1
2
3
4
5
6
7
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31
32#define STM32F4_ADC_SR 0x00
33#define STM32F4_ADC_CR1 0x04
34#define STM32F4_ADC_CR2 0x08
35#define STM32F4_ADC_SMPR1 0x0C
36#define STM32F4_ADC_SMPR2 0x10
37#define STM32F4_ADC_HTR 0x24
38#define STM32F4_ADC_LTR 0x28
39#define STM32F4_ADC_SQR1 0x2C
40#define STM32F4_ADC_SQR2 0x30
41#define STM32F4_ADC_SQR3 0x34
42#define STM32F4_ADC_JSQR 0x38
43#define STM32F4_ADC_JDR1 0x3C
44#define STM32F4_ADC_JDR2 0x40
45#define STM32F4_ADC_JDR3 0x44
46#define STM32F4_ADC_JDR4 0x48
47#define STM32F4_ADC_DR 0x4C
48
49
50#define STM32F4_STRT BIT(4)
51#define STM32F4_EOC BIT(1)
52
53
54#define STM32F4_RES_SHIFT 24
55#define STM32F4_RES_MASK GENMASK(25, 24)
56#define STM32F4_SCAN BIT(8)
57#define STM32F4_EOCIE BIT(5)
58
59
60#define STM32F4_SWSTART BIT(30)
61#define STM32F4_EXTEN_SHIFT 28
62#define STM32F4_EXTEN_MASK GENMASK(29, 28)
63#define STM32F4_EXTSEL_SHIFT 24
64#define STM32F4_EXTSEL_MASK GENMASK(27, 24)
65#define STM32F4_EOCS BIT(10)
66#define STM32F4_DDS BIT(9)
67#define STM32F4_DMA BIT(8)
68#define STM32F4_ADON BIT(0)
69
70
71#define STM32H7_ADC_ISR 0x00
72#define STM32H7_ADC_IER 0x04
73#define STM32H7_ADC_CR 0x08
74#define STM32H7_ADC_CFGR 0x0C
75#define STM32H7_ADC_SMPR1 0x14
76#define STM32H7_ADC_SMPR2 0x18
77#define STM32H7_ADC_PCSEL 0x1C
78#define STM32H7_ADC_SQR1 0x30
79#define STM32H7_ADC_SQR2 0x34
80#define STM32H7_ADC_SQR3 0x38
81#define STM32H7_ADC_SQR4 0x3C
82#define STM32H7_ADC_DR 0x40
83#define STM32H7_ADC_DIFSEL 0xC0
84#define STM32H7_ADC_CALFACT 0xC4
85#define STM32H7_ADC_CALFACT2 0xC8
86
87
88#define STM32MP1_VREGREADY BIT(12)
89#define STM32H7_EOC BIT(2)
90#define STM32H7_ADRDY BIT(0)
91
92
93#define STM32H7_EOCIE STM32H7_EOC
94
95
96#define STM32H7_ADCAL BIT(31)
97#define STM32H7_ADCALDIF BIT(30)
98#define STM32H7_DEEPPWD BIT(29)
99#define STM32H7_ADVREGEN BIT(28)
100#define STM32H7_LINCALRDYW6 BIT(27)
101#define STM32H7_LINCALRDYW5 BIT(26)
102#define STM32H7_LINCALRDYW4 BIT(25)
103#define STM32H7_LINCALRDYW3 BIT(24)
104#define STM32H7_LINCALRDYW2 BIT(23)
105#define STM32H7_LINCALRDYW1 BIT(22)
106#define STM32H7_ADCALLIN BIT(16)
107#define STM32H7_BOOST BIT(8)
108#define STM32H7_ADSTP BIT(4)
109#define STM32H7_ADSTART BIT(2)
110#define STM32H7_ADDIS BIT(1)
111#define STM32H7_ADEN BIT(0)
112
113
114#define STM32H7_EXTEN_SHIFT 10
115#define STM32H7_EXTEN_MASK GENMASK(11, 10)
116#define STM32H7_EXTSEL_SHIFT 5
117#define STM32H7_EXTSEL_MASK GENMASK(9, 5)
118#define STM32H7_RES_SHIFT 2
119#define STM32H7_RES_MASK GENMASK(4, 2)
120#define STM32H7_DMNGT_SHIFT 0
121#define STM32H7_DMNGT_MASK GENMASK(1, 0)
122
123enum stm32h7_adc_dmngt {
124 STM32H7_DMNGT_DR_ONLY,
125 STM32H7_DMNGT_DMA_ONESHOT,
126 STM32H7_DMNGT_DFSDM,
127 STM32H7_DMNGT_DMA_CIRC,
128};
129
130
131#define STM32H7_CALFACT_D_SHIFT 16
132#define STM32H7_CALFACT_D_MASK GENMASK(26, 16)
133#define STM32H7_CALFACT_S_SHIFT 0
134#define STM32H7_CALFACT_S_MASK GENMASK(10, 0)
135
136
137#define STM32H7_LINCALFACT_SHIFT 0
138#define STM32H7_LINCALFACT_MASK GENMASK(29, 0)
139
140
141#define STM32H7_LINCALFACT_NUM 6
142
143
144#define STM32H7_BOOST_CLKRATE 20000000UL
145
146#define STM32_ADC_CH_MAX 20
147#define STM32_ADC_CH_SZ 10
148#define STM32_ADC_MAX_SQ 16
149#define STM32_ADC_MAX_SMP 7
150#define STM32_ADC_TIMEOUT_US 100000
151#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
152#define STM32_ADC_HW_STOP_DELAY_MS 100
153
154#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
155
156
157enum stm32_adc_exten {
158 STM32_EXTEN_SWTRIG,
159 STM32_EXTEN_HWTRIG_RISING_EDGE,
160 STM32_EXTEN_HWTRIG_FALLING_EDGE,
161 STM32_EXTEN_HWTRIG_BOTH_EDGES,
162};
163
164
165enum stm32_adc_extsel {
166 STM32_EXT0,
167 STM32_EXT1,
168 STM32_EXT2,
169 STM32_EXT3,
170 STM32_EXT4,
171 STM32_EXT5,
172 STM32_EXT6,
173 STM32_EXT7,
174 STM32_EXT8,
175 STM32_EXT9,
176 STM32_EXT10,
177 STM32_EXT11,
178 STM32_EXT12,
179 STM32_EXT13,
180 STM32_EXT14,
181 STM32_EXT15,
182 STM32_EXT16,
183 STM32_EXT17,
184 STM32_EXT18,
185 STM32_EXT19,
186 STM32_EXT20,
187};
188
189
190
191
192
193
194struct stm32_adc_trig_info {
195 const char *name;
196 enum stm32_adc_extsel extsel;
197};
198
199
200
201
202
203
204
205
206struct stm32_adc_calib {
207 u32 calfact_s;
208 u32 calfact_d;
209 u32 lincalfact[STM32H7_LINCALFACT_NUM];
210 bool calibrated;
211};
212
213
214
215
216
217
218
219struct stm32_adc_regs {
220 int reg;
221 int mask;
222 int shift;
223};
224
225
226
227
228
229
230
231
232
233
234
235
236
237struct stm32_adc_regspec {
238 const u32 dr;
239 const struct stm32_adc_regs ier_eoc;
240 const struct stm32_adc_regs isr_eoc;
241 const struct stm32_adc_regs *sqr;
242 const struct stm32_adc_regs exten;
243 const struct stm32_adc_regs extsel;
244 const struct stm32_adc_regs res;
245 const u32 smpr[2];
246 const struct stm32_adc_regs *smp_bits;
247};
248
249struct stm32_adc;
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264struct stm32_adc_cfg {
265 const struct stm32_adc_regspec *regs;
266 const struct stm32_adc_info *adc_info;
267 struct stm32_adc_trig_info *trigs;
268 bool clk_required;
269 bool has_vregready;
270 int (*prepare)(struct stm32_adc *);
271 void (*start_conv)(struct stm32_adc *, bool dma);
272 void (*stop_conv)(struct stm32_adc *);
273 void (*unprepare)(struct stm32_adc *);
274 const unsigned int *smp_cycles;
275};
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301struct stm32_adc {
302 struct stm32_adc_common *common;
303 u32 offset;
304 const struct stm32_adc_cfg *cfg;
305 struct completion completion;
306 u16 buffer[STM32_ADC_MAX_SQ];
307 struct clk *clk;
308 int irq;
309 spinlock_t lock;
310 unsigned int bufi;
311 unsigned int num_conv;
312 u32 res;
313 u32 trigger_polarity;
314 struct dma_chan *dma_chan;
315 u8 *rx_buf;
316 dma_addr_t rx_dma_buf;
317 unsigned int rx_buf_sz;
318 u32 difsel;
319 u32 pcsel;
320 u32 smpr_val[2];
321 struct stm32_adc_calib cal;
322 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
323};
324
325struct stm32_adc_diff_channel {
326 u32 vinp;
327 u32 vinn;
328};
329
330
331
332
333
334
335
336struct stm32_adc_info {
337 int max_channels;
338 const unsigned int *resolutions;
339 const unsigned int num_res;
340};
341
342static const unsigned int stm32f4_adc_resolutions[] = {
343
344 12, 10, 8, 6,
345};
346
347
348static const struct stm32_adc_info stm32f4_adc_info = {
349 .max_channels = 16,
350 .resolutions = stm32f4_adc_resolutions,
351 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
