the number of bytes in the processor's Stable
 772 * Storage, which is the number of contiguous bytes implemented in Stable
 773 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 774 * which is a multiple of four.
 775 */
 776int pdc_stable_get_size(unsigned long *size)
 777{
 778       int retval;
 779        unsigned long flags;
 780
 781       spin_lock_irqsave(&pdc_lock, flags);
 782       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 783       *size = pdc_result[0];
 784       spin_unlock_irqrestore(&pdc_lock, flags);
 785
 786       return retval;
 787}
 788EXPORT_SYMBOL(pdc_stable_get_size);
 789
 790/**
 791 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 792 *
 793 * This PDC call is meant to be used to check the integrity of the current
 794 * contents of Stable Storage.
 795 */
 796int pdc_stable_verify_contents(void)
 797{
 798       int retval;
 799        unsigned long flags;
 800
 801       spin_lock_irqsave(&pdc_lock, flags);
 802       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 803       spin_unlock_irqrestore(&pdc_lock, flags);
 804
 805       return retval;
 806}
 807EXPORT_SYMBOL(pdc_stable_verify_contents);
 808
 809/**
 810 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 811 * the validity indicator.
 812 *
 813 * This PDC call will erase all contents of Stable Storage. Use with care!
 814 */
 815int pdc_stable_initialize(void)
 816{
 817       int retval;
 818        unsigned long flags;
 819
 820       spin_lock_irqsave(&pdc_lock, flags);
 821       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 822       spin_unlock_irqrestore(&pdc_lock, flags);
 823
 824       return retval;
 825}
 826EXPORT_SYMBOL(pdc_stable_initialize);
 827
 828/**
 829 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 830 * @hwpath: fully bc.mod style path to the device.
 831 * @initiator: the array to return the result into
 832 *
 833 * Get the SCSI operational parameters from PDC.
 834 * Needed since HPUX never used BIOS or symbios card NVRAM.
 835 * Most ncr/sym cards won't have an entry and just use whatever
 836 * capabilities of the card are (eg Ultra, LVD). But there are
 837 * several cases where it's useful:
 838 *    o set SCSI id for Multi-initiator clusters,
 839 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 840 *    o bus width exported is less than what the interface chip supports.
 841 */
 842int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 843{
 844        int retval;
 845        unsigned long flags;
 846
 847        spin_lock_irqsave(&pdc_lock, flags);
 848
 849/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 850#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 851        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 852
 853        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 854                              __pa(pdc_result), __pa(hwpath));
 855        if (retval < PDC_OK)
 856                goto out;
 857
 858        if (pdc_result[0] < 16) {
 859                initiator->host_id = pdc_result[0];
 860        } else {
 861                initiator->host_id = -1;
 862        }
 863
 864        /*
 865         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 866         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 867         */
 868        switch (pdc_result[1]) {
 869                case  1: initiator->factor = 50; break;
 870                case  2: initiator->factor = 25; break;
 871                case  5: initiator->factor = 12; break;
 872                case 25: initiator->factor = 10; break;
 873                case 20: initiator->factor = 12; break;
 874                case 40: initiator->factor = 10; break;
 875                default: initiator->factor = -1; break;
 876        }
 877
 878        if (IS_SPROCKETS()) {
 879                initiator->width = pdc_result[4];
 880                initiator->mode = pdc_result[5];
 881        } else {
 882                initiator->width = -1;
 883                initiator->mode = -1;
 884        }
 885
 886 out:
 887        spin_unlock_irqrestore(&pdc_lock, flags);
 888
 889        return (retval >= PDC_OK);
 890}
 891EXPORT_SYMBOL(pdc_get_initiator);
 892
 893
 894/**
 895 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 896 * @num_entries: The return value.
 897 * @hpa: The HPA for the device.
 898 *
 899 * This PDC function returns the number of entries in the specified cell's
 900 * interrupt table.
 901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 902 */ 
 903int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 904{
 905        int retval;
 906        unsigned long flags;
 907
 908        spin_lock_irqsave(&pdc_lock, flags);
 909        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 910                              __pa(pdc_result), hpa);
 911        convert_to_wide(pdc_result);
 912        *num_entries = pdc_result[0];
 913        spin_unlock_irqrestore(&pdc_lock, flags);
 914
 915        return retval;
 916}
 917
 918/** 
 919 * pdc_pci_irt - Get the PCI interrupt routing table.
