linux/drivers/cpufreq/cpufreq_governor.c
<<
>>
Prefs
   1/*
   2 * drivers/cpufreq/cpufreq_governor.c
   3 *
   4 * CPUFREQ governors common code
   5 *
   6 * Copyright    (C) 2001 Russell King
   7 *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
   8 *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
   9 *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  10 *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/export.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/slab.h>
  22
  23#include "cpufreq_governor.h"
  24
  25#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL       (2 * TICK_NSEC / NSEC_PER_USEC)
  26
  27static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
  28
  29static DEFINE_MUTEX(gov_dbs_data_mutex);
  30
  31/* Common sysfs tunables */
  32/**
  33 * store_sampling_rate - update sampling rate effective immediately if needed.
  34 *
  35 * If new rate is smaller than the old, simply updating
  36 * dbs.sampling_rate might not be appropriate. For example, if the
  37 * original sampling_rate was 1 second and the requested new sampling rate is 10
  38 * ms because the user needs immediate reaction from ondemand governor, but not
  39 * sure if higher frequency will be required or not, then, the governor may
  40 * change the sampling rate too late; up to 1 second later. Thus, if we are
  41 * reducing the sampling rate, we need to make the new value effective
  42 * immediately.
  43 *
  44 * This must be called with dbs_data->mutex held, otherwise traversing
  45 * policy_dbs_list isn't safe.
  46 */
  47ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
  48                            size_t count)
  49{
  50        struct dbs_data *dbs_data = to_dbs_data(attr_set);
  51        struct policy_dbs_info *policy_dbs;
  52        unsigned int sampling_interval;
  53        int ret;
  54
  55        ret = sscanf(buf, "%u", &sampling_interval);
  56        if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
  57                return -EINVAL;
  58
  59        dbs_data->sampling_rate = sampling_interval;
  60
  61        /*
  62         * We are operating under dbs_data->mutex and so the list and its
  63         * entries can't be freed concurrently.
  64         */
  65        list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
  66                mutex_lock(&policy_dbs->update_mutex);
  67                /*
  68                 * On 32-bit architectures this may race with the
  69                 * sample_delay_ns read in dbs_update_util_handler(), but that
  70                 * really doesn't matter.  If the read returns a value that's
  71                 * too big, the sample will be skipped, but the next invocation
  72                 * of dbs_update_util_handler() (when the update has been
  73                 * completed) will take a sample.
  74                 *
  75                 * If this runs in parallel with dbs_work_handler(), we may end
  76                 * up overwriting the sample_delay_ns value that it has just
  77                 * written, but it will be corrected next time a sample is
  78                 * taken, so it shouldn't be significant.
  79                 */
  80                gov_update_sample_delay(policy_dbs, 0);
  81                mutex_unlock(&policy_dbs->update_mutex);
  82        }
  83
  84        return count;
  85}
  86EXPORT_SYMBOL_GPL(store_sampling_rate);
  87
  88/**
  89 * gov_update_cpu_data - Update CPU load data.
  90 * @dbs_data: Top-level governor data pointer.
  91 *
  92 * Update CPU load data for all CPUs in the domain governed by @dbs_data
  93 * (that may be a single policy or a bunch of them if governor tunables are
  94 * system-wide).
  95 *
  96 * Call under the @dbs_data mutex.
