linux/crypto/lrw.c
<<
>>
Prefs
   1/* LRW: as defined by Cyril Guyot in
   2 *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
   3 *
   4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
   5 *
   6 * Based on ecb.c
   7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 */
  14/* This implementation is checked against the test vectors in the above
  15 * document and by a test vector provided by Ken Buchanan at
  16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
  17 *
  18 * The test vectors are included in the testing module tcrypt.[ch] */
  19
  20#include <crypto/internal/skcipher.h>
  21#include <crypto/scatterwalk.h>
  22#include <linux/err.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/scatterlist.h>
  27#include <linux/slab.h>
  28
  29#include <crypto/b128ops.h>
  30#include <crypto/gf128mul.h>
  31
  32#define LRW_BLOCK_SIZE 16
  33
  34struct priv {
  35        struct crypto_skcipher *child;
  36
  37        /*
  38         * optimizes multiplying a random (non incrementing, as at the
  39         * start of a new sector) value with key2, we could also have
  40         * used 4k optimization tables or no optimization at all. In the
  41         * latter case we would have to store key2 here
  42         */
  43        struct gf128mul_64k *table;
  44
  45        /*
  46         * stores:
  47         *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
  48         *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
  49         *  key2*{ 0,0,...1,1,1,1,1 }, etc
  50         * needed for optimized multiplication of incrementing values
  51         * with key2
  52         */
  53        be128 mulinc[128];
  54};
  55
  56struct rctx {
  57        be128 t;
  58        struct skcipher_request subreq;
  59};
  60
  61static inline void setbit128_bbe(void *b, int bit)
  62{
  63        __set_bit(bit ^ (0x80 -
  64#ifdef __BIG_ENDIAN
  65                         BITS_PER_LONG
  66#else
  67                         BITS_PER_BYTE
  68#endif
  69                        ), b);
  70}
  71
  72static int setkey(struct crypto_skcipher *parent, const u8 *key,
  73                  unsigned int keylen)
  74{
  75        struct priv *ctx = crypto_skcipher_ctx(parent);
  76        struct crypto_skcipher *child = ctx->child;
  77        int err, bsize = LRW_BLOCK_SIZE;
  78        const u8 *tweak = key + keylen - bsize;
  79        be128 tmp = { 0 };
  80        int i;
  81
  82        crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
  83        crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
  84                                         CRYPTO_TFM_REQ_MASK);
  85        err = crypto_skcipher_setkey(child, key, keylen - bsize);
  86        crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
  87                                          CRYPTO_TFM_RES_MASK);
  88        if (err)
  89                return err;
  90
  91        if (ctx->table)
  92                gf128mul_free_64k(ctx->table);
  93
  94        /* initialize multiplication table for Key2 */
  95        ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
  96        if (!ctx->table)
  97                return -ENOMEM;
  98
  99        /* initialize optimization table */
 100        for (i = 0; i < 128; i++) {
 101                setbit128_bbe(&tmp, i);
 102                ctx->mulinc[i] = tmp;
 103                gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 104        }
 105
 106        return 0;
 107}
 108
 109/*
 110 * Returns the number of trailing '1' bits in the words of the counter, which is
 111 * represented by 4 32-bit words, arranged from least to most significant.
 112 * At the same time, increments the counter by one.
 113 *
 114 * For example:
 115 *
 116 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
 117 * int i = next_index(&counter);
 118 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
 119 */
 120static int next_index(u32 *counter)
 121{
 122        int i, res = 0;
 123
 124        for (i = 0; i < 4; i++) {
 125                if (counter[i] + 1 != 0)
 126                        return res + ffz(counter[i]++);
 127
 128                counter[i] = 0;
 129                res += 32;
 130        }
 131
 132        /*
 133         * If we get here, then x == 128 and we are incrementing the counter
 134         * from all ones to all zeros. This means we must return index 127, i.e.
 135         * the one corresponding to key2*{ 1,...,1 }.
 136         */
 137        return 127;
 138}
 139
 140/*
 141 * We compute the tweak masks twice (both before and after the ECB encryption or
 142 * decryption) to avoid having to allocate a temporary buffer and/or make
 143 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 144 * just doing the next_index() calls again.
