linux/drivers/dma-buf/dma-buf.c
<<
>>
Prefs
   1/*
   2 * Framework for buffer objects that can be shared across devices/subsystems.
   3 *
   4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   5 * Author: Sumit Semwal <sumit.semwal@ti.com>
   6 *
   7 * Many thanks to linaro-mm-sig list, and specially
   8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
   9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  10 * refining of this idea.
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms of the GNU General Public License version 2 as published by
  14 * the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful, but WITHOUT
  17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  19 * more details.
  20 *
  21 * You should have received a copy of the GNU General Public License along with
  22 * this program.  If not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/dma-buf.h>
  28#include <linux/dma-fence.h>
  29#include <linux/anon_inodes.h>
  30#include <linux/export.h>
  31#include <linux/debugfs.h>
  32#include <linux/module.h>
  33#include <linux/seq_file.h>
  34#include <linux/poll.h>
  35#include <linux/reservation.h>
  36#include <linux/mm.h>
  37
  38#include <uapi/linux/dma-buf.h>
  39
  40static inline int is_dma_buf_file(struct file *);
  41
  42struct dma_buf_list {
  43        struct list_head head;
  44        struct mutex lock;
  45};
  46
  47static struct dma_buf_list db_list;
  48
  49static int dma_buf_release(struct inode *inode, struct file *file)
  50{
  51        struct dma_buf *dmabuf;
  52
  53        if (!is_dma_buf_file(file))
  54                return -EINVAL;
  55
  56        dmabuf = file->private_data;
  57
  58        BUG_ON(dmabuf->vmapping_counter);
  59
  60        /*
  61         * Any fences that a dma-buf poll can wait on should be signaled
  62         * before releasing dma-buf. This is the responsibility of each
  63         * driver that uses the reservation objects.
  64         *
  65         * If you hit this BUG() it means someone dropped their ref to the
  66         * dma-buf while still having pending operation to the buffer.
  67         */
  68        BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
  69
  70        dmabuf->ops->release(dmabuf);
  71
  72        mutex_lock(&db_list.lock);
  73        list_del(&dmabuf->list_node);
  74        mutex_unlock(&db_list.lock);
  75
  76        if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
  77                reservation_object_fini(dmabuf->resv);
  78
  79        module_put(dmabuf->owner);
  80        kfree(dmabuf);
  81        return 0;
  82}
  83
  84static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
  85{
  86        struct dma_buf *dmabuf;
  87
  88        if (!is_dma_buf_file(file))
  89                return -EINVAL;
  90
  91        dmabuf = file->private_data;
  92
  93        /* check for overflowing the buffer's size */
  94        if (vma->vm_pgoff + vma_pages(vma) >
  95            dmabuf->size >> PAGE_SHIFT)
  96                return -EINVAL;
  97
  98        return dmabuf->ops->mmap(dmabuf, vma);
  99}
 100
 101static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 102{
 103        struct dma_buf *dmabuf;
 104        loff_t base;
 105
 106        if (!is_dma_buf_file(file))
 107                return -EBADF;
 108
 109        dmabuf = file->private_data;
 110
 111        /* only support discovering the end of the buffer,
 112           but also allow SEEK_SET to maintain the idiomatic
 113           SEEK_END(0), SEEK_CUR(0) pattern */
 114        if (whence == SEEK_END)
 115                base = dmabuf->size;
 116        else if (whence == SEEK_SET)
 117                base = 0;
 118        else
 119                return -EINVAL;
 120
 121        if (offset != 0)
 122                return -EINVAL;
 123
 124        return base + offset;
 125}
 126
 127/**
 128 * DOC: fence polling
 129 *
 130 * To support cross-device and cross-driver synchronization of buffer access
 131 * implicit fences (represented internally in the kernel with &struct fence) can
 132 * be attached to a &dma_buf. The glue for that and a few related things are
 133 * provided in the &reservation_object structure.
 134 *
 135 * Userspace can query the state of these implicitly tracked fences using poll()
 136 * and related system calls:
 137 *
 138 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 139 *   most recent write or exclusive fence.
 140 *
 141 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 142 *   all attached fences, shared and exclusive ones.
 143 *
 144 * Note that this only signals the completion of the respective fences, i.e. the
 145 * DMA transfers are complete. Cache flushing and any other necessary
 146 * preparations before CPU access can begin still need to happen.