  97 */
  98void gov_update_cpu_data(struct dbs_data *dbs_data)
  99{
 100        struct policy_dbs_info *policy_dbs;
 101
 102        list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
 103                unsigned int j;
 104
 105                for_each_cpu(j, policy_dbs->policy->cpus) {
 106                        struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
 107
 108                        j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
 109                                                                  dbs_data->io_is_busy);
 110                        if (dbs_data->ignore_nice_load)
 111                                j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 112                }
 113        }
 114}
 115EXPORT_SYMBOL_GPL(gov_update_cpu_data);
 116
 117unsigned int dbs_update(struct cpufreq_policy *policy)
 118{
 119        struct policy_dbs_info *policy_dbs = policy->governor_data;
 120        struct dbs_data *dbs_data = policy_dbs->dbs_data;
 121        unsigned int ignore_nice = dbs_data->ignore_nice_load;
 122        unsigned int max_load = 0, idle_periods = UINT_MAX;
 123        unsigned int sampling_rate, io_busy, j;
 124
 125        /*
 126         * Sometimes governors may use an additional multiplier to increase
 127         * sample delays temporarily.  Apply that multiplier to sampling_rate
 128         * so as to keep the wake-up-from-idle detection logic a bit
 129         * conservative.
 130         */
 131        sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
 132        /*
 133         * For the purpose of ondemand, waiting for disk IO is an indication
 134         * that you're performance critical, and not that the system is actually
 135         * idle, so do not add the iowait time to the CPU idle time then.
 136         */
 137        io_busy = dbs_data->io_is_busy;
 138
 139        /* Get Absolute Load */
 140        for_each_cpu(j, policy->cpus) {
 141                struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
 142                u64 update_time, cur_idle_time;
 143                unsigned int idle_time, time_elapsed;
 144                unsigned int load;
 145
 146                cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
 147
 148                time_elapsed = update_time - j_cdbs->prev_update_time;
 149                j_cdbs->prev_update_time = update_time;
 150
 151                idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
 152                j_cdbs->prev_cpu_idle = cur_idle_time;
 153
 154                if (ignore_nice) {
 155                        u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 156
 157                        idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
 158                        j_cdbs->prev_cpu_nice = cur_nice;
 159                }
 160
 161                if (unlikely(!time_elapsed)) {
 162                        /*
 163                         * That can only happen when this function is called
 164                         * twice in a row with a very short interval between the
 165                         * calls, so the previous load value can be used then.
 166                         */
 167                        load = j_cdbs->prev_load;
 168                } else if (unlikely((int)idle_time > 2 * sampling_rate &&
 169                                    j_cdbs->prev_load)) {
 170                        /*
 171                         * If the CPU had gone completely idle and a task has
 172                         * just woken up on this CPU now, it would be unfair to
 173                         * calculate 'load' the usual way for this elapsed
 174                         * time-window, because it would show near-zero load,
 175                         * irrespective of how CPU intensive that task actually
 176                         * was. This is undesirable for latency-sensitive bursty
 177                         * workloads.
 178                         *
 179                         * To avoid this, reuse the 'load' from the previous
 180                         * time-window and give this task a chance to start with
 181                         * a reasonably high CPU frequency. However, that
 182                         * shouldn't be over-done, lest we get stuck at a high
 183                         * load (high frequency) for too long, even when the
 184                         * current system load has actually dropped down, so
 185                         * clear prev_load to guarantee that the load will be
 186                         * computed again next time.
 187                         *
 188                         * Detecting this situation is easy: an unusually large
 189                         * 'idle_time' (as compared to the sampling rate)
 190                         * indicates this scenario.
 191                         */
 192                        load = j_cdbs->prev_load;
 193                        j_cdbs->prev_load = 0;
 194                } else {
 195                        if (time_elapsed >= idle_time) {
 196                                load = 100 * (time_elapsed - idle_time) / time_elapsed;
 197                        } else {
 198                                /*
 199                                 * That can happen if idle_time is returned by
 200                                 * get_cpu_idle_time_jiffy().  In that case
 201                                 * idle_time is roughly equal to the difference
 202                                 * between time_elapsed and "busy time" obtained
 203                                 * from CPU statistics.  Then, the "busy time"
 204                                 * can end up being greater than time_elapsed
 205                                 * (for example, if jiffies_64 and the CPU
 206                                 * statistics are updated by different CPUs),
 207                                 * so idle_time may in fact be negative.  That
 208                                 * means, though, that the CPU was busy all
 209                                 * the time (on the rough average) during the
 210                                 * last sampling interval and 100 can be
 211                                 * returned as the load.
