linux/drivers/iio/adc/stm32-adc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of STM32 ADC driver
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/iio/iio.h>
  14#include <linux/iio/buffer.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/iopoll.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include "stm32-adc-core.h"
  30
  31/* STM32F4 - Registers for each ADC instance */
  32#define STM32F4_ADC_SR                  0x00
  33#define STM32F4_ADC_CR1                 0x04
  34#define STM32F4_ADC_CR2                 0x08
  35#define STM32F4_ADC_SMPR1               0x0C
  36#define STM32F4_ADC_SMPR2               0x10
  37#define STM32F4_ADC_HTR                 0x24
  38#define STM32F4_ADC_LTR                 0x28
  39#define STM32F4_ADC_SQR1                0x2C
  40#define STM32F4_ADC_SQR2                0x30
  41#define STM32F4_ADC_SQR3                0x34
  42#define STM32F4_ADC_JSQR                0x38
  43#define STM32F4_ADC_JDR1                0x3C
  44#define STM32F4_ADC_JDR2                0x40
  45#define STM32F4_ADC_JDR3                0x44
  46#define STM32F4_ADC_JDR4                0x48
  47#define STM32F4_ADC_DR                  0x4C
  48
  49/* STM32F4_ADC_SR - bit fields */
  50#define STM32F4_STRT                    BIT(4)
  51#define STM32F4_EOC                     BIT(1)
  52
  53/* STM32F4_ADC_CR1 - bit fields */
  54#define STM32F4_RES_SHIFT               24
  55#define STM32F4_RES_MASK                GENMASK(25, 24)
  56#define STM32F4_SCAN                    BIT(8)
  57#define STM32F4_EOCIE                   BIT(5)
  58
  59/* STM32F4_ADC_CR2 - bit fields */
  60#define STM32F4_SWSTART                 BIT(30)
  61#define STM32F4_EXTEN_SHIFT             28
  62#define STM32F4_EXTEN_MASK              GENMASK(29, 28)
  63#define STM32F4_EXTSEL_SHIFT            24
  64#define STM32F4_EXTSEL_MASK             GENMASK(27, 24)
  65#define STM32F4_EOCS                    BIT(10)
  66#define STM32F4_DDS                     BIT(9)
  67#define STM32F4_DMA                     BIT(8)
  68#define STM32F4_ADON                    BIT(0)
  69
  70/* STM32H7 - Registers for each ADC instance */
  71#define STM32H7_ADC_ISR                 0x00
  72#define STM32H7_ADC_IER                 0x04
  73#define STM32H7_ADC_CR                  0x08
  74#define STM32H7_ADC_CFGR                0x0C
  75#define STM32H7_ADC_SMPR1               0x14
  76#define STM32H7_ADC_SMPR2               0x18
  77#define STM32H7_ADC_PCSEL               0x1C
  78#define STM32H7_ADC_SQR1                0x30
  79#define STM32H7_ADC_SQR2                0x34
  80#define STM32H7_ADC_SQR3                0x38
  81#define STM32H7_ADC_SQR4                0x3C
  82#define STM32H7_ADC_DR                  0x40
  83#define STM32H7_ADC_DIFSEL              0xC0
  84#define STM32H7_ADC_CALFACT             0xC4
  85#define STM32H7_ADC_CALFACT2            0xC8
  86
  87/* STM32H7_ADC_ISR - bit fields */
  88#define STM32MP1_VREGREADY              BIT(12)
  89#define STM32H7_EOC                     BIT(2)
  90#define STM32H7_ADRDY                   BIT(0)
  91
  92/* STM32H7_ADC_IER - bit fields */
  93#define STM32H7_EOCIE                   STM32H7_EOC
  94
  95/* STM32H7_ADC_CR - bit fields */
  96#define STM32H7_ADCAL                   BIT(31)
  97#define STM32H7_ADCALDIF                BIT(30)
  98#define STM32H7_DEEPPWD                 BIT(29)
  99#define STM32H7_ADVREGEN                BIT(28)
 100#define STM32H7_LINCALRDYW6             BIT(27)
 101#define STM32H7_LINCALRDYW5             BIT(26)
 102#define STM32H7_LINCALRDYW4             BIT(25)
 103#define STM32H7_LINCALRDYW3             BIT(24)
 104#define STM32H7_LINCALRDYW2             BIT(23)
 105#define STM32H7_LINCALRDYW1             BIT(22)
 106#define STM32H7_ADCALLIN                BIT(16)
 107#define STM32H7_BOOST                   BIT(8)
 108#define STM32H7_ADSTP                   BIT(4)
 109#define STM32H7_ADSTART                 BIT(2)
 110#define STM32H7_ADDIS                   BIT(1)
 111#define STM32H7_ADEN                    BIT(0)
 112
 113/* STM32H7_ADC_CFGR bit fields */
 114#define STM32H7_EXTEN_SHIFT             10
 115#define STM32H7_EXTEN_MASK              GENMASK(11, 10)
 116#define STM32H7_EXTSEL_SHIFT            5
 117#define STM32H7_EXTSEL_MASK             GENMASK(9, 5)
 118#define STM32H7_RES_SHIFT               2
 119#define STM32H7_RES_MASK                GENMASK(4, 2)
 120#define STM32H7_DMNGT_SHIFT             0
 121#define STM32H7_DMNGT_MASK              GENMASK(1, 0)
 122
 123enum stm32h7_adc_dmngt {
 124        STM32H7_DMNGT_DR_ONLY,          /* Regular data in DR only */
 125        STM32H7_DMNGT_DMA_ONESHOT,      /* DMA one shot mode */
 126        STM32H7_DMNGT_DFSDM,            /* DFSDM mode */
 127        STM32H7_DMNGT_DMA_CIRC,         /* DMA circular mode */
 128};
 129
 130/* STM32H7_ADC_CALFACT - bit fields */
 131#define STM32H7_CALFACT_D_SHIFT         16
 132#define STM32H7_CALFACT_D_MASK          GENMASK(26, 16)
 133#define STM32H7_CALFACT_S_SHIFT         0
 134#define STM32H7_CALFACT_S_MASK          GENMASK(10, 0)
 135
 136/* STM32H7_ADC_CALFACT2 - bit fields */
 137#define STM32H7_LINCALFACT_SHIFT        0
 138#define STM32H7_LINCALFACT_MASK         GENMASK(29, 0)
 139
 140/* Number of linear calibration shadow registers / LINCALRDYW control bits */
 141#define STM32H7_LINCALFACT_NUM          6
 142
 143/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
 144#define STM32H7_BOOST_CLKRATE           20000000UL
 145
 146#define STM32_ADC_CH_MAX                20      /* max number of channels */
 147#define STM32_ADC_CH_SZ                 10      /* max channel name size */
 148#define STM32_ADC_MAX_SQ                16      /* SQ1..SQ16 */
 149#define STM32_ADC_MAX_SMP               7       /* SMPx range is [0..7] */
 150#define STM32_ADC_TIMEOUT_US            100000
 151#define STM32_ADC_TIMEOUT       (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
 152#define STM32_ADC_HW_STOP_DELAY_MS      100
 153
 154#define STM32_DMA_BUFFER_SIZE           PAGE_SIZE
 155
 156/* External trigger enable */
 157enum stm32_adc_exten {
 158        STM32_EXTEN_SWTRIG,
 159        STM32_EXTEN_HWTRIG_RISING_EDGE,
 160        STM32_EXTEN_HWTRIG_FALLING_EDGE,
 161        STM32_EXTEN_HWTRIG_BOTH_EDGES,
 162};
 163
 164/* extsel - trigger mux selection value */
 165enum stm32_adc_extsel {
 166        STM32_EXT0,
 167        STM32_EXT1,
 168        STM32_EXT2,
 169        STM32_EXT3,
 170        STM32_EXT4,
 171        STM32_EXT5,
 172        STM32_EXT6,
 173        STM32_EXT7,
 174        STM32_EXT8,
 175        STM32_EXT9,
 176        STM32_EXT10,
 177        STM32_EXT11,
 178        STM32_EXT12,
 179        STM32_EXT13,
 180        STM32_EXT14,
 181        STM32_EXT15,
 182        STM32_EXT16,
 183        STM32_EXT17,
 184        STM32_EXT18,
 185        STM32_EXT19,
 186        STM32_EXT20,
 187};
 188
 189/**
 190 * struct stm32_adc_trig_info - ADC trigger info
 191 * @name:               name of the trigger, corresponding to its source
 192 * @extsel:             trigger selection
 193 */
 194struct stm32_adc_trig_info {
 195        const char *name;
 196        enum stm32_adc_extsel extsel;
 197};
 198
 199/**
 200 * struct stm32_adc_calib - optional adc calibration data
 201 * @calfact_s: Calibration offset for single ended channels
 202 * @calfact_d: Calibration offset in differential
 203 * @lincalfact: Linearity calibration factor
 204 * @calibrated: Indicates calibration status
 205 */
 206struct stm32_adc_calib {
 207        u32                     calfact_s;
 208        u32                     calfact_d;
 209        u32                     lincalfact[STM32H7_LINCALFACT_NUM];
 210        bool                    calibrated;
 211};
 212
 213/**
 214 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 215 * @reg:                register offset
 216 * @mask:               bitfield mask
 217 * @shift:              left shift
 218 */
 219struct stm32_adc_regs {
 220        int reg;
 221        int mask;
 222        int shift;
 223};
 224
 225/**
 226 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
 227 * @dr:                 data register offset
 228 * @ier_eoc:            interrupt enable register & eocie bitfield