 147 */
 148
 149static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 150{
 151        struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 152        unsigned long flags;
 153
 154        spin_lock_irqsave(&dcb->poll->lock, flags);
 155        wake_up_locked_poll(dcb->poll, dcb->active);
 156        dcb->active = 0;
 157        spin_unlock_irqrestore(&dcb->poll->lock, flags);
 158}
 159
 160static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 161{
 162        struct dma_buf *dmabuf;
 163        struct reservation_object *resv;
 164        struct reservation_object_list *fobj;
 165        struct dma_fence *fence_excl;
 166        __poll_t events;
 167        unsigned shared_count, seq;
 168
 169        dmabuf = file->private_data;
 170        if (!dmabuf || !dmabuf->resv)
 171                return EPOLLERR;
 172
 173        resv = dmabuf->resv;
 174
 175        poll_wait(file, &dmabuf->poll, poll);
 176
 177        events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 178        if (!events)
 179                return 0;
 180
 181retry:
 182        seq = read_seqcount_begin(&resv->seq);
 183        rcu_read_lock();
 184
 185        fobj = rcu_dereference(resv->fence);
 186        if (fobj)
 187                shared_count = fobj->shared_count;
 188        else
 189                shared_count = 0;
 190        fence_excl = rcu_dereference(resv->fence_excl);
 191        if (read_seqcount_retry(&resv->seq, seq)) {
 192                rcu_read_unlock();
 193                goto retry;
 194        }
 195
 196        if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 197                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 198                __poll_t pevents = EPOLLIN;
 199
 200                if (shared_count == 0)
 201                        pevents |= EPOLLOUT;
 202
 203                spin_lock_irq(&dmabuf->poll.lock);
 204                if (dcb->active) {
 205                        dcb->active |= pevents;
 206                        events &= ~pevents;
 207                } else
 208                        dcb->active = pevents;
 209                spin_unlock_irq(&dmabuf->poll.lock);
 210
 211                if (events & pevents) {
 212                        if (!dma_fence_get_rcu(fence_excl)) {
 213                                /* force a recheck */
 214                                events &= ~pevents;
 215                                dma_buf_poll_cb(NULL, &dcb->cb);
 216                        } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 217                                                           dma_buf_poll_cb)) {
 218                                events &= ~pevents;
 219                                dma_fence_put(fence_excl);
 220                        } else {
 221                                /*
 222                                 * No callback queued, wake up any additional
 223                                 * waiters.
 224                                 */
 225                                dma_fence_put(fence_excl);
 226                                dma_buf_poll_cb(NULL, &dcb->cb);
 227                        }
 228                }
 229        }
 230
 231        if ((events & EPOLLOUT) && shared_count > 0) {
 232                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 233                int i;
 234
 235                /* Only queue a new callback if no event has fired yet */
 236                spin_lock_irq(&dmabuf->poll.lock);
 237                if (dcb->active)
 238                        events &= ~EPOLLOUT;
 239                else
 240                        dcb->active = EPOLLOUT;
 241                spin_unlock_irq(&dmabuf->poll.lock);
 242
 243                if (!(events & EPOLLOUT))
 244                        goto out;
 245
 246                for (i = 0; i < shared_count; ++i) {
 247                        struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 248
 249                        if (!dma_fence_get_rcu(fence)) {
 250                                /*
 251                                 * fence refcount dropped to zero, this means
 252                                 * that fobj has been freed
 253                                 *
 254                                 * call dma_buf_poll_cb and force a recheck!
 255                                 */
 256                                events &= ~EPOLLOUT;
 257                                dma_buf_poll_cb(NULL, &dcb->cb);
 258                                break;
 259                        }
 260                        if (!dma_fence_add_callback(fence, &dcb->cb,
 261                                                    dma_buf_poll_cb)) {
 262                                dma_fence_put(fence);
 263                                events &= ~EPOLLOUT;
 264                                break;
 265                        }
 266                        dma_fence_put(fence);
 267                }
 268
 269                /* No callback queued, wake up any additional waiters. */
 270                if (i == shared_count)
 271                        dma_buf_poll_cb(NULL, &dcb->cb);
 272        }
 273
 274out:
 275        rcu_read_unlock();
 276        return events;
 277}
 278
 279static long dma_buf_ioctl(struct file *file,
 280                          unsigned int cmd, unsigned long arg)
 281{
 282        struct dma_buf *dmabuf;
 283        struct dma_buf_sync sync;
 284        enum dma_data_direction direction;
 285        int ret;
 286
 287        dmabuf = file->private_data;
 288
 289        switch (cmd) {
 290        case DMA_BUF_IOCTL_SYNC:
 291                if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 292                        return -EFAULT;
 293
 294                if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 295                        return -EINVAL;
 296
 297                switch (sync.flags & DMA_BUF_SYNC_RW) {
 298                case DMA_BUF_SYNC_READ:
 299                        direction = DMA_FROM_DEVICE;
 300                        break;
 301                case DMA_BUF_SYNC_WRITE:
 302                        direction = DMA_TO_DEVICE;
 303                        break;
 304                case DMA_BUF_SYNC_RW:
 305                        direction = DMA_BIDIRECTIONAL;
 306                        break;
 307                default:
 308                        return -EINVAL;
 309                }
 310
 311                if (sync.flags & DMA_BUF_SYNC_END)
 312                        ret = dma_buf_end_cpu_access(dmabuf, direction);
 313                else
 314                        ret = dma_buf_begin_cpu_access(dmabuf, direction);
 315
 316                return ret;
 317        default:
 318                return -ENOTTY;
 319        }
 320}
 321
 322static const struct file_operations dma_buf_fops = {
 323        .release        = dma_buf_release,
 324        .mmap           = dma_buf_mmap_internal,
 325        .llseek         = dma_buf_llseek,
 326        .poll           = dma_buf_poll,
 327        .unlocked_ioctl = dma_buf_ioctl,
 328#ifdef CONFIG_COMPAT
 329        .compat_ioctl   = dma_buf_ioctl,
 330#endif
 331};
 332
 333/*
 334 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 335 */
 336static inline int is_dma_buf_file(struct file *file)
 337{
 338        return file->f_op == &dma_buf_fops;
 339}
 340
 341/**
 342 * DOC: dma buf device access
 343 *
 344 * For device DMA access to a shared DMA buffer the usual sequence of operations
 345 * is fairly simple:
 346 *
 347 * 1. The exporter defines his exporter instance using
 348 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 349 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 350 *    as a file descriptor by calling dma_buf_fd().
 351 *
 352 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 353 *    to share with: First the filedescriptor is converted to a &dma_buf using
 354 *    dma_buf_get(). Then the buffer is attached to the device using
 355 *    dma_buf_attach().
 356 *
 357 *    Up to this stage the exporter is still free to migrate or reallocate the
 358 *    backing storage.
 359 *
 360 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 361 *    access to the shared buffer. In the kernel this is done by calling
 362 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 363 *
 364 * 4. Once a driver is done with a shared buffer it needs to call
 365 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 366 *    reference acquired with dma_buf_get by calling dma_buf_put().
 367 *
 368 * For the detailed semantics exporters are expected to implement see
 369 * &dma_buf_ops.
 370 */
 371
 372/**
 373 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 374 * with this buffer, so it can be exported.
 375 * Also connect the allocator specific data and ops to the buffer.
 376 * Additionally, provide a name string for exporter; useful in debugging.
 377 *
 378 * @exp_info:   [in]    holds all the export related information provided
 379 *                      by the exporter. see &struct dma_buf_export_info
 380 *                      for further details.
 381 *
 382 * Returns, on success, a newly created dma_buf object, which wraps the
 383 * supplied private data and operations for dma_buf_ops. On either missing
 384 * ops, or error in allocating struct dma_buf, will return negative error.
 385 *
 386 * For most cases the easiest way to create @exp_info is through the
 387 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 388 */
 389struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 390{
 391        struct dma_buf *dmabuf;
 392        struct reservation_object *resv = exp_info->resv;
 393        struct file *file;
 394        size_t alloc_size = sizeof(struct dma_buf);
 395        int ret;
 396
 397        if (!exp_info->resv)
 398                alloc_size += sizeof(struct reservation_object);
 399        else
 400                /* prevent &dma_buf[1] == dma_buf->resv */
 401                alloc_size += 1;
 402
 403        if (WARN_ON(!exp_info->priv
 404                          || !exp_info->ops
 405                          || !exp_info->ops->map_dma_buf
 406                          || !exp_info->ops->unmap_dma_buf
 407                          || !exp_info->ops->release
 408                          || !exp_info->ops->mmap)) {
 409                return ERR_PTR(-EINVAL);
 410        }
 411
 412        if (!try_module_get(exp_info->owner))
 413                return ERR_PTR(-ENOENT);
 414
 415        dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 416        if (!dmabuf) {
 417                ret = -ENOMEM;
 418                goto err_module;
 419        }
 420
 421        dmabuf->priv = exp_info->priv;
 422        dmabuf->ops = exp_info->ops;
 423        dmabuf->size = exp_info->size;
 424        dmabuf->exp_name = exp_info->exp_name;
 425        dmabuf->owner = exp_info->owner;
 426        init_waitqueue_head(&dmabuf->poll);
 427        dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 428        dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 429
 430        if (!resv) {
 431                resv = (struct reservation_object *)&dmabuf[1];
 432                reservation_object_init(resv);
 433        }
 434        dmabuf->resv = resv;
 435
 436        file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
 437                                        exp_info->flags);
 438        if (IS_ERR(file)) {
 439                ret = PTR_ERR(file);
 440                goto err_dmabuf;
 441        }
 442
 443        file->f_mode |= FMODE_LSEEK;
 444        dmabuf->file = file;
 445
 446        mutex_init(&dmabuf->lock);
 447        INIT_LIST_HEAD(&dmabuf->attachments);
 448
 449        mutex_lock(&db_list.lock);
 450        list_add(&dmabuf->list_node, &db_list.head);
 451        mutex_unlock(&db_list.lock);
 452
 453        return dmabuf;
 454
 455err_dmabuf:
 456        kfree(dmabuf);
 457err_module:
 458        module_put(exp_info->owner);
 459        return ERR_PTR(ret);
 460}
 461EXPORT_SYMBOL_GPL(dma_buf_export);
 462
 463/**
 464 * dma_buf_fd - returns a file descriptor for the given dma_buf
 465 * @dmabuf:     [in]    pointer to dma_buf for which fd is required.
