linux/arch/x86/include/asm/processor.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_PROCESSOR_H
   3#define _ASM_X86_PROCESSOR_H
   4
   5#include <asm/processor-flags.h>
   6
   7/* Forward declaration, a strange C thing */
   8struct task_struct;
   9struct mm_struct;
  10struct vm86;
  11
  12#include <asm/math_emu.h>
  13#include <asm/segment.h>
  14#include <asm/types.h>
  15#include <uapi/asm/sigcontext.h>
  16#include <asm/current.h>
  17#include <asm/cpufeatures.h>
  18#include <asm/page.h>
  19#include <asm/pgtable_types.h>
  20#include <asm/percpu.h>
  21#include <asm/msr.h>
  22#include <asm/desc_defs.h>
  23#include <asm/nops.h>
  24#include <asm/special_insns.h>
  25#include <asm/fpu/types.h>
  26#include <asm/unwind_hints.h>
  27
  28#include <linux/personality.h>
  29#include <linux/cache.h>
  30#include <linux/threads.h>
  31#include <linux/math64.h>
  32#include <linux/err.h>
  33#include <linux/irqflags.h>
  34#include <linux/mem_encrypt.h>
  35
  36/*
  37 * We handle most unaligned accesses in hardware.  On the other hand
  38 * unaligned DMA can be quite expensive on some Nehalem processors.
  39 *
  40 * Based on this we disable the IP header alignment in network drivers.
  41 */
  42#define NET_IP_ALIGN    0
  43
  44#define HBP_NUM 4
  45
  46/*
  47 * These alignment constraints are for performance in the vSMP case,
  48 * but in the task_struct case we must also meet hardware imposed
  49 * alignment requirements of the FPU state:
  50 */
  51#ifdef CONFIG_X86_VSMP
  52# define ARCH_MIN_TASKALIGN             (1 << INTERNODE_CACHE_SHIFT)
  53# define ARCH_MIN_MMSTRUCT_ALIGN        (1 << INTERNODE_CACHE_SHIFT)
  54#else
  55# define ARCH_MIN_TASKALIGN             __alignof__(union fpregs_state)
  56# define ARCH_MIN_MMSTRUCT_ALIGN        0
  57#endif
  58
  59enum tlb_infos {
  60        ENTRIES,
  61        NR_INFO
  62};
  63
  64extern u16 __read_mostly tlb_lli_4k[NR_INFO];
  65extern u16 __read_mostly tlb_lli_2m[NR_INFO];
  66extern u16 __read_mostly tlb_lli_4m[NR_INFO];
  67extern u16 __read_mostly tlb_lld_4k[NR_INFO];
  68extern u16 __read_mostly tlb_lld_2m[NR_INFO];
  69extern u16 __read_mostly tlb_lld_4m[NR_INFO];
  70extern u16 __read_mostly tlb_lld_1g[NR_INFO];
  71
  72/*
  73 *  CPU type and hardware bug flags. Kept separately for each CPU.
  74 *  Members of this structure are referenced in head_32.S, so think twice
  75 *  before touching them. [mj]
  76 */
  77
  78struct cpuinfo_x86 {
  79        __u8                    x86;            /* CPU family */
  80        __u8                    x86_vendor;     /* CPU vendor */
  81        __u8                    x86_model;
  82        __u8                    x86_stepping;
  83#ifdef CONFIG_X86_64
  84        /* Number of 4K pages in DTLB/ITLB combined(in pages): */
  85        int                     x86_tlbsize;
  86#endif
  87        __u8                    x86_virt_bits;
  88        __u8                    x86_phys_bits;
  89        /* CPUID returned core id bits: */
  90        __u8                    x86_coreid_bits;
  91        __u8                    cu_id;
  92        /* Max extended CPUID function supported: */
  93        __u32                   extended_cpuid_level;
  94        /* Maximum supported CPUID level, -1=no CPUID: */
  95        int                     cpuid_level;
  96        __u32                   x86_capability[NCAPINTS + NBUGINTS];
  97        char                    x86_vendor_id[16];
  98        char                    x86_model_id[64];
  99        /* in KB - valid for CPUS which support this call: */
 100        unsigned int            x86_cache_size;
 101        int                     x86_cache_alignment;    /* In bytes */
 102        /* Cache QoS architectural values: */
 103        int                     x86_cache_max_rmid;     /* max index */
 104        int                     x86_cache_occ_scale;    /* scale to bytes */
 105        int                     x86_power;
 106        unsigned long           loops_per_jiffy;
 107        /* cpuid returned max cores value: */
