linux/drivers/hwmon/lm80.c
<<
>>
Prefs
   1/*
   2 * lm80.c - From lm_sensors, Linux kernel modules for hardware
   3 *          monitoring
   4 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 *                           and Philip Edelbrock <phil@netroedge.com>
   6 *
   7 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/jiffies.h>
  28#include <linux/i2c.h>
  29#include <linux/hwmon.h>
  30#include <linux/hwmon-sysfs.h>
  31#include <linux/err.h>
  32#include <linux/mutex.h>
  33
  34/* Addresses to scan */
  35static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
  36                                                0x2e, 0x2f, I2C_CLIENT_END };
  37
  38/* Many LM80 constants specified below */
  39
  40/* The LM80 registers */
  41#define LM80_REG_IN_MAX(nr)             (0x2a + (nr) * 2)
  42#define LM80_REG_IN_MIN(nr)             (0x2b + (nr) * 2)
  43#define LM80_REG_IN(nr)                 (0x20 + (nr))
  44
  45#define LM80_REG_FAN1                   0x28
  46#define LM80_REG_FAN2                   0x29
  47#define LM80_REG_FAN_MIN(nr)            (0x3b + (nr))
  48
  49#define LM80_REG_TEMP                   0x27
  50#define LM80_REG_TEMP_HOT_MAX           0x38
  51#define LM80_REG_TEMP_HOT_HYST          0x39
  52#define LM80_REG_TEMP_OS_MAX            0x3a
  53#define LM80_REG_TEMP_OS_HYST           0x3b
  54
  55#define LM80_REG_CONFIG                 0x00
  56#define LM80_REG_ALARM1                 0x01
  57#define LM80_REG_ALARM2                 0x02
  58#define LM80_REG_MASK1                  0x03
  59#define LM80_REG_MASK2                  0x04
  60#define LM80_REG_FANDIV                 0x05
  61#define LM80_REG_RES                    0x06
  62
  63#define LM96080_REG_CONV_RATE           0x07
  64#define LM96080_REG_MAN_ID              0x3e
  65#define LM96080_REG_DEV_ID              0x3f
  66
  67
  68/*
  69 * Conversions. Rounding and limit checking is only done on the TO_REG
  70 * variants. Note that you should be a bit careful with which arguments
  71 * these macros are called: arguments may be evaluated more than once.
  72 * Fixing this is just not worth it.
  73 */
  74
  75#define IN_TO_REG(val)          (clamp_val(((val) + 5) / 10, 0, 255))
  76#define IN_FROM_REG(val)        ((val) * 10)
  77
  78static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
  79{
  80        if (rpm == 0)
  81                return 255;
  82        rpm = clamp_val(rpm, 1, 1000000);
  83        return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
  84}
  85
  86#define FAN_FROM_REG(val, div)  ((val) == 0 ? -1 : \
  87                                (val) == 255 ? 0 : 1350000/((div) * (val)))
  88
  89#define TEMP_FROM_REG(reg)      ((reg) * 125 / 32)
  90#define TEMP_TO_REG(temp)       (DIV_ROUND_CLOSEST(clamp_val((temp), \
  91                                        -128000, 127000), 1000) << 8)
  92
  93#define DIV_FROM_REG(val)               (1 << (val))
  94
  95enum temp_index {
  96        t_input = 0,
  97        t_hot_max,
  98        t_hot_hyst,
  99        t_os_max,
 100        t_os_hyst,
 101        t_num_temp
 102};
 103
 104static const u8 temp_regs[t_num_temp] = {
 105        [t_input] = LM80_REG_TEMP,
 106        [t_hot_max] = LM80_REG_TEMP_HOT_MAX,
 107        [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
 108        [t_os_max] = LM80_REG_TEMP_OS_MAX,
 109        [t_os_hyst] = LM80_REG_TEMP_OS_HYST,
 110};
 111
 112enum in_index {
 113        i_input = 0,
 114        i_max,
 115        i_min,
 116        i_num_in
 117};
 118
 119enum fan_index {
 120        f_input,
 121        f_min,
 122        f_num_fan
 123};
 124
 125/*
 126 * Client data (each client gets its own)
 127 */
 128
 129struct lm80_data {
 130        struct i2c_client *client;
 131        struct mutex update_lock;
 132        char error;             /* !=0 if error occurred during last update */
 133        char valid;             /* !=0 if following fields are valid */
 134        unsigned long last_updated;     /* In jiffies */
 135
 136        u8 in[i_num_in][7];     /* Register value, 1st index is enum in_index */
 137        u8 fan[f_num_fan][2];   /* Register value, 1st index enum fan_index */
 138        u8 fan_div[2];          /* Register encoding, shifted right */
 139        s16 temp[t_num_temp];   /* Register values, normalized to 16 bit */
 140        u16 alarms;             /* Register encoding, combined */
 141};
 142
 143static int lm80_read_value(struct i2c_client *client, u8 reg)
 144{
 145        return i2c_smbus_read_byte_data(client, reg);
 146}
 147
 148static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
 149{
 150        return i2c_smbus_write_byte_data(client, reg, value);
 151}
 152
 153/* Called when we have found a new LM80 and after read errors */
 154static void lm80_init_client(struct i2c_client *client)
 155{
 156        /*
 157         * Reset all except Watchdog values and last conversion values
 158         * This sets fan-divs to 2, among others. This makes most other
 159         * initializations unnecessary
 160         */
 161        lm80_write_value(client, LM80_REG_CONFIG, 0x80);
