linux/drivers/firewire/core-transaction.c
<<
>>
Prefs
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
  34#include <linux/rculist.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/string.h>
  38#include <linux/timer.h>
  39#include <linux/types.h>
  40#include <linux/workqueue.h>
  41
  42#include <asm/byteorder.h>
  43
  44#include "core.h"
  45
  46#define HEADER_PRI(pri)                 ((pri) << 0)
  47#define HEADER_TCODE(tcode)             ((tcode) << 4)
  48#define HEADER_RETRY(retry)             ((retry) << 8)
  49#define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
  50#define HEADER_DESTINATION(destination) ((destination) << 16)
  51#define HEADER_SOURCE(source)           ((source) << 16)
  52#define HEADER_RCODE(rcode)             ((rcode) << 12)
  53#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
  54#define HEADER_DATA_LENGTH(length)      ((length) << 16)
  55#define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
  56
  57#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
  58#define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
  59#define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
  60#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
  61#define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
  62#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
  63#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
  64#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
  65
  66#define HEADER_DESTINATION_IS_BROADCAST(q) \
  67        (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  68
  69#define PHY_PACKET_CONFIG       0x0
  70#define PHY_PACKET_LINK_ON      0x1
  71#define PHY_PACKET_SELF_ID      0x2
  72
  73#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
  74#define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
  75#define PHY_IDENTIFIER(id)              ((id) << 30)
  76
  77/* returns 0 if the split timeout handler is already running */
  78static int try_cancel_split_timeout(struct fw_transaction *t)
  79{
  80        if (t->is_split_transaction)
  81                return del_timer(&t->split_timeout_timer);
  82        else
  83                return 1;
  84}
  85
  86static int close_transaction(struct fw_transaction *transaction,
  87                             struct fw_card *card, int rcode)
  88{
  89        struct fw_transaction *t;
  90        unsigned long flags;
  91
  92        spin_lock_irqsave(&card->lock, flags);
  93        list_for_each_entry(t, &card->transaction_list, link) {
  94                if (t == transaction) {
  95                        if (!try_cancel_split_timeout(t)) {
  96                                spin_unlock_irqrestore(&card->lock, flags);
  97                                goto timed_out;
  98                        }
  99                        list_del_init(&t->link);
 100                        card->tlabel_mask &= ~(1ULL << t->tlabel);
 101                        break;
 102                }
 103        }
 104        spin_unlock_irqrestore(&card->lock, flags);
 105
 106        if (&t->link != &card->transaction_list) {
 107                t->callback(card, rcode, NULL, 0, t->callback_data);
 108                return 0;
 109        }
 110
 111 timed_out:
 112        return -ENOENT;
 113}
 114
 115/*
 116 * Only valid for transactions that are potentially pending (ie have
 117 * been sent).
 118 */
 119int fw_cancel_transaction(struct fw_card *card,
 120                          struct fw_transaction *transaction)
 121{
 122        /*
 123         * Cancel the packet transmission if it's still queued.  That
 124         * will call the packet transmission callback which cancels
 125         * the transaction.
 126         */
 127
 128        if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 129                return 0;
 130
 131        /*
 132         * If the request packet has already been sent, we need to see
 133         * if the transaction is still pending and remove it in that case.
 134         */
 135
 136        return close_transaction(transaction, card, RCODE_CANCELLED);
 137}
 138EXPORT_SYMBOL(fw_cancel_transaction);
 139
 140static void split_transaction_timeout_callback(struct timer_list *timer)
 141{
 142        struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 143        struct fw_card *card = t->card;
 144        unsigned long flags;
 145
 146        spin_lock_irqsave(&card->lock, flags);
 147        if (list_empty(&t->link)) {
 148                spin_unlock_irqrestore(&card->lock, flags);
 149                return;
 150        }
 151        list_del(&t->link);
 152        card->tlabel_mask &= ~(1ULL << t->tlabel);
 153        spin_unlock_irqrestore(&card->lock, flags);
 154
 155        t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 156}
 157
 158static void start_split_transaction_timeout(struct fw_transaction *t,
 159                                            struct fw_card *card)
 160{
 161        unsigned long flags;
 162
 163        spin_lock_irqsave(&card->lock, flags);
 164
 165        if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 166                spin_unlock_irqrestore(&card->lock, flags);
 167                return;
 168        }
 169
 170        t->is_split_transaction = true;
 171        mod_timer(&t->split_timeout_timer,
 172                  jiffies + card->split_timeout_jiffies);
 173
 174        spin_unlock_irqrestore(&card->lock, flags);
 175}
 176
 177static void transmit_complete_callback(struct fw_packet *packet,
 178                                       struct fw_card *card, int status)
 179{
 180        struct fw_transaction *t =
 181            container_of(packet, struct fw_transaction, packet);
 182
 183        switch (status) {
 184        case ACK_COMPLETE:
 185                close_transaction(t, card, RCODE_COMPLETE);
 186                break;
 187        case ACK_PENDING:
 188                start_split_transaction_timeout(t, card);
 189                break;
 190        case ACK_BUSY_X:
 191        case ACK_BUSY_A:
 192        case ACK_BUSY_B:
 193                close_transaction(t, card, RCODE_BUSY);
 194                break;
 195        case ACK_DATA_ERROR:
 196                close_transaction(t, card, RCODE_DATA_ERROR);
 197                break;
 198        case ACK_TYPE_ERROR:
 199                close_transaction(t, card, RCODE_TYPE_ERROR);
 200                break;
 201        default:
 202                /*
 203                 * In this case the ack is really a juju specific
 204                 * rcode, so just forward that to the callback.