 466 * @flags:      [in]    flags to give to fd
 467 *
 468 * On success, returns an associated 'fd'. Else, returns error.
 469 */
 470int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 471{
 472        int fd;
 473
 474        if (!dmabuf || !dmabuf->file)
 475                return -EINVAL;
 476
 477        fd = get_unused_fd_flags(flags);
 478        if (fd < 0)
 479                return fd;
 480
 481        fd_install(fd, dmabuf->file);
 482
 483        return fd;
 484}
 485EXPORT_SYMBOL_GPL(dma_buf_fd);
 486
 487/**
 488 * dma_buf_get - returns the dma_buf structure related to an fd
 489 * @fd: [in]    fd associated with the dma_buf to be returned
 490 *
 491 * On success, returns the dma_buf structure associated with an fd; uses
 492 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 493 * otherwise.
 494 */
 495struct dma_buf *dma_buf_get(int fd)
 496{
 497        struct file *file;
 498
 499        file = fget(fd);
 500
 501        if (!file)
 502                return ERR_PTR(-EBADF);
 503
 504        if (!is_dma_buf_file(file)) {
 505                fput(file);
 506                return ERR_PTR(-EINVAL);
 507        }
 508
 509        return file->private_data;
 510}
 511EXPORT_SYMBOL_GPL(dma_buf_get);
 512
 513/**
 514 * dma_buf_put - decreases refcount of the buffer
 515 * @dmabuf:     [in]    buffer to reduce refcount of
 516 *
 517 * Uses file's refcounting done implicitly by fput().
 518 *
 519 * If, as a result of this call, the refcount becomes 0, the 'release' file
 520 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 521 * in turn, and frees the memory allocated for dmabuf when exported.
 522 */
 523void dma_buf_put(struct dma_buf *dmabuf)
 524{
 525        if (WARN_ON(!dmabuf || !dmabuf->file))
 526                return;
 527
 528        fput(dmabuf->file);
 529}
 530EXPORT_SYMBOL_GPL(dma_buf_put);
 531
 532/**
 533 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 534 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 535 * @dmabuf:     [in]    buffer to attach device to.
 536 * @dev:        [in]    device to be attached.
 537 *
 538 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 539 * must be cleaned up by calling dma_buf_detach().
 540 *
 541 * Returns:
 542 *
 543 * A pointer to newly created &dma_buf_attachment on success, or a negative
 544 * error code wrapped into a pointer on failure.
 545 *
 546 * Note that this can fail if the backing storage of @dmabuf is in a place not
 547 * accessible to @dev, and cannot be moved to a more suitable place. This is
 548 * indicated with the error code -EBUSY.
 549 */
 550struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 551                                          struct device *dev)
 552{
 553        struct dma_buf_attachment *attach;
 554        int ret;
 555
 556        if (WARN_ON(!dmabuf || !dev))
 557                return ERR_PTR(-EINVAL);
 558
 559        attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 560        if (!attach)
 561                return ERR_PTR(-ENOMEM);
 562
 563        attach->dev = dev;
 564        attach->dmabuf = dmabuf;
 565
 566        mutex_lock(&dmabuf->lock);
 567
 568        if (dmabuf->ops->attach) {
 569                ret = dmabuf->ops->attach(dmabuf, attach);
 570                if (ret)
 571                        goto err_attach;
 572        }
 573        list_add(&attach->node, &dmabuf->attachments);
 574
 575        mutex_unlock(&dmabuf->lock);
 576        return attach;
 577
 578err_attach:
 579        kfree(attach);
 580        mutex_unlock(&dmabuf->lock);
 581        return ERR_PTR(ret);
 582}
 583EXPORT_SYMBOL_GPL(dma_buf_attach);
 584
 585/**
 586 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 587 * optionally calls detach() of dma_buf_ops for device-specific detach
 588 * @dmabuf:     [in]    buffer to detach from.
