linux/drivers/cpufreq/powernv-cpufreq.c
<<
>>
Prefs
   1/*
   2 * POWERNV cpufreq driver for the IBM POWER processors
   3 *
   4 * (C) Copyright IBM 2014
   5 *
   6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 */
  19
  20#define pr_fmt(fmt)     "powernv-cpufreq: " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/sysfs.h>
  24#include <linux/cpumask.h>
  25#include <linux/module.h>
  26#include <linux/cpufreq.h>
  27#include <linux/smp.h>
  28#include <linux/of.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/cpu.h>
  32#include <linux/hashtable.h>
  33#include <trace/events/power.h>
  34
  35#include <asm/cputhreads.h>
  36#include <asm/firmware.h>
  37#include <asm/reg.h>
  38#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
  39#include <asm/opal.h>
  40#include <linux/timer.h>
  41
  42#define POWERNV_MAX_PSTATES_ORDER  8
  43#define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
  44#define PMSR_PSAFE_ENABLE       (1UL << 30)
  45#define PMSR_SPR_EM_DISABLE     (1UL << 31)
  46#define MAX_PSTATE_SHIFT        32
  47#define LPSTATE_SHIFT           48
  48#define GPSTATE_SHIFT           56
  49
  50#define MAX_RAMP_DOWN_TIME                              5120
  51/*
  52 * On an idle system we want the global pstate to ramp-down from max value to
  53 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
  54 * then ramp-down rapidly later on.
  55 *
  56 * This gives a percentage rampdown for time elapsed in milliseconds.
  57 * ramp_down_percentage = ((ms * ms) >> 18)
  58 *                      ~= 3.8 * (sec * sec)
  59 *
  60 * At 0 ms      ramp_down_percent = 0
  61 * At 5120 ms   ramp_down_percent = 100
  62 */
  63#define ramp_down_percent(time)         ((time * time) >> 18)
  64
  65/* Interval after which the timer is queued to bring down global pstate */
  66#define GPSTATE_TIMER_INTERVAL                          2000
  67
  68/**
  69 * struct global_pstate_info -  Per policy data structure to maintain history of
  70 *                              global pstates
  71 * @highest_lpstate_idx:        The local pstate index from which we are
  72 *                              ramping down
  73 * @elapsed_time:               Time in ms spent in ramping down from
  74 *                              highest_lpstate_idx
  75 * @last_sampled_time:          Time from boot in ms when global pstates were
  76 *                              last set
  77 * @last_lpstate_idx,           Last set value of local pstate and global
  78 * last_gpstate_idx             pstate in terms of cpufreq table index
  79 * @timer:                      Is used for ramping down if cpu goes idle for
  80 *                              a long time with global pstate held high
  81 * @gpstate_lock:               A spinlock to maintain synchronization between
  82 *                              routines called by the timer handler and
  83 *                              governer's target_index calls
  84 */
  85struct global_pstate_info {
  86        int highest_lpstate_idx;
  87        unsigned int elapsed_time;
  88        unsigned int last_sampled_time;
  89        int last_lpstate_idx;
  90        int last_gpstate_idx;
  91        spinlock_t gpstate_lock;
  92        struct timer_list timer;
  93        struct cpufreq_policy *policy;
  94};
  95
  96static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
  97
  98DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
  99/**
 100 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
 101 *                                indexed by a function of pstate id.
 102 *
 103 * @pstate_id: pstate id for this entry.
 104 *
 105 * @cpufreq_table_idx: Index into the powernv_freqs
 106 *                     cpufreq_frequency_table for frequency
 107 *                     corresponding to pstate_id.
 108 *
 109 * @hentry: hlist_node that hooks this entry into the pstate_revmap
 110 *          hashtable
 111 */
 112struct pstate_idx_revmap_data {
 113        u8 pstate_id;
 114        unsigned int cpufreq_table_idx;
 115        struct hlist_node hentry;
 116};
 117
 118static bool rebooting, throttled, occ_reset;
 119
 120static const char * const throttle_reason[] = {
 121        "No throttling",
 122        "Power Cap",
 123        "Processor Over Temperature",
 124        "Power Supply Failure",
 125        "Over Current",
 126        "OCC Reset"
 127};
 128
 129enum throttle_reason_type {
 130        NO_THROTTLE = 0,
 131        POWERCAP,
 132        CPU_OVERTEMP,
 133        POWER_SUPPLY_FAILURE,
 134        OVERCURRENT,
 135        OCC_RESET_THROTTLE,
 136        OCC_MAX_REASON
 137};
 138
 139static struct chip {
 140        unsigned int id;
 141        bool throttled;
 142        bool restore;
 143        u8 throttle_reason;
 144        cpumask_t mask;
 145        struct work_struct throttle;
 146        int throttle_turbo;
 147        int throttle_sub_turbo;
 148        int reason[OCC_MAX_REASON];
 149} *chips;
 150
 151static int nr_chips;
 152static DEFINE_PER_CPU(struct chip *, chip_info);
 153
 154/*
 155 * Note:
 156 * The set of pstates consists of contiguous integers.