 229 * @isr_eoc:            interrupt status register & eoc bitfield
 230 * @sqr:                reference to sequence registers array
 231 * @exten:              trigger control register & bitfield
 232 * @extsel:             trigger selection register & bitfield
 233 * @res:                resolution selection register & bitfield
 234 * @smpr:               smpr1 & smpr2 registers offset array
 235 * @smp_bits:           smpr1 & smpr2 index and bitfields
 236 */
 237struct stm32_adc_regspec {
 238        const u32 dr;
 239        const struct stm32_adc_regs ier_eoc;
 240        const struct stm32_adc_regs isr_eoc;
 241        const struct stm32_adc_regs *sqr;
 242        const struct stm32_adc_regs exten;
 243        const struct stm32_adc_regs extsel;
 244        const struct stm32_adc_regs res;
 245        const u32 smpr[2];
 246        const struct stm32_adc_regs *smp_bits;
 247};
 248
 249struct stm32_adc;
 250
 251/**
 252 * stm32_adc_cfg - stm32 compatible configuration data
 253 * @regs:               registers descriptions
 254 * @adc_info:           per instance input channels definitions
 255 * @trigs:              external trigger sources
 256 * @clk_required:       clock is required
 257 * @has_vregready:      vregready status flag presence
 258 * @prepare:            optional prepare routine (power-up, enable)
 259 * @start_conv:         routine to start conversions
 260 * @stop_conv:          routine to stop conversions
 261 * @unprepare:          optional unprepare routine (disable, power-down)
 262 * @smp_cycles:         programmable sampling time (ADC clock cycles)
 263 */
 264struct stm32_adc_cfg {
 265        const struct stm32_adc_regspec  *regs;
 266        const struct stm32_adc_info     *adc_info;
 267        struct stm32_adc_trig_info      *trigs;
 268        bool clk_required;
 269        bool has_vregready;
 270        int (*prepare)(struct stm32_adc *);
 271        void (*start_conv)(struct stm32_adc *, bool dma);
 272        void (*stop_conv)(struct stm32_adc *);
 273        void (*unprepare)(struct stm32_adc *);
 274        const unsigned int *smp_cycles;
 275};
 276
 277/**
 278 * struct stm32_adc - private data of each ADC IIO instance
 279 * @common:             reference to ADC block common data
 280 * @offset:             ADC instance register offset in ADC block
 281 * @cfg:                compatible configuration data
 282 * @completion:         end of single conversion completion
 283 * @buffer:             data buffer
 284 * @clk:                clock for this adc instance
 285 * @irq:                interrupt for this adc instance
 286 * @lock:               spinlock
 287 * @bufi:               data buffer index
 288 * @num_conv:           expected number of scan conversions
 289 * @res:                data resolution (e.g. RES bitfield value)
 290 * @trigger_polarity:   external trigger polarity (e.g. exten)
 291 * @dma_chan:           dma channel
 292 * @rx_buf:             dma rx buffer cpu address
 293 * @rx_dma_buf:         dma rx buffer bus address
 294 * @rx_buf_sz:          dma rx buffer size
 295 * @difsel              bitmask to set single-ended/differential channel
 296 * @pcsel               bitmask to preselect channels on some devices
 297 * @smpr_val:           sampling time settings (e.g. smpr1 / smpr2)
 298 * @cal:                optional calibration data on some devices
 299 * @chan_name:          channel name array
 300 */
 301struct stm32_adc {
 302        struct stm32_adc_common *common;
 303        u32                     offset;
 304        const struct stm32_adc_cfg      *cfg;
 305        struct completion       completion;
 306        u16                     buffer[STM32_ADC_MAX_SQ];
 307        struct clk              *clk;
 308        int                     irq;
 309        spinlock_t              lock;           /* interrupt lock */
 310        unsigned int            bufi;
 311        unsigned int            num_conv;
 312        u32                     res;
 313        u32                     trigger_polarity;
 314        struct dma_chan         *dma_chan;
 315        u8                      *rx_buf;
 316        dma_addr_t              rx_dma_buf;
 317        unsigned int            rx_buf_sz;
 318        u32                     difsel;
 319        u32                     pcsel;
 320        u32                     smpr_val[2];
 321        struct stm32_adc_calib  cal;
 322        char                    chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
 323};
 324
 325struct stm32_adc_diff_channel {
 326        u32 vinp;
 327        u32 vinn;
 328};
 329
 330/**
 331 * struct stm32_adc_info - stm32 ADC, per instance config data
 332 * @max_channels:       Number of channels
 333 * @resolutions:        available resolutions
 334 * @num_res:            number of available resolutions
 335 */
 336struct stm32_adc_info {
 337        int max_channels;
 338        const unsigned int *resolutions;
 339        const unsigned int num_res;
 340};
 341
 342static const unsigned int stm32f4_adc_resolutions[] = {
 343        /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 344        12, 10, 8, 6,
 345};
 346
 347/* stm32f4 can have up to 16 channels */
 348static const struct stm32_adc_info stm32f4_adc_info = {
 349        .max_channels = 16,
 350        .resolutions = stm32f4_adc_resolutions,
 351        .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 352};
 353
 354static const unsigned int stm32h7_adc_resolutions[] = {
 355        /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 356        16, 14, 12, 10, 8,
 357};
 358
 359/* stm32h7 can have up to 20 channels */
 360static const struct stm32_adc_info stm32h7_adc_info = {
 361        .max_channels = STM32_ADC_CH_MAX,
 362        .resolutions = stm32h7_adc_resolutions,
 363        .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 364};
 365
 366/**
 367 * stm32f4_sq - describe regular sequence registers
 368 * - L: sequence len (register & bit field)
 369 * - SQ1..SQ16: sequence entries (register & bit field)
 370 */
 371static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 372        /* L: len bit field description to be kept as first element */
 373        { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 374        /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 375        { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 376        { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 377        { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 378        { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 379        { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 380        { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 381        { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 382        { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 383        { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 384        { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 385        { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 386        { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 387        { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 388        { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 389        { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 390        { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 391};
 392
 393/* STM32F4 external trigger sources for all instances */
 394static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 395        { TIM1_CH1, STM32_EXT0 },
 396        { TIM1_CH2, STM32_EXT1 },
 397        { TIM1_CH3, STM32_EXT2 },
 398        { TIM2_CH2, STM32_EXT3 },
 399        { TIM2_CH3, STM32_EXT4 },
 400        { TIM2_CH4, STM32_EXT5 },
 401        { TIM2_TRGO, STM32_EXT6 },
 402        { TIM3_CH1, STM32_EXT7 },
 403        { TIM3_TRGO, STM32_EXT8 },
 404        { TIM4_CH4, STM32_EXT9 },
 405        { TIM5_CH1, STM32_EXT10 },
 406        { TIM5_CH2, STM32_EXT11 },
 407        { TIM5_CH3, STM32_EXT12 },
 408        { TIM8_CH1, STM32_EXT13 },
 409        { TIM8_TRGO, STM32_EXT14 },
 410        {}, /* sentinel */
 411};
 412
 413/**
 414 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 415 * Sorted so it can be indexed by channel number.