 162        /* Set 11-bit temperature resolution */
 163        lm80_write_value(client, LM80_REG_RES, 0x08);
 164
 165        /* Start monitoring */
 166        lm80_write_value(client, LM80_REG_CONFIG, 0x01);
 167}
 168
 169static struct lm80_data *lm80_update_device(struct device *dev)
 170{
 171        struct lm80_data *data = dev_get_drvdata(dev);
 172        struct i2c_client *client = data->client;
 173        int i;
 174        int rv;
 175        int prev_rv;
 176        struct lm80_data *ret = data;
 177
 178        mutex_lock(&data->update_lock);
 179
 180        if (data->error)
 181                lm80_init_client(client);
 182
 183        if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
 184                dev_dbg(dev, "Starting lm80 update\n");
 185                for (i = 0; i <= 6; i++) {
 186                        rv = lm80_read_value(client, LM80_REG_IN(i));
 187                        if (rv < 0)
 188                                goto abort;
 189                        data->in[i_input][i] = rv;
 190
 191                        rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
 192                        if (rv < 0)
 193                                goto abort;
 194                        data->in[i_min][i] = rv;
 195
 196                        rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
 197                        if (rv < 0)
 198                                goto abort;
 199                        data->in[i_max][i] = rv;
 200                }
 201
 202                rv = lm80_read_value(client, LM80_REG_FAN1);
 203                if (rv < 0)
 204                        goto abort;
 205                data->fan[f_input][0] = rv;
 206
 207                rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
 208                if (rv < 0)
 209                        goto abort;
 210                data->fan[f_min][0] = rv;
 211
 212                rv = lm80_read_value(client, LM80_REG_FAN2);
 213                if (rv < 0)
 214                        goto abort;
 215                data->fan[f_input][1] = rv;
 216
 217                rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
 218                if (rv < 0)
 219                        goto abort;
 220                data->fan[f_min][1] = rv;
 221
 222                prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
 223                if (rv < 0)
 224                        goto abort;
 225                rv = lm80_read_value(client, LM80_REG_RES);
 226                if (rv < 0)
 227                        goto abort;
 228                data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
 229
 230                for (i = t_input + 1; i < t_num_temp; i++) {
 231                        rv = lm80_read_value(client, temp_regs[i]);
 232                        if (rv < 0)
 233                                goto abort;
 234                        data->temp[i] = rv << 8;
 235                }
 236
 237                rv = lm80_read_value(client, LM80_REG_FANDIV);
 238                if (rv < 0)
 239                        goto abort;
 240                data->fan_div[0] = (rv >> 2) & 0x03;
 241                data->fan_div[1] = (rv >> 4) & 0x03;
 242
 243                prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
 244                if (rv < 0)
 245                        goto abort;
 246                rv = lm80_read_value(client, LM80_REG_ALARM2);
 247                if (rv < 0)
 248                        goto abort;
 249                data->alarms = prev_rv + (rv << 8);
 250
 251                data->last_updated = jiffies;
 252                data->valid = 1;
 253                data->error = 0;
 254        }
 255        goto done;
 256
 257abort:
 258        ret = ERR_PTR(rv);
 259        data->valid = 0;
 260        data->error = 1;
 261
 262done:
 263        mutex_unlock(&data->update_lock);
 264
 265        return ret;
 266}
 267
 268/*
 269 * Sysfs stuff
 270 */
 271
 272static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 273                       char *buf)
 274{
 275        struct lm80_data *data = lm80_update_device(dev);
 276        int index = to_sensor_dev_attr_2(attr)->index;
 277        int nr = to_sensor_dev_attr_2(attr)->nr;
 278
 279        if (IS_ERR(data))
 280                return PTR_ERR(data);
 281        return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
 282}
 283
 284static ssize_t in_store(struct device *dev, struct device_attribute *attr,
 285                        const char *buf, size_t count)
 286{
 287        struct lm80_data *data = dev_get_drvdata(dev);
 288        struct i2c_client *client = data->client;
 289        int index = to_sensor_dev_attr_2(attr)->index;
 290        int nr = to_sensor_dev_attr_2(attr)->nr;
 291        long val;
 292        u8 reg;
 293        int err = kstrtol(buf, 10, &val);
 294        if (err < 0)
 295                return err;
 296
 297        reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
 298
 299        mutex_lock(&data->update_lock);
 300        data->in[nr][index] = IN_TO_REG(val);