 205                 */
 206                close_transaction(t, card, status);
 207                break;
 208        }
 209}
 210
 211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 212                int destination_id, int source_id, int generation, int speed,
 213                unsigned long long offset, void *payload, size_t length)
 214{
 215        int ext_tcode;
 216
 217        if (tcode == TCODE_STREAM_DATA) {
 218                packet->header[0] =
 219                        HEADER_DATA_LENGTH(length) |
 220                        destination_id |
 221                        HEADER_TCODE(TCODE_STREAM_DATA);
 222                packet->header_length = 4;
 223                packet->payload = payload;
 224                packet->payload_length = length;
 225
 226                goto common;
 227        }
 228
 229        if (tcode > 0x10) {
 230                ext_tcode = tcode & ~0x10;
 231                tcode = TCODE_LOCK_REQUEST;
 232        } else
 233                ext_tcode = 0;
 234
 235        packet->header[0] =
 236                HEADER_RETRY(RETRY_X) |
 237                HEADER_TLABEL(tlabel) |
 238                HEADER_TCODE(tcode) |
 239                HEADER_DESTINATION(destination_id);
 240        packet->header[1] =
 241                HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 242        packet->header[2] =
 243                offset;
 244
 245        switch (tcode) {
 246        case TCODE_WRITE_QUADLET_REQUEST:
 247                packet->header[3] = *(u32 *)payload;
 248                packet->header_length = 16;
 249                packet->payload_length = 0;
 250                break;
 251
 252        case TCODE_LOCK_REQUEST:
 253        case TCODE_WRITE_BLOCK_REQUEST:
 254                packet->header[3] =
 255                        HEADER_DATA_LENGTH(length) |
 256                        HEADER_EXTENDED_TCODE(ext_tcode);
 257                packet->header_length = 16;
 258                packet->payload = payload;
 259                packet->payload_length = length;
 260                break;
 261
 262        case TCODE_READ_QUADLET_REQUEST:
 263                packet->header_length = 12;
 264                packet->payload_length = 0;
 265                break;
 266
 267        case TCODE_READ_BLOCK_REQUEST:
 268                packet->header[3] =
 269                        HEADER_DATA_LENGTH(length) |
 270                        HEADER_EXTENDED_TCODE(ext_tcode);
 271                packet->header_length = 16;
 272                packet->payload_length = 0;
 273                break;
 274
 275        default:
 276                WARN(1, "wrong tcode %d\n", tcode);
 277        }
 278 common:
 279        packet->speed = speed;
 280        packet->generation = generation;
 281        packet->ack = 0;
 282        packet->payload_mapped = false;
 283}
 284
 285static int allocate_tlabel(struct fw_card *card)
 286{
 287        int tlabel;
 288
 289        tlabel = card->current_tlabel;
 290        while (card->tlabel_mask & (1ULL << tlabel)) {
 291                tlabel = (tlabel + 1) & 0x3f;
 292                if (tlabel == card->current_tlabel)
 293                        return -EBUSY;
 294        }
 295
 296        card->current_tlabel = (tlabel + 1) & 0x3f;
 297        card->tlabel_mask |= 1ULL << tlabel;
 298
 299        return tlabel;
 300}
 301
 302/**
 303 * fw_send_request() - submit a request packet for transmission
 304 * @card:               interface to send the request at
 305 * @t:                  transaction instance to which the request belongs
 306 * @tcode:              transaction code
 307 * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
 308 * @generation:         bus generation in which request and response are valid
 309 * @speed:              transmission speed
 310 * @offset:             48bit wide offset into destination's address space
 311 * @payload:            data payload for the request subaction
 312 * @length:             length of the payload, in bytes
 313 * @callback:           function to be called when the transaction is completed
 314 * @callback_data:      data to be passed to the transaction completion callback
 315 *
 316 * Submit a request packet into the asynchronous request transmission queue.
 317 * Can be called from atomic context.  If you prefer a blocking API, use
 318 * fw_run_transaction() in a context that can sleep.
 319 *
 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 322 *
 323 * Make sure that the value in @destination_id is not older than the one in
 324 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 325 *
 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 328 * It will contain tag, channel, and sy data instead of a node ID then.
 329 *
 330 * The payload buffer at @data is going to be DMA-mapped except in case of
 331 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 332 * buffer complies with the restrictions of the streaming DMA mapping API.
 333 * @payload must not be freed before the @callback is called.
 334 *
 335 * In case of request types without payload, @data is NULL and @length is 0.
 336 *
 337 * After the transaction is completed successfully or unsuccessfully, the
 338 * @callback will be called.  Among its parameters is the response code which
 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 340 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 343 * generation, or missing ACK respectively.
 344 *
 345 * Note some timing corner cases:  fw_send_request() may complete much earlier
 346 * than when the request packet actually hits the wire.  On the other hand,
 347 * transaction completion and hence execution of @callback may happen even
 348 * before fw_send_request() returns.