 416 */
 417static const struct stm32_adc_regs stm32f4_smp_bits[] = {
 418        /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
 419        { 1, GENMASK(2, 0), 0 },
 420        { 1, GENMASK(5, 3), 3 },
 421        { 1, GENMASK(8, 6), 6 },
 422        { 1, GENMASK(11, 9), 9 },
 423        { 1, GENMASK(14, 12), 12 },
 424        { 1, GENMASK(17, 15), 15 },
 425        { 1, GENMASK(20, 18), 18 },
 426        { 1, GENMASK(23, 21), 21 },
 427        { 1, GENMASK(26, 24), 24 },
 428        { 1, GENMASK(29, 27), 27 },
 429        /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
 430        { 0, GENMASK(2, 0), 0 },
 431        { 0, GENMASK(5, 3), 3 },
 432        { 0, GENMASK(8, 6), 6 },
 433        { 0, GENMASK(11, 9), 9 },
 434        { 0, GENMASK(14, 12), 12 },
 435        { 0, GENMASK(17, 15), 15 },
 436        { 0, GENMASK(20, 18), 18 },
 437        { 0, GENMASK(23, 21), 21 },
 438        { 0, GENMASK(26, 24), 24 },
 439};
 440
 441/* STM32F4 programmable sampling time (ADC clock cycles) */
 442static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 443        3, 15, 28, 56, 84, 112, 144, 480,
 444};
 445
 446static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 447        .dr = STM32F4_ADC_DR,
 448        .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 449        .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 450        .sqr = stm32f4_sq,
 451        .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 452        .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 453                    STM32F4_EXTSEL_SHIFT },
 454        .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 455        .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
 456        .smp_bits = stm32f4_smp_bits,
 457};
 458
 459static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 460        /* L: len bit field description to be kept as first element */
 461        { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 462        /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 463        { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 464        { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 465        { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 466        { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 467        { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 468        { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 469        { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 470        { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 471        { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 472        { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 473        { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 474        { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 475        { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 476        { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 477        { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 478        { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 479};
 480
 481/* STM32H7 external trigger sources for all instances */
 482static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 483        { TIM1_CH1, STM32_EXT0 },
 484        { TIM1_CH2, STM32_EXT1 },
 485        { TIM1_CH3, STM32_EXT2 },
 486        { TIM2_CH2, STM32_EXT3 },
 487        { TIM3_TRGO, STM32_EXT4 },
 488        { TIM4_CH4, STM32_EXT5 },
 489        { TIM8_TRGO, STM32_EXT7 },
 490        { TIM8_TRGO2, STM32_EXT8 },
 491        { TIM1_TRGO, STM32_EXT9 },
 492        { TIM1_TRGO2, STM32_EXT10 },
 493        { TIM2_TRGO, STM32_EXT11 },
 494        { TIM4_TRGO, STM32_EXT12 },
 495        { TIM6_TRGO, STM32_EXT13 },
 496        { TIM15_TRGO, STM32_EXT14 },
 497        { TIM3_CH4, STM32_EXT15 },
 498        { LPTIM1_OUT, STM32_EXT18 },
 499        { LPTIM2_OUT, STM32_EXT19 },
 500        { LPTIM3_OUT, STM32_EXT20 },
 501        {},
 502};
 503
 504/**
 505 * stm32h7_smp_bits - describe sampling time register index & bit fields
 506 * Sorted so it can be indexed by channel number.
 507 */
 508static const struct stm32_adc_regs stm32h7_smp_bits[] = {
 509        /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
 510        { 0, GENMASK(2, 0), 0 },
 511        { 0, GENMASK(5, 3), 3 },
 512        { 0, GENMASK(8, 6), 6 },
 513        { 0, GENMASK(11, 9), 9 },
 514        { 0, GENMASK(14, 12), 12 },
 515        { 0, GENMASK(17, 15), 15 },
 516        { 0, GENMASK(20, 18), 18 },
 517        { 0, GENMASK(23, 21), 21 },
 518        { 0, GENMASK(26, 24), 24 },
 519        { 0, GENMASK(29, 27), 27 },
 520        /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
 521        { 1, GENMASK(2, 0), 0 },
 522        { 1, GENMASK(5, 3), 3 },
 523        { 1, GENMASK(8, 6), 6 },
 524        { 1, GENMASK(11, 9), 9 },
 525        { 1, GENMASK(14, 12), 12 },
 526        { 1, GENMASK(17, 15), 15 },
 527        { 1, GENMASK(20, 18), 18 },
 528        { 1, GENMASK(23, 21), 21 },
 529        { 1, GENMASK(26, 24), 24 },
 530        { 1, GENMASK(29, 27), 27 },
 531};
 532
 533/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
 534static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 535        1, 2, 8, 16, 32, 64, 387, 810,
 536};
 537
 538static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 539        .dr = STM32H7_ADC_DR,
 540        .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 541        .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 542        .sqr = stm32h7_sq,
 543        .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 544        .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 545                    STM32H7_EXTSEL_SHIFT },
 546        .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 547        .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 548        .smp_bits = stm32h7_smp_bits,
 549};
 550
 551/**
 552 * STM32 ADC registers access routines
 553 * @adc: stm32 adc instance
 554 * @reg: reg offset in adc instance
 555 *
 556 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 557 * for adc1, adc2 and adc3.
 558 */
 559static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 560{
 561        return readl_relaxed(adc->common->base + adc->offset + reg);
 562}
 563
 564#define stm32_adc_readl_addr(addr)      stm32_adc_readl(adc, addr)
 565
 566#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 567        readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 568                           cond, sleep_us, timeout_us)
 569
 570static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 571{
 572        return readw_relaxed(adc->common->base + adc->offset + reg);
 573}
 574
 575static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 576{
 577        writel_relaxed(val, adc->common->base + adc->offset + reg);
 578}
 579
 580static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 581{
 582        unsigned long flags;
 583
 584        spin_lock_irqsave(&adc->lock, flags);
 585        stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 586        spin_unlock_irqrestore(&adc->lock, flags);
 587}
 588
 589static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 590{
 591        unsigned long flags;
 592
 593        spin_lock_irqsave(&adc->lock, flags);
 594        stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 595        spin_unlock_irqrestore(&adc->lock, flags);
 596}
 597
 598/**
 599 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 600 * @adc: stm32 adc instance
 601 */
 602static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 603{
 604        stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 605                           adc->cfg->regs->ier_eoc.mask);
 606};
 607
 608/**
 609 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 610 * @adc: stm32 adc instance
 611 */
 612static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 613{
 614        stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 615                           adc->cfg->regs->ier_eoc.mask);
 616}
 617
 618static void stm32_adc_set_res(struct stm32_adc *adc)
 619{
 620        const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 621        u32 val;
 622
 623        val = stm32_adc_readl(adc, res->reg);
 624        val = (val & ~res->mask) | (adc->res << res->shift);
 625        stm32_adc_writel(adc, res->reg, val);
 626}
 627
 628static int stm32_adc_hw_stop(struct device *dev)
 629{
 630        struct stm32_adc *adc = dev_get_drvdata(dev);
 631
 632        if (adc->cfg->unprepare)
 633                adc->cfg->unprepare(adc);
 634
 635        if (adc->clk)
 636                clk_disable_unprepare(adc->clk);
 637
 638        return 0;
 639}
 640
 641static int stm32_adc_hw_start(struct device *dev)
 642{
 643        struct stm32_adc *adc = dev_get_drvdata(dev);
 644        int ret;
 645
 646        if (adc->clk) {
 647                ret = clk_prepare_enable(adc->clk);
 648                if (ret)
 649                        return ret;
 650        }
 651
 652        stm32_adc_set_res(adc);
 653
 654        if (adc->cfg->prepare) {
 655                ret = adc->cfg->prepare(adc);
 656                if (ret)
 657                        goto err_clk_dis;
 658        }
 659
 660        return 0;
 661
 662err_clk_dis:
 663        if (adc->clk)
 664                clk_disable_unprepare(adc->clk);
 665
 666        return ret;
 667}
 668
 669/**
 670 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 671 * @adc: stm32 adc instance
 672 * @dma: use dma to transfer conversion result
 673 *
 674 * Start conversions for regular channels.
