linux/arch/powerpc/perf/imc-pmu.c
<<
>>
Prefs
   1/*
   2 * In-Memory Collection (IMC) Performance Monitor counter support.
   3 *
   4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
   5 *           (C) 2017 Anju T Sudhakar, IBM Corporation.
   6 *           (C) 2017 Hemant K Shaw, IBM Corporation.
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or later version.
  12 */
  13#include <linux/perf_event.h>
  14#include <linux/slab.h>
  15#include <asm/opal.h>
  16#include <asm/imc-pmu.h>
  17#include <asm/cputhreads.h>
  18#include <asm/smp.h>
  19#include <linux/string.h>
  20
  21/* Nest IMC data structures and variables */
  22
  23/*
  24 * Used to avoid races in counting the nest-pmu units during hotplug
  25 * register and unregister
  26 */
  27static DEFINE_MUTEX(nest_init_lock);
  28static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
  29static struct imc_pmu **per_nest_pmu_arr;
  30static cpumask_t nest_imc_cpumask;
  31static struct imc_pmu_ref *nest_imc_refc;
  32static int nest_pmus;
  33
  34/* Core IMC data structures and variables */
  35
  36static cpumask_t core_imc_cpumask;
  37static struct imc_pmu_ref *core_imc_refc;
  38static struct imc_pmu *core_imc_pmu;
  39
  40/* Thread IMC data structures and variables */
  41
  42static DEFINE_PER_CPU(u64 *, thread_imc_mem);
  43static struct imc_pmu *thread_imc_pmu;
  44static int thread_imc_mem_size;
  45
  46static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
  47{
  48        return container_of(event->pmu, struct imc_pmu, pmu);
  49}
  50
  51PMU_FORMAT_ATTR(event, "config:0-40");
  52PMU_FORMAT_ATTR(offset, "config:0-31");
  53PMU_FORMAT_ATTR(rvalue, "config:32");
  54PMU_FORMAT_ATTR(mode, "config:33-40");
  55static struct attribute *imc_format_attrs[] = {
  56        &format_attr_event.attr,
  57        &format_attr_offset.attr,
  58        &format_attr_rvalue.attr,
  59        &format_attr_mode.attr,
  60        NULL,
  61};
  62
  63static struct attribute_group imc_format_group = {
  64        .name = "format",
  65        .attrs = imc_format_attrs,
  66};
  67
  68/* Get the cpumask printed to a buffer "buf" */
  69static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
  70                                        struct device_attribute *attr,
  71                                        char *buf)
  72{
  73        struct pmu *pmu = dev_get_drvdata(dev);
  74        struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
  75        cpumask_t *active_mask;
  76
  77        switch(imc_pmu->domain){
  78        case IMC_DOMAIN_NEST:
  79                active_mask = &nest_imc_cpumask;
  80                break;
  81        case IMC_DOMAIN_CORE:
  82                active_mask = &core_imc_cpumask;
  83                break;
  84        default:
  85                return 0;
  86        }
  87
  88        return cpumap_print_to_pagebuf(true, buf, active_mask);
  89}
  90
  91static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
  92
  93static struct attribute *imc_pmu_cpumask_attrs[] = {
  94        &dev_attr_cpumask.attr,
  95        NULL,
  96};
  97
  98static struct attribute_group imc_pmu_cpumask_attr_group = {
  99        .attrs = imc_pmu_cpumask_attrs,
 100};
 101
 102/* device_str_attr_create : Populate event "name" and string "str" in attribute */
 103static struct attribute *device_str_attr_create(const char *name, const char *str)
 104{
 105        struct perf_pmu_events_attr *attr;
 106
 107        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 108        if (!attr)
 109                return NULL;
 110        sysfs_attr_init(&attr->attr.attr);
 111
 112        attr->event_str = str;
 113        attr->attr.attr.name = name;
 114        attr->attr.attr.mode = 0444;
 115        attr->attr.show = perf_event_sysfs_show;
 116
 117        return &attr->attr.attr;
 118}
 119
 120static int imc_parse_event(struct device_node *np, const char *scale,
 121                                  const char *unit, const char *prefix,
 122                                  u32 base, struct imc_events *event)
 123{
 124        const char *s;
 125        u32 reg;
 126
 127        if (of_property_read_u32(np, "reg", &reg))
 128                goto error;
 129        /* Add the base_reg value to the "reg" */
 130        event->value = base + reg;
 131
 132        if (of_property_read_string(np, "event-name", &s))
 133                goto error;
 134
 135        event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
 136        if (!event->name)
 137                goto error;
 138
 139        if (of_property_read_string(np, "scale", &s))
 140                s = scale;
 141
 142        if (s) {
 143                event->scale = kstrdup(s, GFP_KERNEL);
 144                if (!event->scale)
 145                        goto error;
 146        }
 147
 148        if (of_property_read_string(np, "unit", &s))
 149                s = unit;
 150
 151        if (s) {
 152                event->unit = kstrdup(s, GFP_KERNEL);
 153                if (!event->unit)
 154                        goto error;
 155        }
 156
 157        return 0;
 158error:
 159        kfree(event->unit);
 160        kfree(event->scale);
 161        kfree(event->name);
 162        return -EINVAL;
 163}
 164
 165/*
 166 * imc_free_events: Function to cleanup the events list, having
 167 *                  "nr_entries".