 349 */
 350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 351                     int destination_id, int generation, int speed,
 352                     unsigned long long offset, void *payload, size_t length,
 353                     fw_transaction_callback_t callback, void *callback_data)
 354{
 355        unsigned long flags;
 356        int tlabel;
 357
 358        /*
 359         * Allocate tlabel from the bitmap and put the transaction on
 360         * the list while holding the card spinlock.
 361         */
 362
 363        spin_lock_irqsave(&card->lock, flags);
 364
 365        tlabel = allocate_tlabel(card);
 366        if (tlabel < 0) {
 367                spin_unlock_irqrestore(&card->lock, flags);
 368                callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 369                return;
 370        }
 371
 372        t->node_id = destination_id;
 373        t->tlabel = tlabel;
 374        t->card = card;
 375        t->is_split_transaction = false;
 376        timer_setup(&t->split_timeout_timer,
 377                    split_transaction_timeout_callback, 0);
 378        t->callback = callback;
 379        t->callback_data = callback_data;
 380
 381        fw_fill_request(&t->packet, tcode, t->tlabel,
 382                        destination_id, card->node_id, generation,
 383                        speed, offset, payload, length);
 384        t->packet.callback = transmit_complete_callback;
 385
 386        list_add_tail(&t->link, &card->transaction_list);
 387
 388        spin_unlock_irqrestore(&card->lock, flags);
 389
 390        card->driver->send_request(card, &t->packet);
 391}
 392EXPORT_SYMBOL(fw_send_request);
 393
 394struct transaction_callback_data {
 395        struct completion done;
 396        void *payload;
 397        int rcode;
 398};
 399
 400static void transaction_callback(struct fw_card *card, int rcode,
 401                                 void *payload, size_t length, void *data)
 402{
 403        struct transaction_callback_data *d = data;
 404
 405        if (rcode == RCODE_COMPLETE)
 406                memcpy(d->payload, payload, length);
 407        d->rcode = rcode;
 408        complete(&d->done);
 409}
 410
 411/**
 412 * fw_run_transaction() - send request and sleep until transaction is completed
 413 * @card:               card interface for this request
 414 * @tcode:              transaction code
 415 * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
 416 * @generation:         bus generation in which request and response are valid
 417 * @speed:              transmission speed
 418 * @offset:             48bit wide offset into destination's address space
 419 * @payload:            data payload for the request subaction
 420 * @length:             length of the payload, in bytes
 421 *
 422 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 423 * Unlike fw_send_request(), @data points to the payload of the request or/and
 424 * to the payload of the response.  DMA mapping restrictions apply to outbound
 425 * request payloads of >= 8 bytes but not to inbound response payloads.
 426 */
 427int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 428                       int generation, int speed, unsigned long long offset,
 429                       void *payload, size_t length)
 430{
 431        struct transaction_callback_data d;
 432        struct fw_transaction t;
 433
 434        timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 435        init_completion(&d.done);
 436        d.payload = payload;
 437        fw_send_request(card, &t, tcode, destination_id, generation, speed,
 438                        offset, payload, length, transaction_callback, &d);
 439        wait_for_completion(&d.done);
 440        destroy_timer_on_stack(&t.split_timeout_timer);
 441
 442        return d.rcode;
 443}
 444EXPORT_SYMBOL(fw_run_transaction);
 445
 446static DEFINE_MUTEX(phy_config_mutex);
 447static DECLARE_COMPLETION(phy_config_done);
 448
 449static void transmit_phy_packet_callback(struct fw_packet *packet,
 450                                         struct fw_card *card, int status)
 451{
 452        complete(&phy_config_done);
 453}
 454
 455static struct fw_packet phy_config_packet = {
 456        .header_length  = 12,
 457        .header[0]      = TCODE_LINK_INTERNAL << 4,
 458        .payload_length = 0,
 459        .speed          = SCODE_100,
 460        .callback       = transmit_phy_packet_callback,
 461};
 462
 463void fw_send_phy_config(struct fw_card *card,
 464                        int node_id, int generation, int gap_count)
 465{
 466        long timeout = DIV_ROUND_UP(HZ, 10);
 467        u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 468
 469        if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 470                data |= PHY_CONFIG_ROOT_ID(node_id);
 471
 472        if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 473                gap_count = card->driver->read_phy_reg(card, 1);
 474                if (gap_count < 0)
 475                        return;
 476
 477                gap_count &= 63;
 478                if (gap_count == 63)
 479                        return;
 480        }
 481        data |= PHY_CONFIG_GAP_COUNT(gap_count);
 482
 483        mutex_lock(&phy_config_mutex);
 484