 108        u16                      x86_max_cores;
 109        u16                     apicid;
 110        u16                     initial_apicid;
 111        u16                     x86_clflush_size;
 112        /* number of cores as seen by the OS: */
 113        u16                     booted_cores;
 114        /* Physical processor id: */
 115        u16                     phys_proc_id;
 116        /* Logical processor id: */
 117        u16                     logical_proc_id;
 118        /* Core id: */
 119        u16                     cpu_core_id;
 120        /* Index into per_cpu list: */
 121        u16                     cpu_index;
 122        u32                     microcode;
 123        /* Address space bits used by the cache internally */
 124        u8                      x86_cache_bits;
 125        unsigned                initialized : 1;
 126} __randomize_layout;
 127
 128struct cpuid_regs {
 129        u32 eax, ebx, ecx, edx;
 130};
 131
 132enum cpuid_regs_idx {
 133        CPUID_EAX = 0,
 134        CPUID_EBX,
 135        CPUID_ECX,
 136        CPUID_EDX,
 137};
 138
 139#define X86_VENDOR_INTEL        0
 140#define X86_VENDOR_CYRIX        1
 141#define X86_VENDOR_AMD          2
 142#define X86_VENDOR_UMC          3
 143#define X86_VENDOR_CENTAUR      5
 144#define X86_VENDOR_TRANSMETA    7
 145#define X86_VENDOR_NSC          8
 146#define X86_VENDOR_HYGON        9
 147#define X86_VENDOR_NUM          10
 148
 149#define X86_VENDOR_UNKNOWN      0xff
 150
 151/*
 152 * capabilities of CPUs
 153 */
 154extern struct cpuinfo_x86       boot_cpu_data;
 155extern struct cpuinfo_x86       new_cpu_data;
 156
 157extern struct x86_hw_tss        doublefault_tss;
 158extern __u32                    cpu_caps_cleared[NCAPINTS + NBUGINTS];
 159extern __u32                    cpu_caps_set[NCAPINTS + NBUGINTS];
 160
 161#ifdef CONFIG_SMP
 162DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 163#define cpu_data(cpu)           per_cpu(cpu_info, cpu)
 164#else
 165#define cpu_info                boot_cpu_data
 166#define cpu_data(cpu)           boot_cpu_data
 167#endif
 168
 169extern const struct seq_operations cpuinfo_op;
 170
 171#define cache_line_size()       (boot_cpu_data.x86_cache_alignment)
 172
 173extern void cpu_detect(struct cpuinfo_x86 *c);
 174
 175static inline unsigned long long l1tf_pfn_limit(void)
 176{
 177        return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
 178}
 179
 180extern void early_cpu_init(void);
 181extern void identify_boot_cpu(void);
 182extern void identify_secondary_cpu(struct cpuinfo_x86 *);
 183extern void print_cpu_info(struct cpuinfo_x86 *);
 184void print_cpu_msr(struct cpuinfo_x86 *);
 185
 186#ifdef CONFIG_X86_32
 187extern int have_cpuid_p(void);
 188#else
 189static inline int have_cpuid_p(void)
 190{
 191        return 1;
 192}
 193#endif
 194static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
 195                                unsigned int *ecx, unsigned int *edx)
 196{
 197        /* ecx is often an input as well as an output. */
 198        asm volatile("cpuid"
 199            : "=a" (*eax),
 200              "=b" (*ebx),
 201              "=c" (*ecx),
 202              "=d" (*edx)
 203            : "0" (*eax), "2" (*ecx)
 204            : "memory");
 205}
 206
 207#define native_cpuid_reg(reg)                                   \
 208static inline unsigned int native_cpuid_##reg(unsigned int op)  \
 209{                                                               \
 210        unsigned int eax = op, ebx, ecx = 0, edx;               \
 211                                                                \
 212        native_cpuid(&eax, &ebx, &ecx, &edx);                   \
 213                                                                \
 214        return reg;                                             \
 215}
 216
 217/*
 218 * Native CPUID functions returning a single datum.
 219 */
 220native_cpuid_reg(eax)
 221native_cpuid_reg(ebx)
 222native_cpuid_reg(ecx)
 223native_cpuid_reg(edx)
 224
 225/*
 226 * Friendlier CR3 helpers.