352};
353
354static const unsigned int stm32h7_adc_resolutions[] = {
355
356 16, 14, 12, 10, 8,
357};
358
359
360static const struct stm32_adc_info stm32h7_adc_info = {
361 .max_channels = STM32_ADC_CH_MAX,
362 .resolutions = stm32h7_adc_resolutions,
363 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
364};
365
366
367
368
369
370
371static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
372
373 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
374
375 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
376 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
377 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
378 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
379 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
380 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
381 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
382 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
383 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
384 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
385 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
386 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
387 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
388 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
389 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
390 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
391};
392
393
394static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
395 { TIM1_CH1, STM32_EXT0 },
396 { TIM1_CH2, STM32_EXT1 },
397 { TIM1_CH3, STM32_EXT2 },
398 { TIM2_CH2, STM32_EXT3 },
399 { TIM2_CH3, STM32_EXT4 },
400 { TIM2_CH4, STM32_EXT5 },
401 { TIM2_TRGO, STM32_EXT6 },
402 { TIM3_CH1, STM32_EXT7 },
403 { TIM3_TRGO, STM32_EXT8 },
404 { TIM4_CH4, STM32_EXT9 },
405 { TIM5_CH1, STM32_EXT10 },
406 { TIM5_CH2, STM32_EXT11 },
407 { TIM5_CH3, STM32_EXT12 },
408 { TIM8_CH1, STM32_EXT13 },
409 { TIM8_TRGO, STM32_EXT14 },
410 {},
411};
412
413
414
415
416
417static const struct stm32_adc_regs stm32f4_smp_bits[] = {
418
419 { 1, GENMASK(2, 0), 0 },
420 { 1, GENMASK(5, 3), 3 },
421 { 1, GENMASK(8, 6), 6 },
422 { 1, GENMASK(11, 9), 9 },
423 { 1, GENMASK(14, 12), 12 },
424 { 1, GENMASK(17, 15), 15 },
425 { 1, GENMASK(20, 18), 18 },
426 { 1, GENMASK(23, 21), 21 },
427 { 1, GENMASK(26, 24), 24 },
428 { 1, GENMASK(29, 27), 27 },
429
430 { 0, GENMASK(2, 0), 0 },
431 { 0, GENMASK(5, 3), 3 },
432 { 0, GENMASK(8, 6), 6 },
433 { 0, GENMASK(11, 9), 9 },
434 { 0, GENMASK(14, 12), 12 },
435 { 0, GENMASK(17, 15), 15 },
436 { 0, GENMASK(20, 18), 18 },
437 { 0, GENMASK(23, 21), 21 },
438 { 0, GENMASK(26, 24), 24 },
439};
440
441
442static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
443 3, 15, 28, 56, 84, 112, 144, 480,
444};
445
446static const struct stm32_adc_regspec stm32f4_adc_regspec = {
447 .dr = STM32F4_ADC_DR,
448 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
449 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
450 .sqr = stm32f4_sq,
451 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
452 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
453 STM32F4_EXTSEL_SHIFT },
454 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
455 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
456 .smp_bits = stm32f4_smp_bits,
457};
458
459static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
460
461 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
462
463 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
464 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
465 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
466 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
467 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
468 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
469 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
470 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
471 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
472 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
473 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
474 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
475 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
476 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
477 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
478 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
479};
480
481
482static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
483 { TIM1_CH1, STM32_EXT0 },
484 { TIM1_CH2, STM32_EXT1 },
485 { TIM1_CH3, STM32_EXT2 },
486 { TIM2_CH2, STM32_EXT3 },
487 { TIM3_TRGO, STM32_EXT4 },
488 { TIM4_CH4, STM32_EXT5 },
489 { TIM8_TRGO, STM32_EXT7 },
490 { TIM8_TRGO2, STM32_EXT8 },
491 { TIM1_TRGO, STM32_EXT9 },
492 { TIM1_TRGO2, STM32_EXT10 },
493 { TIM2_TRGO, STM32_EXT11 },
494 { TIM4_TRGO, STM32_EXT12 },
495 { TIM6_TRGO, STM32_EXT13 },
496 { TIM15_TRGO, STM32_EXT14 },
497 { TIM3_CH4, STM32_EXT15 },
498 { LPTIM1_OUT, STM32_EXT18 },
499 { LPTIM2_OUT, STM32_EXT19 },
500 { LPTIM3_OUT, STM32_EXT20 },
501 {},
502};
503
504
505
506
507
508static const struct stm32_adc_regs stm32h7_smp_bits[] = {
509
510 { 0, GENMASK(2, 0), 0 },
511 { 0, GENMASK(5, 3), 3 },
512 { 0, GENMASK(8, 6), 6 },
513 { 0, GENMASK(11, 9), 9 },
514 { 0, GENMASK(14, 12), 12 },
515 { 0, GENMASK(17, 15), 15 },
516 { 0, GENMASK(20, 18), 18 },
517 { 0, GENMASK(23, 21), 21 },
518 { 0, GENMASK(26, 24), 24 },
519 { 0, GENMASK(29, 27), 27 },
520
521 { 1, GENMASK(2, 0), 0 },
522 { 1, GENMASK(5, 3), 3 },
523 { 1, GENMASK(8, 6), 6 },
524 { 1, GENMASK(11, 9), 9 },
525 { 1, GENMASK(14, 12), 12 },
526 { 1, GENMASK(17, 15), 15 },
527 { 1, GENMASK(20, 18), 18 },
528 { 1, GENMASK(23, 21), 21 },
529 { 1, GENMASK(26, 24), 24 },
530 { 1, GENMASK(29, 27), 27 },
531};
532
533
534static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
535 1, 2, 8, 16, 32, 64, 387, 810,
536};
537
538static const struct stm32_adc_regspec stm32h7_adc_regspec = {
539 .dr = STM32H7_ADC_DR,
540 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
541 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
542 .sqr = stm32h7_sq,
543 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
544 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
545 STM32H7_EXTSEL_SHIFT },
546 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
547 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
548 .smp_bits = stm32h7_smp_bits,
549};
550
551
552
553
554
555
556
557
558
559static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
560{