 212                                 */
 213                                load = (int)idle_time < 0 ? 100 : 0;
 214                        }
 215                        j_cdbs->prev_load = load;
 216                }
 217
 218                if (unlikely((int)idle_time > 2 * sampling_rate)) {
 219                        unsigned int periods = idle_time / sampling_rate;
 220
 221                        if (periods < idle_periods)
 222                                idle_periods = periods;
 223                }
 224
 225                if (load > max_load)
 226                        max_load = load;
 227        }
 228
 229        policy_dbs->idle_periods = idle_periods;
 230
 231        return max_load;
 232}
 233EXPORT_SYMBOL_GPL(dbs_update);
 234
 235static void dbs_work_handler(struct work_struct *work)
 236{
 237        struct policy_dbs_info *policy_dbs;
 238        struct cpufreq_policy *policy;
 239        struct dbs_governor *gov;
 240
 241        policy_dbs = container_of(work, struct policy_dbs_info, work);
 242        policy = policy_dbs->policy;
 243        gov = dbs_governor_of(policy);
 244
 245        /*
 246         * Make sure cpufreq_governor_limits() isn't evaluating load or the
 247         * ondemand governor isn't updating the sampling rate in parallel.
 248         */
 249        mutex_lock(&policy_dbs->update_mutex);
 250        gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
 251        mutex_unlock(&policy_dbs->update_mutex);
 252
 253        /* Allow the utilization update handler to queue up more work. */
 254        atomic_set(&policy_dbs->work_count, 0);
 255        /*
 256         * If the update below is reordered with respect to the sample delay
 257         * modification, the utilization update handler may end up using a stale
 258         * sample delay value.
 259         */
 260        smp_wmb();
 261        policy_dbs->work_in_progress = false;
 262}
 263
 264static void dbs_irq_work(struct irq_work *irq_work)
 265{
 266        struct policy_dbs_info *policy_dbs;
 267
 268        policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
 269        schedule_work_on(smp_processor_id(), &policy_dbs->work);
 270}
 271
 272static void dbs_update_util_handler(struct update_util_data *data, u64 time,
 273                                    unsigned int flags)
 274{
 275        struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
 276        struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
 277        u64 delta_ns, lst;
 278
 279        if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
 280                return;
 281
 282        /*
 283         * The work may not be allowed to be queued up right now.
 284         * Possible reasons:
 285         * - Work has already been queued up or is in progress.
 286         * - It is too early (too little time from the previous sample).
 287         */
 288        if (policy_dbs->work_in_progress)
 289                return;
 290
 291        /*
 292         * If the reads below are reordered before the check above, the value
 293         * of sample_delay_ns used in the computation may be stale.
 294         */
 295        smp_rmb();
 296        lst = READ_ONCE(policy_dbs->last_sample_time);
 297        delta_ns = time - lst;
 298        if ((s64)delta_ns < policy_dbs->sample_delay_ns)
 299                return;
 300
 301        /*
 302         * If the policy is not shared, the irq_work may be queued up right away
 303         * at this point.  Otherwise, we need to ensure that only one of the
 304         * CPUs sharing the policy will do that.
 305         */
 306        if (policy_dbs->is_shared) {
 307                if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
 308                        return;
 309
 310                /*
 311                 * If another CPU updated last_sample_time in the meantime, we
 312                 * shouldn't be here, so clear the work counter and bail out.
