linux/arch/powerpc/sysdev/xive/common.c
<<
>>
Prefs
   1/*
   2 * Copyright 2016,2017 IBM Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License
   6 * as published by the Free Software Foundation; either version
   7 * 2 of the License, or (at your option) any later version.
   8 */
   9
  10#define pr_fmt(fmt) "xive: " fmt
  11
  12#include <linux/types.h>
  13#include <linux/threads.h>
  14#include <linux/kernel.h>
  15#include <linux/irq.h>
  16#include <linux/debugfs.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/seq_file.h>
  20#include <linux/init.h>
  21#include <linux/cpu.h>
  22#include <linux/of.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/msi.h>
  26
  27#include <asm/prom.h>
  28#include <asm/io.h>
  29#include <asm/smp.h>
  30#include <asm/machdep.h>
  31#include <asm/irq.h>
  32#include <asm/errno.h>
  33#include <asm/xive.h>
  34#include <asm/xive-regs.h>
  35#include <asm/xmon.h>
  36
  37#include "xive-internal.h"
  38
  39#undef DEBUG_FLUSH
  40#undef DEBUG_ALL
  41
  42#ifdef DEBUG_ALL
  43#define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
  44                                         smp_processor_id(), ## __VA_ARGS__)
  45#else
  46#define DBG_VERBOSE(fmt...)     do { } while(0)
  47#endif
  48
  49bool __xive_enabled;
  50EXPORT_SYMBOL_GPL(__xive_enabled);
  51bool xive_cmdline_disabled;
  52
  53/* We use only one priority for now */
  54static u8 xive_irq_priority;
  55
  56/* TIMA exported to KVM */
  57void __iomem *xive_tima;
  58EXPORT_SYMBOL_GPL(xive_tima);
  59u32 xive_tima_offset;
  60
  61/* Backend ops */
  62static const struct xive_ops *xive_ops;
  63
  64/* Our global interrupt domain */
  65static struct irq_domain *xive_irq_domain;
  66
  67#ifdef CONFIG_SMP
  68/* The IPIs all use the same logical irq number */
  69static u32 xive_ipi_irq;
  70#endif
  71
  72/* Xive state for each CPU */
  73static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  74
  75/*
  76 * A "disabled" interrupt should never fire, to catch problems
  77 * we set its logical number to this
  78 */
  79#define XIVE_BAD_IRQ            0x7fffffff
  80#define XIVE_MAX_IRQ            (XIVE_BAD_IRQ - 1)
  81
  82/* An invalid CPU target */
  83#define XIVE_INVALID_TARGET     (-1)
  84
  85/*
  86 * Read the next entry in a queue, return its content if it's valid
  87 * or 0 if there is no new entry.
  88 *
  89 * The queue pointer is moved forward unless "just_peek" is set
  90 */
  91static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  92{
  93        u32 cur;
  94
  95        if (!q->qpage)
  96                return 0;
  97        cur = be32_to_cpup(q->qpage + q->idx);
  98
  99        /* Check valid bit (31) vs current toggle polarity */
 100        if ((cur >> 31) == q->toggle)
 101                return 0;
 102
 103        /* If consuming from the queue ... */
 104        if (!just_peek) {
 105                /* Next entry */
 106                q->idx = (q->idx + 1) & q->msk;
 107
 108                /* Wrap around: flip valid toggle */
 109                if (q->idx == 0)
 110                        q->toggle ^= 1;
 111        }
 112        /* Mask out the valid bit (31) */
 113        return cur & 0x7fffffff;
 114}
 115
 116/*
 117 * Scans all the queue that may have interrupts in them
 118 * (based on "pending_prio") in priority order until an
 119 * interrupt is found or all the queues are empty.
 120 *
 121 * Then updates the CPPR (Current Processor Priority
 122 * Register) based on the most favored interrupt found
 123 * (0xff if none) and return what was found (0 if none).
 124 *
 125 * If just_peek is set, return the most favored pending
 126 * interrupt if any but don't update the queue pointers.
 127 *
 128 * Note: This function can operate generically on any number
 129 * of queues (up to 8). The current implementation of the XIVE
 130 * driver only uses a single queue however.
 131 *
 132 * Note2: This will also "flush" "the pending_count" of a queue
 133 * into the "count" when that queue is observed to be empty.
 134 * This is used to keep track of the amount of interrupts
 135 * targetting a queue. When an interrupt is moved away from
 136 * a queue, we only decrement that queue count once the queue
 137 * has been observed empty to avoid races.