 157 * powernv_pstate_info stores the index of the frequency table for
 158 * max, min and nominal frequencies. It also stores number of
 159 * available frequencies.
 160 *
 161 * powernv_pstate_info.nominal indicates the index to the highest
 162 * non-turbo frequency.
 163 */
 164static struct powernv_pstate_info {
 165        unsigned int min;
 166        unsigned int max;
 167        unsigned int nominal;
 168        unsigned int nr_pstates;
 169        bool wof_enabled;
 170} powernv_pstate_info;
 171
 172static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
 173{
 174        return ((pmsr_val >> shift) & 0xFF);
 175}
 176
 177#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
 178#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
 179#define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
 180
 181/* Use following functions for conversions between pstate_id and index */
 182
 183/**
 184 * idx_to_pstate : Returns the pstate id corresponding to the
 185 *                 frequency in the cpufreq frequency table
 186 *                 powernv_freqs indexed by @i.
 187 *
 188 *                 If @i is out of bound, this will return the pstate
 189 *                 corresponding to the nominal frequency.
 190 */
 191static inline u8 idx_to_pstate(unsigned int i)
 192{
 193        if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
 194                pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
 195                return powernv_freqs[powernv_pstate_info.nominal].driver_data;
 196        }
 197
 198        return powernv_freqs[i].driver_data;
 199}
 200
 201/**
 202 * pstate_to_idx : Returns the index in the cpufreq frequencytable
 203 *                 powernv_freqs for the frequency whose corresponding
 204 *                 pstate id is @pstate.
 205 *
 206 *                 If no frequency corresponding to @pstate is found,
 207 *                 this will return the index of the nominal
 208 *                 frequency.
 209 */
 210static unsigned int pstate_to_idx(u8 pstate)
 211{
 212        unsigned int key = pstate % POWERNV_MAX_PSTATES;
 213        struct pstate_idx_revmap_data *revmap_data;
 214
 215        hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
 216                if (revmap_data->pstate_id == pstate)
 217                        return revmap_data->cpufreq_table_idx;
 218        }
 219
 220        pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
 221        return powernv_pstate_info.nominal;
 222}
 223
 224static inline void reset_gpstates(struct cpufreq_policy *policy)
 225{
 226        struct global_pstate_info *gpstates = policy->driver_data;
 227
 228        gpstates->highest_lpstate_idx = 0;
 229        gpstates->elapsed_time = 0;
 230        gpstates->last_sampled_time = 0;
 231        gpstates->last_lpstate_idx = 0;
 232        gpstates->last_gpstate_idx = 0;
 233}
 234
 235/*
 236 * Initialize the freq table based on data obtained
 237 * from the firmware passed via device-tree
 238 */
 239static int init_powernv_pstates(void)
 240{
 241        struct device_node *power_mgt;
 242        int i, nr_pstates = 0;
 243        const __be32 *pstate_ids, *pstate_freqs;
 244        u32 len_ids, len_freqs;
 245        u32 pstate_min, pstate_max, pstate_nominal;
 246        u32 pstate_turbo, pstate_ultra_turbo;
 247        int rc = -ENODEV;
 248
 249        power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
 250        if (!power_mgt) {
 251                pr_warn("power-mgt node not found\n");
 252                return -ENODEV;
 253        }
 254
 255        if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
 256                pr_warn("ibm,pstate-min node not found\n");
 257                goto out;
 258        }
 259
 260        if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
 261                pr_warn("ibm,pstate-max node not found\n");
 262                goto out;
 263        }
 264
 265        if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
 266                                 &pstate_nominal)) {
 267                pr_warn("ibm,pstate-nominal not found\n");
 268                goto out;
 269        }
 270
 271        if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
 272                                 &pstate_ultra_turbo)) {
 273                powernv_pstate_info.wof_enabled = false;
 274                goto next;
 275        }
 276
 277        if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
 278                                 &pstate_turbo)) {
 279                powernv_pstate_info.wof_enabled = false;
 280                goto next;
 281        }
 282
 283        if (pstate_turbo == pstate_ultra_turbo)
 284                powernv_pstate_info.wof_enabled = false;
 285        else
 286                powernv_pstate_info.wof_enabled = true;
 287
 288next:
 289        pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
 290                pstate_nominal, pstate_max);
 291        pr_info("Workload Optimized Frequency is %s in the platform\n",
 292                (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
 293
 294        pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
 295        if (!pstate_ids) {
 296                pr_warn("ibm,pstate-ids not found\n");
 297                goto out;
 298        }
 299
 300        pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
 301                                      &len_freqs);
 302        if (!pstate_freqs) {
 303                pr_warn("ibm,pstate-frequencies-mhz not found\n");
 304                goto out;
 305        }
 306
 307        if (len_ids != len_freqs) {
 308                pr_warn("Entries in ibm,pstate-ids and "
 309                        "ibm,pstate-frequencies-mhz does not match\n");
 310        }
 311
 312        nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
 313        if (!nr_pstates) {
 314                pr_warn("No PStates found\n");