 227 */
 228static inline unsigned long read_cr3_pa(void)
 229{
 230        return __read_cr3() & CR3_ADDR_MASK;
 231}
 232
 233static inline unsigned long native_read_cr3_pa(void)
 234{
 235        return __native_read_cr3() & CR3_ADDR_MASK;
 236}
 237
 238static inline void load_cr3(pgd_t *pgdir)
 239{
 240        write_cr3(__sme_pa(pgdir));
 241}
 242
 243/*
 244 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
 245 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
 246 * unrelated to the task-switch mechanism:
 247 */
 248#ifdef CONFIG_X86_32
 249/* This is the TSS defined by the hardware. */
 250struct x86_hw_tss {
 251        unsigned short          back_link, __blh;
 252        unsigned long           sp0;
 253        unsigned short          ss0, __ss0h;
 254        unsigned long           sp1;
 255
 256        /*
 257         * We don't use ring 1, so ss1 is a convenient scratch space in
 258         * the same cacheline as sp0.  We use ss1 to cache the value in
 259         * MSR_IA32_SYSENTER_CS.  When we context switch
 260         * MSR_IA32_SYSENTER_CS, we first check if the new value being
 261         * written matches ss1, and, if it's not, then we wrmsr the new
 262         * value and update ss1.
 263         *
 264         * The only reason we context switch MSR_IA32_SYSENTER_CS is
 265         * that we set it to zero in vm86 tasks to avoid corrupting the
 266         * stack if we were to go through the sysenter path from vm86
 267         * mode.
 268         */
 269        unsigned short          ss1;    /* MSR_IA32_SYSENTER_CS */
 270
 271        unsigned short          __ss1h;
 272        unsigned long           sp2;
 273        unsigned short          ss2, __ss2h;
 274        unsigned long           __cr3;
 275        unsigned long           ip;
 276        unsigned long           flags;
 277        unsigned long           ax;
 278        unsigned long           cx;
 279        unsigned long           dx;
 280        unsigned long           bx;
 281        unsigned long           sp;
 282        unsigned long           bp;
 283        unsigned long           si;
 284        unsigned long           di;
 285        unsigned short          es, __esh;
 286        unsigned short          cs, __csh;
 287        unsigned short          ss, __ssh;
 288        unsigned short          ds, __dsh;
 289        unsigned short          fs, __fsh;
 290        unsigned short          gs, __gsh;
 291        unsigned short          ldt, __ldth;
 292        unsigned short          trace;
 293        unsigned short          io_bitmap_base;
 294
 295} __attribute__((packed));
 296#else
 297struct x86_hw_tss {
 298        u32                     reserved1;
 299        u64                     sp0;
 300
 301        /*
 302         * We store cpu_current_top_of_stack in sp1 so it's always accessible.
 303         * Linux does not use ring 1, so sp1 is not otherwise needed.
 304         */
 305        u64                     sp1;
 306
 307        /*
 308         * Since Linux does not use ring 2, the 'sp2' slot is unused by
 309         * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
 310         * the user RSP value.
 311         */
 312        u64                     sp2;
 313
 314        u64                     reserved2;
 315        u64                     ist[7];
 316        u32                     reserved3;
 317        u32                     reserved4;
 318        u16                     reserved5;
 319        u16                     io_bitmap_base;
 320
 321} __attribute__((packed));
 322#endif
 323
 324/*
 325 * IO-bitmap sizes:
 326 */
 327#define IO_BITMAP_BITS                  65536
 328#define IO_BITMAP_BYTES                 (IO_BITMAP_BITS/8)
 329#define IO_BITMAP_LONGS                 (IO_BITMAP_BYTES/sizeof(long))
 330#define IO_BITMAP_OFFSET                (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
 331#define INVALID_IO_BITMAP_OFFSET        0x8000
 332
 333struct entry_stack {
 334        unsigned long           words[64];
 335};
 336
 337struct entry_stack_page {
 338        struct entry_stack stack;
 339} __aligned(PAGE_SIZE);
 340
 341struct tss_struct {
 342        /*
 343         * The fixed hardware portion.  This must not cross a page boundary
 344         * at risk of violating the SDM's advice and potentially triggering
 345         * errata.
 346         */
 347        struct x86_hw_tss       x86_tss;
 348
 349        /*
 350         * The extra 1 is there because the CPU will access an
 351         * additional byte beyond the end of the IO permission
 352         * bitmap. The extra byte must be all 1 bits, and must
 353         * be within the limit.