 485        phy_config_packet.header[1] = data;
 486        phy_config_packet.header[2] = ~data;
 487        phy_config_packet.generation = generation;
 488        reinit_completion(&phy_config_done);
 489
 490        card->driver->send_request(card, &phy_config_packet);
 491        wait_for_completion_timeout(&phy_config_done, timeout);
 492
 493        mutex_unlock(&phy_config_mutex);
 494}
 495
 496static struct fw_address_handler *lookup_overlapping_address_handler(
 497        struct list_head *list, unsigned long long offset, size_t length)
 498{
 499        struct fw_address_handler *handler;
 500
 501        list_for_each_entry_rcu(handler, list, link) {
 502                if (handler->offset < offset + length &&
 503                    offset < handler->offset + handler->length)
 504                        return handler;
 505        }
 506
 507        return NULL;
 508}
 509
 510static bool is_enclosing_handler(struct fw_address_handler *handler,
 511                                 unsigned long long offset, size_t length)
 512{
 513        return handler->offset <= offset &&
 514                offset + length <= handler->offset + handler->length;
 515}
 516
 517static struct fw_address_handler *lookup_enclosing_address_handler(
 518        struct list_head *list, unsigned long long offset, size_t length)
 519{
 520        struct fw_address_handler *handler;
 521
 522        list_for_each_entry_rcu(handler, list, link) {
 523                if (is_enclosing_handler(handler, offset, length))
 524                        return handler;
 525        }
 526
 527        return NULL;
 528}
 529
 530static DEFINE_SPINLOCK(address_handler_list_lock);
 531static LIST_HEAD(address_handler_list);
 532
 533const struct fw_address_region fw_high_memory_region =
 534        { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 535EXPORT_SYMBOL(fw_high_memory_region);
 536
 537static const struct fw_address_region low_memory_region =
 538        { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 539
 540#if 0
 541const struct fw_address_region fw_private_region =
 542        { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 543const struct fw_address_region fw_csr_region =
 544        { .start = CSR_REGISTER_BASE,
 545          .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 546const struct fw_address_region fw_unit_space_region =
 547        { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 548#endif  /*  0  */
 549
 550static bool is_in_fcp_region(u64 offset, size_t length)
 551{
 552        return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 553                offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 554}
 555
 556/**
 557 * fw_core_add_address_handler() - register for incoming requests
 558 * @handler:    callback
 559 * @region:     region in the IEEE 1212 node space address range
 560 *
 561 * region->start, ->end, and handler->length have to be quadlet-aligned.
 562 *
 563 * When a request is received that falls within the specified address range,
 564 * the specified callback is invoked.  The parameters passed to the callback
 565 * give the details of the particular request.
 566 *
 567 * To be called in process context.
 568 * Return value:  0 on success, non-zero otherwise.
 569 *
 570 * The start offset of the handler's address region is determined by
 571 * fw_core_add_address_handler() and is returned in handler->offset.
 572 *
 573 * Address allocations are exclusive, except for the FCP registers.
 574 */
 575int fw_core_add_address_handler(struct fw_address_handler *handler,
 576                                const struct fw_address_region *region)
 577{
 578        struct fw_address_handler *other;
 579        int ret = -EBUSY;
 580
 581        if (region->start & 0xffff000000000003ULL ||
 582            region->start >= region->end ||
 583            region->end   > 0x0001000000000000ULL ||
 584            handler->length & 3 ||
 585            handler->length == 0)
 586                return -EINVAL;
 587
 588        spin_lock(&address_handler_list_lock);
 589
 590        handler->offset = region->start;
 591        while (handler->offset + handler->length <= region->end) {
 592                if (is_in_fcp_region(handler->offset, handler->length))
 593                        other = NULL;
 594                else
 595                        other = lookup_overlapping_address_handler
 596                                        (&address_handler_list,
 597                                         handler->offset, handler->length);
 598                if (other != NULL) {
 599                        handler->offset += other->length;
 600                } else {
 601                        list_add_tail_rcu(&handler->link, &address_handler_list);
 602                        ret = 0;
 603                        break;
 604                }
 605        }
 606
 607        spin_unlock(&address_handler_list_lock);
 608
 609        return ret;
 610}
 611EXPORT_SYMBOL(fw_core_add_address_handler);
 612
 613/**
 614 * fw_core_remove_address_handler() - unregister an address handler
 615 * @handler: callback
 616 *
 617 * To be called in process context.
 618 *
 619 * When fw_core_remove_address_handler() returns, @handler->callback() is
 620 * guaranteed to not run on any CPU anymore.