 315                goto out;
 316        }
 317
 318        powernv_pstate_info.nr_pstates = nr_pstates;
 319        pr_debug("NR PStates %d\n", nr_pstates);
 320
 321        for (i = 0; i < nr_pstates; i++) {
 322                u32 id = be32_to_cpu(pstate_ids[i]);
 323                u32 freq = be32_to_cpu(pstate_freqs[i]);
 324                struct pstate_idx_revmap_data *revmap_data;
 325                unsigned int key;
 326
 327                pr_debug("PState id %d freq %d MHz\n", id, freq);
 328                powernv_freqs[i].frequency = freq * 1000; /* kHz */
 329                powernv_freqs[i].driver_data = id & 0xFF;
 330
 331                revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
 332                if (!revmap_data) {
 333                        rc = -ENOMEM;
 334                        goto out;
 335                }
 336
 337                revmap_data->pstate_id = id & 0xFF;
 338                revmap_data->cpufreq_table_idx = i;
 339                key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
 340                hash_add(pstate_revmap, &revmap_data->hentry, key);
 341
 342                if (id == pstate_max)
 343                        powernv_pstate_info.max = i;
 344                if (id == pstate_nominal)
 345                        powernv_pstate_info.nominal = i;
 346                if (id == pstate_min)
 347                        powernv_pstate_info.min = i;
 348
 349                if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
 350                        int j;
 351
 352                        for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
 353                                powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
 354                }
 355        }
 356
 357        /* End of list marker entry */
 358        powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
 359
 360        of_node_put(power_mgt);
 361        return 0;
 362out:
 363        of_node_put(power_mgt);
 364        return rc;
 365}
 366
 367/* Returns the CPU frequency corresponding to the pstate_id. */
 368static unsigned int pstate_id_to_freq(u8 pstate_id)
 369{
 370        int i;
 371
 372        i = pstate_to_idx(pstate_id);
 373        if (i >= powernv_pstate_info.nr_pstates || i < 0) {
 374                pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
 375                        pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
 376                i = powernv_pstate_info.nominal;
 377        }
 378
 379        return powernv_freqs[i].frequency;
 380}
 381
 382/*
 383 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
 384 * the firmware
 385 */
 386static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
 387                                        char *buf)
 388{
 389        return sprintf(buf, "%u\n",
 390                powernv_freqs[powernv_pstate_info.nominal].frequency);
 391}
 392
 393struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
 394        __ATTR_RO(cpuinfo_nominal_freq);
 395
 396#define SCALING_BOOST_FREQS_ATTR_INDEX          2
 397
 398static struct freq_attr *powernv_cpu_freq_attr[] = {
 399        &cpufreq_freq_attr_scaling_available_freqs,
 400        &cpufreq_freq_attr_cpuinfo_nominal_freq,
 401        &cpufreq_freq_attr_scaling_boost_freqs,
 402        NULL,
 403};
 404
 405#define throttle_attr(name, member)                                     \
 406static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
 407{                                                                       \
 408        struct chip *chip = per_cpu(chip_info, policy->cpu);            \
 409                                                                        \
 410        return sprintf(buf, "%u\n", chip->member);                      \
 411}                                                                       \
 412                                                                        \
 413static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
 414
 415throttle_attr(unthrottle, reason[NO_THROTTLE]);
 416throttle_attr(powercap, reason[POWERCAP]);
 417throttle_attr(overtemp, reason[CPU_OVERTEMP]);
 418throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
 419throttle_attr(overcurrent, reason[OVERCURRENT]);
 420throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
 421throttle_attr(turbo_stat, throttle_turbo);
 422throttle_attr(sub_turbo_stat, throttle_sub_turbo);
 423
 424static struct attribute *throttle_attrs[] = {
 425        &throttle_attr_unthrottle.attr,
 426        &throttle_attr_powercap.attr,
 427        &throttle_attr_overtemp.attr,
 428        &throttle_attr_supply_fault.attr,
 429        &throttle_attr_overcurrent.attr,
 430        &throttle_attr_occ_reset.attr,
 431        &throttle_attr_turbo_stat.attr,
 432        &throttle_attr_sub_turbo_stat.attr,
 433        NULL,
 434};
 435
 436static const struct attribute_group throttle_attr_grp = {
 437        .name   = "throttle_stats",
 438        .attrs  = throttle_attrs,
 439};
 440
 441/* Helper routines */
 442
 443/* Access helpers to power mgt SPR */
 444
 445static inline unsigned long get_pmspr(unsigned long sprn)
 446{
 447        switch (sprn) {
 448        case SPRN_PMCR:
 449                return mfspr(SPRN_PMCR);
 450
 451        case SPRN_PMICR:
 452                return mfspr(SPRN_PMICR);
 453
 454        case SPRN_PMSR:
 455                return mfspr(SPRN_PMSR);
 456        }
 457        BUG();
 458}
 459
 460static inline void set_pmspr(unsigned long sprn, unsigned long val)
 461{
 462        switch (sprn) {
 463        case SPRN_PMCR:
 464                mtspr(SPRN_PMCR, val);
 465                return;
 466
 467        case SPRN_PMICR:
 468                mtspr(SPRN_PMICR, val);
 469                return;
 470        }
 471        BUG();
 472}
 473
 474/*
 475 * Use objects of this type to query/update
 476 * pstates on a remote CPU via smp_call_function.