 168 */
 169static void imc_free_events(struct imc_events *events, int nr_entries)
 170{
 171        int i;
 172
 173        /* Nothing to clean, return */
 174        if (!events)
 175                return;
 176        for (i = 0; i < nr_entries; i++) {
 177                kfree(events[i].unit);
 178                kfree(events[i].scale);
 179                kfree(events[i].name);
 180        }
 181
 182        kfree(events);
 183}
 184
 185/*
 186 * update_events_in_group: Update the "events" information in an attr_group
 187 *                         and assign the attr_group to the pmu "pmu".
 188 */
 189static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
 190{
 191        struct attribute_group *attr_group;
 192        struct attribute **attrs, *dev_str;
 193        struct device_node *np, *pmu_events;
 194        u32 handle, base_reg;
 195        int i = 0, j = 0, ct, ret;
 196        const char *prefix, *g_scale, *g_unit;
 197        const char *ev_val_str, *ev_scale_str, *ev_unit_str;
 198
 199        if (!of_property_read_u32(node, "events", &handle))
 200                pmu_events = of_find_node_by_phandle(handle);
 201        else
 202                return 0;
 203
 204        /* Did not find any node with a given phandle */
 205        if (!pmu_events)
 206                return 0;
 207
 208        /* Get a count of number of child nodes */
 209        ct = of_get_child_count(pmu_events);
 210
 211        /* Get the event prefix */
 212        if (of_property_read_string(node, "events-prefix", &prefix))
 213                return 0;
 214
 215        /* Get a global unit and scale data if available */
 216        if (of_property_read_string(node, "scale", &g_scale))
 217                g_scale = NULL;
 218
 219        if (of_property_read_string(node, "unit", &g_unit))
 220                g_unit = NULL;
 221
 222        /* "reg" property gives out the base offset of the counters data */
 223        of_property_read_u32(node, "reg", &base_reg);
 224
 225        /* Allocate memory for the events */
 226        pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
 227        if (!pmu->events)
 228                return -ENOMEM;
 229
 230        ct = 0;
 231        /* Parse the events and update the struct */
 232        for_each_child_of_node(pmu_events, np) {
 233                ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
 234                if (!ret)
 235                        ct++;
 236        }
 237
 238        /* Allocate memory for attribute group */
 239        attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
 240        if (!attr_group) {
 241                imc_free_events(pmu->events, ct);
 242                return -ENOMEM;
 243        }
 244
 245        /*
 246         * Allocate memory for attributes.
 247         * Since we have count of events for this pmu, we also allocate
 248         * memory for the scale and unit attribute for now.
 249         * "ct" has the total event structs added from the events-parent node.
 250         * So allocate three times the "ct" (this includes event, event_scale and
 251         * event_unit).
 252         */
 253        attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
 254        if (!attrs) {
 255                kfree(attr_group);
 256                imc_free_events(pmu->events, ct);
 257                return -ENOMEM;
 258        }
 259
 260        attr_group->name = "events";
 261        attr_group->attrs = attrs;
 262        do {
 263                ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
 264                dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
 265                if (!dev_str)
 266                        continue;
 267
 268                attrs[j++] = dev_str;
 269                if (pmu->events[i].scale) {
 270                        ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
 271                        dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
 272                        if (!dev_str)
 273                                continue;
 274
 275                        attrs[j++] = dev_str;
 276                }
 277
 278                if (pmu->events[i].unit) {
 279                        ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
 280                        dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
 281                        if (!dev_str)
 282                                continue;
 283
 284                        attrs[j++] = dev_str;
 285                }
 286        } while (++i < ct);
 287
 288        /* Save the event attribute */
 289        pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
 290
 291        return 0;
 292}
 293
 294/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
 295static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
 296{
 297        return per_cpu(local_nest_imc_refc, cpu);
 298}
 299
 300static void nest_change_cpu_context(int old_cpu, int new_cpu)
 301{
 302        struct imc_pmu **pn = per_nest_pmu_arr;
 303
 304        if (old_cpu < 0 || new_cpu < 0)
 305                return;
 306
 307        while (*pn) {
 308                perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
 309                pn++;
 310        }
 311}
 312
 313static int ppc_nest_imc_cpu_offline(unsigned int cpu)
 314{
 315        int nid, target = -1;
 316        const struct cpumask *l_cpumask;
 317        struct imc_pmu_ref *ref;
 318
 319        /*
 320         * Check in the designated list for this cpu. Dont bother
 321         * if not one of them.
 322         */
 323        if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
 324                return 0;
 325
 326        /*
 327         * Check whether nest_imc is registered. We could end up here if the
 328         * cpuhotplug callback registration fails. i.e, callback invokes the
 329         * offline path for all successfully registered nodes. At this stage,
 330         * nest_imc pmu will not be registered and we should return here.
 331         *
 332         * We return with a zero since this is not an offline failure. And
 333         * cpuhp_setup_state() returns the actual failure reason to the caller,
 334         * which in turn will call the cleanup routine.
 335         */
 336        if (!nest_pmus)
 337                return 0;
 338
 339        /*
 340         * Now that this cpu is one of the designated,
 341         * find a next cpu a) which is online and b) in same chip.