 621 */
 622void fw_core_remove_address_handler(struct fw_address_handler *handler)
 623{
 624        spin_lock(&address_handler_list_lock);
 625        list_del_rcu(&handler->link);
 626        spin_unlock(&address_handler_list_lock);
 627        synchronize_rcu();
 628}
 629EXPORT_SYMBOL(fw_core_remove_address_handler);
 630
 631struct fw_request {
 632        struct fw_packet response;
 633        u32 request_header[4];
 634        int ack;
 635        u32 length;
 636        u32 data[0];
 637};
 638
 639static void free_response_callback(struct fw_packet *packet,
 640                                   struct fw_card *card, int status)
 641{
 642        struct fw_request *request;
 643
 644        request = container_of(packet, struct fw_request, response);
 645        kfree(request);
 646}
 647
 648int fw_get_response_length(struct fw_request *r)
 649{
 650        int tcode, ext_tcode, data_length;
 651
 652        tcode = HEADER_GET_TCODE(r->request_header[0]);
 653
 654        switch (tcode) {
 655        case TCODE_WRITE_QUADLET_REQUEST:
 656        case TCODE_WRITE_BLOCK_REQUEST:
 657                return 0;
 658
 659        case TCODE_READ_QUADLET_REQUEST:
 660                return 4;
 661
 662        case TCODE_READ_BLOCK_REQUEST:
 663                data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 664                return data_length;
 665
 666        case TCODE_LOCK_REQUEST:
 667                ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 668                data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 669                switch (ext_tcode) {
 670                case EXTCODE_FETCH_ADD:
 671                case EXTCODE_LITTLE_ADD:
 672                        return data_length;
 673                default:
 674                        return data_length / 2;
 675                }
 676
 677        default:
 678                WARN(1, "wrong tcode %d\n", tcode);
 679                return 0;
 680        }
 681}
 682
 683void fw_fill_response(struct fw_packet *response, u32 *request_header,
 684                      int rcode, void *payload, size_t length)
 685{
 686        int tcode, tlabel, extended_tcode, source, destination;
 687
 688        tcode          = HEADER_GET_TCODE(request_header[0]);
 689        tlabel         = HEADER_GET_TLABEL(request_header[0]);
 690        source         = HEADER_GET_DESTINATION(request_header[0]);
 691        destination    = HEADER_GET_SOURCE(request_header[1]);
 692        extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 693
 694        response->header[0] =
 695                HEADER_RETRY(RETRY_1) |
 696                HEADER_TLABEL(tlabel) |
 697                HEADER_DESTINATION(destination);
 698        response->header[1] =
 699                HEADER_SOURCE(source) |
 700                HEADER_RCODE(rcode);
 701        response->header[2] = 0;
 702
 703        switch (tcode) {
 704        case TCODE_WRITE_QUADLET_REQUEST:
 705        case TCODE_WRITE_BLOCK_REQUEST:
 706                response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 707                response->header_length = 12;
 708                response->payload_length = 0;
 709                break;
 710
 711        case TCODE_READ_QUADLET_REQUEST:
 712                response->header[0] |=
 713                        HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 714                if (payload != NULL)
 715                        response->header[3] = *(u32 *)payload;
 716                else
 717                        response->header[3] = 0;
 718                response->header_length = 16;
 719                response->payload_length = 0;
 720                break;
 721
 722        case TCODE_READ_BLOCK_REQUEST:
 723        case TCODE_LOCK_REQUEST:
 724                response->header[0] |= HEADER_TCODE(tcode + 2);
 725                response->header[3] =
 726                        HEADER_DATA_LENGTH(length) |
 727                        HEADER_EXTENDED_TCODE(extended_tcode);
 728                response->header_length = 16;
 729                response->payload = payload;
 730                response->payload_length = length;
 731                break;
 732
 733        default:
 734                WARN(1, "wrong tcode %d\n", tcode);
 735        }
 736
 737        response->payload_mapped = false;
 738}
 739EXPORT_SYMBOL(fw_fill_response);
 740
 741static u32 compute_split_timeout_timestamp(struct fw_card *card,
 742                                           u32 request_timestamp)
 743{
 744        unsigned int cycles;
 745        u32 timestamp;
 746
 747        cycles = card->split_timeout_cycles;
 748        cycles += request_timestamp & 0x1fff;
 749
 750        timestamp = request_timestamp & ~0x1fff;
 751        timestamp += (cycles / 8000) << 13;
 752        timestamp |= cycles % 8000;
 753
 754        return timestamp;
 755}
 756
 757static struct fw_request *allocate_request(struct fw_card *card,
 758                                           struct fw_packet *p)
 759{
 760        struct fw_request *request;
 761        u32 *data, length;
 762        int request_tcode;
 763
 764        request_tcode = HEADER_GET_TCODE(p->header[0]);
 765        switch (request_tcode) {
 766        case TCODE_WRITE_QUADLET_REQUEST:
 767                data = &p->header[3];
 768                length = 4;
 769                break;
 770
 771        case TCODE_WRITE_BLOCK_REQUEST:
 772        case TCODE_LOCK_REQUEST:
 773                data = p->payload;
 774                length = HEADER_GET_DATA_LENGTH(p->header[3]);
 775                break;
 776
 777        case TCODE_READ_QUADLET_REQUEST:
 778                data = NULL;
 779                length = 4;
 780                break;
 781
 782        case TCODE_READ_BLOCK_REQUEST:
 783                data = NULL;
 784                length = HEADER_GET_DATA_LENGTH(p->header[3]);
 785                break;
 786
 787        default:
 788                fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 789                         p->header[0], p->header[1], p->header[2]);
 790                return NULL;
 791        }
 792
 793        request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 794        if (request == NULL)
 795                return NULL;
 796
 797        request->response.speed = p->speed;
 798        request->response.timestamp =
 799                        compute_split_timeout_timestamp(card, p->timestamp);
 800        request->response.generation = p->generation;
 801        request->response.ack = 0;
 802        request->response.callback = free_response_callback;
 803        request->ack = p->ack;
 804        request->length = length;
 805        if (data)
 806                memcpy(request->data, data, length);
 807
 808        memcpy(request->request_header, p->header, sizeof(p->header));
 809
 810        return request;
 811}
 812
 813void fw_send_response(struct fw_card *card,
 814                      struct fw_request *request, int rcode)