 589 * @attach:     [in]    attachment to be detached; is free'd after this call.
 590 *
 591 * Clean up a device attachment obtained by calling dma_buf_attach().
 592 */
 593void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 594{
 595        if (WARN_ON(!dmabuf || !attach))
 596                return;
 597
 598        mutex_lock(&dmabuf->lock);
 599        list_del(&attach->node);
 600        if (dmabuf->ops->detach)
 601                dmabuf->ops->detach(dmabuf, attach);
 602
 603        mutex_unlock(&dmabuf->lock);
 604        kfree(attach);
 605}
 606EXPORT_SYMBOL_GPL(dma_buf_detach);
 607
 608/**
 609 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 610 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 611 * dma_buf_ops.
 612 * @attach:     [in]    attachment whose scatterlist is to be returned
 613 * @direction:  [in]    direction of DMA transfer
 614 *
 615 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 616 * on error. May return -EINTR if it is interrupted by a signal.
 617 *
 618 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 619 * the underlying backing storage is pinned for as long as a mapping exists,
 620 * therefore users/importers should not hold onto a mapping for undue amounts of
 621 * time.
 622 */
 623struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 624                                        enum dma_data_direction direction)
 625{
 626        struct sg_table *sg_table;
 627
 628        might_sleep();
 629
 630        if (WARN_ON(!attach || !attach->dmabuf))
 631                return ERR_PTR(-EINVAL);
 632
 633        sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 634        if (!sg_table)
 635                sg_table = ERR_PTR(-ENOMEM);
 636
 637        return sg_table;
 638}
 639EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 640
 641/**
 642 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 643 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 644 * dma_buf_ops.
 645 * @attach:     [in]    attachment to unmap buffer from
 646 * @sg_table:   [in]    scatterlist info of the buffer to unmap
 647 * @direction:  [in]    direction of DMA transfer
 648 *
 649 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 650 */
 651void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 652                                struct sg_table *sg_table,
 653                                enum dma_data_direction direction)
 654{
 655        might_sleep();
 656
 657        if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 658                return;
 659
 660        attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
 661                                                direction);
 662}
 663EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 664
 665/**
 666 * DOC: cpu access
 667 *
 668 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 669 *
 670 * - Fallback operations in the kernel, for example when a device is connected
 671 *   over USB and the kernel needs to shuffle the data around first before
 672 *   sending it away. Cache coherency is handled by braketing any transactions
 673 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 674 *   access.
 675 *
 676 *   To support dma_buf objects residing in highmem cpu access is page-based
 677 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 678 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 679 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 680 *   needs to be unmapped again. There is no limit on how often a given chunk
 681 *   can be mapped and unmapped, i.e. the importer does not need to call
 682 *   begin_cpu_access again before mapping the same chunk again.
 683 *
 684 *   Interfaces::
 685 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 686 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 687 *
 688 *   Implementing the functions is optional for exporters and for importers all
 689 *   the restrictions of using kmap apply.
 690 *
 691 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 692 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 693 *   the partial chunks at the beginning and end but may return stale or bogus
 694 *   data outside of the range (in these partial chunks).
 695 *
 696 *   For some cases the overhead of kmap can be too high, a vmap interface
 697 *   is introduced. This interface should be used very carefully, as vmalloc
 698 *   space is a limited resources on many architectures.
 699 *
 700 *   Interfaces::
 701 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 702 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 703 *
 704 *   The vmap call can fail if there is no vmap support in the exporter, or if
 705 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 706 *   that the dma-buf layer keeps a reference count for all vmap access and
 707 *   calls down into the exporter's vmap function only when no vmapping exists,
 708 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 709 *   provided by taking the dma_buf->lock mutex.
 710 *
 711 * - For full compatibility on the importer side with existing userspace
 712 *   interfaces, which might already support mmap'ing buffers. This is needed in
 713 *   many processing pipelines (e.g. feeding a software rendered image into a
 714 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 715 *   framework already supported this and for DMA buffer file descriptors to
 716 *   replace ION buffers mmap support was needed.
 717 *
 718 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 719 *   fd. But like for CPU access there's a need to braket the actual access,
 720 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 721 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 722 *   be restarted.
 723 *
 724 *   Some systems might need some sort of cache coherency management e.g. when
 725 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 726 *   To circumvent this problem there are begin/end coherency markers, that
 727 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 728 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 729 *   sequence would be used like following:
 730 *
 731 *     - mmap dma-buf fd
 732 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 733 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 734 *       want (with the new data being consumed by say the GPU or the scanout
 735 *       device)
 736 *     - munmap once you don't need the buffer any more
 737 *
 738 *    For correctness and optimal performance, it is always required to use
 739 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 740 *    mapped address. Userspace cannot rely on coherent access, even when there
 741 *    are systems where it just works without calling these ioctls.