561 return readl_relaxed(adc->common->base + adc->offset + reg);
562}
563
564#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
565
566#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
567 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
568 cond, sleep_us, timeout_us)
569
570static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
571{
572 return readw_relaxed(adc->common->base + adc->offset + reg);
573}
574
575static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
576{
577 writel_relaxed(val, adc->common->base + adc->offset + reg);
578}
579
580static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
581{
582 unsigned long flags;
583
584 spin_lock_irqsave(&adc->lock, flags);
585 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
586 spin_unlock_irqrestore(&adc->lock, flags);
587}
588
589static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
590{
591 unsigned long flags;
592
593 spin_lock_irqsave(&adc->lock, flags);
594 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
595 spin_unlock_irqrestore(&adc->lock, flags);
596}
597
598
599
600
601
602static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
603{
604 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
605 adc->cfg->regs->ier_eoc.mask);
606};
607
608
609
610
611
612static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
613{
614 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
615 adc->cfg->regs->ier_eoc.mask);
616}
617
618static void stm32_adc_set_res(struct stm32_adc *adc)
619{
620 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
621 u32 val;
622
623 val = stm32_adc_readl(adc, res->reg);
624 val = (val & ~res->mask) | (adc->res << res->shift);
625 stm32_adc_writel(adc, res->reg, val);
626}
627
628static int stm32_adc_hw_stop(struct device *dev)
629{
630 struct stm32_adc *adc = dev_get_drvdata(dev);
631
632 if (adc->cfg->unprepare)
633 adc->cfg->unprepare(adc);
634
635 if (adc->clk)
636 clk_disable_unprepare(adc->clk);
637
638 return 0;
639}
640
641static int stm32_adc_hw_start(struct device *dev)
642{
643 struct stm32_adc *adc = dev_get_drvdata(dev);
644 int ret;
645
646 if (adc->clk) {
647 ret = clk_prepare_enable(adc->clk);
648 if (ret)
649 return ret;
650 }
651
652 stm32_adc_set_res(adc);
653
654 if (adc->cfg->prepare) {
655 ret = adc->cfg->prepare(adc);
656 if (ret)
657 goto err_clk_dis;
658 }
659
660 return 0;
661
662err_clk_dis:
663 if (adc->clk)
664 clk_disable_unprepare(adc->clk);
665
666 return ret;
667}
668
669
670
671
672
673
674
675
676
677
678
679static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
680{
681 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
682
683 if (dma)
684 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
685 STM32F4_DMA | STM32F4_DDS);
686
687 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
688
689
690 usleep_range(2, 3);
691
692
693 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
694 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
695}
696
697static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
698{
699 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
700 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
701
702 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
703 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
704 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
705}
706
707static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
708{
709 enum stm32h7_adc_dmngt dmngt;
710 unsigned long flags;
711 u32 val;
712
713 if (dma)
714 dmngt = STM32H7_DMNGT_DMA_CIRC;
715 else
716 dmngt = STM32H7_DMNGT_DR_ONLY;
717
718 spin_lock_irqsave(&adc->lock, flags);
719 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
720 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
721 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
722 spin_unlock_irqrestore(&adc->lock, flags);
723
724 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
725}
726
727static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
728{
729 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
730 int ret;
731 u32 val;
732
733 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
734
735 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
736 !(val & (STM32H7_ADSTART)),
737 100, STM32_ADC_TIMEOUT_US);
738 if (ret)
739 dev_warn(&indio_dev->dev, "stop failed\n");
740
741 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
742}
743
744static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
745{
746 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
747 int ret;
748 u32 val;
749
750
751 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
752 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
753
754 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
755 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
756
757
758 if (!adc->cfg->has_vregready) {
759 usleep_range(10, 20);
760 return 0;
761 }
762
763 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
764 val & STM32MP1_VREGREADY, 100,
765 STM32_ADC_TIMEOUT_US);
766 if (ret) {
767 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
768 dev_err(&indio_dev->dev, "Failed to exit power down\n");
769 }
770
771 return ret;
772}
773
774static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
775{
776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
777
778
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
780}
781
782static int stm32h7_adc_enable(struct stm32_adc *adc)
783{
784 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
785 int ret;
786 u32 val;
787
788 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
789
790
791 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
792 val & STM32H7_ADRDY,
793 100, STM32_ADC_TIMEOUT_US);
794 if (ret) {
795 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
796 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
797 } else {
798
799 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
800 }
801
802 return ret;
803}
804
805static void stm32h7_adc_disable(struct stm32_adc *adc)
806{
807 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
808 int ret;
809 u32 val;
810
811
812 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
813 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
814 !(val & STM32H7_ADEN), 100,
815 STM32_ADC_TIMEOUT_US);
816 if (ret)
817 dev_warn(&indio_dev->dev, "Failed to disable\n");
818}
819
820
821
822
823
824
825static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
826{
827 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