 815{
 816        if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 817                return;
 818
 819        /* unified transaction or broadcast transaction: don't respond */
 820        if (request->ack != ACK_PENDING ||
 821            HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 822                kfree(request);
 823                return;
 824        }
 825
 826        if (rcode == RCODE_COMPLETE)
 827                fw_fill_response(&request->response, request->request_header,
 828                                 rcode, request->data,
 829                                 fw_get_response_length(request));
 830        else
 831                fw_fill_response(&request->response, request->request_header,
 832                                 rcode, NULL, 0);
 833
 834        card->driver->send_response(card, &request->response);
 835}
 836EXPORT_SYMBOL(fw_send_response);
 837
 838/**
 839 * fw_get_request_speed() - returns speed at which the @request was received
 840 * @request: firewire request data
 841 */
 842int fw_get_request_speed(struct fw_request *request)
 843{
 844        return request->response.speed;
 845}
 846EXPORT_SYMBOL(fw_get_request_speed);
 847
 848static void handle_exclusive_region_request(struct fw_card *card,
 849                                            struct fw_packet *p,
 850                                            struct fw_request *request,
 851                                            unsigned long long offset)
 852{
 853        struct fw_address_handler *handler;
 854        int tcode, destination, source;
 855
 856        destination = HEADER_GET_DESTINATION(p->header[0]);
 857        source      = HEADER_GET_SOURCE(p->header[1]);
 858        tcode       = HEADER_GET_TCODE(p->header[0]);
 859        if (tcode == TCODE_LOCK_REQUEST)
 860                tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 861
 862        rcu_read_lock();
 863        handler = lookup_enclosing_address_handler(&address_handler_list,
 864                                                   offset, request->length);
 865        if (handler)
 866                handler->address_callback(card, request,
 867                                          tcode, destination, source,
 868                                          p->generation, offset,
 869                                          request->data, request->length,
 870                                          handler->callback_data);
 871        rcu_read_unlock();
 872
 873        if (!handler)
 874                fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 875}
 876
 877static void handle_fcp_region_request(struct fw_card *card,
 878                                      struct fw_packet *p,
 879                                      struct fw_request *request,
 880                                      unsigned long long offset)
 881{
 882        struct fw_address_handler *handler;
 883        int tcode, destination, source;
 884
 885        if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 886             offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 887            request->length > 0x200) {
 888                fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 889
 890                return;
 891        }
 892
 893        tcode       = HEADER_GET_TCODE(p->header[0]);
 894        destination = HEADER_GET_DESTINATION(p->header[0]);
 895        source      = HEADER_GET_SOURCE(p->header[1]);
 896
 897        if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 898            tcode != TCODE_WRITE_BLOCK_REQUEST) {
 899                fw_send_response(card, request, RCODE_TYPE_ERROR);
 900
 901                return;
 902        }
 903
 904        rcu_read_lock();
 905        list_for_each_entry_rcu(handler, &address_handler_list, link) {
 906                if (is_enclosing_handler(handler, offset, request->length))
 907                        handler->address_callback(card, NULL, tcode,
 908                                                  destination, source,
 909                                                  p->generation, offset,
 910                                                  request->data,
 911                                                  request->length,
 912                                                  handler->callback_data);
 913        }
 914        rcu_read_unlock();
 915
 916        fw_send_response(card, request, RCODE_COMPLETE);
 917}
 918
 919void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 920{
 921        struct fw_request *request;
 922        unsigned long long offset;
 923
 924        if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 925                return;
 926
 927        if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 928                fw_cdev_handle_phy_packet(card, p);
 929                return;
 930        }
 931
 932        request = allocate_request(card, p);
 933        if (request == NULL) {
 934                /* FIXME: send statically allocated busy packet. */
 935                return;
 936        }
 937
 938        offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 939                p->header[2];
 940
 941        if (!is_in_fcp_region(offset, request->length))
 942                handle_exclusive_region_request(card, p, request, offset);
 943        else
 944                handle_fcp_region_request(card, p, request, offset);
 945
 946}
 947EXPORT_SYMBOL(fw_core_handle_request);
 948
 949void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 950{
 951        struct fw_transaction *t;
 952        unsigned long flags;
 953        u32 *data;
 954        size_t data_length;
 955        int tcode, tlabel, source, rcode;
 956
 957        tcode   = HEADER_GET_TCODE(p->header[0]);
 958        tlabel  = HEADER_GET_TLABEL(p->header[0]);
 959        source  = HEADER_GET_SOURCE(p->header[1]);
 960        rcode   = HEADER_GET_RCODE(p->header[1]);
 961
 962        spin_lock_irqsave(&card->lock, flags);
 963        list_for_each_entry(t, &card->transaction_list, link) {
 964                if (t->node_id == source && t->tlabel == tlabel) {
 965                        if (!try_cancel_split_timeout(t)) {
 966                                spin_unlock_irqrestore(&card->lock, flags);
 967                                goto timed_out;
 968                        }
 969                        list_del_init(&t->link);
 970                        card->tlabel_mask &= ~(1ULL << t->tlabel);
 971                        break;
 972                }
 973        }
 974        spin_unlock_irqrestore(&card->lock, flags);
 975
 976        if (&t->link == &card->transaction_list) {
 977 timed_out:
 978                fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 979                          source, tlabel);
 980                return;
 981        }
 982
 983        /*
 984         * FIXME: sanity check packet, is length correct, does tcodes
 985         * and addresses match.