 920 * @num_entries: The number of entries in the table.
 921 * @hpa: The Hard Physical Address of the device.
 922 * @tbl: 
 923 *
 924 * Get the PCI interrupt routing table for the device at the given HPA.
 925 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 926 */
 927int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 928{
 929        int retval;
 930        unsigned long flags;
 931
 932        BUG_ON((unsigned long)tbl & 0x7);
 933
 934        spin_lock_irqsave(&pdc_lock, flags);
 935        pdc_result[0] = num_entries;
 936        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 937                              __pa(pdc_result), hpa, __pa(tbl));
 938        spin_unlock_irqrestore(&pdc_lock, flags);
 939
 940        return retval;
 941}
 942
 943
 944#if 0   /* UNTEST CODE - left here in case someone needs it */
 945
 946/** 
 947 * pdc_pci_config_read - read PCI config space.
 948 * @hpa         token from PDC to indicate which PCI device
 949 * @pci_addr    configuration space address to read from
 950 *
 951 * Read PCI Configuration space *before* linux PCI subsystem is running.
 952 */
 953unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 954{
 955        int retval;
 956        unsigned long flags;
 957
 958        spin_lock_irqsave(&pdc_lock, flags);
 959        pdc_result[0] = 0;
 960        pdc_result[1] = 0;
 961        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 962                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 963        spin_unlock_irqrestore(&pdc_lock, flags);
 964
 965        return retval ? ~0 : (unsigned int) pdc_result[0];
 966}
 967
 968
 969/** 
 970 * pdc_pci_config_write - read PCI config space.
 971 * @hpa         token from PDC to indicate which PCI device
 972 * @pci_addr    configuration space address to write
 973 * @val         value we want in the 32-bit register
 974 *
 975 * Write PCI Configuration space *before* linux PCI subsystem is running.
 976 */
 977void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 978{
 979        int retval;
 980        unsigned long flags;
 981
 982        spin_lock_irqsave(&pdc_lock, flags);
 983        pdc_result[0] = 0;
 984        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 985                              __pa(pdc_result), hpa,
 986                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 987        spin_unlock_irqrestore(&pdc_lock, flags);
 988
 989        return retval;
 990}
 991#endif /* UNTESTED CODE */
 992
 993/**
 994 * pdc_tod_read - Read the Time-Of-Day clock.
 995 * @tod: The return buffer:
 996 *
 997 * Read the Time-Of-Day clock
 998 */
 999int pdc_tod_read(struct pdc_tod *tod)
1000{
1001        int retval;
1002        unsigned long flags;
1003
1004        spin_lock_irqsave(&pdc_lock, flags);
1005        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1006        convert_to_wide(pdc_result);
1007        memcpy(tod, pdc_result, sizeof(*tod));
1008        spin_unlock_irqrestore(&pdc_lock, flags);
1009
1010        return retval;
1011}
1012EXPORT_SYMBOL(pdc_tod_read);
1013
1014int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1015{
1016        int retval;
1017        unsigned long flags;
1018
1019        spin_lock_irqsave(&pdc_lock, flags);
1020        retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1021        convert_to_wide(pdc_result);
1022        memcpy(rinfo, pdc_result, sizeof(*rinfo));
1023        spin_unlock_irqrestore(&pdc_lock, flags);
1024
1025        return retval;
1026}
1027
1028int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1029                unsigned long *pdt_entries_ptr)
1030{
1031        int retval;
1032        unsigned long flags;
1033
1034        spin_lock_irqsave(&pdc_lock, flags);
1035        retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1036                        __pa(pdt_entries_ptr));
1037        if (retval == PDC_OK) {
1038                convert_to_wide(pdc_result);
1039                memcpy(pret, pdc_result, sizeof(*pret));
1040        }
1041        spin_unlock_irqrestore(&pdc_lock, flags);
1042
1043#ifdef CONFIG_64BIT
1044        /*
1045         * 64-bit kernels should not call this PDT function in narrow mode.
1046         * The pdt_entries_ptr array above will now contain 32-bit values
1047         */
1048        if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1049                return PDC_ERROR;
1050#endif
1051
1052        return retval;
1053}
1054
1055/**
1056 * pdc_tod_set - Set the Time-Of-Day clock.
1057 * @sec: The number of seconds since epoch.
1058 * @usec: The number of micro seconds.
1059 *
1060 * Set the Time-Of-Day clock.