 477 */
 478struct powernv_smp_call_data {
 479        unsigned int freq;
 480        u8 pstate_id;
 481        u8 gpstate_id;
 482};
 483
 484/*
 485 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
 486 *
 487 * Called via smp_call_function.
 488 *
 489 * Note: The caller of the smp_call_function should pass an argument of
 490 * the type 'struct powernv_smp_call_data *' along with this function.
 491 *
 492 * The current frequency on this CPU will be returned via
 493 * ((struct powernv_smp_call_data *)arg)->freq;
 494 */
 495static void powernv_read_cpu_freq(void *arg)
 496{
 497        unsigned long pmspr_val;
 498        struct powernv_smp_call_data *freq_data = arg;
 499
 500        pmspr_val = get_pmspr(SPRN_PMSR);
 501        freq_data->pstate_id = extract_local_pstate(pmspr_val);
 502        freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
 503
 504        pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
 505                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
 506                 freq_data->freq);
 507}
 508
 509/*
 510 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
 511 * firmware for CPU 'cpu'. This value is reported through the sysfs
 512 * file cpuinfo_cur_freq.
 513 */
 514static unsigned int powernv_cpufreq_get(unsigned int cpu)
 515{
 516        struct powernv_smp_call_data freq_data;
 517
 518        smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
 519                        &freq_data, 1);
 520
 521        return freq_data.freq;
 522}
 523
 524/*
 525 * set_pstate: Sets the pstate on this CPU.
 526 *
 527 * This is called via an smp_call_function.
 528 *
 529 * The caller must ensure that freq_data is of the type
 530 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
 531 * on this CPU should be present in freq_data->pstate_id.
 532 */
 533static void set_pstate(void *data)
 534{
 535        unsigned long val;
 536        struct powernv_smp_call_data *freq_data = data;
 537        unsigned long pstate_ul = freq_data->pstate_id;
 538        unsigned long gpstate_ul = freq_data->gpstate_id;
 539
 540        val = get_pmspr(SPRN_PMCR);
 541        val = val & 0x0000FFFFFFFFFFFFULL;
 542
 543        pstate_ul = pstate_ul & 0xFF;
 544        gpstate_ul = gpstate_ul & 0xFF;
 545
 546        /* Set both global(bits 56..63) and local(bits 48..55) PStates */
 547        val = val | (gpstate_ul << 56) | (pstate_ul << 48);
 548
 549        pr_debug("Setting cpu %d pmcr to %016lX\n",
 550                        raw_smp_processor_id(), val);
 551        set_pmspr(SPRN_PMCR, val);
 552}
 553
 554/*
 555 * get_nominal_index: Returns the index corresponding to the nominal
 556 * pstate in the cpufreq table
 557 */
 558static inline unsigned int get_nominal_index(void)
 559{
 560        return powernv_pstate_info.nominal;
 561}
 562
 563static void powernv_cpufreq_throttle_check(void *data)
 564{
 565        struct chip *chip;
 566        unsigned int cpu = smp_processor_id();
 567        unsigned long pmsr;
 568        u8 pmsr_pmax;
 569        unsigned int pmsr_pmax_idx;
 570
 571        pmsr = get_pmspr(SPRN_PMSR);
 572        chip = this_cpu_read(chip_info);
 573
 574        /* Check for Pmax Capping */
 575        pmsr_pmax = extract_max_pstate(pmsr);
 576        pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
 577        if (pmsr_pmax_idx != powernv_pstate_info.max) {
 578                if (chip->throttled)
 579                        goto next;
 580                chip->throttled = true;
 581                if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
 582                        pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
 583                                     cpu, chip->id, pmsr_pmax,
 584                                     idx_to_pstate(powernv_pstate_info.nominal));
 585                        chip->throttle_sub_turbo++;
 586                } else {
 587                        chip->throttle_turbo++;
 588                }
 589                trace_powernv_throttle(chip->id,
 590                                      throttle_reason[chip->throttle_reason],
 591                                      pmsr_pmax);
 592        } else if (chip->throttled) {
 593                chip->throttled = false;
 594                trace_powernv_throttle(chip->id,
 595                                      throttle_reason[chip->throttle_reason],
 596                                      pmsr_pmax);
 597        }
 598