 986         */
 987
 988        switch (tcode) {
 989        case TCODE_READ_QUADLET_RESPONSE:
 990                data = (u32 *) &p->header[3];
 991                data_length = 4;
 992                break;
 993
 994        case TCODE_WRITE_RESPONSE:
 995                data = NULL;
 996                data_length = 0;
 997                break;
 998
 999        case TCODE_READ_BLOCK_RESPONSE:
1000        case TCODE_LOCK_RESPONSE:
1001                data = p->payload;
1002                data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1003                break;
1004
1005        default:
1006                /* Should never happen, this is just to shut up gcc. */
1007                data = NULL;
1008                data_length = 0;
1009                break;
1010        }
1011
1012        /*
1013         * The response handler may be executed while the request handler
1014         * is still pending.  Cancel the request handler.
1015         */
1016        card->driver->cancel_packet(card, &t->packet);
1017
1018        t->callback(card, rcode, data, data_length, t->callback_data);
1019}
1020EXPORT_SYMBOL(fw_core_handle_response);
1021
1022/**
1023 * fw_rcode_string - convert a firewire result code to an error description
1024 * @rcode: the result code
1025 */
1026const char *fw_rcode_string(int rcode)
1027{
1028        static const char *const names[] = {
1029                [RCODE_COMPLETE]       = "no error",
1030                [RCODE_CONFLICT_ERROR] = "conflict error",
1031                [RCODE_DATA_ERROR]     = "data error",
1032                [RCODE_TYPE_ERROR]     = "type error",
1033                [RCODE_ADDRESS_ERROR]  = "address error",
1034                [RCODE_SEND_ERROR]     = "send error",
1035                [RCODE_CANCELLED]      = "timeout",
1036                [RCODE_BUSY]           = "busy",
1037                [RCODE_GENERATION]     = "bus reset",
1038                [RCODE_NO_ACK]         = "no ack",
1039        };
1040
1041        if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1042                return names[rcode];
1043        else
1044                return "unknown";
1045}
1046EXPORT_SYMBOL(fw_rcode_string);
1047
1048static const struct fw_address_region topology_map_region =
1049        { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1050          .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1051
1052static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1053                int tcode, int destination, int source, int generation,
1054                unsigned long long offset, void *payload, size_t length,
1055                void *callback_data)
1056{
1057        int start;
1058
1059        if (!TCODE_IS_READ_REQUEST(tcode)) {
1060                fw_send_response(card, request, RCODE_TYPE_ERROR);
1061                return;
1062        }
1063
1064        if ((offset & 3) > 0 || (length & 3) > 0) {
1065                fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1066                return;
1067        }
1068
1069        start = (offset - topology_map_region.start) / 4;
1070        memcpy(payload, &card->topology_map[start], length);
1071
1072        fw_send_response(card, request, RCODE_COMPLETE);
1073}
1074
1075static struct fw_address_handler topology_map = {
1076        .length                 = 0x400,
1077        .address_callback       = handle_topology_map,
1078};
1079
1080static const struct fw_address_region registers_region =
1081        { .start = CSR_REGISTER_BASE,
1082          .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1083
1084static void update_split_timeout(struct fw_card *card)
1085{
1086        unsigned int cycles;
1087
1088        cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1089
1090        /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1091        cycles = clamp(cycles, 800u, 3u * 8000u);
1092
1093        card->split_timeout_cycles = cycles;
1094        card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1095}
1096
1097static void handle_registers(struct fw_card *card, struct fw_request *request,
1098                int tcode, int destination, int source, int generation,
1099                unsigned long long offset, void *payload, size_t length,
1100                void *callback_data)
1101{
1102        int reg = offset & ~CSR_REGISTER_BASE;
1103        __be32 *data = payload;
1104        int rcode = RCODE_COMPLETE;
1105        unsigned long flags;
1106
1107        switch (reg) {
1108        case CSR_PRIORITY_BUDGET:
1109                if (!card->priority_budget_implemented) {
1110                        rcode = RCODE_ADDRESS_ERROR;
1111                        break;
1112                }
1113                /* else fall through */
1114
1115        case CSR_NODE_IDS:
1116                /*
1117                 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1118                 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1119                 */
1120                /* fall through */
1121
1122        case CSR_STATE_CLEAR:
1123        case CSR_STATE_SET:
1124        case CSR_CYCLE_TIME:
1125        case CSR_BUS_TIME:
1126        case CSR_BUSY_TIMEOUT:
1127                if (tcode == TCODE_READ_QUADLET_REQUEST)
1128                        *data = cpu_to_be32(card->driver->read_csr(card, reg));
1129                else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1130                        card->driver->write_csr(card, reg, be32_to_cpu(*data));
1131                else
1132                        rcode = RCODE_TYPE_ERROR;
1133                break;
1134
1135        case CSR_RESET_START:
1136                if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137                        card->driver->write_csr(card, CSR_STATE_CLEAR,
1138                                                CSR_STATE_BIT_ABDICATE);
1139                else
1140                        rcode = RCODE_TYPE_ERROR;
1141                break;
1142
1143        case CSR_SPLIT_TIMEOUT_HI:
1144                if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145                        *data = cpu_to_be32(card->split_timeout_hi);
1146                } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147                        spin_lock_irqsave(&card->lock, flags);