1061 */ 
1062int pdc_tod_set(unsigned long sec, unsigned long usec)
1063{
1064        int retval;
1065        unsigned long flags;
1066
1067        spin_lock_irqsave(&pdc_lock, flags);
1068        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1069        spin_unlock_irqrestore(&pdc_lock, flags);
1070
1071        return retval;
1072}
1073EXPORT_SYMBOL(pdc_tod_set);
1074
1075#ifdef CONFIG_64BIT
1076int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1077                struct pdc_memory_table *tbl, unsigned long entries)
1078{
1079        int retval;
1080        unsigned long flags;
1081
1082        spin_lock_irqsave(&pdc_lock, flags);
1083        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1084        convert_to_wide(pdc_result);
1085        memcpy(r_addr, pdc_result, sizeof(*r_addr));
1086        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1087        spin_unlock_irqrestore(&pdc_lock, flags);
1088
1089        return retval;
1090}
1091#endif /* CONFIG_64BIT */
1092
1093/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1094 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1095 * it later. :)
1096 */
1097int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1098{
1099        int retval;
1100        unsigned long flags;
1101
1102        spin_lock_irqsave(&pdc_lock, flags);
1103        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1104                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1105        spin_unlock_irqrestore(&pdc_lock, flags);
1106
1107        return retval;
1108}
1109
1110/*
1111 * pdc_do_reset - Reset the system.
1112 *
1113 * Reset the system.
1114 */
1115int pdc_do_reset(void)
1116{
1117        int retval;
1118        unsigned long flags;
1119
1120        spin_lock_irqsave(&pdc_lock, flags);
1121        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1122        spin_unlock_irqrestore(&pdc_lock, flags);
1123
1124        return retval;
1125}
1126
1127/*
1128 * pdc_soft_power_info - Enable soft power switch.
1129 * @power_reg: address of soft power register
1130 *
1131 * Return the absolute address of the soft power switch register
1132 */
1133int __init pdc_soft_power_info(unsigned long *power_reg)
1134{
1135        int retval;
1136        unsigned long flags;
1137
1138        *power_reg = (unsigned long) (-1);
1139        
1140        spin_lock_irqsave(&pdc_lock, flags);
1141        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1142        if (retval == PDC_OK) {
1143                convert_to_wide(pdc_result);
1144                *power_reg = f_extend(pdc_result[0]);
1145        }
1146        spin_unlock_irqrestore(&pdc_lock, flags);
1147
1148        return retval;
1149}
1150
1151/*
1152 * pdc_soft_power_button - Control the soft power button behaviour
1153 * @sw_control: 0 for hardware control, 1 for software control 
1154 *
1155 *
1156 * This PDC function places the soft power button under software or
1157 * hardware control.
1158 * Under software control the OS may control to when to allow to shut 
1159 * down the system. Under hardware control pressing the power button 
1160 * powers off the system immediately.
1161 */
1162int pdc_soft_power_button(int sw_control)
1163{
1164        int retval;
1165        unsigned long flags;
1166
1167        spin_lock_irqsave(&pdc_lock, flags);
1168        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1169        spin_unlock_irqrestore(&pdc_lock, flags);
1170
1171        return retval;
1172}
1173
1174/*
1175 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1176 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1177 * who knows what other platform firmware might do with this OS "hook".
1178 */
1179void pdc_io_reset(void)
1180{
1181        unsigned long flags;
1182
1183        spin_lock_irqsave(&pdc_lock, flags);
1184        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1185        spin_unlock_irqrestore(&pdc_lock, flags);
1186}
1187
1188/*
1189 * pdc_io_reset_devices - Hack to Stop USB controller
1190 *
1191 * If PDC used the usb controller, the usb controller
1192 * is still running and will crash the machines during iommu 
1193 * setup, because of still running DMA. This PDC call
1194 * stops the USB controller.
1195 * Normally called after calling pdc_io_reset().
1196 */
1197void pdc_io_reset_devices(void)
1198{
1199        unsigned long flags;
1200
1201        spin_lock_irqsave(&pdc_lock, flags);
1202        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1203        spin_unlock_irqrestore(&pdc_lock, flags);
1204}
1205
1206#endif /* defined(BOOTLOADER) */
1207
1208/* locked by pdc_console_lock */
1209static int __attribute__((aligned(8)))   iodc_retbuf[32];
1210static char __attribute__((aligned(64))) iodc_dbuf[4096];
1211
1212/**
1213 * pdc_iodc_print - Console print using IODC.