 342         */
 343        nid = cpu_to_node(cpu);
 344        l_cpumask = cpumask_of_node(nid);
 345        target = cpumask_any_but(l_cpumask, cpu);
 346
 347        /*
 348         * Update the cpumask with the target cpu and
 349         * migrate the context if needed
 350         */
 351        if (target >= 0 && target < nr_cpu_ids) {
 352                cpumask_set_cpu(target, &nest_imc_cpumask);
 353                nest_change_cpu_context(cpu, target);
 354        } else {
 355                opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 356                                       get_hard_smp_processor_id(cpu));
 357                /*
 358                 * If this is the last cpu in this chip then, skip the reference
 359                 * count mutex lock and make the reference count on this chip zero.
 360                 */
 361                ref = get_nest_pmu_ref(cpu);
 362                if (!ref)
 363                        return -EINVAL;
 364
 365                ref->refc = 0;
 366        }
 367        return 0;
 368}
 369
 370static int ppc_nest_imc_cpu_online(unsigned int cpu)
 371{
 372        const struct cpumask *l_cpumask;
 373        static struct cpumask tmp_mask;
 374        int res;
 375
 376        /* Get the cpumask of this node */
 377        l_cpumask = cpumask_of_node(cpu_to_node(cpu));
 378
 379        /*
 380         * If this is not the first online CPU on this node, then
 381         * just return.
 382         */
 383        if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
 384                return 0;
 385
 386        /*
 387         * If this is the first online cpu on this node
 388         * disable the nest counters by making an OPAL call.
 389         */
 390        res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 391                                     get_hard_smp_processor_id(cpu));
 392        if (res)
 393                return res;
 394
 395        /* Make this CPU the designated target for counter collection */
 396        cpumask_set_cpu(cpu, &nest_imc_cpumask);
 397        return 0;
 398}
 399
 400static int nest_pmu_cpumask_init(void)
 401{
 402        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
 403                                 "perf/powerpc/imc:online",
 404                                 ppc_nest_imc_cpu_online,
 405                                 ppc_nest_imc_cpu_offline);
 406}
 407
 408static void nest_imc_counters_release(struct perf_event *event)
 409{
 410        int rc, node_id;
 411        struct imc_pmu_ref *ref;
 412
 413        if (event->cpu < 0)
 414                return;
 415
 416        node_id = cpu_to_node(event->cpu);
 417
 418        /*
 419         * See if we need to disable the nest PMU.
 420         * If no events are currently in use, then we have to take a
 421         * mutex to ensure that we don't race with another task doing
 422         * enable or disable the nest counters.
 423         */
 424        ref = get_nest_pmu_ref(event->cpu);
 425        if (!ref)
 426                return;
 427
 428        /* Take the mutex lock for this node and then decrement the reference count */
 429        mutex_lock(&ref->lock);
 430        if (ref->refc == 0) {
 431                /*
 432                 * The scenario where this is true is, when perf session is
 433                 * started, followed by offlining of all cpus in a given node.
 434                 *
 435                 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
 436                 * function set the ref->count to zero, if the cpu which is
 437                 * about to offline is the last cpu in a given node and make
 438                 * an OPAL call to disable the engine in that node.
 439                 *
 440                 */
 441                mutex_unlock(&ref->lock);
 442                return;
 443        }
 444        ref->refc--;
 445        if (ref->refc == 0) {
 446                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 447                                            get_hard_smp_processor_id(event->cpu));
 448                if (rc) {
 449                        mutex_unlock(&ref->lock);
 450                        pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
 451                        return;
 452                }
 453        } else if (ref->refc < 0) {
 454                WARN(1, "nest-imc: Invalid event reference count\n");
 455                ref->refc = 0;
 456        }
 457        mutex_unlock(&ref->lock);
 458}
 459
 460static int nest_imc_event_init(struct perf_event *event)
 461{
 462        int chip_id, rc, node_id;
 463        u32 l_config, config = event->attr.config;
 464        struct imc_mem_info *pcni;
 465        struct imc_pmu *pmu;
 466        struct imc_pmu_ref *ref;
 467        bool flag = false;
 468
 469        if (event->attr.type != event->pmu->type)
 470                return -ENOENT;
 471
 472        /* Sampling not supported */
 473        if (event->hw.sample_period)
 474                return -EINVAL;
 475
 476        if (event->cpu < 0)
 477                return -EINVAL;
 478
 479        pmu = imc_event_to_pmu(event);
 480
 481        /* Sanity check for config (event offset) */
 482        if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
 483                return -EINVAL;
 484
 485        /*
 486         * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
 487         * Get the base memory addresss for this cpu.
 488         */
 489        chip_id = cpu_to_chip_id(event->cpu);
 490        pcni = pmu->mem_info;
 491        do {
 492                if (pcni->id == chip_id) {
 493                        flag = true;
 494                        break;
 495                }
 496                pcni++;
 497        } while (pcni);
 498
 499        if (!flag)
 500                return -ENODEV;
 501
 502        /*
 503         * Add the event offset to the base address.
 504         */
 505        l_config = config & IMC_EVENT_OFFSET_MASK;
 506        event->hw.event_base = (u64)pcni->vbase + l_config;
 507        node_id = cpu_to_node(event->cpu);
 508
 509        /*
 510         * Get the imc_pmu_ref struct for this node.
 511         * Take the mutex lock and then increment the count of nest pmu events
 512         * inited.