 599        /* Check if Psafe_mode_active is set in PMSR. */
 600next:
 601        if (pmsr & PMSR_PSAFE_ENABLE) {
 602                throttled = true;
 603                pr_info("Pstate set to safe frequency\n");
 604        }
 605
 606        /* Check if SPR_EM_DISABLE is set in PMSR */
 607        if (pmsr & PMSR_SPR_EM_DISABLE) {
 608                throttled = true;
 609                pr_info("Frequency Control disabled from OS\n");
 610        }
 611
 612        if (throttled) {
 613                pr_info("PMSR = %16lx\n", pmsr);
 614                pr_warn("CPU Frequency could be throttled\n");
 615        }
 616}
 617
 618/**
 619 * calc_global_pstate - Calculate global pstate
 620 * @elapsed_time:               Elapsed time in milliseconds
 621 * @local_pstate_idx:           New local pstate
 622 * @highest_lpstate_idx:        pstate from which its ramping down
 623 *
 624 * Finds the appropriate global pstate based on the pstate from which its
 625 * ramping down and the time elapsed in ramping down. It follows a quadratic
 626 * equation which ensures that it reaches ramping down to pmin in 5sec.
 627 */
 628static inline int calc_global_pstate(unsigned int elapsed_time,
 629                                     int highest_lpstate_idx,
 630                                     int local_pstate_idx)
 631{
 632        int index_diff;
 633
 634        /*
 635         * Using ramp_down_percent we get the percentage of rampdown
 636         * that we are expecting to be dropping. Difference between
 637         * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
 638         * number of how many pstates we will drop eventually by the end of
 639         * 5 seconds, then just scale it get the number pstates to be dropped.
 640         */
 641        index_diff =  ((int)ramp_down_percent(elapsed_time) *
 642                        (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
 643
 644        /* Ensure that global pstate is >= to local pstate */
 645        if (highest_lpstate_idx + index_diff >= local_pstate_idx)
 646                return local_pstate_idx;
 647        else
 648                return highest_lpstate_idx + index_diff;
 649}
 650
 651static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
 652{
 653        unsigned int timer_interval;
 654
 655        /*
 656         * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
 657         * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
 658         * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
 659         * seconds of ramp down time.
 660         */
 661        if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
 662             > MAX_RAMP_DOWN_TIME)
 663                timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
 664        else
 665                timer_interval = GPSTATE_TIMER_INTERVAL;
 666
 667        mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
 668}
 669
 670/**
 671 * gpstate_timer_handler
 672 *
 673 * @data: pointer to cpufreq_policy on which timer was queued
 674 *
 675 * This handler brings down the global pstate closer to the local pstate
 676 * according quadratic equation. Queues a new timer if it is still not equal
 677 * to local pstate
 678 */
 679void gpstate_timer_handler(struct timer_list *t)
 680{
 681        struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
 682        struct cpufreq_policy *policy = gpstates->policy;
 683        int gpstate_idx, lpstate_idx;
 684        unsigned long val;
 685        unsigned int time_diff = jiffies_to_msecs(jiffies)
 686                                        - gpstates->last_sampled_time;
 687        struct powernv_smp_call_data freq_data;
 688
 689        if (!spin_trylock(&gpstates->gpstate_lock))
 690                return;
 691        /*
 692         * If the timer has migrated to the different cpu then bring
 693         * it back to one of the policy->cpus
 694         */
 695        if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
 696                gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
 697                add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
 698                spin_unlock(&gpstates->gpstate_lock);
 699                return;
 700        }
 701
 702        /*
 703         * If PMCR was last updated was using fast_swtich then
 704         * We may have wrong in gpstate->last_lpstate_idx
 705         * value. Hence, read from PMCR to get correct data.