828 int i, ret;
829 u32 lincalrdyw_mask, val;
830
831
832 lincalrdyw_mask = STM32H7_LINCALRDYW6;
833 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
834
835 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
836
837
838 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
839 !(val & lincalrdyw_mask),
840 100, STM32_ADC_TIMEOUT_US);
841 if (ret) {
842 dev_err(&indio_dev->dev, "Failed to read calfact\n");
843 return ret;
844 }
845
846 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
847 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
848 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
849
850 lincalrdyw_mask >>= 1;
851 }
852
853
854 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
855 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
856 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
857 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
858 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
859 adc->cal.calibrated = true;
860
861 return 0;
862}
863
864
865
866
867
868
869static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
870{
871 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
872 int i, ret;
873 u32 lincalrdyw_mask, val;
874
875 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
876 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
877 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
878
879 lincalrdyw_mask = STM32H7_LINCALRDYW6;
880 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
881
882
883
884
885
886 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
887 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
888 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
889 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
890 val & lincalrdyw_mask,
891 100, STM32_ADC_TIMEOUT_US);
892 if (ret) {
893 dev_err(&indio_dev->dev, "Failed to write calfact\n");
894 return ret;
895 }
896
897
898
899
900
901
902
903
904 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
905 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
906 !(val & lincalrdyw_mask),
907 100, STM32_ADC_TIMEOUT_US);
908 if (ret) {
909 dev_err(&indio_dev->dev, "Failed to read calfact\n");
910 return ret;
911 }
912 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
913 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
914 dev_err(&indio_dev->dev, "calfact not consistent\n");
915 return -EIO;
916 }
917
918 lincalrdyw_mask >>= 1;
919 }
920
921 return 0;
922}
923
924
925
926
927
928
929
930
931
932
933
934
935#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
936
937
938
939
940
941
942static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
943{
944 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
945 int ret;
946 u32 val;
947
948 if (adc->cal.calibrated)
949 return true;
950
951
952
953
954
955
956 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
957 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
958
959
960 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
961 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
962 !(val & STM32H7_ADCAL), 100,
963 STM32H7_ADC_CALIB_TIMEOUT_US);
964 if (ret) {
965 dev_err(&indio_dev->dev, "calibration failed\n");
966 goto out;
967 }
968
969
970
971
972
973
974
975 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
976 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
977 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
978 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
979 !(val & STM32H7_ADCAL), 100,
980 STM32H7_ADC_CALIB_TIMEOUT_US);
981 if (ret) {
982 dev_err(&indio_dev->dev, "calibration failed\n");
983 goto out;
984 }
985
986out:
987 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
988 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
989
990 return ret;
991}
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004static int stm32h7_adc_prepare(struct stm32_adc *adc)
1005{
1006 int calib, ret;
1007
1008 ret = stm32h7_adc_exit_pwr_down(adc);
1009 if (ret)
1010 return ret;
1011
1012 ret = stm32h7_adc_selfcalib(adc);
1013 if (ret < 0)
1014 goto pwr_dwn;
1015 calib = ret;
1016
1017 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1018
1019 ret = stm32h7_adc_enable(adc);
1020 if (ret)
1021 goto pwr_dwn;
1022
1023
1024 if (calib)
1025 ret = stm32h7_adc_restore_selfcalib(adc);
1026 else
1027 ret = stm32h7_adc_read_selfcalib(adc);
1028 if (ret)
1029 goto disable;
1030
1031 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1032
1033 return 0;
1034
1035disable:
1036 stm32h7_adc_disable(adc);
1037pwr_dwn:
1038 stm32h7_adc_enter_pwr_down(adc);
1039
1040 return ret;
1041}
1042
1043static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1044{
1045 stm32h7_adc_disable(adc);
1046 stm32h7_adc_enter_pwr_down(adc);
1047}
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1061 const unsigned long *scan_mask)
1062{
1063 struct stm32_adc *adc = iio_priv(indio_dev);
1064 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1065 const struct iio_chan_spec *chan;
1066 u32 val, bit;
1067 int i = 0;
1068
1069
1070 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1071 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1072
1073 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1074 chan = indio_dev->channels + bit;
1075
1076
1077
1078
1079 i++;
1080 if (i > STM32_ADC_MAX_SQ)
1081 return -EINVAL;
1082
1083 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1084 __func__, chan->channel, i);
1085
1086 val = stm32_adc_readl(adc, sqr[i].reg);
1087 val &= ~sqr[i].mask;
1088 val |= chan->channel << sqr[i].shift;
1089 stm32_adc_writel(adc, sqr[i].reg, val);
1090 }
1091
1092 if (!i)
1093 return -EINVAL;
1094
1095
1096 val = stm32_adc_readl(adc, sqr[0].reg);
1097 val &= ~sqr[0].mask;
1098 val |= ((i - 1) << sqr[0].shift);
1099 stm32_adc_writel(adc, sqr[0].reg, val);
1100
1101 return 0;
1102}
1103
1104
1105
1106
1107
1108
1109
1110static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1111 struct iio_trigger *trig)
1112{
1113 struct stm32_adc *adc = iio_priv(indio_dev);
1114 int i;
1115
1116
1117 for (i = 0; adc->cfg->trigs[i].name; i++) {
1118
1119
1120
1121
1122 if ((is_stm32_timer_trigger(trig) ||
1123 is_stm32_lptim_trigger(trig)) &&
1124 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1125 return adc->cfg->trigs[i].extsel;
1126 }
1127 }
1128
1129 return -EINVAL;
1130}
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1142 struct iio_trigger *trig)
1143{