1148                        card->split_timeout_hi = be32_to_cpu(*data) & 7;
1149                        update_split_timeout(card);
1150                        spin_unlock_irqrestore(&card->lock, flags);
1151                } else {
1152                        rcode = RCODE_TYPE_ERROR;
1153                }
1154                break;
1155
1156        case CSR_SPLIT_TIMEOUT_LO:
1157                if (tcode == TCODE_READ_QUADLET_REQUEST) {
1158                        *data = cpu_to_be32(card->split_timeout_lo);
1159                } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1160                        spin_lock_irqsave(&card->lock, flags);
1161                        card->split_timeout_lo =
1162                                        be32_to_cpu(*data) & 0xfff80000;
1163                        update_split_timeout(card);
1164                        spin_unlock_irqrestore(&card->lock, flags);
1165                } else {
1166                        rcode = RCODE_TYPE_ERROR;
1167                }
1168                break;
1169
1170        case CSR_MAINT_UTILITY:
1171                if (tcode == TCODE_READ_QUADLET_REQUEST)
1172                        *data = card->maint_utility_register;
1173                else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1174                        card->maint_utility_register = *data;
1175                else
1176                        rcode = RCODE_TYPE_ERROR;
1177                break;
1178
1179        case CSR_BROADCAST_CHANNEL:
1180                if (tcode == TCODE_READ_QUADLET_REQUEST)
1181                        *data = cpu_to_be32(card->broadcast_channel);
1182                else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1183                        card->broadcast_channel =
1184                            (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1185                            BROADCAST_CHANNEL_INITIAL;
1186                else
1187                        rcode = RCODE_TYPE_ERROR;
1188                break;
1189
1190        case CSR_BUS_MANAGER_ID:
1191        case CSR_BANDWIDTH_AVAILABLE:
1192        case CSR_CHANNELS_AVAILABLE_HI:
1193        case CSR_CHANNELS_AVAILABLE_LO:
1194                /*
1195                 * FIXME: these are handled by the OHCI hardware and
1196                 * the stack never sees these request. If we add
1197                 * support for a new type of controller that doesn't
1198                 * handle this in hardware we need to deal with these
1199                 * transactions.
1200                 */
1201                BUG();
1202                break;
1203
1204        default:
1205                rcode = RCODE_ADDRESS_ERROR;
1206                break;
1207        }
1208
1209        fw_send_response(card, request, rcode);
1210}
1211
1212static struct fw_address_handler registers = {
1213        .length                 = 0x400,
1214        .address_callback       = handle_registers,
1215};
1216
1217static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1218                int tcode, int destination, int source, int generation,
1219                unsigned long long offset, void *payload, size_t length,
1220                void *callback_data)
1221{
1222        /*
1223         * This catches requests not handled by the physical DMA unit,
1224         * i.e., wrong transaction types or unauthorized source nodes.
1225         */
1226        fw_send_response(card, request, RCODE_TYPE_ERROR);
1227}
1228
1229static struct fw_address_handler low_memory = {
1230        .length                 = FW_MAX_PHYSICAL_RANGE,
1231        .address_callback       = handle_low_memory,
1232};
1233
1234MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1235MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1236MODULE_LICENSE("GPL");
1237
1238static const u32 vendor_textual_descriptor[] = {
1239        /* textual descriptor leaf () */
1240        0x00060000,
1241        0x00000000,
1242        0x00000000,
1243        0x4c696e75,             /* L i n u */
1244        0x78204669,             /* x   F i */
1245        0x72657769,             /* r e w i */
1246        0x72650000,             /* r e     */
1247};
1248
1249static const u32 model_textual_descriptor[] = {
1250        /* model descriptor leaf () */
1251        0x00030000,
1252        0x00000000,
1253        0x00000000,
1254        0x4a756a75,             /* J u j u */
1255};
1256
1257static struct fw_descriptor vendor_id_descriptor = {
1258        .length = ARRAY_SIZE(vendor_textual_descriptor),
1259        .immediate = 0x03001f11,
1260        .key = 0x81000000,
1261        .data = vendor_textual_descriptor,
1262};
1263
1264static struct fw_descriptor model_id_descriptor = {
1265        .length = ARRAY_SIZE(model_textual_descriptor),
1266        .immediate = 0x17023901,
1267        .key = 0x81000000,
1268        .data = model_textual_descriptor,
1269};
1270
1271static int __init fw_core_init(void)
1272{
1273        int ret;
1274
1275        fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1276        if (!fw_workqueue)
1277                return -ENOMEM;
1278
1279        ret = bus_register(&fw_bus_type);
1280        if (ret < 0) {
1281                destroy_workqueue(fw_workqueue);
1282                return ret;
1283        }
1284
1285        fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1286        if (fw_cdev_major < 0) {
1287                bus_unregister(&fw_bus_type);
1288                destroy_workqueue(fw_workqueue);
1289                return fw_cdev_major;
1290        }
1291
1292        fw_core_add_address_handler(&topology_map, &topology_map_region);
1293        fw_core_add_address_handler(&registers, &registers_region);
1294        fw_core_add_address_handler(&low_memory, &low_memory_region);
1295        fw_core_add_descriptor(&vendor_id_descriptor);
1296        fw_core_add_descriptor(&model_id_descriptor);
1297
1298        return 0;
1299}
1300
1301static void __exit fw_core_cleanup(void)
1302{
1303        unregister_chrdev(fw_cdev_major, "firewire");
1304        bus_unregister(&fw_bus_type);
1305        destroy_workqueue(fw_workqueue);
1306        idr_destroy(&fw_device_idr);
1307}
1308
1309module_init(fw_core_init);
1310module_exit(fw_core_cleanup);
1311