 513         */
 514        ref = get_nest_pmu_ref(event->cpu);
 515        if (!ref)
 516                return -EINVAL;
 517
 518        mutex_lock(&ref->lock);
 519        if (ref->refc == 0) {
 520                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
 521                                             get_hard_smp_processor_id(event->cpu));
 522                if (rc) {
 523                        mutex_unlock(&ref->lock);
 524                        pr_err("nest-imc: Unable to start the counters for node %d\n",
 525                                                                        node_id);
 526                        return rc;
 527                }
 528        }
 529        ++ref->refc;
 530        mutex_unlock(&ref->lock);
 531
 532        event->destroy = nest_imc_counters_release;
 533        return 0;
 534}
 535
 536/*
 537 * core_imc_mem_init : Initializes memory for the current core.
 538 *
 539 * Uses alloc_pages_node() and uses the returned address as an argument to
 540 * an opal call to configure the pdbar. The address sent as an argument is
 541 * converted to physical address before the opal call is made. This is the
 542 * base address at which the core imc counters are populated.
 543 */
 544static int core_imc_mem_init(int cpu, int size)
 545{
 546        int nid, rc = 0, core_id = (cpu / threads_per_core);
 547        struct imc_mem_info *mem_info;
 548
 549        /*
 550         * alloc_pages_node() will allocate memory for core in the
 551         * local node only.
 552         */
 553        nid = cpu_to_node(cpu);
 554        mem_info = &core_imc_pmu->mem_info[core_id];
 555        mem_info->id = core_id;
 556
 557        /* We need only vbase for core counters */
 558        mem_info->vbase = page_address(alloc_pages_node(nid,
 559                                          GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 560                                          __GFP_NOWARN, get_order(size)));
 561        if (!mem_info->vbase)
 562                return -ENOMEM;
 563
 564        /* Init the mutex */
 565        core_imc_refc[core_id].id = core_id;
 566        mutex_init(&core_imc_refc[core_id].lock);
 567
 568        rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
 569                                __pa((void *)mem_info->vbase),
 570                                get_hard_smp_processor_id(cpu));
 571        if (rc) {
 572                free_pages((u64)mem_info->vbase, get_order(size));
 573                mem_info->vbase = NULL;
 574        }
 575
 576        return rc;
 577}
 578
 579static bool is_core_imc_mem_inited(int cpu)
 580{
 581        struct imc_mem_info *mem_info;
 582        int core_id = (cpu / threads_per_core);
 583
 584        mem_info = &core_imc_pmu->mem_info[core_id];
 585        if (!mem_info->vbase)
 586                return false;
 587
 588        return true;
 589}
 590
 591static int ppc_core_imc_cpu_online(unsigned int cpu)
 592{
 593        const struct cpumask *l_cpumask;
 594        static struct cpumask tmp_mask;
 595        int ret = 0;
 596
 597        /* Get the cpumask for this core */
 598        l_cpumask = cpu_sibling_mask(cpu);
 599
 600        /* If a cpu for this core is already set, then, don't do anything */
 601        if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
 602                return 0;
 603
 604        if (!is_core_imc_mem_inited(cpu)) {
 605                ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
 606                if (ret) {
 607                        pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
 608                        return ret;
 609                }
 610        }
 611
 612        /* set the cpu in the mask */
 613        cpumask_set_cpu(cpu, &core_imc_cpumask);
 614        return 0;
 615}
 616
 617static int ppc_core_imc_cpu_offline(unsigned int cpu)
 618{
 619        unsigned int core_id;
 620        int ncpu;
 621        struct imc_pmu_ref *ref;
 622
 623        /*
 624         * clear this cpu out of the mask, if not present in the mask,
 625         * don't bother doing anything.
 626         */
 627        if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
 628                return 0;
 629
 630        /*
 631         * Check whether core_imc is registered. We could end up here
 632         * if the cpuhotplug callback registration fails. i.e, callback
 633         * invokes the offline path for all sucessfully registered cpus.
 634         * At this stage, core_imc pmu will not be registered and we
 635         * should return here.
 636         *
 637         * We return with a zero since this is not an offline failure.
 638         * And cpuhp_setup_state() returns the actual failure reason
 639         * to the caller, which inturn will call the cleanup routine.
 640         */
 641        if (!core_imc_pmu->pmu.event_init)
 642                return 0;
 643
 644        /* Find any online cpu in that core except the current "cpu" */
 645        ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
 646
 647        if (ncpu >= 0 && ncpu < nr_cpu_ids) {
 648                cpumask_set_cpu(ncpu, &core_imc_cpumask);
 649                perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
 650        } else {
 651                /*
 652                 * If this is the last cpu in this core then, skip taking refernce
 653                 * count mutex lock for this core and directly zero "refc" for
 654                 * this core.
 655                 */
 656                opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 657                                       get_hard_smp_processor_id(cpu));
 658                core_id = cpu / threads_per_core;
 659                ref = &core_imc_refc[core_id];
 660                if (!ref)
 661                        return -EINVAL;
 662
 663                ref->refc = 0;
 664        }
 665        return 0;
 666}
 667
 668static int core_imc_pmu_cpumask_init(void)
 669{
 670        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
 671                                 "perf/powerpc/imc_core:online",
 672                                 ppc_core_imc_cpu_online,
 673                                 ppc_core_imc_cpu_offline);
 674}
 675
 676static void core_imc_counters_release(struct perf_event *event)
 677{
 678        int rc, core_id;
 679        struct imc_pmu_ref *ref;
 680
 681        if (event->cpu < 0)
 682                return;
 683        /*
 684         * See if we need to disable the IMC PMU.