 706         */
 707        val = get_pmspr(SPRN_PMCR);
 708        freq_data.gpstate_id = extract_global_pstate(val);
 709        freq_data.pstate_id = extract_local_pstate(val);
 710        if (freq_data.gpstate_id  == freq_data.pstate_id) {
 711                reset_gpstates(policy);
 712                spin_unlock(&gpstates->gpstate_lock);
 713                return;
 714        }
 715
 716        gpstates->last_sampled_time += time_diff;
 717        gpstates->elapsed_time += time_diff;
 718
 719        if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 720                gpstate_idx = pstate_to_idx(freq_data.pstate_id);
 721                lpstate_idx = gpstate_idx;
 722                reset_gpstates(policy);
 723                gpstates->highest_lpstate_idx = gpstate_idx;
 724        } else {
 725                lpstate_idx = pstate_to_idx(freq_data.pstate_id);
 726                gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 727                                                 gpstates->highest_lpstate_idx,
 728                                                 lpstate_idx);
 729        }
 730        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 731        gpstates->last_gpstate_idx = gpstate_idx;
 732        gpstates->last_lpstate_idx = lpstate_idx;
 733        /*
 734         * If local pstate is equal to global pstate, rampdown is over
 735         * So timer is not required to be queued.
 736         */
 737        if (gpstate_idx != gpstates->last_lpstate_idx)
 738                queue_gpstate_timer(gpstates);
 739
 740        set_pstate(&freq_data);
 741        spin_unlock(&gpstates->gpstate_lock);
 742}
 743
 744/*
 745 * powernv_cpufreq_target_index: Sets the frequency corresponding to
 746 * the cpufreq table entry indexed by new_index on the cpus in the
 747 * mask policy->cpus
 748 */
 749static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
 750                                        unsigned int new_index)
 751{
 752        struct powernv_smp_call_data freq_data;
 753        unsigned int cur_msec, gpstate_idx;
 754        struct global_pstate_info *gpstates = policy->driver_data;
 755
 756        if (unlikely(rebooting) && new_index != get_nominal_index())
 757                return 0;
 758
 759        if (!throttled) {
 760                /* we don't want to be preempted while
 761                 * checking if the CPU frequency has been throttled
 762                 */
 763                preempt_disable();
 764                powernv_cpufreq_throttle_check(NULL);
 765                preempt_enable();
 766        }
 767
 768        cur_msec = jiffies_to_msecs(get_jiffies_64());
 769
 770        freq_data.pstate_id = idx_to_pstate(new_index);
 771        if (!gpstates) {
 772                freq_data.gpstate_id = freq_data.pstate_id;
 773                goto no_gpstate;
 774        }
 775
 776        spin_lock(&gpstates->gpstate_lock);
 777
 778        if (!gpstates->last_sampled_time) {
 779                gpstate_idx = new_index;
 780                gpstates->highest_lpstate_idx = new_index;
 781                goto gpstates_done;
 782        }
 783
 784        if (gpstates->last_gpstate_idx < new_index) {
 785                gpstates->elapsed_time += cur_msec -
 786                                                 gpstates->last_sampled_time;
 787
 788                /*
 789                 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
 790                 * we should be resetting all global pstate related data. Set it
 791                 * equal to local pstate to start fresh.
 792                 */
 793                if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 794                        reset_gpstates(policy);
 795                        gpstates->highest_lpstate_idx = new_index;
 796                        gpstate_idx = new_index;
 797                } else {
 798                /* Elaspsed_time is less than 5 seconds, continue to rampdown */
 799                        gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 800                                                         gpstates->highest_lpstate_idx,
 801                                                         new_index);
 802                }
 803        } else {
 804                reset_gpstates(policy);
 805                gpstates->highest_lpstate_idx = new_index;
 806                gpstate_idx = new_index;
 807        }
 808
 809        /*
 810         * If local pstate is equal to global pstate, rampdown is over
 811         * So timer is not required to be queued.