1144 struct stm32_adc *adc = iio_priv(indio_dev);
1145 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1146 unsigned long flags;
1147 int ret;
1148
1149 if (trig) {
1150 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1151 if (ret < 0)
1152 return ret;
1153
1154
1155 extsel = ret;
1156 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1157 }
1158
1159 spin_lock_irqsave(&adc->lock, flags);
1160 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1161 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1162 val |= exten << adc->cfg->regs->exten.shift;
1163 val |= extsel << adc->cfg->regs->extsel.shift;
1164 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1165 spin_unlock_irqrestore(&adc->lock, flags);
1166
1167 return 0;
1168}
1169
1170static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1171 const struct iio_chan_spec *chan,
1172 unsigned int type)
1173{
1174 struct stm32_adc *adc = iio_priv(indio_dev);
1175
1176 adc->trigger_polarity = type;
1177
1178 return 0;
1179}
1180
1181static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1182 const struct iio_chan_spec *chan)
1183{
1184 struct stm32_adc *adc = iio_priv(indio_dev);
1185
1186 return adc->trigger_polarity;
1187}
1188
1189static const char * const stm32_trig_pol_items[] = {
1190 "rising-edge", "falling-edge", "both-edges",
1191};
1192
1193static const struct iio_enum stm32_adc_trig_pol = {
1194 .items = stm32_trig_pol_items,
1195 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1196 .get = stm32_adc_get_trig_pol,
1197 .set = stm32_adc_set_trig_pol,
1198};
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1213 const struct iio_chan_spec *chan,
1214 int *res)
1215{
1216 struct stm32_adc *adc = iio_priv(indio_dev);
1217 struct device *dev = indio_dev->dev.parent;
1218 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1219 long timeout;
1220 u32 val;
1221 int ret;
1222
1223 reinit_completion(&adc->completion);
1224
1225 adc->bufi = 0;
1226
1227 ret = pm_runtime_get_sync(dev);
1228 if (ret < 0) {
1229 pm_runtime_put_noidle(dev);
1230 return ret;
1231 }
1232
1233
1234 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1235 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1236
1237
1238 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1239 val &= ~regs->sqr[1].mask;
1240 val |= chan->channel << regs->sqr[1].shift;
1241 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1242
1243
1244 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1245
1246
1247 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1248
1249 stm32_adc_conv_irq_enable(adc);
1250
1251 adc->cfg->start_conv(adc, false);
1252
1253 timeout = wait_for_completion_interruptible_timeout(
1254 &adc->completion, STM32_ADC_TIMEOUT);
1255 if (timeout == 0) {
1256 ret = -ETIMEDOUT;
1257 } else if (timeout < 0) {
1258 ret = timeout;
1259 } else {
1260 *res = adc->buffer[0];
1261 ret = IIO_VAL_INT;
1262 }
1263
1264 adc->cfg->stop_conv(adc);
1265
1266 stm32_adc_conv_irq_disable(adc);
1267
1268 pm_runtime_mark_last_busy(dev);
1269 pm_runtime_put_autosuspend(dev);
1270
1271 return ret;
1272}
1273
1274static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1275 struct iio_chan_spec const *chan,
1276 int *val, int *val2, long mask)
1277{
1278 struct stm32_adc *adc = iio_priv(indio_dev);
1279 int ret;
1280
1281 switch (mask) {
1282 case IIO_CHAN_INFO_RAW:
1283 ret = iio_device_claim_direct_mode(indio_dev);
1284 if (ret)
1285 return ret;
1286 if (chan->type == IIO_VOLTAGE)
1287 ret = stm32_adc_single_conv(indio_dev, chan, val);
1288 else
1289 ret = -EINVAL;
1290 iio_device_release_direct_mode(indio_dev);
1291 return ret;
1292
1293 case IIO_CHAN_INFO_SCALE:
1294 if (chan->differential) {
1295 *val = adc->common->vref_mv * 2;
1296 *val2 = chan->scan_type.realbits;
1297 } else {
1298 *val = adc->common->vref_mv;
1299 *val2 = chan->scan_type.realbits;
1300 }
1301 return IIO_VAL_FRACTIONAL_LOG2;
1302
1303 case IIO_CHAN_INFO_OFFSET:
1304 if (chan->differential)
1305
1306 *val = -((1 << chan->scan_type.realbits) / 2);
1307 else
1308 *val = 0;
1309 return IIO_VAL_INT;
1310
1311 default:
1312 return -EINVAL;
1313 }
1314}
1315
1316static irqreturn_t stm32_adc_isr(int irq, void *data)
1317{
1318 struct stm32_adc *adc = data;
1319 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1320 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1321 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1322
1323 if (status & regs->isr_eoc.mask) {
1324
1325 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1326 if (iio_buffer_enabled(indio_dev)) {
1327 adc->bufi++;
1328 if (adc->bufi >= adc->num_conv) {
1329 stm32_adc_conv_irq_disable(adc);
1330 iio_trigger_poll(indio_dev->trig);
1331 }
1332 } else {
1333 complete(&adc->completion);
1334 }
1335 return IRQ_HANDLED;
1336 }
1337
1338 return IRQ_NONE;
1339}
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1350 struct iio_trigger *trig)
1351{
1352 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1353}
1354
1355static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1356{
1357 struct stm32_adc *adc = iio_priv(indio_dev);
1358 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1359 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1360
1361
1362
1363
1364
1365
1366
1367 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1368 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1369
1370 return 0;
1371}
1372
1373static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1374 const unsigned long *scan_mask)
1375{
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377 struct device *dev = indio_dev->dev.parent;
1378 int ret;
1379
1380 ret = pm_runtime_get_sync(dev);
1381 if (ret < 0) {
1382 pm_runtime_put_noidle(dev);
1383 return ret;
1384 }
1385
1386 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1387
1388 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1389 pm_runtime_mark_last_busy(dev);
1390 pm_runtime_put_autosuspend(dev);
1391
1392 return ret;
1393}
1394
1395static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1396 const struct of_phandle_args *iiospec)
1397{
1398 int i;
1399
1400 for (i = 0; i < indio_dev->num_channels; i++)
1401 if (indio_dev->channels[i].channel == iiospec->args[0])
1402 return i;
1403
1404 return -EINVAL;
1405}
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1418 unsigned reg, unsigned writeval,
1419 unsigned *readval)
1420{
1421 struct stm32_adc *adc = iio_priv(indio_dev);
1422 struct device *dev = indio_dev->dev.parent;