 685         * If no events are currently in use, then we have to take a
 686         * mutex to ensure that we don't race with another task doing
 687         * enable or disable the core counters.
 688         */
 689        core_id = event->cpu / threads_per_core;
 690
 691        /* Take the mutex lock and decrement the refernce count for this core */
 692        ref = &core_imc_refc[core_id];
 693        if (!ref)
 694                return;
 695
 696        mutex_lock(&ref->lock);
 697        if (ref->refc == 0) {
 698                /*
 699                 * The scenario where this is true is, when perf session is
 700                 * started, followed by offlining of all cpus in a given core.
 701                 *
 702                 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
 703                 * function set the ref->count to zero, if the cpu which is
 704                 * about to offline is the last cpu in a given core and make
 705                 * an OPAL call to disable the engine in that core.
 706                 *
 707                 */
 708                mutex_unlock(&ref->lock);
 709                return;
 710        }
 711        ref->refc--;
 712        if (ref->refc == 0) {
 713                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 714                                            get_hard_smp_processor_id(event->cpu));
 715                if (rc) {
 716                        mutex_unlock(&ref->lock);
 717                        pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
 718                        return;
 719                }
 720        } else if (ref->refc < 0) {
 721                WARN(1, "core-imc: Invalid event reference count\n");
 722                ref->refc = 0;
 723        }
 724        mutex_unlock(&ref->lock);
 725}
 726
 727static int core_imc_event_init(struct perf_event *event)
 728{
 729        int core_id, rc;
 730        u64 config = event->attr.config;
 731        struct imc_mem_info *pcmi;
 732        struct imc_pmu *pmu;
 733        struct imc_pmu_ref *ref;
 734
 735        if (event->attr.type != event->pmu->type)
 736                return -ENOENT;
 737
 738        /* Sampling not supported */
 739        if (event->hw.sample_period)
 740                return -EINVAL;
 741
 742        if (event->cpu < 0)
 743                return -EINVAL;
 744
 745        event->hw.idx = -1;
 746        pmu = imc_event_to_pmu(event);
 747
 748        /* Sanity check for config (event offset) */
 749        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 750                return -EINVAL;
 751
 752        if (!is_core_imc_mem_inited(event->cpu))
 753                return -ENODEV;
 754
 755        core_id = event->cpu / threads_per_core;
 756        pcmi = &core_imc_pmu->mem_info[core_id];
 757        if ((!pcmi->vbase))
 758                return -ENODEV;
 759
 760        /* Get the core_imc mutex for this core */
 761        ref = &core_imc_refc[core_id];
 762        if (!ref)
 763                return -EINVAL;
 764
 765        /*
 766         * Core pmu units are enabled only when it is used.
 767         * See if this is triggered for the first time.
 768         * If yes, take the mutex lock and enable the core counters.
 769         * If not, just increment the count in core_imc_refc struct.
 770         */
 771        mutex_lock(&ref->lock);
 772        if (ref->refc == 0) {
 773                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
 774                                             get_hard_smp_processor_id(event->cpu));
 775                if (rc) {
 776                        mutex_unlock(&ref->lock);
 777                        pr_err("core-imc: Unable to start the counters for core %d\n",
 778                                                                        core_id);
 779                        return rc;
 780                }
 781        }
 782        ++ref->refc;
 783        mutex_unlock(&ref->lock);
 784
 785        event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
 786        event->destroy = core_imc_counters_release;
 787        return 0;
 788}
 789
 790/*
 791 * Allocates a page of memory for each of the online cpus, and write the
 792 * physical base address of that page to the LDBAR for that cpu.
 793 *
 794 * LDBAR Register Layout:
 795 *
 796 *  0          4         8         12        16        20        24        28
 797 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 798 *   | |       [   ]    [                   Counter Address [8:50]
 799 *   | * Mode    |
 800 *   |           * PB Scope
 801 *   * Enable/Disable
 802 *
 803 *  32        36        40        44        48        52        56        60
 804 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 805 *           Counter Address [8:50]              ]
 806 *
 807 */
 808static int thread_imc_mem_alloc(int cpu_id, int size)
 809{
 810        u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
 811        int nid = cpu_to_node(cpu_id);
 812
 813        if (!local_mem) {
 814                /*
 815                 * This case could happen only once at start, since we dont
 816                 * free the memory in cpu offline path.