 301        lm80_write_value(client, reg, data->in[nr][index]);
 302        mutex_unlock(&data->update_lock);
 303        return count;
 304}
 305
 306static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 307                        char *buf)
 308{
 309        int index = to_sensor_dev_attr_2(attr)->index;
 310        int nr = to_sensor_dev_attr_2(attr)->nr;
 311        struct lm80_data *data = lm80_update_device(dev);
 312        if (IS_ERR(data))
 313                return PTR_ERR(data);
 314        return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
 315                       DIV_FROM_REG(data->fan_div[index])));
 316}
 317
 318static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
 319                            char *buf)
 320{
 321        int nr = to_sensor_dev_attr(attr)->index;
 322        struct lm80_data *data = lm80_update_device(dev);
 323        if (IS_ERR(data))
 324                return PTR_ERR(data);
 325        return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
 326}
 327
 328static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
 329                         const char *buf, size_t count)
 330{
 331        int index = to_sensor_dev_attr_2(attr)->index;
 332        int nr = to_sensor_dev_attr_2(attr)->nr;
 333        struct lm80_data *data = dev_get_drvdata(dev);
 334        struct i2c_client *client = data->client;
 335        unsigned long val;
 336        int err = kstrtoul(buf, 10, &val);
 337        if (err < 0)
 338                return err;
 339
 340        mutex_lock(&data->update_lock);
 341        data->fan[nr][index] = FAN_TO_REG(val,
 342                                          DIV_FROM_REG(data->fan_div[index]));
 343        lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
 344                         data->fan[nr][index]);
 345        mutex_unlock(&data->update_lock);
 346        return count;
 347}
 348
 349/*
 350 * Note: we save and restore the fan minimum here, because its value is
 351 * determined in part by the fan divisor.  This follows the principle of
 352 * least surprise; the user doesn't expect the fan minimum to change just
 353 * because the divisor changed.
 354 */
 355static ssize_t fan_div_store(struct device *dev,
 356                             struct device_attribute *attr, const char *buf,
 357                             size_t count)
 358{
 359        int nr = to_sensor_dev_attr(attr)->index;
 360        struct lm80_data *data = dev_get_drvdata(dev);
 361        struct i2c_client *client = data->client;
 362        unsigned long min, val;
 363        u8 reg;
 364        int rv;
 365
 366        rv = kstrtoul(buf, 10, &val);
 367        if (rv < 0)
 368                return rv;
 369
 370        /* Save fan_min */
 371        mutex_lock(&data->update_lock);
 372        min = FAN_FROM_REG(data->fan[f_min][nr],
 373                           DIV_FROM_REG(data->fan_div[nr]));
 374
 375        switch (val) {
 376        case 1:
 377                data->fan_div[nr] = 0;
 378                break;
 379        case 2:
 380                data->fan_div[nr] = 1;
 381                break;
 382        case 4:
 383                data->fan_div[nr] = 2;
 384                break;
 385        case 8:
 386                data->fan_div[nr] = 3;
 387                break;
 388        default:
 389                dev_err(dev,
 390                        "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
 391                        val);
 392                mutex_unlock(&data->update_lock);
 393                return -EINVAL;
 394        }
 395
 396        rv = lm80_read_value(client, LM80_REG_FANDIV);
 397        if (rv < 0) {
 398                mutex_unlock(&data->update_lock);
 399                return rv;
 400        }
 401        reg = (rv & ~(3 << (2 * (nr + 1))))
 402            | (data->fan_div[nr] << (2 * (nr + 1)));
 403        lm80_write_value(client, LM80_REG_FANDIV, reg);
 404
 405        /* Restore fan_min */
 406        data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
 407        lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
 408                         data->fan[f_min][nr]);
 409        mutex_unlock(&data->update_lock);
 410
 411        return count;
 412}
 413
 414static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
 415                         char *buf)
 416{
 417        struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 418        struct lm80_data *data = lm80_update_device(dev);
 419        if (IS_ERR(data))
 420                return PTR_ERR(data);
 421        return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
 422}
 423
 424static ssize_t temp_store(struct device *dev,
 425                          struct device_attribute *devattr, const char *buf,
 426                          size_t count)
 427{
 428        struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 429        struct lm80_data *data = dev_get_drvdata(dev);
 430        struct i2c_client *client = data->client;
 431        int nr = attr->index;
 432        long val;
 433        int err = kstrtol(buf, 10, &val);