 138 */
 139static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 140{
 141        u32 irq = 0;
 142        u8 prio;
 143
 144        /* Find highest pending priority */
 145        while (xc->pending_prio != 0) {
 146                struct xive_q *q;
 147
 148                prio = ffs(xc->pending_prio) - 1;
 149                DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 150
 151                /* Try to fetch */
 152                irq = xive_read_eq(&xc->queue[prio], just_peek);
 153
 154                /* Found something ? That's it */
 155                if (irq)
 156                        break;
 157
 158                /* Clear pending bits */
 159                xc->pending_prio &= ~(1 << prio);
 160
 161                /*
 162                 * Check if the queue count needs adjusting due to
 163                 * interrupts being moved away. See description of
 164                 * xive_dec_target_count()
 165                 */
 166                q = &xc->queue[prio];
 167                if (atomic_read(&q->pending_count)) {
 168                        int p = atomic_xchg(&q->pending_count, 0);
 169                        if (p) {
 170                                WARN_ON(p > atomic_read(&q->count));
 171                                atomic_sub(p, &q->count);
 172                        }
 173                }
 174        }
 175
 176        /* If nothing was found, set CPPR to 0xff */
 177        if (irq == 0)
 178                prio = 0xff;
 179
 180        /* Update HW CPPR to match if necessary */
 181        if (prio != xc->cppr) {
 182                DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 183                xc->cppr = prio;
 184                out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 185        }
 186
 187        return irq;
 188}
 189
 190/*
 191 * This is used to perform the magic loads from an ESB
 192 * described in xive.h
 193 */
 194static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 195{
 196        u64 val;
 197
 198        /* Handle HW errata */
 199        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 200                offset |= offset << 4;
 201
 202        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 203                val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 204        else
 205                val = in_be64(xd->eoi_mmio + offset);
 206
 207        return (u8)val;
 208}
 209
 210static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 211{
 212        /* Handle HW errata */
 213        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 214                offset |= offset << 4;
 215
 216        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 217                xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 218        else
 219                out_be64(xd->eoi_mmio + offset, data);
 220}
 221
 222#ifdef CONFIG_XMON
 223static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 224{
 225        u32 i0, i1, idx;
 226
 227        if (!q->qpage)
 228                return;
 229        idx = q->idx;
 230        i0 = be32_to_cpup(q->qpage + idx);
 231        idx = (idx + 1) & q->msk;
 232        i1 = be32_to_cpup(q->qpage + idx);
 233        xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
 234                    q->toggle, i0, i1);
 235}
 236
 237notrace void xmon_xive_do_dump(int cpu)
 238{
 239        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 240
 241        xmon_printf("XIVE state for CPU %d:\n", cpu);
 242        xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
 243        xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
 244#ifdef CONFIG_SMP
 245        {
 246                u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 247                xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
 248                        val & XIVE_ESB_VAL_P ? 'P' : 'p',
 249                        val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
 250        }
 251#endif
 252}
 253#endif /* CONFIG_XMON */
 254
 255static unsigned int xive_get_irq(void)
 256{
 257        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 258        u32 irq;
 259
 260        /*
 261         * This can be called either as a result of a HW interrupt or
 262         * as a "replay" because EOI decided there was still something
 263         * in one of the queues.
 264         *
 265         * First we perform an ACK cycle in order to update our mask
 266         * of pending priorities. This will also have the effect of
 267         * updating the CPPR to the most favored pending interrupts.
 268         *
 269         * In the future, if we have a way to differentiate a first
 270         * entry (on HW interrupt) from a replay triggered by EOI,
 271         * we could skip this on replays unless we soft-mask tells us
 272         * that a new HW interrupt occurred.
 273         */
 274        xive_ops->update_pending(xc);
 275
 276        DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 277
 278        /* Scan our queue(s) for interrupts */
 279        irq = xive_scan_interrupts(xc, false);
 280
 281        DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 282            irq, xc->pending_prio);
 283
 284        /* Return pending interrupt if any */
 285        if (irq == XIVE_BAD_IRQ)
 286                return 0;
 287        return irq;
 288}
 289
 290/*
 291 * After EOI'ing an interrupt, we need to re-check the queue
 292 * to see if another interrupt is pending since multiple
 293 * interrupts can coalesce into a single notification to the
 294 * CPU.
 295 *
 296 * If we find that there is indeed more in there, we call
 297 * force_external_irq_replay() to make Linux synthetize an
 298 * external interrupt on the next call to local_irq_restore().
 299 */
 300static void xive_do_queue_eoi(struct xive_cpu *xc)
 301{
 302        if (xive_scan_interrupts(xc, true) != 0) {
 303                DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 304                force_external_irq_replay();
 305        }
 306}
 307
 308/*
 309 * EOI an interrupt at the source. There are several methods
 310 * to do this depending on the HW version and source type
 311 */
 312static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 313{
 314        /* If the XIVE supports the new "store EOI facility, use it */
 315        if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 316                xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 317        else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 318                /*
 319                 * The FW told us to call it. This happens for some
 320                 * interrupt sources that need additional HW whacking
 321                 * beyond the ESB manipulation. For example LPC interrupts
 322                 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
 323                 * itself. The Firmware will take care of it.
 324                 */
 325                if (WARN_ON_ONCE(!xive_ops->eoi))
 326                        return;
 327                xive_ops->eoi(hw_irq);
 328        } else {
 329                u8 eoi_val;
 330
 331                /*
 332                 * Otherwise for EOI, we use the special MMIO that does
 333                 * a clear of both P and Q and returns the old Q,
 334                 * except for LSIs where we use the "EOI cycle" special
 335                 * load.
 336                 *
 337                 * This allows us to then do a re-trigger if Q was set
 338                 * rather than synthesizing an interrupt in software
 339                 *
 340                 * For LSIs the HW EOI cycle is used rather than PQ bits,
 341                 * as they are automatically re-triggred in HW when still
 342                 * pending.
 343                 */
 344                if (xd->flags & XIVE_IRQ_FLAG_LSI)
 345                        xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 346                else {
 347                        eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 348                        DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 349
 350                        /* Re-trigger if needed */
 351                        if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 352                                out_be64(xd->trig_mmio, 0);
 353                }
 354        }
 355}
 356
 357/* irq_chip eoi callback */
 358static void xive_irq_eoi(struct irq_data *d)
 359{
 360        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 361        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 362
 363        DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 364                    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 365
 366        /*
 367         * EOI the source if it hasn't been disabled and hasn't
 368         * been passed-through to a KVM guest
 369         */
 370        if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 371            !(xd->flags & XIVE_IRQ_NO_EOI))
 372                xive_do_source_eoi(irqd_to_hwirq(d), xd);
 373
 374        /*
 375         * Clear saved_p to indicate that it's no longer occupying
 376         * a queue slot on the target queue
 377         */
 378        xd->saved_p = false;
 379
 380        /* Check for more work in the queue */
 381        xive_do_queue_eoi(xc);
 382}
 383
 384/*
 385 * Helper used to mask and unmask an interrupt source. This
 386 * is only called for normal interrupts that do not require
 387 * masking/unmasking via firmware.