 675 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 676 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 677 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 678 */
 679static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
 680{
 681        stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 682
 683        if (dma)
 684                stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 685                                   STM32F4_DMA | STM32F4_DDS);
 686
 687        stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 688
 689        /* Wait for Power-up time (tSTAB from datasheet) */
 690        usleep_range(2, 3);
 691
 692        /* Software start ? (e.g. trigger detection disabled ?) */
 693        if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 694                stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 695}
 696
 697static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
 698{
 699        stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 700        stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 701
 702        stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 703        stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 704                           STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 705}
 706
 707static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
 708{
 709        enum stm32h7_adc_dmngt dmngt;
 710        unsigned long flags;
 711        u32 val;
 712
 713        if (dma)
 714                dmngt = STM32H7_DMNGT_DMA_CIRC;
 715        else
 716                dmngt = STM32H7_DMNGT_DR_ONLY;
 717
 718        spin_lock_irqsave(&adc->lock, flags);
 719        val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 720        val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 721        stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 722        spin_unlock_irqrestore(&adc->lock, flags);
 723
 724        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 725}
 726
 727static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
 728{
 729        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 730        int ret;
 731        u32 val;
 732
 733        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 734
 735        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 736                                           !(val & (STM32H7_ADSTART)),
 737                                           100, STM32_ADC_TIMEOUT_US);
 738        if (ret)
 739                dev_warn(&indio_dev->dev, "stop failed\n");
 740
 741        stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 742}
 743
 744static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
 745{
 746        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 747        int ret;
 748        u32 val;
 749
 750        /* Exit deep power down, then enable ADC voltage regulator */
 751        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 752        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 753
 754        if (adc->common->rate > STM32H7_BOOST_CLKRATE)
 755                stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 756
 757        /* Wait for startup time */
 758        if (!adc->cfg->has_vregready) {
 759                usleep_range(10, 20);
 760                return 0;
 761        }
 762
 763        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 764                                           val & STM32MP1_VREGREADY, 100,
 765                                           STM32_ADC_TIMEOUT_US);
 766        if (ret) {
 767                stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 768                dev_err(&indio_dev->dev, "Failed to exit power down\n");
 769        }
 770
 771        return ret;
 772}
 773
 774static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 775{
 776        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 777
 778        /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 779        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 780}
 781
 782static int stm32h7_adc_enable(struct stm32_adc *adc)
 783{
 784        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 785        int ret;
 786        u32 val;
 787
 788        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 789
 790        /* Poll for ADRDY to be set (after adc startup time) */
 791        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 792                                           val & STM32H7_ADRDY,
 793                                           100, STM32_ADC_TIMEOUT_US);
 794        if (ret) {
 795                stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 796                dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 797        } else {
 798                /* Clear ADRDY by writing one */
 799                stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 800        }
 801
 802        return ret;
 803}
 804
 805static void stm32h7_adc_disable(struct stm32_adc *adc)
 806{
 807        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 808        int ret;
 809        u32 val;
 810
 811        /* Disable ADC and wait until it's effectively disabled */
 812        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 813        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 814                                           !(val & STM32H7_ADEN), 100,
 815                                           STM32_ADC_TIMEOUT_US);
 816        if (ret)
 817                dev_warn(&indio_dev->dev, "Failed to disable\n");
 818}
 819
 820/**
 821 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 822 * @adc: stm32 adc instance
 823 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
 824 */
 825static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
 826{
 827        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 828        int i, ret;
 829        u32 lincalrdyw_mask, val;
 830
 831        /* Read linearity calibration */
 832        lincalrdyw_mask = STM32H7_LINCALRDYW6;
 833        for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 834                /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 835                stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 836
 837                /* Poll: wait calib data to be ready in CALFACT2 register */
 838                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 839                                                   !(val & lincalrdyw_mask),
 840                                                   100, STM32_ADC_TIMEOUT_US);
 841                if (ret) {
 842                        dev_err(&indio_dev->dev, "Failed to read calfact\n");
 843                        return ret;
 844                }
 845
 846                val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 847                adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
 848                adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
 849
 850                lincalrdyw_mask >>= 1;
 851        }
 852
 853        /* Read offset calibration */
 854        val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
 855        adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
 856        adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
 857        adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
 858        adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
 859        adc->cal.calibrated = true;
 860
 861        return 0;
 862}
 863
 864/**
 865 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 866 * @adc: stm32 adc instance
 867 * Note: ADC must be enabled, with no on-going conversions.
 868 */
 869static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
 870{
 871        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 872        int i, ret;
 873        u32 lincalrdyw_mask, val;
 874
 875        val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
 876                (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
 877        stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
 878
 879        lincalrdyw_mask = STM32H7_LINCALRDYW6;
 880        for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 881                /*
 882                 * Write saved calibration data to shadow registers:
 883                 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
 884                 * data write. Then poll to wait for complete transfer.
 885                 */
 886                val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
 887                stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
 888                stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 889                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 890                                                   val & lincalrdyw_mask,
 891                                                   100, STM32_ADC_TIMEOUT_US);
 892                if (ret) {
 893                        dev_err(&indio_dev->dev, "Failed to write calfact\n");
 894                        return ret;
 895                }
 896
 897                /*
 898                 * Read back calibration data, has two effects:
 899                 * - It ensures bits LINCALRDYW[6..1] are kept cleared
 900                 *   for next time calibration needs to be restored.
 901                 * - BTW, bit clear triggers a read, then check data has been
 902                 *   correctly written.
 903                 */
 904                stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 905                ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 906                                                   !(val & lincalrdyw_mask),
 907                                                   100, STM32_ADC_TIMEOUT_US);
 908                if (ret) {
 909                        dev_err(&indio_dev->dev, "Failed to read calfact\n");
 910                        return ret;
 911                }
 912                val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 913                if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
 914                        dev_err(&indio_dev->dev, "calfact not consistent\n");
 915                        return -EIO;
 916                }
 917
 918                lincalrdyw_mask >>= 1;
 919        }
 920
 921        return 0;
 922}
 923
 924/**
 925 * Fixed timeout value for ADC calibration.
 926 * worst cases:
 927 * - low clock frequency
 928 * - maximum prescalers
 929 * Calibration requires:
 930 * - 131,072 ADC clock cycle for the linear calibration
 931 * - 20 ADC clock cycle for the offset calibration
 932 *
 933 * Set to 100ms for now
 934 */
 935#define STM32H7_ADC_CALIB_TIMEOUT_US            100000
 936
 937/**
 938 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
 939 * @adc: stm32 adc instance
 940 * Note: Must be called once ADC is out of power down.
 941 */
 942static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
 943{
 944        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 945        int ret;
 946        u32 val;
 947
 948        if (adc->cal.calibrated)
 949                return true;
 950
 951        /*
 952         * Select calibration mode:
 953         * - Offset calibration for single ended inputs
 954         * - No linearity calibration (do it later, before reading it)
 955         */
 956        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
 957        stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
 958
 959        /* Start calibration, then wait for completion */
 960        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 961        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 962                                           !(val & STM32H7_ADCAL), 100,
 963                                           STM32H7_ADC_CALIB_TIMEOUT_US);
 964        if (ret) {
 965                dev_err(&indio_dev->dev, "calibration failed\n");
 966                goto out;
 967        }
 968
 969        /*
 970         * Select calibration mode, then start calibration:
 971         * - Offset calibration for differential input
 972         * - Linearity calibration (needs to be done only once for single/diff)
 973         *   will run simultaneously with offset calibration.
 974         */
 975        stm32_adc_set_bits(adc, STM32H7_ADC_CR,
 976                           STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 977        stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 978        ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 979                                           !(val & STM32H7_ADCAL), 100,
 980                                           STM32H7_ADC_CALIB_TIMEOUT_US);
 981        if (ret) {
 982                dev_err(&indio_dev->dev, "calibration failed\n");
 983                goto out;
 984        }
 985
 986out:
 987        stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
 988                           STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 989
 990        return ret;
 991}
 992
 993/**
 994 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 995 * @adc: stm32 adc instance
 996 * Leave power down mode.
 997 * Configure channels as single ended or differential before enabling ADC.
 998 * Enable ADC.
 999 * Restore calibration data.