 434        if (err < 0)
 435                return err;
 436
 437        mutex_lock(&data->update_lock);
 438        data->temp[nr] = TEMP_TO_REG(val);
 439        lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
 440        mutex_unlock(&data->update_lock);
 441        return count;
 442}
 443
 444static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 445                           char *buf)
 446{
 447        struct lm80_data *data = lm80_update_device(dev);
 448        if (IS_ERR(data))
 449                return PTR_ERR(data);
 450        return sprintf(buf, "%u\n", data->alarms);
 451}
 452
 453static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 454                          char *buf)
 455{
 456        int bitnr = to_sensor_dev_attr(attr)->index;
 457        struct lm80_data *data = lm80_update_device(dev);
 458        if (IS_ERR(data))
 459                return PTR_ERR(data);
 460        return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
 461}
 462
 463static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
 464static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
 465static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
 466static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
 467static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
 468static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
 469static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
 470static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
 471static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
 472static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
 473static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
 474static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
 475static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
 476static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
 477static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
 478static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
 479static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
 480static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
 481static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
 482static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
 483static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
 484static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
 485static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
 486static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
 487static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
 488static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
 489static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
 490static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
 491static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
 492static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
 493static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
 494static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
 495static DEVICE_ATTR_RO(alarms);
 496static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 497static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 498static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 499static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 500static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
 501static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
 502static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
 503static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 504static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 505static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
 506static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);
 507
 508/*
 509 * Real code
 510 */
 511
 512static struct attribute *lm80_attrs[] = {
 513        &sensor_dev_attr_in0_min.dev_attr.attr,
 514        &sensor_dev_attr_in1_min.dev_attr.attr,
 515        &sensor_dev_attr_in2_min.dev_attr.attr,
 516        &sensor_dev_attr_in3_min.dev_attr.attr,
 517        &sensor_dev_attr_in4_min.dev_attr.attr,
 518        &sensor_dev_attr_in5_min.dev_attr.attr,
 519        &sensor_dev_attr_in6_min.dev_attr.attr,
 520        &sensor_dev_attr_in0_max.dev_attr.attr,
 521        &sensor_dev_attr_in1_max.dev_attr.attr,
 522        &sensor_dev_attr_in2_max.dev_attr.attr,
 523        &sensor_dev_attr_in3_max.dev_attr.attr,
 524        &sensor_dev_attr_in4_max.dev_attr.attr,
 525        &sensor_dev_attr_in5_max.dev_attr.attr,
 526        &sensor_dev_attr_in6_max.dev_attr.attr,
 527        &sensor_dev_attr_in0_input.dev_attr.attr,
 528        &sensor_dev_attr_in1_input.dev_attr.attr,
 529        &sensor_dev_attr_in2_input.dev_attr.attr,
 530        &sensor_dev_attr_in3_input.dev_attr.attr,
 531        &sensor_dev_attr_in4_input.dev_attr.attr,
 532        &sensor_dev_attr_in5_input.dev_attr.attr,
 533        &sensor_dev_attr_in6_input.dev_attr.attr,
 534        &sensor_dev_attr_fan1_min.dev_attr.attr,
 535        &sensor_dev_attr_fan2_min.dev_attr.attr,
 536        &sensor_dev_attr_fan1_input.dev_attr.attr,