 812         */
 813        if (gpstate_idx != new_index)
 814                queue_gpstate_timer(gpstates);
 815        else
 816                del_timer_sync(&gpstates->timer);
 817
 818gpstates_done:
 819        freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 820        gpstates->last_sampled_time = cur_msec;
 821        gpstates->last_gpstate_idx = gpstate_idx;
 822        gpstates->last_lpstate_idx = new_index;
 823
 824        spin_unlock(&gpstates->gpstate_lock);
 825
 826no_gpstate:
 827        /*
 828         * Use smp_call_function to send IPI and execute the
 829         * mtspr on target CPU.  We could do that without IPI
 830         * if current CPU is within policy->cpus (core)
 831         */
 832        smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 833        return 0;
 834}
 835
 836static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
 837{
 838        int base, i;
 839        struct kernfs_node *kn;
 840        struct global_pstate_info *gpstates;
 841
 842        base = cpu_first_thread_sibling(policy->cpu);
 843
 844        for (i = 0; i < threads_per_core; i++)
 845                cpumask_set_cpu(base + i, policy->cpus);
 846
 847        kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
 848        if (!kn) {
 849                int ret;
 850
 851                ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
 852                if (ret) {
 853                        pr_info("Failed to create throttle stats directory for cpu %d\n",
 854                                policy->cpu);
 855                        return ret;
 856                }
 857        } else {
 858                kernfs_put(kn);
 859        }
 860
 861        policy->freq_table = powernv_freqs;
 862        policy->fast_switch_possible = true;
 863
 864        if (pvr_version_is(PVR_POWER9))
 865                return 0;
 866
 867        /* Initialise Gpstate ramp-down timer only on POWER8 */
 868        gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
 869        if (!gpstates)
 870                return -ENOMEM;
 871
 872        policy->driver_data = gpstates;
 873
 874        /* initialize timer */
 875        gpstates->policy = policy;
 876        timer_setup(&gpstates->timer, gpstate_timer_handler,
 877                    TIMER_PINNED | TIMER_DEFERRABLE);
 878        gpstates->timer.expires = jiffies +
 879                                msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
 880        spin_lock_init(&gpstates->gpstate_lock);
 881
 882        return 0;
 883}
 884
 885static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 886{
 887        /* timer is deleted in cpufreq_cpu_stop() */
 888        kfree(policy->driver_data);
 889
 890        return 0;
 891}
 892
 893static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
 894                                unsigned long action, void *unused)
 895{
 896        int cpu;
 897        struct cpufreq_policy cpu_policy;
 898
 899        rebooting = true;
 900        for_each_online_cpu(cpu) {
 901                cpufreq_get_policy(&cpu_policy, cpu);
 902                powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
 903        }
 904
 905        return NOTIFY_DONE;
 906}
 907
 908static struct notifier_block powernv_cpufreq_reboot_nb = {
 909        .notifier_call = powernv_cpufreq_reboot_notifier,
 910};
 911
 912void powernv_cpufreq_work_fn(struct work_struct *work)
 913{
 914        struct chip *chip = container_of(work, struct chip, throttle);
 915        unsigned int cpu;
 916        cpumask_t mask;
 917
 918        get_online_cpus();
 919        cpumask_and(&mask, &chip->mask, cpu_online_mask);
 920        smp_call_function_any(&mask,
 921                              powernv_cpufreq_throttle_check, NULL, 0);
 922
 923        if (!chip->restore)
 924                goto out;
 925
 926        chip->restore = false;
 927        for_each_cpu(cpu, &mask) {
 928                int index;
 929                struct cpufreq_policy policy;
 930
 931                cpufreq_get_policy(&policy, cpu);
 932                index = cpufreq_table_find_index_c(&policy, policy.cur);
 933                powernv_cpufreq_target_index(&policy, index);
 934                cpumask_andnot(&mask, &mask, policy.cpus);
 935        }
 936out:
 937        put_online_cpus();
 938}
 939
 940static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
 941                                   unsigned long msg_type, void *_msg)
 942{
 943        struct opal_msg *msg = _msg;
 944        struct opal_occ_msg omsg;
 945        int i;
 946
 947        if (msg_type != OPAL_MSG_OCC)
 948                return 0;
 949
 950        omsg.type = be64_to_cpu(msg->params[0]);
 951
 952        switch (omsg.type) {
 953        case OCC_RESET:
 954                occ_reset = true;
 955                pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
 956                /*
 957                 * powernv_cpufreq_throttle_check() is called in
 958                 * target() callback which can detect the throttle state
 959                 * for governors like ondemand.
 960                 * But static governors will not call target() often thus
 961                 * report throttling here.