1214 * @str: the string to output.
1215 * @count: length of str
1216 *
1217 * Note that only these special chars are architected for console IODC io:
1218 * BEL, BS, CR, and LF. Others are passed through.
1219 * Since the HP console requires CR+LF to perform a 'newline', we translate
1220 * "\n" to "\r\n".
1221 */
1222int pdc_iodc_print(const unsigned char *str, unsigned count)
1223{
1224        unsigned int i;
1225        unsigned long flags;
1226
1227        for (i = 0; i < count;) {
1228                switch(str[i]) {
1229                case '\n':
1230                        iodc_dbuf[i+0] = '\r';
1231                        iodc_dbuf[i+1] = '\n';
1232                        i += 2;
1233                        goto print;
1234                default:
1235                        iodc_dbuf[i] = str[i];
1236                        i++;
1237                        break;
1238                }
1239        }
1240
1241print:
1242        spin_lock_irqsave(&pdc_lock, flags);
1243        real32_call(PAGE0->mem_cons.iodc_io,
1244                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1245                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1246                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1247        spin_unlock_irqrestore(&pdc_lock, flags);
1248
1249        return i;
1250}
1251
1252#if !defined(BOOTLOADER)
1253/**
1254 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1255 *
1256 * Read a character (non-blocking) from the PDC console, returns -1 if
1257 * key is not present.
1258 */
1259int pdc_iodc_getc(void)
1260{
1261        int ch;
1262        int status;
1263        unsigned long flags;
1264
1265        /* Bail if no console input device. */
1266        if (!PAGE0->mem_kbd.iodc_io)
1267                return 0;
1268        
1269        /* wait for a keyboard (rs232)-input */
1270        spin_lock_irqsave(&pdc_lock, flags);
1271        real32_call(PAGE0->mem_kbd.iodc_io,
1272                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1273                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1274                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1275
1276        ch = *iodc_dbuf;
1277        status = *iodc_retbuf;
1278        spin_unlock_irqrestore(&pdc_lock, flags);
1279
1280        if (status == 0)
1281            return -1;
1282        
1283        return ch;
1284}
1285
1286int pdc_sti_call(unsigned long func, unsigned long flags,
1287                 unsigned long inptr, unsigned long outputr,
1288                 unsigned long glob_cfg)
1289{
1290        int retval;
1291        unsigned long irqflags;
1292
1293        spin_lock_irqsave(&pdc_lock, irqflags);  
1294        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1295        spin_unlock_irqrestore(&pdc_lock, irqflags);
1296
1297        return retval;
1298}
1299EXPORT_SYMBOL(pdc_sti_call);
1300
1301#ifdef CONFIG_64BIT
1302/**
1303 * pdc_pat_cell_get_number - Returns the cell number.
1304 * @cell_info: The return buffer.
1305 *
1306 * This PDC call returns the cell number of the cell from which the call
1307 * is made.
1308 */
1309int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1310{
1311        int retval;
1312        unsigned long flags;
1313
1314        spin_lock_irqsave(&pdc_lock, flags);
1315        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1316        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1317        spin_unlock_irqrestore(&pdc_lock, flags);
1318
1319        return retval;
1320}
1321
1322/**
1323 * pdc_pat_cell_module - Retrieve the cell's module information.
1324 * @actcnt: The number of bytes written to mem_addr.
1325 * @ploc: The physical location.
1326 * @mod: The module index.
1327 * @view_type: The view of the address type.
1328 * @mem_addr: The return buffer.
1329 *
1330 * This PDC call returns information about each module attached to the cell
1331 * at the specified location.
1332 */
1333int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1334                        unsigned long view_type, void *mem_addr)
1335{
1336        int retval;
1337        unsigned long flags;
1338        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1339
1340        spin_lock_irqsave(&pdc_lock, flags);
1341        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1342                              ploc, mod, view_type, __pa(&result));
1343        if(!retval) {
1344                *actcnt = pdc_result[0];
1345                memcpy(mem_addr, &result, *actcnt);
1346        }
1347        spin_unlock_irqrestore(&pdc_lock, flags);
1348
1349        return retval;
1350}
1351
1352/**
1353 * pdc_pat_cell_info - Retrieve the cell's information.
1354 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1355 * @actcnt: The number of bytes which should be written to info.
1356 * @offset: offset of the structure.
1357 * @cell_number: The cell number which should be asked, or -1 for current cell.