 817                 */
 818                local_mem = page_address(alloc_pages_node(nid,
 819                                  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 820                                  __GFP_NOWARN, get_order(size)));
 821                if (!local_mem)
 822                        return -ENOMEM;
 823
 824                per_cpu(thread_imc_mem, cpu_id) = local_mem;
 825        }
 826
 827        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
 828
 829        mtspr(SPRN_LDBAR, ldbar_value);
 830        return 0;
 831}
 832
 833static int ppc_thread_imc_cpu_online(unsigned int cpu)
 834{
 835        return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
 836}
 837
 838static int ppc_thread_imc_cpu_offline(unsigned int cpu)
 839{
 840        mtspr(SPRN_LDBAR, 0);
 841        return 0;
 842}
 843
 844static int thread_imc_cpu_init(void)
 845{
 846        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
 847                          "perf/powerpc/imc_thread:online",
 848                          ppc_thread_imc_cpu_online,
 849                          ppc_thread_imc_cpu_offline);
 850}
 851
 852static int thread_imc_event_init(struct perf_event *event)
 853{
 854        u32 config = event->attr.config;
 855        struct task_struct *target;
 856        struct imc_pmu *pmu;
 857
 858        if (event->attr.type != event->pmu->type)
 859                return -ENOENT;
 860
 861        /* Sampling not supported */
 862        if (event->hw.sample_period)
 863                return -EINVAL;
 864
 865        event->hw.idx = -1;
 866        pmu = imc_event_to_pmu(event);
 867
 868        /* Sanity check for config offset */
 869        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 870                return -EINVAL;
 871
 872        target = event->hw.target;
 873        if (!target)
 874                return -EINVAL;
 875
 876        event->pmu->task_ctx_nr = perf_sw_context;
 877        return 0;
 878}
 879
 880static bool is_thread_imc_pmu(struct perf_event *event)
 881{
 882        if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
 883                return true;
 884
 885        return false;
 886}
 887
 888static u64 * get_event_base_addr(struct perf_event *event)
 889{
 890        u64 addr;
 891
 892        if (is_thread_imc_pmu(event)) {
 893                addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
 894                return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
 895        }
 896
 897        return (u64 *)event->hw.event_base;
 898}
 899
 900static void thread_imc_pmu_start_txn(struct pmu *pmu,
 901                                     unsigned int txn_flags)
 902{
 903        if (txn_flags & ~PERF_PMU_TXN_ADD)
 904                return;
 905        perf_pmu_disable(pmu);
 906}
 907
 908static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
 909{
 910        perf_pmu_enable(pmu);
 911}
 912
 913static int thread_imc_pmu_commit_txn(struct pmu *pmu)
 914{
 915        perf_pmu_enable(pmu);
 916        return 0;
 917}
 918
 919static u64 imc_read_counter(struct perf_event *event)
 920{
 921        u64 *addr, data;
 922
 923        /*
 924         * In-Memory Collection (IMC) counters are free flowing counters.
 925         * So we take a snapshot of the counter value on enable and save it
 926         * to calculate the delta at later stage to present the event counter
 927         * value.
 928         */
 929        addr = get_event_base_addr(event);
 930        data = be64_to_cpu(READ_ONCE(*addr));
 931        local64_set(&event->hw.prev_count, data);
 932
 933        return data;
 934}
 935
 936static void imc_event_update(struct perf_event *event)
 937{
 938        u64 counter_prev, counter_new, final_count;
 939
 940        counter_prev = local64_read(&event->hw.prev_count);
 941        counter_new = imc_read_counter(event);
 942        final_count = counter_new - counter_prev;
 943
 944        /* Update the delta to the event count */
 945        local64_add(final_count, &event->count);
 946}
 947
 948static void imc_event_start(struct perf_event *event, int flags)
 949{
 950        /*
 951         * In Memory Counters are free flowing counters. HW or the microcode
 952         * keeps adding to the counter offset in memory. To get event
 953         * counter value, we snapshot the value here and we calculate
 954         * delta at later point.
 955         */
 956        imc_read_counter(event);
 957}
 958
 959static void imc_event_stop(struct perf_event *event, int flags)
 960{
 961        /*
 962         * Take a snapshot and calculate the delta and update
 963         * the event counter values.
 964         */
 965        imc_event_update(event);
 966}
 967
 968static int imc_event_add(struct perf_event *event, int flags)
 969{
 970        if (flags & PERF_EF_START)
 971                imc_event_start(event, flags);
 972
 973        return 0;
 974}
 975
 976static int thread_imc_event_add(struct perf_event *event, int flags)
 977{
 978        int core_id;
 979        struct imc_pmu_ref *ref;
 980
 981        if (flags & PERF_EF_START)
 982                imc_event_start(event, flags);
 983
 984        if (!is_core_imc_mem_inited(smp_processor_id()))
 985                return -EINVAL;
 986
 987        core_id = smp_processor_id() / threads_per_core;
 988        /*
 989         * imc pmus are enabled only when it is used.
 990         * See if this is triggered for the first time.
 991         * If yes, take the mutex lock and enable the counters.
 992         * If not, just increment the count in ref count struct.
 993         */
 994        ref = &core_imc_refc[core_id];
 995        if (!ref)
 996                return -EINVAL;
 997
 998        mutex_lock(&ref->lock);
 999        if (ref->refc == 0) {
1000                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1001                    get_hard_smp_processor_id(smp_processor_id()))) {
1002                        mutex_unlock(&ref->lock);
1003                        pr_err("thread-imc: Unable to start the counter\
1004                                for core %d\n", core_id);
1005                        return -EINVAL;
1006                }
1007        }
1008        ++ref->refc;
1009        mutex_unlock(&ref->lock);
1010        return 0;
1011}
1012
1013static void thread_imc_event_del(struct perf_event *event, int flags)
1014{
1015
1016        int core_id;
1017        struct imc_pmu_ref *ref;
1018
1019        /*
1020         * Take a snapshot and calculate the delta and update
1021         * the event counter values.