 388 */
 389static void xive_do_source_set_mask(struct xive_irq_data *xd,
 390                                    bool mask)
 391{
 392        u64 val;
 393
 394        /*
 395         * If the interrupt had P set, it may be in a queue.
 396         *
 397         * We need to make sure we don't re-enable it until it
 398         * has been fetched from that queue and EOId. We keep
 399         * a copy of that P state and use it to restore the
 400         * ESB accordingly on unmask.
 401         */
 402        if (mask) {
 403                val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 404                xd->saved_p = !!(val & XIVE_ESB_VAL_P);
 405        } else if (xd->saved_p)
 406                xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 407        else
 408                xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 409}
 410
 411/*
 412 * Try to chose "cpu" as a new interrupt target. Increments
 413 * the queue accounting for that target if it's not already
 414 * full.
 415 */
 416static bool xive_try_pick_target(int cpu)
 417{
 418        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 419        struct xive_q *q = &xc->queue[xive_irq_priority];
 420        int max;
 421
 422        /*
 423         * Calculate max number of interrupts in that queue.
 424         *
 425         * We leave a gap of 1 just in case...
 426         */
 427        max = (q->msk + 1) - 1;
 428        return !!atomic_add_unless(&q->count, 1, max);
 429}
 430
 431/*
 432 * Un-account an interrupt for a target CPU. We don't directly
 433 * decrement q->count since the interrupt might still be present
 434 * in the queue.
 435 *
 436 * Instead increment a separate counter "pending_count" which
 437 * will be substracted from "count" later when that CPU observes
 438 * the queue to be empty.
 439 */
 440static void xive_dec_target_count(int cpu)
 441{
 442        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 443        struct xive_q *q = &xc->queue[xive_irq_priority];
 444
 445        if (WARN_ON(cpu < 0 || !xc)) {
 446                pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 447                return;
 448        }
 449
 450        /*
 451         * We increment the "pending count" which will be used
 452         * to decrement the target queue count whenever it's next
 453         * processed and found empty. This ensure that we don't
 454         * decrement while we still have the interrupt there
 455         * occupying a slot.
 456         */
 457        atomic_inc(&q->pending_count);
 458}
 459
 460/* Find a tentative CPU target in a CPU mask */
 461static int xive_find_target_in_mask(const struct cpumask *mask,
 462                                    unsigned int fuzz)
 463{
 464        int cpu, first, num, i;
 465
 466        /* Pick up a starting point CPU in the mask based on  fuzz */
 467        num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 468        first = fuzz % num;
 469
 470        /* Locate it */
 471        cpu = cpumask_first(mask);
 472        for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 473                cpu = cpumask_next(cpu, mask);
 474
 475        /* Sanity check */
 476        if (WARN_ON(cpu >= nr_cpu_ids))
 477                cpu = cpumask_first(cpu_online_mask);
 478
 479        /* Remember first one to handle wrap-around */
 480        first = cpu;
 481
 482        /*
 483         * Now go through the entire mask until we find a valid
 484         * target.
 485         */
 486        for (;;) {
 487                /*
 488                 * We re-check online as the fallback case passes us
 489                 * an untested affinity mask
 490                 */
 491                if (cpu_online(cpu) && xive_try_pick_target(cpu))
 492                        return cpu;
 493                cpu = cpumask_next(cpu, mask);
 494                if (cpu == first)
 495                        break;
 496                /* Wrap around */
 497                if (cpu >= nr_cpu_ids)
 498                        cpu = cpumask_first(mask);
 499        }
 500        return -1;
 501}
 502
 503/*
 504 * Pick a target CPU for an interrupt. This is done at
 505 * startup or if the affinity is changed in a way that
 506 * invalidates the current target.
 507 */
 508static int xive_pick_irq_target(struct irq_data *d,
 509                                const struct cpumask *affinity)
 510{
 511        static unsigned int fuzz;
 512        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 513        cpumask_var_t mask;
 514        int cpu = -1;
 515
 516        /*
 517         * If we have chip IDs, first we try to build a mask of
 518         * CPUs matching the CPU and find a target in there
 519         */
 520        if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 521                zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 522                /* Build a mask of matching chip IDs */
 523                for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 524                        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 525                        if (xc->chip_id == xd->src_chip)
 526                                cpumask_set_cpu(cpu, mask);
 527                }
 528                /* Try to find a target */
 529                if (cpumask_empty(mask))
 530                        cpu = -1;
 531                else
 532                        cpu = xive_find_target_in_mask(mask, fuzz++);
 533                free_cpumask_var(mask);
 534                if (cpu >= 0)
 535                        return cpu;
 536                fuzz--;
 537        }
 538
 539        /* No chip IDs, fallback to using the affinity mask */
 540        return xive_find_target_in_mask(affinity, fuzz++);
 541}
 542
 543static unsigned int xive_irq_startup(struct irq_data *d)
 544{
 545        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 546        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 547        int target, rc;
 548
 549        pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 550                 d->irq, hw_irq, d);
 551
 552#ifdef CONFIG_PCI_MSI
 553        /*
 554         * The generic MSI code returns with the interrupt disabled on the
 555         * card, using the MSI mask bits. Firmware doesn't appear to unmask
 556         * at that level, so we do it here by hand.