 354         */
 355        unsigned long           io_bitmap[IO_BITMAP_LONGS + 1];
 356} __aligned(PAGE_SIZE);
 357
 358DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
 359
 360/*
 361 * sizeof(unsigned long) coming from an extra "long" at the end
 362 * of the iobitmap.
 363 *
 364 * -1? seg base+limit should be pointing to the address of the
 365 * last valid byte
 366 */
 367#define __KERNEL_TSS_LIMIT      \
 368        (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
 369
 370#ifdef CONFIG_X86_32
 371DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
 372#else
 373/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
 374#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
 375#endif
 376
 377/*
 378 * Save the original ist values for checking stack pointers during debugging
 379 */
 380struct orig_ist {
 381        unsigned long           ist[7];
 382};
 383
 384#ifdef CONFIG_X86_64
 385DECLARE_PER_CPU(struct orig_ist, orig_ist);
 386
 387union irq_stack_union {
 388        char irq_stack[IRQ_STACK_SIZE];
 389        /*
 390         * GCC hardcodes the stack canary as %gs:40.  Since the
 391         * irq_stack is the object at %gs:0, we reserve the bottom
 392         * 48 bytes of the irq stack for the canary.
 393         */
 394        struct {
 395                char gs_base[40];
 396                unsigned long stack_canary;
 397        };
 398};
 399
 400DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
 401DECLARE_INIT_PER_CPU(irq_stack_union);
 402
 403static inline unsigned long cpu_kernelmode_gs_base(int cpu)
 404{
 405        return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
 406}
 407
 408DECLARE_PER_CPU(char *, irq_stack_ptr);
 409DECLARE_PER_CPU(unsigned int, irq_count);
 410extern asmlinkage void ignore_sysret(void);
 411
 412#if IS_ENABLED(CONFIG_KVM)
 413/* Save actual FS/GS selectors and bases to current->thread */
 414void save_fsgs_for_kvm(void);
 415#endif
 416#else   /* X86_64 */
 417#ifdef CONFIG_STACKPROTECTOR
 418/*
 419 * Make sure stack canary segment base is cached-aligned:
 420 *   "For Intel Atom processors, avoid non zero segment base address
 421 *    that is not aligned to cache line boundary at all cost."
 422 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 423 */
 424struct stack_canary {
 425        char __pad[20];         /* canary at %gs:20 */
 426        unsigned long canary;
 427};
 428DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
 429#endif
 430/*
 431 * per-CPU IRQ handling stacks
 432 */
 433struct irq_stack {
 434        u32                     stack[THREAD_SIZE/sizeof(u32)];
 435} __aligned(THREAD_SIZE);
 436
 437DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
 438DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
 439#endif  /* X86_64 */
 440
 441extern unsigned int fpu_kernel_xstate_size;
 442extern unsigned int fpu_user_xstate_size;
 443
 444struct perf_event;
 445
 446typedef struct {
 447        unsigned long           seg;
 448} mm_segment_t;
 449
 450struct thread_struct {
 451        /* Cached TLS descriptors: */
 452        struct desc_struct      tls_array[GDT_ENTRY_TLS_ENTRIES];
 453#ifdef CONFIG_X86_32
 454        unsigned long           sp0;
 455#endif
 456        unsigned long           sp;
 457#ifdef CONFIG_X86_32
 458        unsigned long           sysenter_cs;
 459#else
 460        unsigned short          es;
 461        unsigned short          ds;
 462        unsigned short          fsindex;
 463        unsigned short          gsindex;
 464#endif
 465
 466#ifdef CONFIG_X86_64
 467        unsigned long           fsbase;
 468        unsigned long           gsbase;
 469#else
 470        /*
 471         * XXX: this could presumably be unsigned short.  Alternatively,
 472         * 32-bit kernels could be taught to use fsindex instead.