1022         */
1023        imc_event_update(event);
1024
1025        core_id = smp_processor_id() / threads_per_core;
1026        ref = &core_imc_refc[core_id];
1027
1028        mutex_lock(&ref->lock);
1029        ref->refc--;
1030        if (ref->refc == 0) {
1031                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1032                    get_hard_smp_processor_id(smp_processor_id()))) {
1033                        mutex_unlock(&ref->lock);
1034                        pr_err("thread-imc: Unable to stop the counters\
1035                                for core %d\n", core_id);
1036                        return;
1037                }
1038        } else if (ref->refc < 0) {
1039                ref->refc = 0;
1040        }
1041        mutex_unlock(&ref->lock);
1042}
1043
1044/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1045static int update_pmu_ops(struct imc_pmu *pmu)
1046{
1047        pmu->pmu.task_ctx_nr = perf_invalid_context;
1048        pmu->pmu.add = imc_event_add;
1049        pmu->pmu.del = imc_event_stop;
1050        pmu->pmu.start = imc_event_start;
1051        pmu->pmu.stop = imc_event_stop;
1052        pmu->pmu.read = imc_event_update;
1053        pmu->pmu.attr_groups = pmu->attr_groups;
1054        pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1055        pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1056
1057        switch (pmu->domain) {
1058        case IMC_DOMAIN_NEST:
1059                pmu->pmu.event_init = nest_imc_event_init;
1060                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1061                break;
1062        case IMC_DOMAIN_CORE:
1063                pmu->pmu.event_init = core_imc_event_init;
1064                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1065                break;
1066        case IMC_DOMAIN_THREAD:
1067                pmu->pmu.event_init = thread_imc_event_init;
1068                pmu->pmu.add = thread_imc_event_add;
1069                pmu->pmu.del = thread_imc_event_del;
1070                pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1071                pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1072                pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1073                break;
1074        default:
1075                break;
1076        }
1077
1078        return 0;
1079}
1080
1081/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1082static int init_nest_pmu_ref(void)
1083{
1084        int nid, i, cpu;
1085
1086        nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1087                                                                GFP_KERNEL);
1088
1089        if (!nest_imc_refc)
1090                return -ENOMEM;
1091
1092        i = 0;
1093        for_each_node(nid) {
1094                /*
1095                 * Mutex lock to avoid races while tracking the number of
1096                 * sessions using the chip's nest pmu units.
1097                 */
1098                mutex_init(&nest_imc_refc[i].lock);
1099
1100                /*
1101                 * Loop to init the "id" with the node_id. Variable "i" initialized to
1102                 * 0 and will be used as index to the array. "i" will not go off the
1103                 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1104                 * nodes only.
1105                 */
1106                nest_imc_refc[i++].id = nid;
1107        }
1108
1109        /*
1110         * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1111         * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1112         */
1113        for_each_possible_cpu(cpu) {
1114                nid = cpu_to_node(cpu);
1115                for (i = 0; i < num_possible_nodes(); i++) {
1116                        if (nest_imc_refc[i].id == nid) {
1117                                per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1118                                break;
1119                        }
1120                }
1121        }
1122        return 0;
1123}
1124
1125static void cleanup_all_core_imc_memory(void)
1126{
1127        int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1128        struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1129        int size = core_imc_pmu->counter_mem_size;
1130
1131        /* mem_info will never be NULL */
1132        for (i = 0; i < nr_cores; i++) {
1133                if (ptr[i].vbase)
1134                        free_pages((u64)ptr[i].vbase, get_order(size));
1135        }
1136
1137        kfree(ptr);
1138        kfree(core_imc_refc);
1139}
1140
1141static void thread_imc_ldbar_disable(void *dummy)
1142{
1143        /*
1144         * By Zeroing LDBAR, we disable thread-imc
1145         * updates.
1146         */
1147        mtspr(SPRN_LDBAR, 0);
1148}
1149
1150void thread_imc_disable(void)
1151{
1152        on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1153}
1154
1155static void cleanup_all_thread_imc_memory(void)
1156{
1157        int i, order = get_order(thread_imc_mem_size);
1158
1159        for_each_online_cpu(i) {
1160                if (per_cpu(thread_imc_mem, i))
1161                        free_pages((u64)per_cpu(thread_imc_mem, i), order);
1162
1163        }
1164}
1165
1166/* Function to free the attr_groups which are dynamically allocated */
1167static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1168{
1169        if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1170                kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1171        kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1172}
1173
1174/*
1175 * Common function to unregister cpu hotplug callback and
1176 * free the memory.
1177 * TODO: Need to handle pmu unregistering, which will be
1178 * done in followup series.
1179 */
1180static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1181{
1182        if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1183                mutex_lock(&nest_init_lock);
1184                if (nest_pmus == 1) {
1185                        cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1186                        kfree(nest_imc_refc);
1187                        kfree(per_nest_pmu_arr);
1188                        per_nest_pmu_arr = NULL;
1189                }
1190
1191                if (nest_pmus > 0)
1192                        nest_pmus--;
1193                mutex_unlock(&nest_init_lock);
1194        }
1195
1196        /* Free core_imc memory */
1197        if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1198                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1199                cleanup_all_core_imc_memory();
1200        }
1201
1202        /* Free thread_imc memory */
1203        if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1204                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1205                cleanup_all_thread_imc_memory();
1206        }
1207}
1208
1209/*
1210 * Function to unregister thread-imc if core-imc
1211 * is not registered.
1212 */
1213void unregister_thread_imc(void)
1214{
1215        imc_common_cpuhp_mem_free(thread_imc_pmu);
1216        imc_common_mem_free(thread_imc_pmu);
1217        perf_pmu_unregister(&thread_imc_pmu->pmu);
1218}
1219
1220/*
1221 * imc_mem_init : Function to support memory allocation for core imc.