1358 *
1359 * This PDC call returns information about the given cell (or all cells).
1360 */
1361int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1362                unsigned long *actcnt, unsigned long offset,
1363                unsigned long cell_number)
1364{
1365        int retval;
1366        unsigned long flags;
1367        struct pdc_pat_cell_info_rtn_block result;
1368
1369        spin_lock_irqsave(&pdc_lock, flags);
1370        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1371                        __pa(pdc_result), __pa(&result), *actcnt,
1372                        offset, cell_number);
1373        if (!retval) {
1374                *actcnt = pdc_result[0];
1375                memcpy(info, &result, *actcnt);
1376        }
1377        spin_unlock_irqrestore(&pdc_lock, flags);
1378
1379        return retval;
1380}
1381
1382/**
1383 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1384 * @cpu_info: The return buffer.
1385 * @hpa: The Hard Physical Address of the CPU.
1386 *
1387 * Retrieve the cpu number for the cpu at the specified HPA.
1388 */
1389int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1390{
1391        int retval;
1392        unsigned long flags;
1393
1394        spin_lock_irqsave(&pdc_lock, flags);
1395        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1396                              __pa(&pdc_result), hpa);
1397        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1398        spin_unlock_irqrestore(&pdc_lock, flags);
1399
1400        return retval;
1401}
1402
1403/**
1404 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1405 * @num_entries: The return value.
1406 * @cell_num: The target cell.
1407 *
1408 * This PDC function returns the number of entries in the specified cell's
1409 * interrupt table.
1410 */
1411int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1412{
1413        int retval;
1414        unsigned long flags;
1415
1416        spin_lock_irqsave(&pdc_lock, flags);
1417        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1418                              __pa(pdc_result), cell_num);
1419        *num_entries = pdc_result[0];
1420        spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422        return retval;
1423}
1424
1425/**
1426 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1427 * @r_addr: The return buffer.
1428 * @cell_num: The target cell.
1429 *
1430 * This PDC function returns the actual interrupt table for the specified cell.
1431 */
1432int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1433{
1434        int retval;
1435        unsigned long flags;
1436
1437        spin_lock_irqsave(&pdc_lock, flags);
1438        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1439                              __pa(r_addr), cell_num);
1440        spin_unlock_irqrestore(&pdc_lock, flags);
1441
1442        return retval;
1443}
1444
1445/**
1446 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1447 * @actlen: The return buffer.
1448 * @mem_addr: Pointer to the memory buffer.
1449 * @count: The number of bytes to read from the buffer.
1450 * @offset: The offset with respect to the beginning of the buffer.
1451 *
1452 */
1453int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1454                            unsigned long count, unsigned long offset)
1455{
1456        int retval;
1457        unsigned long flags;
1458
1459        spin_lock_irqsave(&pdc_lock, flags);
1460        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1461                              __pa(pdc_result2), count, offset);
1462        *actual_len = pdc_result[0];
1463        memcpy(mem_addr, pdc_result2, *actual_len);
1464        spin_unlock_irqrestore(&pdc_lock, flags);
1465
1466        return retval;
1467}
1468
1469/**
1470 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1471 * @legacy_rev: The legacy revision.
1472 * @pat_rev: The PAT revision.
1473 * @pdc_cap: The PDC capabilities.
1474 *
1475 */
1476int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1477                unsigned long *pat_rev, unsigned long *pdc_cap)
1478{
1479        int retval;
1480        unsigned long flags;
1481
1482        spin_lock_irqsave(&pdc_lock, flags);
1483        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1484                                __pa(pdc_result));
1485        if (retval == PDC_OK) {
1486                *legacy_rev = pdc_result[0];
1487                *pat_rev = pdc_result[1];
1488                *pdc_cap = pdc_result[2];
1489        }
1490        spin_unlock_irqrestore(&pdc_lock, flags);
1491
1492        return retval;
1493}
1494
1495
1496/**
1497 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1498 * @pci_addr: PCI configuration space address for which the read request is being made.
1499 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1500 * @mem_addr: Pointer to return memory buffer.
1501 *
1502 */
1503int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1504{
1505        int retval;
1506        unsigned long flags;
1507
1508        spin_lock_irqsave(&pdc_lock, flags);
1509        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1510                                        __pa(pdc_result), pci_addr, pci_size);
1511        switch(pci_size) {
1512                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1513                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1514                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1515        }
1516        spin_unlock_irqrestore(&pdc_lock, flags);
1517
1518        return retval;
1519}
1520
1521/**
1522 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1523 * @pci_addr: PCI configuration space address for which the write  request is being made.