 742 *
 743 * - And as a CPU fallback in userspace processing pipelines.
 744 *
 745 *   Similar to the motivation for kernel cpu access it is again important that
 746 *   the userspace code of a given importing subsystem can use the same
 747 *   interfaces with a imported dma-buf buffer object as with a native buffer
 748 *   object. This is especially important for drm where the userspace part of
 749 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 750 *   use a different way to mmap a buffer rather invasive.
 751 *
 752 *   The assumption in the current dma-buf interfaces is that redirecting the
 753 *   initial mmap is all that's needed. A survey of some of the existing
 754 *   subsystems shows that no driver seems to do any nefarious thing like
 755 *   syncing up with outstanding asynchronous processing on the device or
 756 *   allocating special resources at fault time. So hopefully this is good
 757 *   enough, since adding interfaces to intercept pagefaults and allow pte
 758 *   shootdowns would increase the complexity quite a bit.
 759 *
 760 *   Interface::
 761 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 762 *                     unsigned long);
 763 *
 764 *   If the importing subsystem simply provides a special-purpose mmap call to
 765 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 766 *   equally achieve that for a dma-buf object.
 767 */
 768
 769static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 770                                      enum dma_data_direction direction)
 771{
 772        bool write = (direction == DMA_BIDIRECTIONAL ||
 773                      direction == DMA_TO_DEVICE);
 774        struct reservation_object *resv = dmabuf->resv;
 775        long ret;
 776
 777        /* Wait on any implicit rendering fences */
 778        ret = reservation_object_wait_timeout_rcu(resv, write, true,
 779                                                  MAX_SCHEDULE_TIMEOUT);
 780        if (ret < 0)
 781                return ret;
 782
 783        return 0;
 784}
 785
 786/**
 787 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 788 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 789 * preparations. Coherency is only guaranteed in the specified range for the
 790 * specified access direction.
 791 * @dmabuf:     [in]    buffer to prepare cpu access for.
 792 * @direction:  [in]    length of range for cpu access.
 793 *
 794 * After the cpu access is complete the caller should call
 795 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 796 * it guaranteed to be coherent with other DMA access.
 797 *
 798 * Can return negative error values, returns 0 on success.
 799 */
 800int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 801                             enum dma_data_direction direction)
 802{
 803        int ret = 0;
 804
 805        if (WARN_ON(!dmabuf))
 806                return -EINVAL;
 807
 808        if (dmabuf->ops->begin_cpu_access)
 809                ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 810
 811        /* Ensure that all fences are waited upon - but we first allow
 812         * the native handler the chance to do so more efficiently if it
 813         * chooses. A double invocation here will be reasonably cheap no-op.
 814         */
 815        if (ret == 0)
 816                ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 817
 818        return ret;
 819}
 820EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 821
 822/**
 823 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 824 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 825 * actions. Coherency is only guaranteed in the specified range for the
 826 * specified access direction.
 827 * @dmabuf:     [in]    buffer to complete cpu access for.
 828 * @direction:  [in]    length of range for cpu access.
 829 *
 830 * This terminates CPU access started with dma_buf_begin_cpu_access().
 831 *
 832 * Can return negative error values, returns 0 on success.
 833 */
 834int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 835                           enum dma_data_direction direction)
 836{
 837        int ret = 0;
 838
 839        WARN_ON(!dmabuf);
 840
 841        if (dmabuf->ops->end_cpu_access)
 842                ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 843
 844        return ret;
 845}
 846EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 847
 848/**
 849 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 850 * same restrictions as for kmap and friends apply.
 851 * @dmabuf:     [in]    buffer to map page from.
 852 * @page_num:   [in]    page in PAGE_SIZE units to map.
 853 *
 854 * This call must always succeed, any necessary preparations that might fail
 855 * need to be done in begin_cpu_access.
 856 */
 857void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 858{
 859        WARN_ON(!dmabuf);
 860
 861        if (!dmabuf->ops->map)
 862                return NULL;
 863        return dmabuf->ops->map(dmabuf, page_num);
 864}
 865EXPORT_SYMBOL_GPL(dma_buf_kmap);
 866
 867/**
 868 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
 869 * @dmabuf:     [in]    buffer to unmap page from.
 870 * @page_num:   [in]    page in PAGE_SIZE units to unmap.
 871 * @vaddr:      [in]    kernel space pointer obtained from dma_buf_kmap.
 872 *
 873 * This call must always succeed.