1222 */
1223static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1224                                                                int pmu_index)
1225{
1226        const char *s;
1227        int nr_cores, cpu, res = -ENOMEM;
1228
1229        if (of_property_read_string(parent, "name", &s))
1230                return -ENODEV;
1231
1232        switch (pmu_ptr->domain) {
1233        case IMC_DOMAIN_NEST:
1234                /* Update the pmu name */
1235                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1236                if (!pmu_ptr->pmu.name)
1237                        goto err;
1238
1239                /* Needed for hotplug/migration */
1240                if (!per_nest_pmu_arr) {
1241                        per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1242                                                sizeof(struct imc_pmu *),
1243                                                GFP_KERNEL);
1244                        if (!per_nest_pmu_arr)
1245                                goto err;
1246                }
1247                per_nest_pmu_arr[pmu_index] = pmu_ptr;
1248                break;
1249        case IMC_DOMAIN_CORE:
1250                /* Update the pmu name */
1251                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1252                if (!pmu_ptr->pmu.name)
1253                        goto err;
1254
1255                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1256                pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1257                                                                GFP_KERNEL);
1258
1259                if (!pmu_ptr->mem_info)
1260                        goto err;
1261
1262                core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1263                                                                GFP_KERNEL);
1264
1265                if (!core_imc_refc) {
1266                        kfree(pmu_ptr->mem_info);
1267                        goto err;
1268                }
1269
1270                core_imc_pmu = pmu_ptr;
1271                break;
1272        case IMC_DOMAIN_THREAD:
1273                /* Update the pmu name */
1274                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1275                if (!pmu_ptr->pmu.name)
1276                        goto err;
1277
1278                thread_imc_mem_size = pmu_ptr->counter_mem_size;
1279                for_each_online_cpu(cpu) {
1280                        res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1281                        if (res) {
1282                                cleanup_all_thread_imc_memory();
1283                                goto err;
1284                        }
1285                }
1286
1287                thread_imc_pmu = pmu_ptr;
1288                break;
1289        default:
1290                return -EINVAL;
1291        }
1292
1293        return 0;
1294err:
1295        return res;
1296}
1297
1298/*
1299 * init_imc_pmu : Setup and register the IMC pmu device.
1300 *
1301 * @parent:     Device tree unit node
1302 * @pmu_ptr:    memory allocated for this pmu
1303 * @pmu_idx:    Count of nest pmc registered
1304 *
1305 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1306 * Handles failure cases and accordingly frees memory.
1307 */
1308int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1309{
1310        int ret;
1311
1312        ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1313        if (ret)
1314                goto err_free_mem;
1315
1316        switch (pmu_ptr->domain) {
1317        case IMC_DOMAIN_NEST:
1318                /*
1319                * Nest imc pmu need only one cpu per chip, we initialize the
1320                * cpumask for the first nest imc pmu and use the same for the
1321                * rest. To handle the cpuhotplug callback unregister, we track
1322                * the number of nest pmus in "nest_pmus".
1323                */
1324                mutex_lock(&nest_init_lock);
1325                if (nest_pmus == 0) {
1326                        ret = init_nest_pmu_ref();
1327                        if (ret) {
1328                                mutex_unlock(&nest_init_lock);
1329                                kfree(per_nest_pmu_arr);
1330                                per_nest_pmu_arr = NULL;
1331                                goto err_free_mem;
1332                        }
1333                        /* Register for cpu hotplug notification. */
1334                        ret = nest_pmu_cpumask_init();
1335                        if (ret) {
1336                                mutex_unlock(&nest_init_lock);
1337                                kfree(nest_imc_refc);
1338                                kfree(per_nest_pmu_arr);
1339                                per_nest_pmu_arr = NULL;
1340                                goto err_free_mem;
1341                        }
1342                }
1343                nest_pmus++;
1344                mutex_unlock(&nest_init_lock);
1345                break;
1346        case IMC_DOMAIN_CORE:
1347                ret = core_imc_pmu_cpumask_init();
1348                if (ret) {
1349                        cleanup_all_core_imc_memory();
1350                        goto err_free_mem;
1351                }
1352
1353                break;
1354        case IMC_DOMAIN_THREAD:
1355                ret = thread_imc_cpu_init();
1356                if (ret) {
1357                        cleanup_all_thread_imc_memory();
1358                        goto err_free_mem;
1359                }
1360
1361                break;
1362        default:
1363                return  -EINVAL;        /* Unknown domain */
1364        }
1365
1366        ret = update_events_in_group(parent, pmu_ptr);
1367        if (ret)
1368                goto err_free_cpuhp_mem;
1369
1370        ret = update_pmu_ops(pmu_ptr);
1371        if (ret)
1372                goto err_free_cpuhp_mem;
1373
1374        ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1375        if (ret)
1376                goto err_free_cpuhp_mem;
1377
1378        pr_debug("%s performance monitor hardware support registered\n",
1379                                                        pmu_ptr->pmu.name);
1380
1381        return 0;
1382
1383err_free_cpuhp_mem:
1384        imc_common_cpuhp_mem_free(pmu_ptr);
1385err_free_mem:
1386        imc_common_mem_free(pmu_ptr);
1387        return ret;
1388}
1389