1000 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1001 * - Only one input is selected for single ended (e.g. 'vinp')
1002 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1003 */
1004static int stm32h7_adc_prepare(struct stm32_adc *adc)
1005{
1006        int calib, ret;
1007
1008        ret = stm32h7_adc_exit_pwr_down(adc);
1009        if (ret)
1010                return ret;
1011
1012        ret = stm32h7_adc_selfcalib(adc);
1013        if (ret < 0)
1014                goto pwr_dwn;
1015        calib = ret;
1016
1017        stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1018
1019        ret = stm32h7_adc_enable(adc);
1020        if (ret)
1021                goto pwr_dwn;
1022
1023        /* Either restore or read calibration result for future reference */
1024        if (calib)
1025                ret = stm32h7_adc_restore_selfcalib(adc);
1026        else
1027                ret = stm32h7_adc_read_selfcalib(adc);
1028        if (ret)
1029                goto disable;
1030
1031        stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1032
1033        return 0;
1034
1035disable:
1036        stm32h7_adc_disable(adc);
1037pwr_dwn:
1038        stm32h7_adc_enter_pwr_down(adc);
1039
1040        return ret;
1041}
1042
1043static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1044{
1045        stm32h7_adc_disable(adc);
1046        stm32h7_adc_enter_pwr_down(adc);
1047}
1048
1049/**
1050 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1051 * @indio_dev: IIO device
1052 * @scan_mask: channels to be converted
1053 *
1054 * Conversion sequence :
1055 * Apply sampling time settings for all channels.
1056 * Configure ADC scan sequence based on selected channels in scan_mask.
1057 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1058 * program sequence len.
1059 */
1060static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1061                                   const unsigned long *scan_mask)
1062{
1063        struct stm32_adc *adc = iio_priv(indio_dev);
1064        const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1065        const struct iio_chan_spec *chan;
1066        u32 val, bit;
1067        int i = 0;
1068
1069        /* Apply sampling time settings */
1070        stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1071        stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1072
1073        for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1074                chan = indio_dev->channels + bit;
1075                /*
1076                 * Assign one channel per SQ entry in regular
1077                 * sequence, starting with SQ1.
1078                 */
1079                i++;
1080                if (i > STM32_ADC_MAX_SQ)
1081                        return -EINVAL;
1082
1083                dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1084                        __func__, chan->channel, i);
1085
1086                val = stm32_adc_readl(adc, sqr[i].reg);
1087                val &= ~sqr[i].mask;
1088                val |= chan->channel << sqr[i].shift;
1089                stm32_adc_writel(adc, sqr[i].reg, val);
1090        }
1091
1092        if (!i)
1093                return -EINVAL;
1094
1095        /* Sequence len */
1096        val = stm32_adc_readl(adc, sqr[0].reg);
1097        val &= ~sqr[0].mask;
1098        val |= ((i - 1) << sqr[0].shift);
1099        stm32_adc_writel(adc, sqr[0].reg, val);
1100
1101        return 0;
1102}
1103
1104/**
1105 * stm32_adc_get_trig_extsel() - Get external trigger selection
1106 * @trig: trigger
1107 *
1108 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1109 */
1110static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1111                                     struct iio_trigger *trig)
1112{
1113        struct stm32_adc *adc = iio_priv(indio_dev);
1114        int i;
1115
1116        /* lookup triggers registered by stm32 timer trigger driver */
1117        for (i = 0; adc->cfg->trigs[i].name; i++) {
1118                /**
1119                 * Checking both stm32 timer trigger type and trig name
1120                 * should be safe against arbitrary trigger names.
1121                 */
1122                if ((is_stm32_timer_trigger(trig) ||
1123                     is_stm32_lptim_trigger(trig)) &&
1124                    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1125                        return adc->cfg->trigs[i].extsel;
1126                }
1127        }
1128
1129        return -EINVAL;
1130}
1131
1132/**
1133 * stm32_adc_set_trig() - Set a regular trigger
1134 * @indio_dev: IIO device
1135 * @trig: IIO trigger
1136 *
1137 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1138 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1139 * - if HW trigger enabled, set source & polarity
1140 */
1141static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1142                              struct iio_trigger *trig)
1143{
1144        struct stm32_adc *adc = iio_priv(indio_dev);
1145        u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1146        unsigned long flags;
1147        int ret;
1148
1149        if (trig) {
1150                ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1151                if (ret < 0)
1152                        return ret;
1153
1154                /* set trigger source and polarity (default to rising edge) */
1155                extsel = ret;
1156                exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1157        }
1158
1159        spin_lock_irqsave(&adc->lock, flags);
1160        val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1161        val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1162        val |= exten << adc->cfg->regs->exten.shift;
1163        val |= extsel << adc->cfg->regs->extsel.shift;
1164        stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1165        spin_unlock_irqrestore(&adc->lock, flags);
1166
1167        return 0;
1168}
1169
1170static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1171                                  const struct iio_chan_spec *chan,
1172                                  unsigned int type)
1173{
1174        struct stm32_adc *adc = iio_priv(indio_dev);
1175
1176        adc->trigger_polarity = type;
1177
1178        return 0;
1179}
1180
1181static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1182                                  const struct iio_chan_spec *chan)
1183{
1184        struct stm32_adc *adc = iio_priv(indio_dev);
1185
1186        return adc->trigger_polarity;
1187}
1188
1189static const char * const stm32_trig_pol_items[] = {
1190        "rising-edge", "falling-edge", "both-edges",
1191};
1192
1193static const struct iio_enum stm32_adc_trig_pol = {
1194        .items = stm32_trig_pol_items,
1195        .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1196        .get = stm32_adc_get_trig_pol,
1197        .set = stm32_adc_set_trig_pol,
1198};
1199
1200/**
1201 * stm32_adc_single_conv() - Performs a single conversion
1202 * @indio_dev: IIO device
1203 * @chan: IIO channel
1204 * @res: conversion result
1205 *
1206 * The function performs a single conversion on a given channel:
1207 * - Apply sampling time settings
1208 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1209 * - Use SW trigger
1210 * - Start conversion, then wait for interrupt completion.
1211 */
1212static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1213                                 const struct iio_chan_spec *chan,
1214                                 int *res)
1215{
1216        struct stm32_adc *adc = iio_priv(indio_dev);
1217        struct device *dev = indio_dev->dev.parent;
1218        const struct stm32_adc_regspec *regs = adc->cfg->regs;
1219        long timeout;
1220        u32 val;
1221        int ret;
1222
1223        reinit_completion(&adc->completion);
1224
1225        adc->bufi = 0;
1226
1227        ret = pm_runtime_get_sync(dev);
1228        if (ret < 0) {
1229                pm_runtime_put_noidle(dev);
1230                return ret;
1231        }
1232
1233        /* Apply sampling time settings */
1234        stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1235        stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1236
1237        /* Program chan number in regular sequence (SQ1) */
1238        val = stm32_adc_readl(adc, regs->sqr[1].reg);
1239        val &= ~regs->sqr[1].mask;
1240        val |= chan->channel << regs->sqr[1].shift;
1241        stm32_adc_writel(adc, regs->sqr[1].reg, val);
1242
1243        /* Set regular sequence len (0 for 1 conversion) */
1244        stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1245
1246        /* Trigger detection disabled (conversion can be launched in SW) */
1247        stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1248
1249        stm32_adc_conv_irq_enable(adc);
1250
1251        adc->cfg->start_conv(adc, false);
1252
1253        timeout = wait_for_completion_interruptible_timeout(
1254                                        &adc->completion, STM32_ADC_TIMEOUT);
1255        if (timeout == 0) {
1256                ret = -ETIMEDOUT;
1257        } else if (timeout < 0) {
1258                ret = timeout;
1259        } else {
1260                *res = adc->buffer[0];
1261                ret = IIO_VAL_INT;
1262        }
1263
1264        adc->cfg->stop_conv(adc);
1265
1266        stm32_adc_conv_irq_disable(adc);
1267
1268        pm_runtime_mark_last_busy(dev);
1269        pm_runtime_put_autosuspend(dev);
1270
1271        return ret;
1272}
1273
1274static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1275                              struct iio_chan_spec const *chan,
1276                              int *val, int *val2, long mask)
1277{
1278        struct stm32_adc *adc = iio_priv(indio_dev);
1279        int ret;
1280
1281        switch (mask) {
1282        case IIO_CHAN_INFO_RAW:
1283                ret = iio_device_claim_direct_mode(indio_dev);
1284                if (ret)
1285                        return ret;
1286                if (chan->type == IIO_VOLTAGE)
1287                        ret = stm32_adc_single_conv(indio_dev, chan, val);
1288                else
1289                        ret = -EINVAL;
1290                iio_device_release_direct_mode(indio_dev);
1291                return ret;
1292
1293        case IIO_CHAN_INFO_SCALE:
1294                if (chan->differential) {
1295                        *val = adc->common->vref_mv * 2;
1296                        *val2 = chan->scan_type.realbits;
1297                } else {
1298                        *val = adc->common->vref_mv;
1299                        *val2 = chan->scan_type.realbits;
1300                }
1301                return IIO_VAL_FRACTIONAL_LOG2;
1302
1303        case IIO_CHAN_INFO_OFFSET:
1304                if (chan->differential)
1305                        /* ADC_full_scale / 2 */
1306                        *val = -((1 << chan->scan_type.realbits) / 2);
1307                else
1308                        *val = 0;
1309                return IIO_VAL_INT;
1310
1311        default:
1312                return -EINVAL;
1313        }
1314}
1315
1316static irqreturn_t stm32_adc_isr(int irq, void *data)
1317{
1318        struct stm32_adc *adc = data;
1319        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1320        const struct stm32_adc_regspec *regs = adc->cfg->regs;
1321        u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1322
1323        if (status & regs->isr_eoc.mask) {
1324                /* Reading DR also clears EOC status flag */
1325                adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1326                if (iio_buffer_enabled(indio_dev)) {
1327                        adc->bufi++;
1328                        if (adc->bufi >= adc->num_conv) {
1329                                stm32_adc_conv_irq_disable(adc);
1330                                iio_trigger_poll(indio_dev->trig);
1331                        }
1332                } else {
1333                        complete(&adc->completion);
1334                }
1335                return IRQ_HANDLED;
1336        }
1337
1338        return IRQ_NONE;
1339}
1340
1341/**
1342 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1343 * @indio_dev: IIO device
1344 * @trig: new trigger
1345 *
1346 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1347 * driver, -EINVAL otherwise.