1423 int ret;
1424
1425 ret = pm_runtime_get_sync(dev);
1426 if (ret < 0) {
1427 pm_runtime_put_noidle(dev);
1428 return ret;
1429 }
1430
1431 if (!readval)
1432 stm32_adc_writel(adc, reg, writeval);
1433 else
1434 *readval = stm32_adc_readl(adc, reg);
1435
1436 pm_runtime_mark_last_busy(dev);
1437 pm_runtime_put_autosuspend(dev);
1438
1439 return 0;
1440}
1441
1442static const struct iio_info stm32_adc_iio_info = {
1443 .read_raw = stm32_adc_read_raw,
1444 .validate_trigger = stm32_adc_validate_trigger,
1445 .hwfifo_set_watermark = stm32_adc_set_watermark,
1446 .update_scan_mode = stm32_adc_update_scan_mode,
1447 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1448 .of_xlate = stm32_adc_of_xlate,
1449};
1450
1451static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1452{
1453 struct dma_tx_state state;
1454 enum dma_status status;
1455
1456 status = dmaengine_tx_status(adc->dma_chan,
1457 adc->dma_chan->cookie,
1458 &state);
1459 if (status == DMA_IN_PROGRESS) {
1460
1461 unsigned int i = adc->rx_buf_sz - state.residue;
1462 unsigned int size;
1463
1464
1465 if (i >= adc->bufi)
1466 size = i - adc->bufi;
1467 else
1468 size = adc->rx_buf_sz + i - adc->bufi;
1469
1470 return size;
1471 }
1472
1473 return 0;
1474}
1475
1476static void stm32_adc_dma_buffer_done(void *data)
1477{
1478 struct iio_dev *indio_dev = data;
1479
1480 iio_trigger_poll_chained(indio_dev->trig);
1481}
1482
1483static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1484{
1485 struct stm32_adc *adc = iio_priv(indio_dev);
1486 struct dma_async_tx_descriptor *desc;
1487 dma_cookie_t cookie;
1488 int ret;
1489
1490 if (!adc->dma_chan)
1491 return 0;
1492
1493 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1494 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1495
1496
1497 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1498 adc->rx_dma_buf,
1499 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1500 DMA_DEV_TO_MEM,
1501 DMA_PREP_INTERRUPT);
1502 if (!desc)
1503 return -EBUSY;
1504
1505 desc->callback = stm32_adc_dma_buffer_done;
1506 desc->callback_param = indio_dev;
1507
1508 cookie = dmaengine_submit(desc);
1509 ret = dma_submit_error(cookie);
1510 if (ret) {
1511 dmaengine_terminate_all(adc->dma_chan);
1512 return ret;
1513 }
1514
1515
1516 dma_async_issue_pending(adc->dma_chan);
1517
1518 return 0;
1519}
1520
1521static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1522{
1523 struct stm32_adc *adc = iio_priv(indio_dev);
1524 struct device *dev = indio_dev->dev.parent;
1525 int ret;
1526
1527 ret = pm_runtime_get_sync(dev);
1528 if (ret < 0) {
1529 pm_runtime_put_noidle(dev);
1530 return ret;
1531 }
1532
1533 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1534 if (ret) {
1535 dev_err(&indio_dev->dev, "Can't set trigger\n");
1536 goto err_pm_put;
1537 }
1538
1539 ret = stm32_adc_dma_start(indio_dev);
1540 if (ret) {
1541 dev_err(&indio_dev->dev, "Can't start dma\n");
1542 goto err_clr_trig;
1543 }
1544
1545
1546 adc->bufi = 0;
1547
1548 if (!adc->dma_chan)
1549 stm32_adc_conv_irq_enable(adc);
1550
1551 adc->cfg->start_conv(adc, !!adc->dma_chan);
1552
1553 return 0;
1554
1555err_clr_trig:
1556 stm32_adc_set_trig(indio_dev, NULL);
1557err_pm_put:
1558 pm_runtime_mark_last_busy(dev);
1559 pm_runtime_put_autosuspend(dev);
1560
1561 return ret;
1562}
1563
1564static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1565{
1566 int ret;
1567
1568 ret = iio_triggered_buffer_postenable(indio_dev);
1569 if (ret < 0)
1570 return ret;
1571
1572 ret = __stm32_adc_buffer_postenable(indio_dev);
1573 if (ret < 0)
1574 iio_triggered_buffer_predisable(indio_dev);
1575
1576 return ret;
1577}
1578
1579static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1580{
1581 struct stm32_adc *adc = iio_priv(indio_dev);
1582 struct device *dev = indio_dev->dev.parent;
1583
1584 adc->cfg->stop_conv(adc);
1585 if (!adc->dma_chan)
1586 stm32_adc_conv_irq_disable(adc);
1587
1588 if (adc->dma_chan)
1589 dmaengine_terminate_all(adc->dma_chan);
1590
1591 if (stm32_adc_set_trig(indio_dev, NULL))
1592 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1593
1594 pm_runtime_mark_last_busy(dev);
1595 pm_runtime_put_autosuspend(dev);
1596}
1597
1598static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1599{
1600 int ret;
1601
1602 __stm32_adc_buffer_predisable(indio_dev);
1603
1604 ret = iio_triggered_buffer_predisable(indio_dev);
1605 if (ret < 0)
1606 dev_err(&indio_dev->dev, "predisable failed\n");
1607
1608 return ret;
1609}
1610
1611static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1612 .postenable = &stm32_adc_buffer_postenable,
1613 .predisable = &stm32_adc_buffer_predisable,
1614};
1615
1616static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1617{
1618 struct iio_poll_func *pf = p;
1619 struct iio_dev *indio_dev = pf->indio_dev;
1620 struct stm32_adc *adc = iio_priv(indio_dev);
1621
1622 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1623
1624 if (!adc->dma_chan) {
1625
1626 adc->bufi = 0;
1627 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1628 pf->timestamp);
1629 } else {
1630 int residue = stm32_adc_dma_residue(adc);
1631
1632 while (residue >= indio_dev->scan_bytes) {
1633 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1634
1635 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1636 pf->timestamp);
1637 residue -= indio_dev->scan_bytes;
1638 adc->bufi += indio_dev->scan_bytes;
1639 if (adc->bufi >= adc->rx_buf_sz)
1640 adc->bufi = 0;
1641 }
1642 }
1643
1644 iio_trigger_notify_done(indio_dev->trig);
1645
1646
1647 if (!adc->dma_chan)
1648 stm32_adc_conv_irq_enable(adc);
1649
1650 return IRQ_HANDLED;
1651}
1652
1653static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1654 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1655 {
1656 .name = "trigger_polarity_available",
1657 .shared = IIO_SHARED_BY_ALL,
1658 .read = iio_enum_available_read,
1659 .private = (uintptr_t)&stm32_adc_trig_pol,
1660 },
1661 {},
1662};
1663
1664static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1665{
1666 struct device_node *node = indio_dev->dev.of_node;
1667 struct stm32_adc *adc = iio_priv(indio_dev);
1668 unsigned int i;
1669 u32 res;
1670
1671 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1672 res = adc->cfg->adc_info->resolutions[0];
1673
1674 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1675 if (res == adc->cfg->adc_info->resolutions[i])
1676 break;
1677 if (i >= adc->cfg->adc_info->num_res) {