 537        &sensor_dev_attr_fan2_input.dev_attr.attr,
 538        &sensor_dev_attr_fan1_div.dev_attr.attr,
 539        &sensor_dev_attr_fan2_div.dev_attr.attr,
 540        &sensor_dev_attr_temp1_input.dev_attr.attr,
 541        &sensor_dev_attr_temp1_max.dev_attr.attr,
 542        &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
 543        &sensor_dev_attr_temp1_crit.dev_attr.attr,
 544        &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
 545        &dev_attr_alarms.attr,
 546        &sensor_dev_attr_in0_alarm.dev_attr.attr,
 547        &sensor_dev_attr_in1_alarm.dev_attr.attr,
 548        &sensor_dev_attr_in2_alarm.dev_attr.attr,
 549        &sensor_dev_attr_in3_alarm.dev_attr.attr,
 550        &sensor_dev_attr_in4_alarm.dev_attr.attr,
 551        &sensor_dev_attr_in5_alarm.dev_attr.attr,
 552        &sensor_dev_attr_in6_alarm.dev_attr.attr,
 553        &sensor_dev_attr_fan1_alarm.dev_attr.attr,
 554        &sensor_dev_attr_fan2_alarm.dev_attr.attr,
 555        &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 556        &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 557        NULL
 558};
 559ATTRIBUTE_GROUPS(lm80);
 560
 561/* Return 0 if detection is successful, -ENODEV otherwise */
 562static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
 563{
 564        struct i2c_adapter *adapter = client->adapter;
 565        int i, cur, man_id, dev_id;
 566        const char *name = NULL;
 567
 568        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 569                return -ENODEV;
 570
 571        /* First check for unused bits, common to both chip types */
 572        if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
 573         || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
 574                return -ENODEV;
 575
 576        /*
 577         * The LM96080 has manufacturer and stepping/die rev registers so we
 578         * can just check that. The LM80 does not have such registers so we
 579         * have to use a more expensive trick.
 580         */
 581        man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
 582        dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
 583        if (man_id == 0x01 && dev_id == 0x08) {
 584                /* Check more unused bits for confirmation */
 585                if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
 586                        return -ENODEV;
 587
 588                name = "lm96080";
 589        } else {
 590                /* Check 6-bit addressing */
 591                for (i = 0x2a; i <= 0x3d; i++) {
 592                        cur = i2c_smbus_read_byte_data(client, i);
 593                        if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
 594                         || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
 595                         || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
 596                                return -ENODEV;
 597                }
 598
 599                name = "lm80";
 600        }
 601
 602        strlcpy(info->type, name, I2C_NAME_SIZE);
 603
 604        return 0;
 605}
 606
 607static int lm80_probe(struct i2c_client *client,
 608                      const struct i2c_device_id *id)
 609{
 610        struct device *dev = &client->dev;
 611        struct device *hwmon_dev;
 612        struct lm80_data *data;
 613        int rv;
 614
 615        data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
 616        if (!data)
 617                return -ENOMEM;
 618
 619        data->client = client;
 620        mutex_init(&data->update_lock);
 621
 622        /* Initialize the LM80 chip */
 623        lm80_init_client(client);
 624
 625        /* A few vars need to be filled upon startup */
 626        rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
 627        if (rv < 0)
 628                return rv;
 629        data->fan[f_min][0] = rv;
 630        rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
 631        if (rv < 0)
 632                return rv;
 633        data->fan[f_min][1] = rv;
 634
 635        hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
 636                                                           data, lm80_groups);
 637
 638        return PTR_ERR_OR_ZERO(hwmon_dev);
 639}
 640
 641/*
 642 * Driver data (common to all clients)
 643 */
 644
 645static const struct i2c_device_id lm80_id[] = {
 646        { "lm80", 0 },
 647        { "lm96080", 1 },
 648        { }
 649};
 650MODULE_DEVICE_TABLE(i2c, lm80_id);
 651
 652static struct i2c_driver lm80_driver = {
 653        .class          = I2C_CLASS_HWMON,
 654        .driver = {
 655                .name   = "lm80",
 656        },
 657        .probe          = lm80_probe,
 658        .id_table       = lm80_id,
 659        .detect         = lm80_detect,
 660        .address_list   = normal_i2c,
 661};
 662
 663module_i2c_driver(lm80_driver);
 664
 665MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
 666        "Philip Edelbrock <phil@netroedge.com>");
 667MODULE_DESCRIPTION("LM80 driver");
 668MODULE_LICENSE("GPL");
 669