 874 */
 875void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
 876                    void *vaddr)
 877{
 878        WARN_ON(!dmabuf);
 879
 880        if (dmabuf->ops->unmap)
 881                dmabuf->ops->unmap(dmabuf, page_num, vaddr);
 882}
 883EXPORT_SYMBOL_GPL(dma_buf_kunmap);
 884
 885
 886/**
 887 * dma_buf_mmap - Setup up a userspace mmap with the given vma
 888 * @dmabuf:     [in]    buffer that should back the vma
 889 * @vma:        [in]    vma for the mmap
 890 * @pgoff:      [in]    offset in pages where this mmap should start within the
 891 *                      dma-buf buffer.
 892 *
 893 * This function adjusts the passed in vma so that it points at the file of the
 894 * dma_buf operation. It also adjusts the starting pgoff and does bounds
 895 * checking on the size of the vma. Then it calls the exporters mmap function to
 896 * set up the mapping.
 897 *
 898 * Can return negative error values, returns 0 on success.
 899 */
 900int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
 901                 unsigned long pgoff)
 902{
 903        struct file *oldfile;
 904        int ret;
 905
 906        if (WARN_ON(!dmabuf || !vma))
 907                return -EINVAL;
 908
 909        /* check for offset overflow */
 910        if (pgoff + vma_pages(vma) < pgoff)
 911                return -EOVERFLOW;
 912
 913        /* check for overflowing the buffer's size */
 914        if (pgoff + vma_pages(vma) >
 915            dmabuf->size >> PAGE_SHIFT)
 916                return -EINVAL;
 917
 918        /* readjust the vma */
 919        get_file(dmabuf->file);
 920        oldfile = vma->vm_file;
 921        vma->vm_file = dmabuf->file;
 922        vma->vm_pgoff = pgoff;
 923
 924        ret = dmabuf->ops->mmap(dmabuf, vma);
 925        if (ret) {
 926                /* restore old parameters on failure */
 927                vma->vm_file = oldfile;
 928                fput(dmabuf->file);
 929        } else {
 930                if (oldfile)
 931                        fput(oldfile);
 932        }
 933        return ret;
 934
 935}
 936EXPORT_SYMBOL_GPL(dma_buf_mmap);
 937
 938/**
 939 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
 940 * address space. Same restrictions as for vmap and friends apply.
 941 * @dmabuf:     [in]    buffer to vmap
 942 *
 943 * This call may fail due to lack of virtual mapping address space.
 944 * These calls are optional in drivers. The intended use for them
 945 * is for mapping objects linear in kernel space for high use objects.
 946 * Please attempt to use kmap/kunmap before thinking about these interfaces.
 947 *
 948 * Returns NULL on error.
 949 */
 950void *dma_buf_vmap(struct dma_buf *dmabuf)
 951{
 952        void *ptr;
 953
 954        if (WARN_ON(!dmabuf))
 955                return NULL;
 956
 957        if (!dmabuf->ops->vmap)
 958                return NULL;
 959
 960        mutex_lock(&dmabuf->lock);
 961        if (dmabuf->vmapping_counter) {
 962                dmabuf->vmapping_counter++;
 963                BUG_ON(!dmabuf->vmap_ptr);
 964                ptr = dmabuf->vmap_ptr;
 965                goto out_unlock;
 966        }
 967
 968        BUG_ON(dmabuf->vmap_ptr);
 969
 970        ptr = dmabuf->ops->vmap(dmabuf);
 971        if (WARN_ON_ONCE(IS_ERR(ptr)))
 972                ptr = NULL;
 973        if (!ptr)
 974                goto out_unlock;
 975
 976        dmabuf->vmap_ptr = ptr;
 977        dmabuf->vmapping_counter = 1;
 978
 979out_unlock:
 980        mutex_unlock(&dmabuf->lock);
 981        return ptr;
 982}
 983EXPORT_SYMBOL_GPL(dma_buf_vmap);
 984
 985/**
 986 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
 987 * @dmabuf:     [in]    buffer to vunmap
 988 * @vaddr:      [in]    vmap to vunmap
 989 */
 990void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
 991{
 992        if (WARN_ON(!dmabuf))
 993                return;
 994
 995        BUG_ON(!dmabuf->vmap_ptr);
 996        BUG_ON(dmabuf->vmapping_counter == 0);
 997        BUG_ON(dmabuf->vmap_ptr != vaddr);
 998
 999        mutex_lock(&dmabuf->lock);
1000        if (--dmabuf->vmapping_counter == 0) {
1001                if (dmabuf->ops->vunmap)
1002                        dmabuf->ops->vunmap(dmabuf, vaddr);
1003                dmabuf->vmap_ptr = NULL;
1004        }
1005        mutex_unlock(&dmabuf->lock);
1006}
1007EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1008
1009#ifdef CONFIG_DEBUG_FS
1010static int dma_buf_debug_show(struct seq_file *s, void *unused)
1011{
1012        int ret;
1013        struct dma_buf *buf_obj;
1014        struct dma_buf_attachment *attach_obj;
1015        struct reservation_object *robj;
1016        struct reservation_object_list *fobj;
1017        struct dma_fence *fence;
1018        unsigned seq;
1019        int count = 0, attach_count, shared_count, i;