 313                 */
 314                if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
 315                        atomic_set(&policy_dbs->work_count, 0);
 316                        return;
 317                }
 318        }
 319
 320        policy_dbs->last_sample_time = time;
 321        policy_dbs->work_in_progress = true;
 322        irq_work_queue(&policy_dbs->irq_work);
 323}
 324
 325static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
 326                                unsigned int delay_us)
 327{
 328        struct cpufreq_policy *policy = policy_dbs->policy;
 329        int cpu;
 330
 331        gov_update_sample_delay(policy_dbs, delay_us);
 332        policy_dbs->last_sample_time = 0;
 333
 334        for_each_cpu(cpu, policy->cpus) {
 335                struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
 336
 337                cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
 338                                             dbs_update_util_handler);
 339        }
 340}
 341
 342static inline void gov_clear_update_util(struct cpufreq_policy *policy)
 343{
 344        int i;
 345
 346        for_each_cpu(i, policy->cpus)
 347                cpufreq_remove_update_util_hook(i);
 348
 349        synchronize_rcu();
 350}
 351
 352static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
 353                                                     struct dbs_governor *gov)
 354{
 355        struct policy_dbs_info *policy_dbs;
 356        int j;
 357
 358        /* Allocate memory for per-policy governor data. */
 359        policy_dbs = gov->alloc();
 360        if (!policy_dbs)
 361                return NULL;
 362
 363        policy_dbs->policy = policy;
 364        mutex_init(&policy_dbs->update_mutex);
 365        atomic_set(&policy_dbs->work_count, 0);
 366        init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
 367        INIT_WORK(&policy_dbs->work, dbs_work_handler);
 368
 369        /* Set policy_dbs for all CPUs, online+offline */
 370        for_each_cpu(j, policy->related_cpus) {
 371                struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
 372
 373                j_cdbs->policy_dbs = policy_dbs;
 374        }
 375        return policy_dbs;
 376}
 377
 378static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
 379                                 struct dbs_governor *gov)
 380{
 381        int j;
 382
 383        mutex_destroy(&policy_dbs->update_mutex);
 384
 385        for_each_cpu(j, policy_dbs->policy->related_cpus) {
 386                struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
 387
 388                j_cdbs->policy_dbs = NULL;
 389                j_cdbs->update_util.func = NULL;
 390        }
 391        gov->free(policy_dbs);
 392}
 393
 394int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
 395{
 396        struct dbs_governor *gov = dbs_governor_of(policy);
 397        struct dbs_data *dbs_data;
 398        struct policy_dbs_info *policy_dbs;
 399        int ret = 0;
 400
 401        /* State should be equivalent to EXIT */
 402        if (policy->governor_data)
 403                return -EBUSY;
 404
 405        policy_dbs = alloc_policy_dbs_info(policy, gov);
 406        if (!policy_dbs)
 407                return -ENOMEM;
 408
 409        /* Protect gov->gdbs_data against concurrent updates. */
 410        mutex_lock(&gov_dbs_data_mutex);
 411
 412        dbs_data = gov->gdbs_data;
 413        if (dbs_data) {
 414                if (WARN_ON(have_governor_per_policy())) {
 415                        ret = -EINVAL;
 416                        goto free_policy_dbs_info;
 417                }
 418                policy_dbs->dbs_data = dbs_data;
 419                policy->governor_data = policy_dbs;
 420
 421                gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
 422                goto out;
 423        }
 424
 425        dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
 426        if (!dbs_data) {
 427                ret = -ENOMEM;
 428                goto free_policy_dbs_info;
 429        }
 430
 431        gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
 432
 433        ret = gov->init(dbs_data);
 434        if (ret)
 435                goto free_policy_dbs_info;
 436
 437        /*
 438         * The sampling interval should not be less than the transition latency
 439         * of the CPU and it also cannot be too small for dbs_update() to work
 440         * correctly.