1524 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1525 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1526 *         written to PCI Config space.
1527 *
1528 */
1529int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1530{
1531        int retval;
1532        unsigned long flags;
1533
1534        spin_lock_irqsave(&pdc_lock, flags);
1535        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1536                                pci_addr, pci_size, val);
1537        spin_unlock_irqrestore(&pdc_lock, flags);
1538
1539        return retval;
1540}
1541
1542/**
1543 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1544 * @rinfo: memory pdt information
1545 *
1546 */
1547int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1548{
1549        int retval;
1550        unsigned long flags;
1551
1552        spin_lock_irqsave(&pdc_lock, flags);
1553        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1554                        __pa(&pdc_result));
1555        if (retval == PDC_OK)
1556                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1557        spin_unlock_irqrestore(&pdc_lock, flags);
1558
1559        return retval;
1560}
1561
1562/**
1563 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1564 *                              table of a cell
1565 * @rinfo: memory pdt information
1566 * @cell: cell number
1567 *
1568 */
1569int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1570                unsigned long cell)
1571{
1572        int retval;
1573        unsigned long flags;
1574
1575        spin_lock_irqsave(&pdc_lock, flags);
1576        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1577                        __pa(&pdc_result), cell);
1578        if (retval == PDC_OK)
1579                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1580        spin_unlock_irqrestore(&pdc_lock, flags);
1581
1582        return retval;
1583}
1584
1585/**
1586 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1587 * @pret: array of PDT entries
1588 * @pdt_entries_ptr: ptr to hold number of PDT entries
1589 * @max_entries: maximum number of entries to be read
1590 *
1591 */
1592int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1593                unsigned long *pdt_entries_ptr, unsigned long max_entries)
1594{
1595        int retval;
1596        unsigned long flags, entries;
1597
1598        spin_lock_irqsave(&pdc_lock, flags);
1599        /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1600        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1601                        __pa(&pdc_result), parisc_cell_num,
1602                        __pa(pdt_entries_ptr));
1603
1604        if (retval == PDC_OK) {
1605                /* build up return value as for PDC_PAT_MEM_PD_READ */
1606                entries = min(pdc_result[0], max_entries);
1607                pret->pdt_entries = entries;
1608                pret->actual_count_bytes = entries * sizeof(unsigned long);
1609        }
1610
1611        spin_unlock_irqrestore(&pdc_lock, flags);
1612        WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1613
1614        return retval;
1615}
1616/**
1617 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1618 * @pret: array of PDT entries
1619 * @pdt_entries_ptr: ptr to hold number of PDT entries
1620 * @count: number of bytes to read
1621 * @offset: offset to start (in bytes)
1622 *
1623 */
1624int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1625                unsigned long *pdt_entries_ptr, unsigned long count,
1626                unsigned long offset)
1627{
1628        int retval;
1629        unsigned long flags, entries;
1630
1631        spin_lock_irqsave(&pdc_lock, flags);
1632        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1633                __pa(&pdc_result), __pa(pdt_entries_ptr),
1634                count, offset);
1635
1636        if (retval == PDC_OK) {
1637                entries = min(pdc_result[0], count);
1638                pret->actual_count_bytes = entries;
1639                pret->pdt_entries = entries / sizeof(unsigned long);
1640        }
1641
1642        spin_unlock_irqrestore(&pdc_lock, flags);
1643
1644        return retval;
1645}
1646
1647/**
1648 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1649 * @pret: ptr to hold returned information
1650 * @phys_addr: physical address to examine
1651 *
1652 */
1653int pdc_pat_mem_get_dimm_phys_location(
1654                struct pdc_pat_mem_phys_mem_location *pret,
1655                unsigned long phys_addr)
1656{
1657        int retval;
1658        unsigned long flags;
1659
1660        spin_lock_irqsave(&pdc_lock, flags);
1661        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1662                __pa(&pdc_result), phys_addr);
1663
1664        if (retval == PDC_OK)
1665                memcpy(pret, &pdc_result, sizeof(*pret));
1666
1667        spin_unlock_irqrestore(&pdc_lock, flags);
1668
1669        return retval;
1670}
1671#endif /* CONFIG_64BIT */
1672#endif /* defined(BOOTLOADER) */
1673
1674
1675/***************** 32-bit real-mode calls ***********/
1676/* The struct below is used
1677 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1678 * real32_call_asm() then uses this stack in narrow real mode
1679 */
1680
1681struct narrow_stack {
1682        /* use int, not long which is 64 bits */
1683        unsigned int arg13;
1684        unsigned int arg12;
1685        unsigned int arg11;
1686        unsigned int arg10;
1687        unsigned int arg9;
1688        unsigned int arg8;
1689        unsigned int arg7;
1690        unsigned int arg6;
1691        unsigned int arg5;
1692        unsigned int arg4;
1693        unsigned int arg3;
1694        unsigned int arg2;
1695        unsigned int arg1;
1696        unsigned int arg0;
1697        unsigned int frame_marker[8];
1698        unsigned int sp;
1699        /* in reality, there's nearly 8k of stack after this */
1700};
1701
1702long real32_call(unsigned long fn, ...)