1020        size_t size = 0;
1021
1022        ret = mutex_lock_interruptible(&db_list.lock);
1023
1024        if (ret)
1025                return ret;
1026
1027        seq_puts(s, "\nDma-buf Objects:\n");
1028        seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1029                   "size", "flags", "mode", "count");
1030
1031        list_for_each_entry(buf_obj, &db_list.head, list_node) {
1032                ret = mutex_lock_interruptible(&buf_obj->lock);
1033
1034                if (ret) {
1035                        seq_puts(s,
1036                                 "\tERROR locking buffer object: skipping\n");
1037                        continue;
1038                }
1039
1040                seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1041                                buf_obj->size,
1042                                buf_obj->file->f_flags, buf_obj->file->f_mode,
1043                                file_count(buf_obj->file),
1044                                buf_obj->exp_name);
1045
1046                robj = buf_obj->resv;
1047                while (true) {
1048                        seq = read_seqcount_begin(&robj->seq);
1049                        rcu_read_lock();
1050                        fobj = rcu_dereference(robj->fence);
1051                        shared_count = fobj ? fobj->shared_count : 0;
1052                        fence = rcu_dereference(robj->fence_excl);
1053                        if (!read_seqcount_retry(&robj->seq, seq))
1054                                break;
1055                        rcu_read_unlock();
1056                }
1057
1058                if (fence)
1059                        seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1060                                   fence->ops->get_driver_name(fence),
1061                                   fence->ops->get_timeline_name(fence),
1062                                   dma_fence_is_signaled(fence) ? "" : "un");
1063                for (i = 0; i < shared_count; i++) {
1064                        fence = rcu_dereference(fobj->shared[i]);
1065                        if (!dma_fence_get_rcu(fence))
1066                                continue;
1067                        seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1068                                   fence->ops->get_driver_name(fence),
1069                                   fence->ops->get_timeline_name(fence),
1070                                   dma_fence_is_signaled(fence) ? "" : "un");
1071                }
1072                rcu_read_unlock();
1073
1074                seq_puts(s, "\tAttached Devices:\n");
1075                attach_count = 0;
1076
1077                list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1078                        seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1079                        attach_count++;
1080                }
1081
1082                seq_printf(s, "Total %d devices attached\n\n",
1083                                attach_count);
1084
1085                count++;
1086                size += buf_obj->size;
1087                mutex_unlock(&buf_obj->lock);
1088        }
1089
1090        seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1091
1092        mutex_unlock(&db_list.lock);
1093        return 0;
1094}
1095
1096DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1097
1098static struct dentry *dma_buf_debugfs_dir;
1099
1100static int dma_buf_init_debugfs(void)
1101{
1102        struct dentry *d;
1103        int err = 0;
1104
1105        d = debugfs_create_dir("dma_buf", NULL);
1106        if (IS_ERR(d))
1107                return PTR_ERR(d);
1108
1109        dma_buf_debugfs_dir = d;
1110
1111        d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1112                                NULL, &dma_buf_debug_fops);
1113        if (IS_ERR(d)) {
1114                pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1115                debugfs_remove_recursive(dma_buf_debugfs_dir);
1116                dma_buf_debugfs_dir = NULL;
1117                err = PTR_ERR(d);
1118        }
1119
1120        return err;
1121}
1122
1123static void dma_buf_uninit_debugfs(void)
1124{
1125        debugfs_remove_recursive(dma_buf_debugfs_dir);
1126}
1127#else
1128static inline int dma_buf_init_debugfs(void)
1129{
1130        return 0;
1131}
1132static inline void dma_buf_uninit_debugfs(void)
1133{
1134}
1135#endif
1136
1137static int __init dma_buf_init(void)
1138{
1139        mutex_init(&db_list.lock);
1140        INIT_LIST_HEAD(&db_list.head);
1141        dma_buf_init_debugfs();
1142        return 0;
1143}
1144subsys_initcall(dma_buf_init);
1145
1146static void __exit dma_buf_deinit(void)
1147{
1148        dma_buf_uninit_debugfs();
1149}
1150__exitcall(dma_buf_deinit);
1151