1678 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1679 return -EINVAL;
1680 }
1681
1682 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1683 adc->res = i;
1684
1685 return 0;
1686}
1687
1688static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1689{
1690 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1691 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1692 unsigned int smp, r = smpr->reg;
1693
1694
1695 period_ns = NSEC_PER_SEC / adc->common->rate;
1696 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1697 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1698 break;
1699 if (smp > STM32_ADC_MAX_SMP)
1700 smp = STM32_ADC_MAX_SMP;
1701
1702
1703 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1704}
1705
1706static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1707 struct iio_chan_spec *chan, u32 vinp,
1708 u32 vinn, int scan_index, bool differential)
1709{
1710 struct stm32_adc *adc = iio_priv(indio_dev);
1711 char *name = adc->chan_name[vinp];
1712
1713 chan->type = IIO_VOLTAGE;
1714 chan->channel = vinp;
1715 if (differential) {
1716 chan->differential = 1;
1717 chan->channel2 = vinn;
1718 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1719 } else {
1720 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1721 }
1722 chan->datasheet_name = name;
1723 chan->scan_index = scan_index;
1724 chan->indexed = 1;
1725 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1726 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1727 BIT(IIO_CHAN_INFO_OFFSET);
1728 chan->scan_type.sign = 'u';
1729 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1730 chan->scan_type.storagebits = 16;
1731 chan->ext_info = stm32_adc_ext_info;
1732
1733
1734 adc->pcsel |= BIT(chan->channel);
1735 if (differential) {
1736
1737 adc->difsel |= BIT(chan->channel);
1738
1739 adc->pcsel |= BIT(chan->channel2);
1740 }
1741}
1742
1743static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1744{
1745 struct device_node *node = indio_dev->dev.of_node;
1746 struct stm32_adc *adc = iio_priv(indio_dev);
1747 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1748 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1749 struct property *prop;
1750 const __be32 *cur;
1751 struct iio_chan_spec *channels;
1752 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1753 u32 val, smp = 0;
1754
1755 ret = of_property_count_u32_elems(node, "st,adc-channels");
1756 if (ret > adc_info->max_channels) {
1757 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1758 return -EINVAL;
1759 } else if (ret > 0) {
1760 num_channels += ret;
1761 }
1762
1763 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1764 sizeof(*diff));
1765 if (ret > adc_info->max_channels) {
1766 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1767 return -EINVAL;
1768 } else if (ret > 0) {
1769 int size = ret * sizeof(*diff) / sizeof(u32);
1770
1771 num_diff = ret;
1772 num_channels += ret;
1773 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1774 (u32 *)diff, size);
1775 if (ret)
1776 return ret;
1777 }
1778
1779 if (!num_channels) {
1780 dev_err(&indio_dev->dev, "No channels configured\n");
1781 return -ENODATA;
1782 }
1783
1784
1785 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1786 if (ret > 1 && ret != num_channels) {
1787 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1788 return -EINVAL;
1789 }
1790
1791 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1792 sizeof(struct iio_chan_spec), GFP_KERNEL);
1793 if (!channels)
1794 return -ENOMEM;
1795
1796 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1797 if (val >= adc_info->max_channels) {
1798 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1799 return -EINVAL;
1800 }
1801
1802
1803 for (i = 0; i < num_diff; i++) {
1804 if (val == diff[i].vinp) {
1805 dev_err(&indio_dev->dev,
1806 "channel %d miss-configured\n", val);
1807 return -EINVAL;
1808 }
1809 }
1810 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1811 0, scan_index, false);
1812 scan_index++;
1813 }
1814
1815 for (i = 0; i < num_diff; i++) {
1816 if (diff[i].vinp >= adc_info->max_channels ||
1817 diff[i].vinn >= adc_info->max_channels) {
1818 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1819 diff[i].vinp, diff[i].vinn);
1820 return -EINVAL;
1821 }
1822 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1823 diff[i].vinp, diff[i].vinn, scan_index,
1824 true);
1825 scan_index++;
1826 }
1827
1828 for (i = 0; i < scan_index; i++) {
1829
1830
1831
1832
1833
1834
1835 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1836 i, &smp);
1837
1838 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1839 }
1840
1841 indio_dev->num_channels = scan_index;
1842 indio_dev->channels = channels;
1843
1844 return 0;
1845}
1846
1847static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1848{
1849 struct stm32_adc *adc = iio_priv(indio_dev);
1850 struct dma_slave_config config;
1851 int ret;
1852
1853 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1854 if (!adc->dma_chan)
1855 return 0;
1856
1857 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1858 STM32_DMA_BUFFER_SIZE,
1859 &adc->rx_dma_buf, GFP_KERNEL);
1860 if (!adc->rx_buf) {
1861 ret = -ENOMEM;
1862 goto err_release;
1863 }
1864
1865
1866 memset(&config, 0, sizeof(config));
1867 config.src_addr = (dma_addr_t)adc->common->phys_base;
1868 config.src_addr += adc->offset + adc->cfg->regs->dr;
1869 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1870
1871 ret = dmaengine_slave_config(adc->dma_chan, &config);
1872 if (ret)
1873 goto err_free;
1874
1875 return 0;
1876
1877err_free:
1878 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1879 adc->rx_buf, adc->rx_dma_buf);
1880err_release:
1881 dma_release_channel(adc->dma_chan);
1882
1883 return ret;
1884}
1885
1886static int stm32_adc_probe(struct platform_device *pdev)
1887{
1888 struct iio_dev *indio_dev;
1889 struct device *dev = &pdev->dev;
1890 struct stm32_adc *adc;
1891 int ret;
1892
1893 if (!pdev->dev.of_node)
1894 return -ENODEV;
1895
1896 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1897 if (!indio_dev)
1898 return -ENOMEM;
1899
1900 adc = iio_priv(indio_dev);
1901 adc->common = dev_get_drvdata(pdev->dev.parent);
1902 spin_lock_init(&adc->lock);
1903 init_completion(&adc->completion);
1904 adc->cfg = (const struct stm32_adc_cfg *)
1905 of_match_device(dev->driver->of_match_table, dev)->data;
1906
1907 indio_dev->name = dev_name(&pdev->dev);
1908 indio_dev->dev.parent = &pdev->dev;