1348 */
1349static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1350                                      struct iio_trigger *trig)
1351{
1352        return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1353}
1354
1355static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1356{
1357        struct stm32_adc *adc = iio_priv(indio_dev);
1358        unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1359        unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1360
1361        /*
1362         * dma cyclic transfers are used, buffer is split into two periods.
1363         * There should be :
1364         * - always one buffer (period) dma is working on
1365         * - one buffer (period) driver can push with iio_trigger_poll().
1366         */
1367        watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1368        adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1369
1370        return 0;
1371}
1372
1373static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1374                                      const unsigned long *scan_mask)
1375{
1376        struct stm32_adc *adc = iio_priv(indio_dev);
1377        struct device *dev = indio_dev->dev.parent;
1378        int ret;
1379
1380        ret = pm_runtime_get_sync(dev);
1381        if (ret < 0) {
1382                pm_runtime_put_noidle(dev);
1383                return ret;
1384        }
1385
1386        adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1387
1388        ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1389        pm_runtime_mark_last_busy(dev);
1390        pm_runtime_put_autosuspend(dev);
1391
1392        return ret;
1393}
1394
1395static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1396                              const struct of_phandle_args *iiospec)
1397{
1398        int i;
1399
1400        for (i = 0; i < indio_dev->num_channels; i++)
1401                if (indio_dev->channels[i].channel == iiospec->args[0])
1402                        return i;
1403
1404        return -EINVAL;
1405}
1406
1407/**
1408 * stm32_adc_debugfs_reg_access - read or write register value
1409 *
1410 * To read a value from an ADC register:
1411 *   echo [ADC reg offset] > direct_reg_access
1412 *   cat direct_reg_access
1413 *
1414 * To write a value in a ADC register:
1415 *   echo [ADC_reg_offset] [value] > direct_reg_access
1416 */
1417static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1418                                        unsigned reg, unsigned writeval,
1419                                        unsigned *readval)
1420{
1421        struct stm32_adc *adc = iio_priv(indio_dev);
1422        struct device *dev = indio_dev->dev.parent;
1423        int ret;
1424
1425        ret = pm_runtime_get_sync(dev);
1426        if (ret < 0) {
1427                pm_runtime_put_noidle(dev);
1428                return ret;
1429        }
1430
1431        if (!readval)
1432                stm32_adc_writel(adc, reg, writeval);
1433        else
1434                *readval = stm32_adc_readl(adc, reg);
1435
1436        pm_runtime_mark_last_busy(dev);
1437        pm_runtime_put_autosuspend(dev);
1438
1439        return 0;
1440}
1441
1442static const struct iio_info stm32_adc_iio_info = {
1443        .read_raw = stm32_adc_read_raw,
1444        .validate_trigger = stm32_adc_validate_trigger,
1445        .hwfifo_set_watermark = stm32_adc_set_watermark,
1446        .update_scan_mode = stm32_adc_update_scan_mode,
1447        .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1448        .of_xlate = stm32_adc_of_xlate,
1449};
1450
1451static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1452{
1453        struct dma_tx_state state;
1454        enum dma_status status;
1455
1456        status = dmaengine_tx_status(adc->dma_chan,
1457                                     adc->dma_chan->cookie,
1458                                     &state);
1459        if (status == DMA_IN_PROGRESS) {
1460                /* Residue is size in bytes from end of buffer */
1461                unsigned int i = adc->rx_buf_sz - state.residue;
1462                unsigned int size;
1463
1464                /* Return available bytes */
1465                if (i >= adc->bufi)
1466                        size = i - adc->bufi;
1467                else
1468                        size = adc->rx_buf_sz + i - adc->bufi;
1469
1470                return size;
1471        }
1472
1473        return 0;
1474}
1475
1476static void stm32_adc_dma_buffer_done(void *data)
1477{
1478        struct iio_dev *indio_dev = data;
1479
1480        iio_trigger_poll_chained(indio_dev->trig);
1481}
1482
1483static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1484{
1485        struct stm32_adc *adc = iio_priv(indio_dev);
1486        struct dma_async_tx_descriptor *desc;
1487        dma_cookie_t cookie;
1488        int ret;
1489
1490        if (!adc->dma_chan)
1491                return 0;
1492
1493        dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1494                adc->rx_buf_sz, adc->rx_buf_sz / 2);
1495
1496        /* Prepare a DMA cyclic transaction */
1497        desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1498                                         adc->rx_dma_buf,
1499                                         adc->rx_buf_sz, adc->rx_buf_sz / 2,
1500                                         DMA_DEV_TO_MEM,
1501                                         DMA_PREP_INTERRUPT);
1502        if (!desc)
1503                return -EBUSY;
1504
1505        desc->callback = stm32_adc_dma_buffer_done;
1506        desc->callback_param = indio_dev;
1507
1508        cookie = dmaengine_submit(desc);
1509        ret = dma_submit_error(cookie);
1510        if (ret) {
1511                dmaengine_terminate_all(adc->dma_chan);
1512                return ret;
1513        }
1514
1515        /* Issue pending DMA requests */
1516        dma_async_issue_pending(adc->dma_chan);
1517
1518        return 0;
1519}
1520
1521static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1522{
1523        struct stm32_adc *adc = iio_priv(indio_dev);
1524        struct device *dev = indio_dev->dev.parent;
1525        int ret;
1526
1527        ret = pm_runtime_get_sync(dev);
1528        if (ret < 0) {
1529                pm_runtime_put_noidle(dev);
1530                return ret;
1531        }
1532
1533        ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1534        if (ret) {
1535                dev_err(&indio_dev->dev, "Can't set trigger\n");
1536                goto err_pm_put;
1537        }
1538
1539        ret = stm32_adc_dma_start(indio_dev);
1540        if (ret) {
1541                dev_err(&indio_dev->dev, "Can't start dma\n");
1542                goto err_clr_trig;
1543        }
1544
1545        /* Reset adc buffer index */
1546        adc->bufi = 0;
1547
1548        if (!adc->dma_chan)
1549                stm32_adc_conv_irq_enable(adc);
1550
1551        adc->cfg->start_conv(adc, !!adc->dma_chan);
1552
1553        return 0;
1554
1555err_clr_trig:
1556        stm32_adc_set_trig(indio_dev, NULL);
1557err_pm_put:
1558        pm_runtime_mark_last_busy(dev);
1559        pm_runtime_put_autosuspend(dev);
1560
1561        return ret;
1562}
1563
1564static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1565{
1566        int ret;
1567
1568        ret = iio_triggered_buffer_postenable(indio_dev);
1569        if (ret < 0)
1570                return ret;
1571
1572        ret = __stm32_adc_buffer_postenable(indio_dev);
1573        if (ret < 0)
1574                iio_triggered_buffer_predisable(indio_dev);
1575
1576        return ret;
1577}
1578
1579static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1580{
1581        struct stm32_adc *adc = iio_priv(indio_dev);
1582        struct device *dev = indio_dev->dev.parent;
1583
1584        adc->cfg->stop_conv(adc);
1585        if (!adc->dma_chan)
1586                stm32_adc_conv_irq_disable(adc);
1587
1588        if (adc->dma_chan)
1589                dmaengine_terminate_all(adc->dma_chan);
1590
1591        if (stm32_adc_set_trig(indio_dev, NULL))
1592                dev_err(&indio_dev->dev, "Can't clear trigger\n");
1593
1594        pm_runtime_mark_last_busy(dev);
1595        pm_runtime_put_autosuspend(dev);
1596}
1597
1598static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1599{
1600        int ret;
1601
1602        __stm32_adc_buffer_predisable(indio_dev);
1603
1604        ret = iio_triggered_buffer_predisable(indio_dev);
1605        if (ret < 0)
1606                dev_err(&indio_dev->dev, "predisable failed\n");
1607
1608        return ret;
1609}
1610
1611static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1612        .postenable = &stm32_adc_buffer_postenable,
1613        .predisable = &stm32_adc_buffer_predisable,
1614};
1615
1616static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1617{
1618        struct iio_poll_func *pf = p;
1619        struct iio_dev *indio_dev = pf->indio_dev;
1620        struct stm32_adc *adc = iio_priv(indio_dev);
1621
1622        dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1623