 557         */
 558        if (irq_data_get_msi_desc(d))
 559                pci_msi_unmask_irq(d);
 560#endif
 561
 562        /* Pick a target */
 563        target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 564        if (target == XIVE_INVALID_TARGET) {
 565                /* Try again breaking affinity */
 566                target = xive_pick_irq_target(d, cpu_online_mask);
 567                if (target == XIVE_INVALID_TARGET)
 568                        return -ENXIO;
 569                pr_warn("irq %d started with broken affinity\n", d->irq);
 570        }
 571
 572        /* Sanity check */
 573        if (WARN_ON(target == XIVE_INVALID_TARGET ||
 574                    target >= nr_cpu_ids))
 575                target = smp_processor_id();
 576
 577        xd->target = target;
 578
 579        /*
 580         * Configure the logical number to be the Linux IRQ number
 581         * and set the target queue
 582         */
 583        rc = xive_ops->configure_irq(hw_irq,
 584                                     get_hard_smp_processor_id(target),
 585                                     xive_irq_priority, d->irq);
 586        if (rc)
 587                return rc;
 588
 589        /* Unmask the ESB */
 590        xive_do_source_set_mask(xd, false);
 591
 592        return 0;
 593}
 594
 595static void xive_irq_shutdown(struct irq_data *d)
 596{
 597        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 598        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 599
 600        pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 601                 d->irq, hw_irq, d);
 602
 603        if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 604                return;
 605
 606        /* Mask the interrupt at the source */
 607        xive_do_source_set_mask(xd, true);
 608
 609        /*
 610         * The above may have set saved_p. We clear it otherwise it
 611         * will prevent re-enabling later on. It is ok to forget the
 612         * fact that the interrupt might be in a queue because we are
 613         * accounting that already in xive_dec_target_count() and will
 614         * be re-routing it to a new queue with proper accounting when
 615         * it's started up again
 616         */
 617        xd->saved_p = false;
 618
 619        /*
 620         * Mask the interrupt in HW in the IVT/EAS and set the number
 621         * to be the "bad" IRQ number
 622         */
 623        xive_ops->configure_irq(hw_irq,
 624                                get_hard_smp_processor_id(xd->target),
 625                                0xff, XIVE_BAD_IRQ);
 626
 627        xive_dec_target_count(xd->target);
 628        xd->target = XIVE_INVALID_TARGET;
 629}
 630
 631static void xive_irq_unmask(struct irq_data *d)
 632{
 633        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 634
 635        pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 636
 637        /*
 638         * This is a workaround for PCI LSI problems on P9, for
 639         * these, we call FW to set the mask. The problems might
 640         * be fixed by P9 DD2.0, if that is the case, firmware
 641         * will no longer set that flag.
 642         */
 643        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 644                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 645                xive_ops->configure_irq(hw_irq,
 646                                        get_hard_smp_processor_id(xd->target),
 647                                        xive_irq_priority, d->irq);
 648                return;
 649        }
 650
 651        xive_do_source_set_mask(xd, false);
 652}
 653
 654static void xive_irq_mask(struct irq_data *d)
 655{
 656        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 657
 658        pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 659
 660        /*
 661         * This is a workaround for PCI LSI problems on P9, for
 662         * these, we call OPAL to set the mask. The problems might
 663         * be fixed by P9 DD2.0, if that is the case, firmware
 664         * will no longer set that flag.
 665         */
 666        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 667                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 668                xive_ops->configure_irq(hw_irq,
 669                                        get_hard_smp_processor_id(xd->target),
 670                                        0xff, d->irq);
 671                return;
 672        }
 673
 674        xive_do_source_set_mask(xd, true);
 675}
 676
 677static int xive_irq_set_affinity(struct irq_data *d,
 678                                 const struct cpumask *cpumask,
 679                                 bool force)
 680{
 681        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 682        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 683        u32 target, old_target;
 684        int rc = 0;
 685
 686        pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 687
 688        /* Is this valid ? */
 689        if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 690                return -EINVAL;
 691
 692        /* Don't do anything if the interrupt isn't started */
 693        if (!irqd_is_started(d))
 694                return IRQ_SET_MASK_OK;
 695
 696        /*
 697         * If existing target is already in the new mask, and is
 698         * online then do nothing.
 699         */
 700        if (xd->target != XIVE_INVALID_TARGET &&
 701            cpu_online(xd->target) &&
 702            cpumask_test_cpu(xd->target, cpumask))
 703                return IRQ_SET_MASK_OK;
 704
 705        /* Pick a new target */
 706        target = xive_pick_irq_target(d, cpumask);
 707
 708        /* No target found */
 709        if (target == XIVE_INVALID_TARGET)
 710                return -ENXIO;
 711
 712        /* Sanity check */
 713        if (WARN_ON(target >= nr_cpu_ids))
 714                target = smp_processor_id();
 715
 716        old_target = xd->target;
 717
 718        /*
 719         * Only configure the irq if it's not currently passed-through to
 720         * a KVM guest
 721         */
 722        if (!irqd_is_forwarded_to_vcpu(d))
 723                rc = xive_ops->configure_irq(hw_irq,
 724                                             get_hard_smp_processor_id(target),
 725                                             xive_irq_priority, d->irq);
 726        if (rc < 0) {
 727                pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 728                return rc;
 729        }
 730
 731        pr_devel("  target: 0x%x\n", target);
 732        xd->target = target;
 733
 734        /* Give up previous target */
 735        if (old_target != XIVE_INVALID_TARGET)
 736            xive_dec_target_count(old_target);
 737
 738        return IRQ_SET_MASK_OK;
 739}
 740
 741static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 742{
 743        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 744
 745        /*
 746         * We only support these. This has really no effect other than setting
 747         * the corresponding descriptor bits mind you but those will in turn
 748         * affect the resend function when re-enabling an edge interrupt.