 473         */
 474        unsigned long fs;
 475        unsigned long gs;
 476#endif
 477
 478        /* Save middle states of ptrace breakpoints */
 479        struct perf_event       *ptrace_bps[HBP_NUM];
 480        /* Debug status used for traps, single steps, etc... */
 481        unsigned long           debugreg6;
 482        /* Keep track of the exact dr7 value set by the user */
 483        unsigned long           ptrace_dr7;
 484        /* Fault info: */
 485        unsigned long           cr2;
 486        unsigned long           trap_nr;
 487        unsigned long           error_code;
 488#ifdef CONFIG_VM86
 489        /* Virtual 86 mode info */
 490        struct vm86             *vm86;
 491#endif
 492        /* IO permissions: */
 493        unsigned long           *io_bitmap_ptr;
 494        unsigned long           iopl;
 495        /* Max allowed port in the bitmap, in bytes: */
 496        unsigned                io_bitmap_max;
 497
 498        mm_segment_t            addr_limit;
 499
 500        unsigned int            sig_on_uaccess_err:1;
 501        unsigned int            uaccess_err:1;  /* uaccess failed */
 502
 503        /* Floating point and extended processor state */
 504        struct fpu              fpu;
 505        /*
 506         * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
 507         * the end.
 508         */
 509};
 510
 511/* Whitelist the FPU state from the task_struct for hardened usercopy. */
 512static inline void arch_thread_struct_whitelist(unsigned long *offset,
 513                                                unsigned long *size)
 514{
 515        *offset = offsetof(struct thread_struct, fpu.state);
 516        *size = fpu_kernel_xstate_size;
 517}
 518
 519/*
 520 * Thread-synchronous status.
 521 *
 522 * This is different from the flags in that nobody else
 523 * ever touches our thread-synchronous status, so we don't
 524 * have to worry about atomic accesses.
 525 */
 526#define TS_COMPAT               0x0002  /* 32bit syscall active (64BIT)*/
 527
 528/*
 529 * Set IOPL bits in EFLAGS from given mask
 530 */
 531static inline void native_set_iopl_mask(unsigned mask)
 532{
 533#ifdef CONFIG_X86_32
 534        unsigned int reg;
 535
 536        asm volatile ("pushfl;"
 537                      "popl %0;"
 538                      "andl %1, %0;"
 539                      "orl %2, %0;"
 540                      "pushl %0;"
 541                      "popfl"
 542                      : "=&r" (reg)
 543                      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
 544#endif
 545}
 546
 547static inline void
 548native_load_sp0(unsigned long sp0)
 549{
 550        this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 551}
 552
 553static inline void native_swapgs(void)
 554{
 555#ifdef CONFIG_X86_64
 556        asm volatile("swapgs" ::: "memory");
 557#endif
 558}
 559
 560static inline unsigned long current_top_of_stack(void)
 561{
 562        /*
 563         *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
 564         *  and around vm86 mode and sp0 on x86_64 is special because of the
 565         *  entry trampoline.
 566         */
 567        return this_cpu_read_stable(cpu_current_top_of_stack);
 568}
 569
 570static inline bool on_thread_stack(void)
 571{
 572        return (unsigned long)(current_top_of_stack() -
 573                               current_stack_pointer) < THREAD_SIZE;
 574}
 575
 576#ifdef CONFIG_PARAVIRT_XXL
 577#include <asm/paravirt.h>
 578#else
 579#define __cpuid                 native_cpuid
 580
 581static inline void load_sp0(unsigned long sp0)
 582{
 583        native_load_sp0(sp0);
 584}
 585
 586#define set_iopl_mask native_set_iopl_mask
 587#endif /* CONFIG_PARAVIRT_XXL */
 588
 589/* Free all resources held by a thread. */
 590extern void release_thread(struct task_struct *);
 591
 592unsigned long get_wchan(struct task_struct *p);
 593
 594/*
 595 * Generic CPUID function
 596 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 597 * resulting in stale register contents being returned.