1909 indio_dev->dev.of_node = pdev->dev.of_node;
1910 indio_dev->info = &stm32_adc_iio_info;
1911 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1912
1913 platform_set_drvdata(pdev, adc);
1914
1915 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1916 if (ret != 0) {
1917 dev_err(&pdev->dev, "missing reg property\n");
1918 return -EINVAL;
1919 }
1920
1921 adc->irq = platform_get_irq(pdev, 0);
1922 if (adc->irq < 0) {
1923 dev_err(&pdev->dev, "failed to get irq\n");
1924 return adc->irq;
1925 }
1926
1927 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1928 0, pdev->name, adc);
1929 if (ret) {
1930 dev_err(&pdev->dev, "failed to request IRQ\n");
1931 return ret;
1932 }
1933
1934 adc->clk = devm_clk_get(&pdev->dev, NULL);
1935 if (IS_ERR(adc->clk)) {
1936 ret = PTR_ERR(adc->clk);
1937 if (ret == -ENOENT && !adc->cfg->clk_required) {
1938 adc->clk = NULL;
1939 } else {
1940 dev_err(&pdev->dev, "Can't get clock\n");
1941 return ret;
1942 }
1943 }
1944
1945 ret = stm32_adc_of_get_resolution(indio_dev);
1946 if (ret < 0)
1947 return ret;
1948
1949 ret = stm32_adc_chan_of_init(indio_dev);
1950 if (ret < 0)
1951 return ret;
1952
1953 ret = stm32_adc_dma_request(indio_dev);
1954 if (ret < 0)
1955 return ret;
1956
1957 ret = iio_triggered_buffer_setup(indio_dev,
1958 &iio_pollfunc_store_time,
1959 &stm32_adc_trigger_handler,
1960 &stm32_adc_buffer_setup_ops);
1961 if (ret) {
1962 dev_err(&pdev->dev, "buffer setup failed\n");
1963 goto err_dma_disable;
1964 }
1965
1966
1967 pm_runtime_get_noresume(dev);
1968 pm_runtime_set_active(dev);
1969 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1970 pm_runtime_use_autosuspend(dev);
1971 pm_runtime_enable(dev);
1972
1973 ret = stm32_adc_hw_start(dev);
1974 if (ret)
1975 goto err_buffer_cleanup;
1976
1977 ret = iio_device_register(indio_dev);
1978 if (ret) {
1979 dev_err(&pdev->dev, "iio dev register failed\n");
1980 goto err_hw_stop;
1981 }
1982
1983 pm_runtime_mark_last_busy(dev);
1984 pm_runtime_put_autosuspend(dev);
1985
1986 return 0;
1987
1988err_hw_stop:
1989 stm32_adc_hw_stop(dev);
1990
1991err_buffer_cleanup:
1992 pm_runtime_disable(dev);
1993 pm_runtime_set_suspended(dev);
1994 pm_runtime_put_noidle(dev);
1995 iio_triggered_buffer_cleanup(indio_dev);
1996
1997err_dma_disable:
1998 if (adc->dma_chan) {
1999 dma_free_coherent(adc->dma_chan->device->dev,
2000 STM32_DMA_BUFFER_SIZE,
2001 adc->rx_buf, adc->rx_dma_buf);
2002 dma_release_channel(adc->dma_chan);
2003 }
2004
2005 return ret;
2006}
2007
2008static int stm32_adc_remove(struct platform_device *pdev)
2009{
2010 struct stm32_adc *adc = platform_get_drvdata(pdev);
2011 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2012
2013 pm_runtime_get_sync(&pdev->dev);
2014 iio_device_unregister(indio_dev);
2015 stm32_adc_hw_stop(&pdev->dev);
2016 pm_runtime_disable(&pdev->dev);
2017 pm_runtime_set_suspended(&pdev->dev);
2018 pm_runtime_put_noidle(&pdev->dev);
2019 iio_triggered_buffer_cleanup(indio_dev);
2020 if (adc->dma_chan) {
2021 dma_free_coherent(adc->dma_chan->device->dev,
2022 STM32_DMA_BUFFER_SIZE,
2023 adc->rx_buf, adc->rx_dma_buf);
2024 dma_release_channel(adc->dma_chan);
2025 }
2026
2027 return 0;
2028}
2029
2030#if defined(CONFIG_PM_SLEEP)
2031static int stm32_adc_suspend(struct device *dev)
2032{
2033 struct stm32_adc *adc = dev_get_drvdata(dev);
2034 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2035
2036 if (iio_buffer_enabled(indio_dev))
2037 __stm32_adc_buffer_predisable(indio_dev);
2038
2039 return pm_runtime_force_suspend(dev);
2040}
2041
2042static int stm32_adc_resume(struct device *dev)
2043{
2044 struct stm32_adc *adc = dev_get_drvdata(dev);
2045 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2046 int ret;
2047
2048 ret = pm_runtime_force_resume(dev);
2049 if (ret < 0)
2050 return ret;
2051
2052 if (!iio_buffer_enabled(indio_dev))
2053 return 0;
2054
2055 ret = stm32_adc_update_scan_mode(indio_dev,
2056 indio_dev->active_scan_mask);
2057 if (ret < 0)
2058 return ret;
2059
2060 return __stm32_adc_buffer_postenable(indio_dev);
2061}
2062#endif
2063
2064#if defined(CONFIG_PM)
2065static int stm32_adc_runtime_suspend(struct device *dev)
2066{
2067 return stm32_adc_hw_stop(dev);
2068}
2069
2070static int stm32_adc_runtime_resume(struct device *dev)
2071{
2072 return stm32_adc_hw_start(dev);
2073}
2074#endif
2075
2076static const struct dev_pm_ops stm32_adc_pm_ops = {
2077 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2078 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2079 NULL)
2080};
2081
2082static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2083 .regs = &stm32f4_adc_regspec,
2084 .adc_info = &stm32f4_adc_info,
2085 .trigs = stm32f4_adc_trigs,
2086 .clk_required = true,
2087 .start_conv = stm32f4_adc_start_conv,
2088 .stop_conv = stm32f4_adc_stop_conv,
2089 .smp_cycles = stm32f4_adc_smp_cycles,
2090};
2091
2092static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2093 .regs = &stm32h7_adc_regspec,
2094 .adc_info = &stm32h7_adc_info,
2095 .trigs = stm32h7_adc_trigs,
2096 .start_conv = stm32h7_adc_start_conv,
2097 .stop_conv = stm32h7_adc_stop_conv,
2098 .prepare = stm32h7_adc_prepare,
2099 .unprepare = stm32h7_adc_unprepare,
2100 .smp_cycles = stm32h7_adc_smp_cycles,
2101};
2102
2103static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2104 .regs = &stm32h7_adc_regspec,
2105 .adc_info = &stm32h7_adc_info,
2106 .trigs = stm32h7_adc_trigs,
2107 .has_vregready = true,
2108 .start_conv = stm32h7_adc_start_conv,
2109 .stop_conv = stm32h7_adc_stop_conv,
2110 .prepare = stm32h7_adc_prepare,
2111 .unprepare = stm32h7_adc_unprepare,
2112 .smp_cycles = stm32h7_adc_smp_cycles,
2113};
2114
2115static const struct of_device_id stm32_adc_of_match[] = {
2116 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2117 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2118 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2119 {},
2120};
2121MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2122
2123static struct platform_driver stm32_adc_driver = {
2124 .probe = stm32_adc_probe,
2125 .remove = stm32_adc_remove,
2126 .driver = {
2127 .name = "stm32-adc",
2128 .of_match_table = stm32_adc_of_match,
2129 .pm = &stm32_adc_pm_ops,
2130 },
2131};
2132module_platform_driver(stm32_adc_driver);
2133
2134MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2135MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2136MODULE_LICENSE("GPL v2");
2137MODULE_ALIAS("platform:stm32-adc");
2138