 749         *
 750         * Set set the default to edge as explained in map().
 751         */
 752        if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 753                flow_type = IRQ_TYPE_EDGE_RISING;
 754
 755        if (flow_type != IRQ_TYPE_EDGE_RISING &&
 756            flow_type != IRQ_TYPE_LEVEL_LOW)
 757                return -EINVAL;
 758
 759        irqd_set_trigger_type(d, flow_type);
 760
 761        /*
 762         * Double check it matches what the FW thinks
 763         *
 764         * NOTE: We don't know yet if the PAPR interface will provide
 765         * the LSI vs MSI information apart from the device-tree so
 766         * this check might have to move into an optional backend call
 767         * that is specific to the native backend
 768         */
 769        if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 770            !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 771                pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 772                        d->irq, (u32)irqd_to_hwirq(d),
 773                        (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 774                        (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 775        }
 776
 777        return IRQ_SET_MASK_OK_NOCOPY;
 778}
 779
 780static int xive_irq_retrigger(struct irq_data *d)
 781{
 782        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 783
 784        /* This should be only for MSIs */
 785        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 786                return 0;
 787
 788        /*
 789         * To perform a retrigger, we first set the PQ bits to
 790         * 11, then perform an EOI.
 791         */
 792        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 793
 794        /*
 795         * Note: We pass "0" to the hw_irq argument in order to
 796         * avoid calling into the backend EOI code which we don't
 797         * want to do in the case of a re-trigger. Backends typically
 798         * only do EOI for LSIs anyway.
 799         */
 800        xive_do_source_eoi(0, xd);
 801
 802        return 1;
 803}
 804
 805static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 806{
 807        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 808        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 809        int rc;
 810        u8 pq;
 811
 812        /*
 813         * We only support this on interrupts that do not require
 814         * firmware calls for masking and unmasking
 815         */
 816        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 817                return -EIO;
 818
 819        /*
 820         * This is called by KVM with state non-NULL for enabling
 821         * pass-through or NULL for disabling it
 822         */
 823        if (state) {
 824                irqd_set_forwarded_to_vcpu(d);
 825
 826                /* Set it to PQ=10 state to prevent further sends */
 827                pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 828
 829                /* No target ? nothing to do */
 830                if (xd->target == XIVE_INVALID_TARGET) {
 831                        /*
 832                         * An untargetted interrupt should have been
 833                         * also masked at the source
 834                         */
 835                        WARN_ON(pq & 2);
 836
 837                        return 0;
 838                }
 839
 840                /*
 841                 * If P was set, adjust state to PQ=11 to indicate
 842                 * that a resend is needed for the interrupt to reach
 843                 * the guest. Also remember the value of P.
 844                 *
 845                 * This also tells us that it's in flight to a host queue
 846                 * or has already been fetched but hasn't been EOIed yet
 847                 * by the host. This it's potentially using up a host
 848                 * queue slot. This is important to know because as long
 849                 * as this is the case, we must not hard-unmask it when
 850                 * "returning" that interrupt to the host.
 851                 *
 852                 * This saved_p is cleared by the host EOI, when we know
 853                 * for sure the queue slot is no longer in use.
 854                 */
 855                if (pq & 2) {
 856                        pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 857                        xd->saved_p = true;
 858
 859                        /*
 860                         * Sync the XIVE source HW to ensure the interrupt
 861                         * has gone through the EAS before we change its
 862                         * target to the guest. That should guarantee us
 863                         * that we *will* eventually get an EOI for it on
 864                         * the host. Otherwise there would be a small window
 865                         * for P to be seen here but the interrupt going
 866                         * to the guest queue.
 867                         */
 868                        if (xive_ops->sync_source)
 869                                xive_ops->sync_source(hw_irq);
 870                } else
 871                        xd->saved_p = false;
 872        } else {
 873                irqd_clr_forwarded_to_vcpu(d);
 874
 875                /* No host target ? hard mask and return */
 876                if (xd->target == XIVE_INVALID_TARGET) {
 877                        xive_do_source_set_mask(xd, true);
 878                        return 0;
 879                }
 880
 881                /*
 882                 * Sync the XIVE source HW to ensure the interrupt
 883                 * has gone through the EAS before we change its
 884                 * target to the host.
 885                 */
 886                if (xive_ops->sync_source)
 887                        xive_ops->sync_source(hw_irq);
 888
 889                /*
 890                 * By convention we are called with the interrupt in
 891                 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 892                 * have latched in Q whether there's a pending HW
 893                 * interrupt or not.
 894                 *
 895                 * First reconfigure the target.
 896                 */
 897                rc = xive_ops->configure_irq(hw_irq,
 898                                             get_hard_smp_processor_id(xd->target),
 899                                             xive_irq_priority, d->irq);
 900                if (rc)
 901                        return rc;
 902
 903                /*
 904                 * Then if saved_p is not set, effectively re-enable the
 905                 * interrupt with an EOI. If it is set, we know there is
 906                 * still a message in a host queue somewhere that will be
 907                 * EOId eventually.
 908                 *
 909                 * Note: We don't check irqd_irq_disabled(). Effectively,
 910                 * we *will* let the irq get through even if masked if the
 911                 * HW is still firing it in order to deal with the whole
 912                 * saved_p business properly. If the interrupt triggers
 913                 * while masked, the generic code will re-mask it anyway.