1624        if (!adc->dma_chan) {
1625                /* reset buffer index */
1626                adc->bufi = 0;
1627                iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1628                                                   pf->timestamp);
1629        } else {
1630                int residue = stm32_adc_dma_residue(adc);
1631
1632                while (residue >= indio_dev->scan_bytes) {
1633                        u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1634
1635                        iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1636                                                           pf->timestamp);
1637                        residue -= indio_dev->scan_bytes;
1638                        adc->bufi += indio_dev->scan_bytes;
1639                        if (adc->bufi >= adc->rx_buf_sz)
1640                                adc->bufi = 0;
1641                }
1642        }
1643
1644        iio_trigger_notify_done(indio_dev->trig);
1645
1646        /* re-enable eoc irq */
1647        if (!adc->dma_chan)
1648                stm32_adc_conv_irq_enable(adc);
1649
1650        return IRQ_HANDLED;
1651}
1652
1653static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1654        IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1655        {
1656                .name = "trigger_polarity_available",
1657                .shared = IIO_SHARED_BY_ALL,
1658                .read = iio_enum_available_read,
1659                .private = (uintptr_t)&stm32_adc_trig_pol,
1660        },
1661        {},
1662};
1663
1664static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1665{
1666        struct device_node *node = indio_dev->dev.of_node;
1667        struct stm32_adc *adc = iio_priv(indio_dev);
1668        unsigned int i;
1669        u32 res;
1670
1671        if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1672                res = adc->cfg->adc_info->resolutions[0];
1673
1674        for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1675                if (res == adc->cfg->adc_info->resolutions[i])
1676                        break;
1677        if (i >= adc->cfg->adc_info->num_res) {
1678                dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1679                return -EINVAL;
1680        }
1681
1682        dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1683        adc->res = i;
1684
1685        return 0;
1686}
1687
1688static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1689{
1690        const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1691        u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1692        unsigned int smp, r = smpr->reg;
1693
1694        /* Determine sampling time (ADC clock cycles) */
1695        period_ns = NSEC_PER_SEC / adc->common->rate;
1696        for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1697                if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1698                        break;
1699        if (smp > STM32_ADC_MAX_SMP)
1700                smp = STM32_ADC_MAX_SMP;
1701
1702        /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1703        adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1704}
1705
1706static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1707                                    struct iio_chan_spec *chan, u32 vinp,
1708                                    u32 vinn, int scan_index, bool differential)
1709{
1710        struct stm32_adc *adc = iio_priv(indio_dev);
1711        char *name = adc->chan_name[vinp];
1712
1713        chan->type = IIO_VOLTAGE;
1714        chan->channel = vinp;
1715        if (differential) {
1716                chan->differential = 1;
1717                chan->channel2 = vinn;
1718                snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1719        } else {
1720                snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1721        }
1722        chan->datasheet_name = name;
1723        chan->scan_index = scan_index;
1724        chan->indexed = 1;
1725        chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1726        chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1727                                         BIT(IIO_CHAN_INFO_OFFSET);
1728        chan->scan_type.sign = 'u';
1729        chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1730        chan->scan_type.storagebits = 16;
1731        chan->ext_info = stm32_adc_ext_info;
1732
1733        /* pre-build selected channels mask */
1734        adc->pcsel |= BIT(chan->channel);
1735        if (differential) {
1736                /* pre-build diff channels mask */
1737                adc->difsel |= BIT(chan->channel);
1738                /* Also add negative input to pre-selected channels */
1739                adc->pcsel |= BIT(chan->channel2);
1740        }
1741}
1742
1743static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1744{
1745        struct device_node *node = indio_dev->dev.of_node;
1746        struct stm32_adc *adc = iio_priv(indio_dev);
1747        const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1748        struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1749        struct property *prop;
1750        const __be32 *cur;
1751        struct iio_chan_spec *channels;
1752        int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1753        u32 val, smp = 0;
1754
1755        ret = of_property_count_u32_elems(node, "st,adc-channels");
1756        if (ret > adc_info->max_channels) {
1757                dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1758                return -EINVAL;
1759        } else if (ret > 0) {
1760                num_channels += ret;
1761        }
1762
1763        ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1764                                              sizeof(*diff));
1765        if (ret > adc_info->max_channels) {
1766                dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1767                return -EINVAL;
1768        } else if (ret > 0) {
1769                int size = ret * sizeof(*diff) / sizeof(u32);
1770
1771                num_diff = ret;
1772                num_channels += ret;
1773                ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1774                                                 (u32 *)diff, size);
1775                if (ret)
1776                        return ret;
1777        }
1778
1779        if (!num_channels) {
1780                dev_err(&indio_dev->dev, "No channels configured\n");
1781                return -ENODATA;
1782        }
1783
1784        /* Optional sample time is provided either for each, or all channels */
1785        ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1786        if (ret > 1 && ret != num_channels) {
1787                dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1788                return -EINVAL;
1789        }
1790
1791        channels = devm_kcalloc(&indio_dev->dev, num_channels,
1792                                sizeof(struct iio_chan_spec), GFP_KERNEL);
1793        if (!channels)
1794                return -ENOMEM;
1795
1796        of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1797                if (val >= adc_info->max_channels) {
1798                        dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1799                        return -EINVAL;
1800                }
1801
1802                /* Channel can't be configured both as single-ended & diff */
1803                for (i = 0; i < num_diff; i++) {
1804                        if (val == diff[i].vinp) {
1805                                dev_err(&indio_dev->dev,
1806                                        "channel %d miss-configured\n", val);
1807                                return -EINVAL;
1808                        }
1809                }
1810                stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1811                                        0, scan_index, false);
1812                scan_index++;
1813        }
1814
1815        for (i = 0; i < num_diff; i++) {
1816                if (diff[i].vinp >= adc_info->max_channels ||
1817                    diff[i].vinn >= adc_info->max_channels) {
1818                        dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1819                                diff[i].vinp, diff[i].vinn);
1820                        return -EINVAL;
1821                }
1822                stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1823                                        diff[i].vinp, diff[i].vinn, scan_index,
1824                                        true);
1825                scan_index++;
1826        }
1827
1828        for (i = 0; i < scan_index; i++) {
1829                /*
1830                 * Using of_property_read_u32_index(), smp value will only be
1831                 * modified if valid u32 value can be decoded. This allows to
1832                 * get either no value, 1 shared value for all indexes, or one
1833                 * value per channel.