1703{
1704        va_list args;
1705        extern struct narrow_stack real_stack;
1706        extern unsigned long real32_call_asm(unsigned int *,
1707                                             unsigned int *, 
1708                                             unsigned int);
1709        
1710        va_start(args, fn);
1711        real_stack.arg0 = va_arg(args, unsigned int);
1712        real_stack.arg1 = va_arg(args, unsigned int);
1713        real_stack.arg2 = va_arg(args, unsigned int);
1714        real_stack.arg3 = va_arg(args, unsigned int);
1715        real_stack.arg4 = va_arg(args, unsigned int);
1716        real_stack.arg5 = va_arg(args, unsigned int);
1717        real_stack.arg6 = va_arg(args, unsigned int);
1718        real_stack.arg7 = va_arg(args, unsigned int);
1719        real_stack.arg8 = va_arg(args, unsigned int);
1720        real_stack.arg9 = va_arg(args, unsigned int);
1721        real_stack.arg10 = va_arg(args, unsigned int);
1722        real_stack.arg11 = va_arg(args, unsigned int);
1723        real_stack.arg12 = va_arg(args, unsigned int);
1724        real_stack.arg13 = va_arg(args, unsigned int);
1725        va_end(args);
1726        
1727        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1728}
1729
1730#ifdef CONFIG_64BIT
1731/***************** 64-bit real-mode calls ***********/
1732
1733struct wide_stack {
1734        unsigned long arg0;
1735        unsigned long arg1;
1736        unsigned long arg2;
1737        unsigned long arg3;
1738        unsigned long arg4;
1739        unsigned long arg5;
1740        unsigned long arg6;
1741        unsigned long arg7;
1742        unsigned long arg8;
1743        unsigned long arg9;
1744        unsigned long arg10;
1745        unsigned long arg11;
1746        unsigned long arg12;
1747        unsigned long arg13;
1748        unsigned long frame_marker[2];  /* rp, previous sp */
1749        unsigned long sp;
1750        /* in reality, there's nearly 8k of stack after this */
1751};
1752
1753long real64_call(unsigned long fn, ...)
1754{
1755        va_list args;
1756        extern struct wide_stack real64_stack;
1757        extern unsigned long real64_call_asm(unsigned long *,
1758                                             unsigned long *, 
1759                                             unsigned long);
1760    
1761        va_start(args, fn);
1762        real64_stack.arg0 = va_arg(args, unsigned long);
1763        real64_stack.arg1 = va_arg(args, unsigned long);
1764        real64_stack.arg2 = va_arg(args, unsigned long);
1765        real64_stack.arg3 = va_arg(args, unsigned long);
1766        real64_stack.arg4 = va_arg(args, unsigned long);
1767        real64_stack.arg5 = va_arg(args, unsigned long);
1768        real64_stack.arg6 = va_arg(args, unsigned long);
1769        real64_stack.arg7 = va_arg(args, unsigned long);
1770        real64_stack.arg8 = va_arg(args, unsigned long);
1771        real64_stack.arg9 = va_arg(args, unsigned long);
1772        real64_stack.arg10 = va_arg(args, unsigned long);
1773        real64_stack.arg11 = va_arg(args, unsigned long);
1774        real64_stack.arg12 = va_arg(args, unsigned long);
1775        real64_stack.arg13 = va_arg(args, unsigned long);
1776        va_end(args);
1777        
1778        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1779}
1780
1781#endif /* CONFIG_64BIT */
1782