 914                 */
 915                if (!xd->saved_p)
 916                        xive_do_source_eoi(hw_irq, xd);
 917
 918        }
 919        return 0;
 920}
 921
 922static struct irq_chip xive_irq_chip = {
 923        .name = "XIVE-IRQ",
 924        .irq_startup = xive_irq_startup,
 925        .irq_shutdown = xive_irq_shutdown,
 926        .irq_eoi = xive_irq_eoi,
 927        .irq_mask = xive_irq_mask,
 928        .irq_unmask = xive_irq_unmask,
 929        .irq_set_affinity = xive_irq_set_affinity,
 930        .irq_set_type = xive_irq_set_type,
 931        .irq_retrigger = xive_irq_retrigger,
 932        .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 933};
 934
 935bool is_xive_irq(struct irq_chip *chip)
 936{
 937        return chip == &xive_irq_chip;
 938}
 939EXPORT_SYMBOL_GPL(is_xive_irq);
 940
 941void xive_cleanup_irq_data(struct xive_irq_data *xd)
 942{
 943        if (xd->eoi_mmio) {
 944                iounmap(xd->eoi_mmio);
 945                if (xd->eoi_mmio == xd->trig_mmio)
 946                        xd->trig_mmio = NULL;
 947                xd->eoi_mmio = NULL;
 948        }
 949        if (xd->trig_mmio) {
 950                iounmap(xd->trig_mmio);
 951                xd->trig_mmio = NULL;
 952        }
 953}
 954EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
 955
 956static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
 957{
 958        struct xive_irq_data *xd;
 959        int rc;
 960
 961        xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
 962        if (!xd)
 963                return -ENOMEM;
 964        rc = xive_ops->populate_irq_data(hw, xd);
 965        if (rc) {
 966                kfree(xd);
 967                return rc;
 968        }
 969        xd->target = XIVE_INVALID_TARGET;
 970        irq_set_handler_data(virq, xd);
 971
 972        return 0;
 973}
 974
 975static void xive_irq_free_data(unsigned int virq)
 976{
 977        struct xive_irq_data *xd = irq_get_handler_data(virq);
 978
 979        if (!xd)
 980                return;
 981        irq_set_handler_data(virq, NULL);
 982        xive_cleanup_irq_data(xd);
 983        kfree(xd);
 984}
 985
 986#ifdef CONFIG_SMP
 987
 988static void xive_cause_ipi(int cpu)
 989{
 990        struct xive_cpu *xc;
 991        struct xive_irq_data *xd;
 992
 993        xc = per_cpu(xive_cpu, cpu);
 994
 995        DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
 996                    smp_processor_id(), cpu, xc->hw_ipi);
 997
 998        xd = &xc->ipi_data;
 999        if (WARN_ON(!xd->trig_mmio))
1000                return;
1001        out_be64(xd->trig_mmio, 0);
1002}
1003
1004static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1005{
1006        return smp_ipi_demux();
1007}
1008
1009static void xive_ipi_eoi(struct irq_data *d)
1010{
1011        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1012
1013        /* Handle possible race with unplug and drop stale IPIs */
1014        if (!xc)
1015                return;
1016
1017        DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1018                    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1019
1020        xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1021        xive_do_queue_eoi(xc);
1022}
1023
1024static void xive_ipi_do_nothing(struct irq_data *d)
1025{
1026        /*
1027         * Nothing to do, we never mask/unmask IPIs, but the callback
1028         * has to exist for the struct irq_chip.
1029         */
1030}
1031
1032static struct irq_chip xive_ipi_chip = {
1033        .name = "XIVE-IPI",
1034        .irq_eoi = xive_ipi_eoi,
1035        .irq_mask = xive_ipi_do_nothing,
1036        .irq_unmask = xive_ipi_do_nothing,
1037};
1038
1039static void __init xive_request_ipi(void)
1040{
1041        unsigned int virq;
1042
1043        /*
1044         * Initialization failed, move on, we might manage to
1045         * reach the point where we display our errors before
1046         * the system falls appart
1047         */
1048        if (!xive_irq_domain)
1049                return;
1050
1051        /* Initialize it */
1052        virq = irq_create_mapping(xive_irq_domain, 0);
1053        xive_ipi_irq = virq;
1054
1055        WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1056                            IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1057}
1058
1059static int xive_setup_cpu_ipi(unsigned int cpu)
1060{
1061        struct xive_cpu *xc;
1062        int rc;
1063
1064        pr_debug("Setting up IPI for CPU %d\n", cpu);
1065
1066        xc = per_cpu(xive_cpu, cpu);
1067
1068        /* Check if we are already setup */
1069        if (xc->hw_ipi != 0)
1070                return 0;
1071
1072        /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1073        if (xive_ops->get_ipi(cpu, xc))
1074                return -EIO;
1075
1076        /*
1077         * Populate the IRQ data in the xive_cpu structure and
1078         * configure the HW / enable the IPIs.