 145 */
 146static int xor_tweak(struct skcipher_request *req, bool second_pass)
 147{
 148        const int bs = LRW_BLOCK_SIZE;
 149        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 150        struct priv *ctx = crypto_skcipher_ctx(tfm);
 151        struct rctx *rctx = skcipher_request_ctx(req);
 152        be128 t = rctx->t;
 153        struct skcipher_walk w;
 154        __be32 *iv;
 155        u32 counter[4];
 156        int err;
 157
 158        if (second_pass) {
 159                req = &rctx->subreq;
 160                /* set to our TFM to enforce correct alignment: */
 161                skcipher_request_set_tfm(req, tfm);
 162        }
 163
 164        err = skcipher_walk_virt(&w, req, false);
 165        iv = (__be32 *)w.iv;
 166
 167        counter[0] = be32_to_cpu(iv[3]);
 168        counter[1] = be32_to_cpu(iv[2]);
 169        counter[2] = be32_to_cpu(iv[1]);
 170        counter[3] = be32_to_cpu(iv[0]);
 171
 172        while (w.nbytes) {
 173                unsigned int avail = w.nbytes;
 174                be128 *wsrc;
 175                be128 *wdst;
 176
 177                wsrc = w.src.virt.addr;
 178                wdst = w.dst.virt.addr;
 179
 180                do {
 181                        be128_xor(wdst++, &t, wsrc++);
 182
 183                        /* T <- I*Key2, using the optimization
 184                         * discussed in the specification */
 185                        be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
 186                } while ((avail -= bs) >= bs);
 187
 188                if (second_pass && w.nbytes == w.total) {
 189                        iv[0] = cpu_to_be32(counter[3]);
 190                        iv[1] = cpu_to_be32(counter[2]);
 191                        iv[2] = cpu_to_be32(counter[1]);
 192                        iv[3] = cpu_to_be32(counter[0]);
 193                }
 194
 195                err = skcipher_walk_done(&w, avail);
 196        }
 197
 198        return err;
 199}
 200
 201static int xor_tweak_pre(struct skcipher_request *req)
 202{
 203        return xor_tweak(req, false);
 204}
 205
 206static int xor_tweak_post(struct skcipher_request *req)
 207{
 208        return xor_tweak(req, true);
 209}
 210
 211static void crypt_done(struct crypto_async_request *areq, int err)
 212{
 213        struct skcipher_request *req = areq->data;
 214
 215        if (!err) {
 216                struct rctx *rctx = skcipher_request_ctx(req);
 217
 218                rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 219                err = xor_tweak_post(req);
 220        }
 221
 222        skcipher_request_complete(req, err);
 223}
 224
 225static void init_crypt(struct skcipher_request *req)
 226{
 227        struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 228        struct rctx *rctx = skcipher_request_ctx(req);
 229        struct skcipher_request *subreq = &rctx->subreq;
 230
 231        skcipher_request_set_tfm(subreq, ctx->child);
 232        skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
 233        /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
 234        skcipher_request_set_crypt(subreq, req->dst, req->dst,
 235                                   req->cryptlen, req->iv);
 236
 237        /* calculate first value of T */
 238        memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 239
 240        /* T <- I*Key2 */
 241        gf128mul_64k_bbe(&rctx->t, ctx->table);
 242}
 243
 244static int encrypt(struct skcipher_request *req)
 245{
 246        struct rctx *rctx = skcipher_request_ctx(req);
 247        struct skcipher_request *subreq = &rctx->subreq;
 248
 249        init_crypt(req);
 250        return xor_tweak_pre(req) ?:
 251                crypto_skcipher_encrypt(subreq) ?:
 252                xor_tweak_post(req);
 253}
 254
 255static int decrypt(struct skcipher_request *req)
 256{
 257        struct rctx *rctx = skcipher_request_ctx(req);
 258        struct skcipher_request *subreq = &rctx->subreq;
 259
 260        init_crypt(req);
 261        return xor_tweak_pre(req) ?:
 262                crypto_skcipher_decrypt(subreq) ?:
 263                xor_tweak_post(req);
 264}
 265
 266static int init_tfm(struct crypto_skcipher *tfm)
 267{
 268        struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 269        struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 270        struct priv *ctx = crypto_skcipher_ctx(tfm);
 271        struct crypto_skcipher *cipher;
 272
 273        cipher = crypto_spawn_skcipher(spawn);
 274        if (IS_ERR(cipher))
 275                return PTR_ERR(cipher);
 276
 277        ctx->child = cipher;
 278
 279        crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 280                                         sizeof(struct rctx));
 281
 282        return 0;
 283}
 284
 285static void exit_tfm(struct crypto_skcipher *tfm)
 286{
 287        struct priv *ctx = crypto_skcipher_ctx(tfm);
 288
 289        if (ctx->table)
 290                gf128mul_free_64k(ctx->table);
 291        crypto_free_skcipher(ctx->child);
 292}
 293
 294static void free(struct skcipher_instance *inst)
 295{