 441         */
 442        dbs_data->sampling_rate = max_t(unsigned int,
 443                                        CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
 444                                        cpufreq_policy_transition_delay_us(policy));
 445
 446        if (!have_governor_per_policy())
 447                gov->gdbs_data = dbs_data;
 448
 449        policy_dbs->dbs_data = dbs_data;
 450        policy->governor_data = policy_dbs;
 451
 452        gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
 453        ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
 454                                   get_governor_parent_kobj(policy),
 455                                   "%s", gov->gov.name);
 456        if (!ret)
 457                goto out;
 458
 459        /* Failure, so roll back. */
 460        pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
 461
 462        policy->governor_data = NULL;
 463
 464        if (!have_governor_per_policy())
 465                gov->gdbs_data = NULL;
 466        gov->exit(dbs_data);
 467        kfree(dbs_data);
 468
 469free_policy_dbs_info:
 470        free_policy_dbs_info(policy_dbs, gov);
 471
 472out:
 473        mutex_unlock(&gov_dbs_data_mutex);
 474        return ret;
 475}
 476EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
 477
 478void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
 479{
 480        struct dbs_governor *gov = dbs_governor_of(policy);
 481        struct policy_dbs_info *policy_dbs = policy->governor_data;
 482        struct dbs_data *dbs_data = policy_dbs->dbs_data;
 483        unsigned int count;
 484
 485        /* Protect gov->gdbs_data against concurrent updates. */
 486        mutex_lock(&gov_dbs_data_mutex);
 487
 488        count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
 489
 490        policy->governor_data = NULL;
 491
 492        if (!count) {
 493                if (!have_governor_per_policy())
 494                        gov->gdbs_data = NULL;
 495
 496                gov->exit(dbs_data);
 497                kfree(dbs_data);
 498        }
 499
 500        free_policy_dbs_info(policy_dbs, gov);
 501
 502        mutex_unlock(&gov_dbs_data_mutex);
 503}
 504EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
 505
 506int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
 507{
 508        struct dbs_governor *gov = dbs_governor_of(policy);
 509        struct policy_dbs_info *policy_dbs = policy->governor_data;
 510        struct dbs_data *dbs_data = policy_dbs->dbs_data;
 511        unsigned int sampling_rate, ignore_nice, j;
 512        unsigned int io_busy;
 513
 514        if (!policy->cur)
 515                return -EINVAL;
 516
 517        policy_dbs->is_shared = policy_is_shared(policy);
 518        policy_dbs->rate_mult = 1;
 519
 520        sampling_rate = dbs_data->sampling_rate;
 521        ignore_nice = dbs_data->ignore_nice_load;
 522        io_busy = dbs_data->io_is_busy;
 523
 524        for_each_cpu(j, policy->cpus) {
 525                struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
 526
 527                j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
 528                /*
 529                 * Make the first invocation of dbs_update() compute the load.
 530                 */
 531                j_cdbs->prev_load = 0;
 532
 533                if (ignore_nice)
 534                        j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
 535        }
 536
 537        gov->start(policy);
 538
 539        gov_set_update_util(policy_dbs, sampling_rate);
 540        return 0;
 541}
 542EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
 543
 544void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
 545{
 546        struct policy_dbs_info *policy_dbs = policy->governor_data;
 547
 548        gov_clear_update_util(policy_dbs->policy);
 549        irq_work_sync(&policy_dbs->irq_work);
 550        cancel_work_sync(&policy_dbs->work);
 551        atomic_set(&policy_dbs->work_count, 0);
 552        policy_dbs->work_in_progress = false;
 553}
 554EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
 555
 556void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
 557{
 558        struct policy_dbs_info *policy_dbs;
 559
 560        /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
 561        mutex_lock(&gov_dbs_data_mutex);
 562        policy_dbs = policy->governor_data;
 563        if (!policy_dbs)
 564                goto out;
 565
 566        mutex_lock(&policy_dbs->update_mutex);
 567        cpufreq_policy_apply_limits(policy);
 568        gov_update_sample_delay(policy_dbs, 0);
 569        mutex_unlock(&policy_dbs->update_mutex);
 570
 571out:
 572        mutex_unlock(&gov_dbs_data_mutex);
 573}
 574EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);
 575