1079         */
1080        rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1081        if (rc) {
1082                pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1083                return -EIO;
1084        }
1085        rc = xive_ops->configure_irq(xc->hw_ipi,
1086                                     get_hard_smp_processor_id(cpu),
1087                                     xive_irq_priority, xive_ipi_irq);
1088        if (rc) {
1089                pr_err("Failed to map IPI CPU %d\n", cpu);
1090                return -EIO;
1091        }
1092        pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1093            xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1094
1095        /* Unmask it */
1096        xive_do_source_set_mask(&xc->ipi_data, false);
1097
1098        return 0;
1099}
1100
1101static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1102{
1103        /* Disable the IPI and free the IRQ data */
1104
1105        /* Already cleaned up ? */
1106        if (xc->hw_ipi == 0)
1107                return;
1108
1109        /* Mask the IPI */
1110        xive_do_source_set_mask(&xc->ipi_data, true);
1111
1112        /*
1113         * Note: We don't call xive_cleanup_irq_data() to free
1114         * the mappings as this is called from an IPI on kexec
1115         * which is not a safe environment to call iounmap()
1116         */
1117
1118        /* Deconfigure/mask in the backend */
1119        xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1120                                0xff, xive_ipi_irq);
1121
1122        /* Free the IPIs in the backend */
1123        xive_ops->put_ipi(cpu, xc);
1124}
1125
1126void __init xive_smp_probe(void)
1127{
1128        smp_ops->cause_ipi = xive_cause_ipi;
1129
1130        /* Register the IPI */
1131        xive_request_ipi();
1132
1133        /* Allocate and setup IPI for the boot CPU */
1134        xive_setup_cpu_ipi(smp_processor_id());
1135}
1136
1137#endif /* CONFIG_SMP */
1138
1139static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1140                               irq_hw_number_t hw)
1141{
1142        int rc;
1143
1144        /*
1145         * Mark interrupts as edge sensitive by default so that resend
1146         * actually works. Will fix that up below if needed.
1147         */
1148        irq_clear_status_flags(virq, IRQ_LEVEL);
1149
1150#ifdef CONFIG_SMP
1151        /* IPIs are special and come up with HW number 0 */
1152        if (hw == 0) {
1153                /*
1154                 * IPIs are marked per-cpu. We use separate HW interrupts under
1155                 * the hood but associated with the same "linux" interrupt
1156                 */
1157                irq_set_chip_and_handler(virq, &xive_ipi_chip,
1158                                         handle_percpu_irq);
1159                return 0;
1160        }
1161#endif
1162
1163        rc = xive_irq_alloc_data(virq, hw);
1164        if (rc)
1165                return rc;
1166
1167        irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1168
1169        return 0;
1170}
1171
1172static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1173{
1174        struct irq_data *data = irq_get_irq_data(virq);
1175        unsigned int hw_irq;
1176
1177        /* XXX Assign BAD number */
1178        if (!data)
1179                return;
1180        hw_irq = (unsigned int)irqd_to_hwirq(data);
1181        if (hw_irq)
1182                xive_irq_free_data(virq);
1183}
1184
1185static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1186                                 const u32 *intspec, unsigned int intsize,
1187                                 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1188
1189{
1190        *out_hwirq = intspec[0];
1191
1192        /*
1193         * If intsize is at least 2, we look for the type in the second cell,
1194         * we assume the LSB indicates a level interrupt.
1195         */
1196        if (intsize > 1) {
1197                if (intspec[1] & 1)
1198                        *out_flags = IRQ_TYPE_LEVEL_LOW;
1199                else
1200                        *out_flags = IRQ_TYPE_EDGE_RISING;
1201        } else
1202                *out_flags = IRQ_TYPE_LEVEL_LOW;
1203
1204        return 0;
1205}
1206
1207static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1208                                 enum irq_domain_bus_token bus_token)
1209{
1210        return xive_ops->match(node);
1211}
1212
1213static const struct irq_domain_ops xive_irq_domain_ops = {
1214        .match = xive_irq_domain_match,
1215        .map = xive_irq_domain_map,
1216        .unmap = xive_irq_domain_unmap,
1217        .xlate = xive_irq_domain_xlate,
1218};
1219
1220static void __init xive_init_host(void)
1221{
1222        xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1223                                               &xive_irq_domain_ops, NULL);
1224        if (WARN_ON(xive_irq_domain == NULL))
1225                return;
1226        irq_set_default_host(xive_irq_domain);
1227}
1228
1229static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1230{
1231        if (xc->queue[xive_irq_priority].qpage)
1232                xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1233}
1234
1235static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1236{
1237        int rc = 0;
1238
1239        /* We setup 1 queues for now with a 64k page */
1240        if (!xc->queue[xive_irq_priority].qpage)
1241                rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1242
1243        return rc;
1244}
1245
1246static int xive_prepare_cpu(unsigned int cpu)
1247{
1248        struct xive_cpu *xc;
1249
1250        xc = per_cpu(xive_cpu, cpu);
1251        if (!xc) {
1252                struct device_node *np;
1253
1254                xc = kzalloc_node(sizeof(struct xive_cpu),
1255                                  GFP_KERNEL, cpu_to_node(cpu));
1256                if (!xc)
1257                        return -ENOMEM;
1258                np = of_get_cpu_node(cpu, NULL);
1259                if (np)
1260                        xc->chip_id = of_get_ibm_chip_id(np);
1261                of_node_put(np);
1262
1263                per_cpu(xive_cpu, cpu) = xc;
1264        }
1265
1266        /* Setup EQs if not already */
1267        return xive_setup_cpu_queues(cpu, xc);
1268}
1269
1270static void xive_setup_cpu(void)
1271{
1272        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1273
1274        /* The backend might have additional things to do */
1275        if (xive_ops->setup_cpu)
1276                xive_ops->setup_cpu(smp_processor_id(), xc);
1277
1278        /* Set CPPR to 0xff to enable flow of interrupts */
1279        xc->cppr = 0xff;
1280        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1281}
1282
1283#ifdef CONFIG_SMP
1284void xive_smp_setup_cpu(void)
1285{
1286        pr_devel("SMP setup CPU %d\n", smp_processor_id());
1287
1288        /* This will have already been done on the boot CPU */
1289        if (smp_processor_id() != boot_cpuid)
1290                xive_setup_cpu();
1291
1292}
1293
1294int xive_smp_prepare_cpu(unsigned int cpu)
1295{
1296        int rc;
1297
1298        /* Allocate per-CPU data and queues */
1299        rc = xive_prepare_cpu(cpu);
1300        if (rc)
1301                return rc;
1302
1303        /* Allocate and setup IPI for the new CPU */
1304        return xive_setup_cpu_ipi(cpu);
1305}
1306
1307#ifdef CONFIG_HOTPLUG_CPU
1308static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1309{
1310        u32 irq;
1311
1312        /* We assume local irqs are disabled */
1313        WARN_ON(!irqs_disabled());
1314
1315        /* Check what's already in the CPU queue */
1316        while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1317                /*
1318                 * We need to re-route that interrupt to its new destination.