 296        crypto_drop_skcipher(skcipher_instance_ctx(inst));
 297        kfree(inst);
 298}
 299
 300static int create(struct crypto_template *tmpl, struct rtattr **tb)
 301{
 302        struct crypto_skcipher_spawn *spawn;
 303        struct skcipher_instance *inst;
 304        struct crypto_attr_type *algt;
 305        struct skcipher_alg *alg;
 306        const char *cipher_name;
 307        char ecb_name[CRYPTO_MAX_ALG_NAME];
 308        int err;
 309
 310        algt = crypto_get_attr_type(tb);
 311        if (IS_ERR(algt))
 312                return PTR_ERR(algt);
 313
 314        if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
 315                return -EINVAL;
 316
 317        cipher_name = crypto_attr_alg_name(tb[1]);
 318        if (IS_ERR(cipher_name))
 319                return PTR_ERR(cipher_name);
 320
 321        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 322        if (!inst)
 323                return -ENOMEM;
 324
 325        spawn = skcipher_instance_ctx(inst);
 326
 327        crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
 328        err = crypto_grab_skcipher(spawn, cipher_name, 0,
 329                                   crypto_requires_sync(algt->type,
 330                                                        algt->mask));
 331        if (err == -ENOENT) {
 332                err = -ENAMETOOLONG;
 333                if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 334                             cipher_name) >= CRYPTO_MAX_ALG_NAME)
 335                        goto err_free_inst;
 336
 337                err = crypto_grab_skcipher(spawn, ecb_name, 0,
 338                                           crypto_requires_sync(algt->type,
 339                                                                algt->mask));
 340        }
 341
 342        if (err)
 343                goto err_free_inst;
 344
 345        alg = crypto_skcipher_spawn_alg(spawn);
 346
 347        err = -EINVAL;
 348        if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 349                goto err_drop_spawn;
 350
 351        if (crypto_skcipher_alg_ivsize(alg))
 352                goto err_drop_spawn;
 353
 354        err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 355                                  &alg->base);
 356        if (err)
 357                goto err_drop_spawn;
 358
 359        err = -EINVAL;
 360        cipher_name = alg->base.cra_name;
 361
 362        /* Alas we screwed up the naming so we have to mangle the
 363         * cipher name.
 364         */
 365        if (!strncmp(cipher_name, "ecb(", 4)) {
 366                unsigned len;
 367
 368                len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 369                if (len < 2 || len >= sizeof(ecb_name))
 370                        goto err_drop_spawn;
 371
 372                if (ecb_name[len - 1] != ')')
 373                        goto err_drop_spawn;
 374
 375                ecb_name[len - 1] = 0;
 376
 377                if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 378                             "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
 379                        err = -ENAMETOOLONG;
 380                        goto err_drop_spawn;
 381                }
 382        } else
 383                goto err_drop_spawn;
 384
 385        inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
 386        inst->alg.base.cra_priority = alg->base.cra_priority;
 387        inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 388        inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 389                                       (__alignof__(__be32) - 1);
 390
 391        inst->alg.ivsize = LRW_BLOCK_SIZE;
 392        inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
 393                                LRW_BLOCK_SIZE;
 394        inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
 395                                LRW_BLOCK_SIZE;
 396
 397        inst->alg.base.cra_ctxsize = sizeof(struct priv);
 398
 399        inst->alg.init = init_tfm;
 400        inst->alg.exit = exit_tfm;
 401
 402        inst->alg.setkey = setkey;
 403        inst->alg.encrypt = encrypt;
 404        inst->alg.decrypt = decrypt;
 405
 406        inst->free = free;
 407
 408        err = skcipher_register_instance(tmpl, inst);
 409        if (err)
 410                goto err_drop_spawn;
 411
 412out:
 413        return err;
 414
 415err_drop_spawn:
 416        crypto_drop_skcipher(spawn);
 417err_free_inst:
 418        kfree(inst);
 419        goto out;
 420}
 421
 422static struct crypto_template crypto_tmpl = {
 423        .name = "lrw",
 424        .create = create,
 425        .module = THIS_MODULE,
 426};
 427
 428static int __init crypto_module_init(void)
 429{
 430        return crypto_register_template(&crypto_tmpl);
 431}
 432
 433static void __exit crypto_module_exit(void)
 434{
 435        crypto_unregister_template(&crypto_tmpl);
 436}
 437
 438module_init(crypto_module_init);
 439module_exit(crypto_module_exit);
 440
 441MODULE_LICENSE("GPL");
 442MODULE_DESCRIPTION("LRW block cipher mode");
 443MODULE_ALIAS_CRYPTO("lrw");
 444