 962                 */
 963                if (!throttled) {
 964                        throttled = true;
 965                        pr_warn("CPU frequency is throttled for duration\n");
 966                }
 967
 968                break;
 969        case OCC_LOAD:
 970                pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
 971                break;
 972        case OCC_THROTTLE:
 973                omsg.chip = be64_to_cpu(msg->params[1]);
 974                omsg.throttle_status = be64_to_cpu(msg->params[2]);
 975
 976                if (occ_reset) {
 977                        occ_reset = false;
 978                        throttled = false;
 979                        pr_info("OCC Active, CPU frequency is no longer throttled\n");
 980
 981                        for (i = 0; i < nr_chips; i++) {
 982                                chips[i].restore = true;
 983                                schedule_work(&chips[i].throttle);
 984                        }
 985
 986                        return 0;
 987                }
 988
 989                for (i = 0; i < nr_chips; i++)
 990                        if (chips[i].id == omsg.chip)
 991                                break;
 992
 993                if (omsg.throttle_status >= 0 &&
 994                    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
 995                        chips[i].throttle_reason = omsg.throttle_status;
 996                        chips[i].reason[omsg.throttle_status]++;
 997                }
 998
 999                if (!omsg.throttle_status)
1000                        chips[i].restore = true;
1001
1002                schedule_work(&chips[i].throttle);
1003        }
1004        return 0;
1005}
1006
1007static struct notifier_block powernv_cpufreq_opal_nb = {
1008        .notifier_call  = powernv_cpufreq_occ_msg,
1009        .next           = NULL,
1010        .priority       = 0,
1011};
1012
1013static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1014{
1015        struct powernv_smp_call_data freq_data;
1016        struct global_pstate_info *gpstates = policy->driver_data;
1017
1018        freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1019        freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1020        smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1021        if (gpstates)
1022                del_timer_sync(&gpstates->timer);
1023}
1024
1025static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1026                                        unsigned int target_freq)
1027{
1028        int index;
1029        struct powernv_smp_call_data freq_data;
1030
1031        index = cpufreq_table_find_index_dl(policy, target_freq);
1032        freq_data.pstate_id = powernv_freqs[index].driver_data;
1033        freq_data.gpstate_id = powernv_freqs[index].driver_data;
1034        set_pstate(&freq_data);
1035
1036        return powernv_freqs[index].frequency;
1037}
1038
1039static struct cpufreq_driver powernv_cpufreq_driver = {
1040        .name           = "powernv-cpufreq",
1041        .flags          = CPUFREQ_CONST_LOOPS,
1042        .init           = powernv_cpufreq_cpu_init,
1043        .exit           = powernv_cpufreq_cpu_exit,
1044        .verify         = cpufreq_generic_frequency_table_verify,
1045        .target_index   = powernv_cpufreq_target_index,
1046        .fast_switch    = powernv_fast_switch,
1047        .get            = powernv_cpufreq_get,
1048        .stop_cpu       = powernv_cpufreq_stop_cpu,
1049        .attr           = powernv_cpu_freq_attr,
1050};
1051
1052static int init_chip_info(void)
1053{
1054        unsigned int chip[256];
1055        unsigned int cpu, i;
1056        unsigned int prev_chip_id = UINT_MAX;
1057
1058        for_each_possible_cpu(cpu) {
1059                unsigned int id = cpu_to_chip_id(cpu);
1060
1061                if (prev_chip_id != id) {
1062                        prev_chip_id = id;
1063                        chip[nr_chips++] = id;
1064                }
1065        }
1066
1067        chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1068        if (!chips)
1069                return -ENOMEM;
1070
1071        for (i = 0; i < nr_chips; i++) {
1072                chips[i].id = chip[i];
1073                cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1074                INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1075                for_each_cpu(cpu, &chips[i].mask)
1076                        per_cpu(chip_info, cpu) =  &chips[i];
1077        }
1078
1079        return 0;
1080}
1081
1082static inline void clean_chip_info(void)
1083{
1084        kfree(chips);
1085}
1086
1087static inline void unregister_all_notifiers(void)
1088{
1089        opal_message_notifier_unregister(OPAL_MSG_OCC,
1090                                         &powernv_cpufreq_opal_nb);
1091        unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1092}
1093
1094static int __init powernv_cpufreq_init(void)
1095{
1096        int rc = 0;
1097
1098        /* Don't probe on pseries (guest) platforms */
1099        if (!firmware_has_feature(FW_FEATURE_OPAL))
1100                return -ENODEV;
1101
1102        /* Discover pstates from device tree and init */
1103        rc = init_powernv_pstates();
1104        if (rc)
1105                goto out;
1106
1107        /* Populate chip info */
1108        rc = init_chip_info();
1109        if (rc)
1110                goto out;
1111
1112        register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1113        opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1114
1115        if (powernv_pstate_info.wof_enabled)
1116                powernv_cpufreq_driver.boost_enabled = true;
1117        else
1118                powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1119
1120        rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1121        if (rc) {
1122                pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1123                goto cleanup_notifiers;
1124        }
1125
1126        if (powernv_pstate_info.wof_enabled)
1127                cpufreq_enable_boost_support();
1128
1129        return 0;
1130cleanup_notifiers:
1131        unregister_all_notifiers();
1132        clean_chip_info();
1133out:
1134        pr_info("Platform driver disabled. System does not support PState control\n");
1135        return rc;
1136}
1137module_init(powernv_cpufreq_init);
1138
1139static void __exit powernv_cpufreq_exit(void)
1140{
1141        cpufreq_unregister_driver(&powernv_cpufreq_driver);
1142        unregister_all_notifiers();
1143        clean_chip_info();
1144}
1145module_exit(powernv_cpufreq_exit);
1146
1147MODULE_LICENSE("GPL");
1148MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1149