1319                 * First get and lock the descriptor
1320                 */
1321                struct irq_desc *desc = irq_to_desc(irq);
1322                struct irq_data *d = irq_desc_get_irq_data(desc);
1323                struct xive_irq_data *xd;
1324                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1325
1326                /*
1327                 * Ignore anything that isn't a XIVE irq and ignore
1328                 * IPIs, so can just be dropped.
1329                 */
1330                if (d->domain != xive_irq_domain || hw_irq == 0)
1331                        continue;
1332
1333                /*
1334                 * The IRQ should have already been re-routed, it's just a
1335                 * stale in the old queue, so re-trigger it in order to make
1336                 * it reach is new destination.
1337                 */
1338#ifdef DEBUG_FLUSH
1339                pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1340                        cpu, irq);
1341#endif
1342                raw_spin_lock(&desc->lock);
1343                xd = irq_desc_get_handler_data(desc);
1344
1345                /*
1346                 * For LSIs, we EOI, this will cause a resend if it's
1347                 * still asserted. Otherwise do an MSI retrigger.
1348                 */
1349                if (xd->flags & XIVE_IRQ_FLAG_LSI)
1350                        xive_do_source_eoi(irqd_to_hwirq(d), xd);
1351                else
1352                        xive_irq_retrigger(d);
1353
1354                raw_spin_unlock(&desc->lock);
1355        }
1356}
1357
1358void xive_smp_disable_cpu(void)
1359{
1360        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1361        unsigned int cpu = smp_processor_id();
1362
1363        /* Migrate interrupts away from the CPU */
1364        irq_migrate_all_off_this_cpu();
1365
1366        /* Set CPPR to 0 to disable flow of interrupts */
1367        xc->cppr = 0;
1368        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1369
1370        /* Flush everything still in the queue */
1371        xive_flush_cpu_queue(cpu, xc);
1372
1373        /* Re-enable CPPR  */
1374        xc->cppr = 0xff;
1375        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1376}
1377
1378void xive_flush_interrupt(void)
1379{
1380        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1381        unsigned int cpu = smp_processor_id();
1382
1383        /* Called if an interrupt occurs while the CPU is hot unplugged */
1384        xive_flush_cpu_queue(cpu, xc);
1385}
1386
1387#endif /* CONFIG_HOTPLUG_CPU */
1388
1389#endif /* CONFIG_SMP */
1390
1391void xive_teardown_cpu(void)
1392{
1393        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1394        unsigned int cpu = smp_processor_id();
1395
1396        /* Set CPPR to 0 to disable flow of interrupts */
1397        xc->cppr = 0;
1398        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1399
1400        if (xive_ops->teardown_cpu)
1401                xive_ops->teardown_cpu(cpu, xc);
1402
1403#ifdef CONFIG_SMP
1404        /* Get rid of IPI */
1405        xive_cleanup_cpu_ipi(cpu, xc);
1406#endif
1407
1408        /* Disable and free the queues */
1409        xive_cleanup_cpu_queues(cpu, xc);
1410}
1411
1412void xive_shutdown(void)
1413{
1414        xive_ops->shutdown();
1415}
1416
1417bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1418                           u8 max_prio)
1419{
1420        xive_tima = area;
1421        xive_tima_offset = offset;
1422        xive_ops = ops;
1423        xive_irq_priority = max_prio;
1424
1425        ppc_md.get_irq = xive_get_irq;
1426        __xive_enabled = true;
1427
1428        pr_devel("Initializing host..\n");
1429        xive_init_host();
1430
1431        pr_devel("Initializing boot CPU..\n");
1432
1433        /* Allocate per-CPU data and queues */
1434        xive_prepare_cpu(smp_processor_id());
1435
1436        /* Get ready for interrupts */
1437        xive_setup_cpu();
1438
1439        pr_info("Interrupt handling initialized with %s backend\n",
1440                xive_ops->name);
1441        pr_info("Using priority %d for all interrupts\n", max_prio);
1442
1443        return true;
1444}
1445
1446__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1447{
1448        unsigned int alloc_order;
1449        struct page *pages;
1450        __be32 *qpage;
1451
1452        alloc_order = xive_alloc_order(queue_shift);
1453        pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1454        if (!pages)
1455                return ERR_PTR(-ENOMEM);
1456        qpage = (__be32 *)page_address(pages);
1457        memset(qpage, 0, 1 << queue_shift);
1458
1459        return qpage;
1460}
1461
1462static int __init xive_off(char *arg)
1463{
1464        xive_cmdline_disabled = true;
1465        return 0;
1466}
1467__setup("xive=off", xive_off);
1468