 598 */
 599static inline void cpuid(unsigned int op,
 600                         unsigned int *eax, unsigned int *ebx,
 601                         unsigned int *ecx, unsigned int *edx)
 602{
 603        *eax = op;
 604        *ecx = 0;
 605        __cpuid(eax, ebx, ecx, edx);
 606}
 607
 608/* Some CPUID calls want 'count' to be placed in ecx */
 609static inline void cpuid_count(unsigned int op, int count,
 610                               unsigned int *eax, unsigned int *ebx,
 611                               unsigned int *ecx, unsigned int *edx)
 612{
 613        *eax = op;
 614        *ecx = count;
 615        __cpuid(eax, ebx, ecx, edx);
 616}
 617
 618/*
 619 * CPUID functions returning a single datum
 620 */
 621static inline unsigned int cpuid_eax(unsigned int op)
 622{
 623        unsigned int eax, ebx, ecx, edx;
 624
 625        cpuid(op, &eax, &ebx, &ecx, &edx);
 626
 627        return eax;
 628}
 629
 630static inline unsigned int cpuid_ebx(unsigned int op)
 631{
 632        unsigned int eax, ebx, ecx, edx;
 633
 634        cpuid(op, &eax, &ebx, &ecx, &edx);
 635
 636        return ebx;
 637}
 638
 639static inline unsigned int cpuid_ecx(unsigned int op)
 640{
 641        unsigned int eax, ebx, ecx, edx;
 642
 643        cpuid(op, &eax, &ebx, &ecx, &edx);
 644
 645        return ecx;
 646}
 647
 648static inline unsigned int cpuid_edx(unsigned int op)
 649{
 650        unsigned int eax, ebx, ecx, edx;
 651
 652        cpuid(op, &eax, &ebx, &ecx, &edx);
 653
 654        return edx;
 655}
 656
 657/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
 658static __always_inline void rep_nop(void)
 659{
 660        asm volatile("rep; nop" ::: "memory");
 661}
 662
 663static __always_inline void cpu_relax(void)
 664{
 665        rep_nop();
 666}
 667
 668/*
 669 * This function forces the icache and prefetched instruction stream to
 670 * catch up with reality in two very specific cases:
 671 *
 672 *  a) Text was modified using one virtual address and is about to be executed
 673 *     from the same physical page at a different virtual address.
 674 *
 675 *  b) Text was modified on a different CPU, may subsequently be
 676 *     executed on this CPU, and you want to make sure the new version
 677 *     gets executed.  This generally means you're calling this in a IPI.
 678 *
 679 * If you're calling this for a different reason, you're probably doing
 680 * it wrong.
 681 */
 682static inline void sync_core(void)
 683{
 684        /*
 685         * There are quite a few ways to do this.  IRET-to-self is nice
 686         * because it works on every CPU, at any CPL (so it's compatible
 687         * with paravirtualization), and it never exits to a hypervisor.
 688         * The only down sides are that it's a bit slow (it seems to be
 689         * a bit more than 2x slower than the fastest options) and that
 690         * it unmasks NMIs.  The "push %cs" is needed because, in
 691         * paravirtual environments, __KERNEL_CS may not be a valid CS
 692         * value when we do IRET directly.
 693         *
 694         * In case NMI unmasking or performance ever becomes a problem,
 695         * the next best option appears to be MOV-to-CR2 and an
 696         * unconditional jump.  That sequence also works on all CPUs,
 697         * but it will fault at CPL3 (i.e. Xen PV).
 698         *
 699         * CPUID is the conventional way, but it's nasty: it doesn't
 700         * exist on some 486-like CPUs, and it usually exits to a
 701         * hypervisor.
 702         *
 703         * Like all of Linux's memory ordering operations, this is a
 704         * compiler barrier as well.
 705         */
 706#ifdef CONFIG_X86_32
 707        asm volatile (
 708                "pushfl\n\t"
 709                "pushl %%cs\n\t"
 710                "pushl $1f\n\t"
 711                "iret\n\t"
 712                "1:"
 713                : ASM_CALL_CONSTRAINT : : "memory");
 714#else
 715        unsigned int tmp;
 716
 717        asm volatile (
 718                UNWIND_HINT_SAVE
 719                "mov %%ss, %0\n\t"
 720                "pushq %q0\n\t"
 721                "pushq %%rsp\n\t"
 722                "addq $8, (%%rsp)\n\t"
 723                "pushfq\n\t"
 724                "mov %%cs, %0\n\t"
 725                "pushq %q0\n\t"
 726                "pushq $1f\n\t"
 727                "iretq\n\t"
 728                UNWIND_HINT_RESTORE
 729                "1:"
 730                : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
 731#endif
 732}
 733
 734extern void select_idle_routine(const struct cpuinfo_x86 *c);
 735extern void amd_e400_c1e_apic_setup(void);
 736
 737extern unsigned long            boot_option_idle_override;
 738
 739enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
 740                         IDLE_POLL};
 741
 742extern void enable_sep_cpu(void);
 743extern int sysenter_setup(void);
 744
 745
 746/* Defined in head.S */
 747extern struct desc_ptr          early_gdt_descr;
 748
 749extern void switch_to_new_gdt(int);
 750extern void load_direct_gdt(int);
 751extern void load_fixmap_gdt(int);
 752extern void load_percpu_segment(int);
 753extern void cpu_init(void);
 754
 755static inline unsigned long get_debugctlmsr(void)
 756{
 757        unsigned long debugctlmsr = 0;
 758
 759#ifndef CONFIG_X86_DEBUGCTLMSR
 760        if (boot_cpu_data.x86 < 6)
 761                return 0;
 762#endif
 763        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
 764
 765        return debugctlmsr;
 766}
 767
 768static inline void update_debugctlmsr(unsigned long debugctlmsr)
 769{
 770#ifndef CONFIG_X86_DEBUGCTLMSR
 771        if (boot_cpu_data.x86 < 6)
 772                return;
 773#endif
 774        wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
 775}
 776
 777extern void set_task_blockstep(struct task_struct *task, bool on);
 778
 779/* Boot loader type from the setup header: */
 780extern int                      bootloader_type;
 781extern int                      bootloader_version;
 782
 783extern char                     ignore_fpu_irq;
 784
 785#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
 786#define ARCH_HAS_PREFETCHW
 787#define ARCH_HAS_SPINLOCK_PREFETCH
 788
 789#ifdef CONFIG_X86_32
 790# define BASE_PREFETCH          ""
 791# define ARCH_HAS_PREFETCH
 792#else
 793# define BASE_PREFETCH          "prefetcht0 %P1"
 794#endif
 795
 796/*
 797 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 798 *
 799 * It's not worth to care about 3dnow prefetches for the K6
 800 * because they are microcoded there and very slow.
 801 */
 802static inline void prefetch(const void *x)
 803{
 804        alternative_input(BASE_PREFETCH, "prefetchnta %P1",
 805                          X86_FEATURE_XMM,
 806                          "m" (*(const char *)x));
 807}
 808
 809/*
 810 * 3dnow prefetch to get an exclusive cache line.
 811 * Useful for spinlocks to avoid one state transition in the
 812 * cache coherency protocol:
 813 */
 814static inline void prefetchw(const void *x)
 815{
 816        alternative_input(BASE_PREFETCH, "prefetchw %P1",
 817                          X86_FEATURE_3DNOWPREFETCH,
 818                          "m" (*(const char *)x));
 819}
 820
 821static inline void spin_lock_prefetch(const void *x)
 822{
 823        prefetchw(x);
 824}
 825
 826#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
 827                           TOP_OF_KERNEL_STACK_PADDING)
 828
 829#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
 830
 831#define task_pt_regs(task) \
 832({                                                                      \
 833        unsigned long __ptr = (unsigned long)task_stack_page(task);     \
 834        __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;             \
 835        ((struct pt_regs *)__ptr) - 1;                                  \
 836})
 837
 838#ifdef CONFIG_X86_32
 839/*
 840 * User space process size: 3GB (default).
 841 */
 842#define IA32_PAGE_OFFSET        PAGE_OFFSET
 843#define TASK_SIZE               PAGE_OFFSET
 844#define TASK_SIZE_LOW           TASK_SIZE
 845#define TASK_SIZE_MAX           TASK_SIZE
 846#define DEFAULT_MAP_WINDOW      TASK_SIZE
 847#define STACK_TOP               TASK_SIZE
 848#define STACK_TOP_MAX           STACK_TOP
 849
 850#define INIT_THREAD  {                                                    \
 851        .sp0                    = TOP_OF_INIT_STACK,                      \
 852        .sysenter_cs            = __KERNEL_CS,                            \
 853        .io_bitmap_ptr          = NULL,                                   \
 854        .addr_limit             = KERNEL_DS,                              \
 855}
 856
 857#define KSTK_ESP(task)          (task_pt_regs(task)->sp)
 858
 859#else
 860/*
 861 * User space process size.  This is the first address outside the user range.
 862 * There are a few constraints that determine this:
 863 *
 864 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
 865 * address, then that syscall will enter the kernel with a
 866 * non-canonical return address, and SYSRET will explode dangerously.
 867 * We avoid this particular problem by preventing anything executable
 868 * from being mapped at the maximum canonical address.
 869 *
 870 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
 871 * CPUs malfunction if they execute code from the highest canonical page.
 872 * They'll speculate right off the end of the canonical space, and
 873 * bad things happen.  This is worked around in the same way as the
 874 * Intel problem.
 875 *
 876 * With page table isolation enabled, we map the LDT in ... [stay tuned]
 877 */
 878#define TASK_SIZE_MAX   ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
 879
 880#define DEFAULT_MAP_WINDOW      ((1UL << 47) - PAGE_SIZE)
 881
 882/* This decides where the kernel will search for a free chunk of vm
 883 * space during mmap's.
 884 */
 885#define IA32_PAGE_OFFSET        ((current->personality & ADDR_LIMIT_3GB) ? \
 886                                        0xc0000000 : 0xFFFFe000)
 887
 888#define TASK_SIZE_LOW           (test_thread_flag(TIF_ADDR32) ? \
 889                                        IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
 890#define TASK_SIZE               (test_thread_flag(TIF_ADDR32) ? \
 891                                        IA32_PAGE_OFFSET : TASK_SIZE_MAX)
 892#define TASK_SIZE_OF(child)     ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
 893                                        IA32_PAGE_OFFSET : TASK_SIZE_MAX)
 894
 895#define STACK_TOP               TASK_SIZE_LOW
 896#define STACK_TOP_MAX           TASK_SIZE_MAX
 897
 898#define INIT_THREAD  {                                          \
 899        .addr_limit             = KERNEL_DS,                    \
 900}
 901
 902extern unsigned long KSTK_ESP(struct task_struct *task);
 903
 904#endif /* CONFIG_X86_64 */
 905
 906extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
 907                                               unsigned long new_sp);
 908
 909/*
 910 * This decides where the kernel will search for a free chunk of vm
 911 * space during mmap's.
 912 */
 913#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
 914#define TASK_UNMAPPED_BASE              __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
 915
 916#define KSTK_EIP(task)          (task_pt_regs(task)->ip)
 917
 918/* Get/set a process' ability to use the timestamp counter instruction */
 919#define GET_TSC_CTL(adr)        get_tsc_mode((adr))
 920#define SET_TSC_CTL(val)        set_tsc_mode((val))
 921
 922extern int get_tsc_mode(unsigned long adr);
 923extern int set_tsc_mode(unsigned int val);
 924
 925DECLARE_PER_CPU(u64, msr_misc_features_shadow);
 926
 927/* Register/unregister a process' MPX related resource */
 928#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
 929#define MPX_DISABLE_MANAGEMENT()        mpx_disable_management()
 930
 931#ifdef CONFIG_X86_INTEL_MPX
 932extern int mpx_enable_management(void);
 933extern int mpx_disable_management(void);
 934#else
 935static inline int mpx_enable_management(void)
 936{
 937        return -EINVAL;
 938}
 939static inline int mpx_disable_management(void)
 940{
 941        return -EINVAL;
 942}
 943#endif /* CONFIG_X86_INTEL_MPX */
 944
 945#ifdef CONFIG_CPU_SUP_AMD
 946extern u16 amd_get_nb_id(int cpu);
 947extern u32 amd_get_nodes_per_socket(void);
 948#else
 949static inline u16 amd_get_nb_id(int cpu)                { return 0; }
 950static inline u32 amd_get_nodes_per_socket(void)        { return 0; }
 951#endif
 952
 953static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
 954{
 955        uint32_t base, eax, signature[3];
 956
 957        for (base = 0x40000000; base < 0x40010000; base += 0x100) {
 958                cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
 959
 960                if (!memcmp(sig, signature, 12) &&
 961                    (leaves == 0 || ((eax - base) >= leaves)))
 962                        return base;
 963        }
 964
 965        return 0;
 966}
 967
 968extern unsigned long arch_align_stack(unsigned long sp);
 969void free_init_pages(const char *what, unsigned long begin, unsigned long end);
 970extern void free_kernel_image_pages(void *begin, void *end);
 971
 972void default_idle(void);
 973#ifdef  CONFIG_XEN
 974bool xen_set_default_idle(void);
 975#else
 976#define xen_set_default_idle 0
 977#endif
 978
 979void stop_this_cpu(void *dummy);
 980void df_debug(struct pt_regs *regs, long error_code);
 981void microcode_check(void);
 982
 983enum l1tf_mitigations {
 984        L1TF_MITIGATION_OFF,
 985        L1TF_MITIGATION_FLUSH_NOWARN,
 986        L1TF_MITIGATION_FLUSH,
 987        L1TF_MITIGATION_FLUSH_NOSMT,
 988        L1TF_MITIGATION_FULL,
 989        L1TF_MITIGATION_FULL_FORCE
 990};
 991
 992extern enum l1tf_mitigations l1tf_mitigation;
 993
 994#endif /* _ASM_X86_PROCESSOR_H */
 995