1834                 */
1835                of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1836                                           i, &smp);
1837                /* Prepare sampling time settings */
1838                stm32_adc_smpr_init(adc, channels[i].channel, smp);
1839        }
1840
1841        indio_dev->num_channels = scan_index;
1842        indio_dev->channels = channels;
1843
1844        return 0;
1845}
1846
1847static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1848{
1849        struct stm32_adc *adc = iio_priv(indio_dev);
1850        struct dma_slave_config config;
1851        int ret;
1852
1853        adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1854        if (!adc->dma_chan)
1855                return 0;
1856
1857        adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1858                                         STM32_DMA_BUFFER_SIZE,
1859                                         &adc->rx_dma_buf, GFP_KERNEL);
1860        if (!adc->rx_buf) {
1861                ret = -ENOMEM;
1862                goto err_release;
1863        }
1864
1865        /* Configure DMA channel to read data register */
1866        memset(&config, 0, sizeof(config));
1867        config.src_addr = (dma_addr_t)adc->common->phys_base;
1868        config.src_addr += adc->offset + adc->cfg->regs->dr;
1869        config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1870
1871        ret = dmaengine_slave_config(adc->dma_chan, &config);
1872        if (ret)
1873                goto err_free;
1874
1875        return 0;
1876
1877err_free:
1878        dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1879                          adc->rx_buf, adc->rx_dma_buf);
1880err_release:
1881        dma_release_channel(adc->dma_chan);
1882
1883        return ret;
1884}
1885
1886static int stm32_adc_probe(struct platform_device *pdev)
1887{
1888        struct iio_dev *indio_dev;
1889        struct device *dev = &pdev->dev;
1890        struct stm32_adc *adc;
1891        int ret;
1892
1893        if (!pdev->dev.of_node)
1894                return -ENODEV;
1895
1896        indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1897        if (!indio_dev)
1898                return -ENOMEM;
1899
1900        adc = iio_priv(indio_dev);
1901        adc->common = dev_get_drvdata(pdev->dev.parent);
1902        spin_lock_init(&adc->lock);
1903        init_completion(&adc->completion);
1904        adc->cfg = (const struct stm32_adc_cfg *)
1905                of_match_device(dev->driver->of_match_table, dev)->data;
1906
1907        indio_dev->name = dev_name(&pdev->dev);
1908        indio_dev->dev.parent = &pdev->dev;
1909        indio_dev->dev.of_node = pdev->dev.of_node;
1910        indio_dev->info = &stm32_adc_iio_info;
1911        indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1912
1913        platform_set_drvdata(pdev, adc);
1914
1915        ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1916        if (ret != 0) {
1917                dev_err(&pdev->dev, "missing reg property\n");
1918                return -EINVAL;
1919        }
1920
1921        adc->irq = platform_get_irq(pdev, 0);
1922        if (adc->irq < 0) {
1923                dev_err(&pdev->dev, "failed to get irq\n");
1924                return adc->irq;
1925        }
1926
1927        ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1928                               0, pdev->name, adc);
1929        if (ret) {
1930                dev_err(&pdev->dev, "failed to request IRQ\n");
1931                return ret;
1932        }
1933
1934        adc->clk = devm_clk_get(&pdev->dev, NULL);
1935        if (IS_ERR(adc->clk)) {
1936                ret = PTR_ERR(adc->clk);
1937                if (ret == -ENOENT && !adc->cfg->clk_required) {
1938                        adc->clk = NULL;
1939                } else {
1940                        dev_err(&pdev->dev, "Can't get clock\n");
1941                        return ret;
1942                }
1943        }
1944
1945        ret = stm32_adc_of_get_resolution(indio_dev);
1946        if (ret < 0)
1947                return ret;
1948
1949        ret = stm32_adc_chan_of_init(indio_dev);
1950        if (ret < 0)
1951                return ret;
1952
1953        ret = stm32_adc_dma_request(indio_dev);
1954        if (ret < 0)
1955                return ret;
1956
1957        ret = iio_triggered_buffer_setup(indio_dev,
1958                                         &iio_pollfunc_store_time,
1959                                         &stm32_adc_trigger_handler,
1960                                         &stm32_adc_buffer_setup_ops);
1961        if (ret) {
1962                dev_err(&pdev->dev, "buffer setup failed\n");
1963                goto err_dma_disable;
1964        }
1965
1966        /* Get stm32-adc-core PM online */
1967        pm_runtime_get_noresume(dev);
1968        pm_runtime_set_active(dev);
1969        pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1970        pm_runtime_use_autosuspend(dev);
1971        pm_runtime_enable(dev);
1972
1973        ret = stm32_adc_hw_start(dev);
1974        if (ret)
1975                goto err_buffer_cleanup;
1976
1977        ret = iio_device_register(indio_dev);
1978        if (ret) {
1979                dev_err(&pdev->dev, "iio dev register failed\n");
1980                goto err_hw_stop;
1981        }
1982
1983        pm_runtime_mark_last_busy(dev);
1984        pm_runtime_put_autosuspend(dev);
1985
1986        return 0;
1987
1988err_hw_stop:
1989        stm32_adc_hw_stop(dev);
1990
1991err_buffer_cleanup:
1992        pm_runtime_disable(dev);
1993        pm_runtime_set_suspended(dev);
1994        pm_runtime_put_noidle(dev);
1995        iio_triggered_buffer_cleanup(indio_dev);
1996
1997err_dma_disable:
1998        if (adc->dma_chan) {
1999                dma_free_coherent(adc->dma_chan->device->dev,
2000                                  STM32_DMA_BUFFER_SIZE,
2001                                  adc->rx_buf, adc->rx_dma_buf);
2002                dma_release_channel(adc->dma_chan);
2003        }
2004
2005        return ret;
2006}
2007
2008static int stm32_adc_remove(struct platform_device *pdev)
2009{
2010        struct stm32_adc *adc = platform_get_drvdata(pdev);
2011        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2012
2013        pm_runtime_get_sync(&pdev->dev);
2014        iio_device_unregister(indio_dev);
2015        stm32_adc_hw_stop(&pdev->dev);
2016        pm_runtime_disable(&pdev->dev);
2017        pm_runtime_set_suspended(&pdev->dev);
2018        pm_runtime_put_noidle(&pdev->dev);
2019        iio_triggered_buffer_cleanup(indio_dev);
2020        if (adc->dma_chan) {
2021                dma_free_coherent(adc->dma_chan->device->dev,
2022                                  STM32_DMA_BUFFER_SIZE,
2023                                  adc->rx_buf, adc->rx_dma_buf);
2024                dma_release_channel(adc->dma_chan);
2025        }
2026
2027        return 0;
2028}
2029
2030#if defined(CONFIG_PM_SLEEP)
2031static int stm32_adc_suspend(struct device *dev)
2032{
2033        struct stm32_adc *adc = dev_get_drvdata(dev);
2034        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2035
2036        if (iio_buffer_enabled(indio_dev))
2037                __stm32_adc_buffer_predisable(indio_dev);
2038
2039        return pm_runtime_force_suspend(dev);
2040}
2041
2042static int stm32_adc_resume(struct device *dev)
2043{
2044        struct stm32_adc *adc = dev_get_drvdata(dev);
2045        struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2046        int ret;
2047
2048        ret = pm_runtime_force_resume(dev);
2049        if (ret < 0)
2050                return ret;
2051
2052        if (!iio_buffer_enabled(indio_dev))
2053                return 0;
2054
2055        ret = stm32_adc_update_scan_mode(indio_dev,
2056                                         indio_dev->active_scan_mask);
2057        if (ret < 0)
2058                return ret;
2059
2060        return __stm32_adc_buffer_postenable(indio_dev);
2061}
2062#endif
2063
2064#if defined(CONFIG_PM)
2065static int stm32_adc_runtime_suspend(struct device *dev)
2066{
2067        return stm32_adc_hw_stop(dev);
2068}
2069
2070static int stm32_adc_runtime_resume(struct device *dev)
2071{
2072        return stm32_adc_hw_start(dev);
2073}
2074#endif
2075
2076static const struct dev_pm_ops stm32_adc_pm_ops = {
2077        SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2078        SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2079                           NULL)
2080};
2081
2082static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2083        .regs = &stm32f4_adc_regspec,
2084        .adc_info = &stm32f4_adc_info,
2085        .trigs = stm32f4_adc_trigs,
2086        .clk_required = true,
2087        .start_conv = stm32f4_adc_start_conv,
2088        .stop_conv = stm32f4_adc_stop_conv,
2089        .smp_cycles = stm32f4_adc_smp_cycles,
2090};
2091
2092static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2093        .regs = &stm32h7_adc_regspec,
2094        .adc_info = &stm32h7_adc_info,
2095        .trigs = stm32h7_adc_trigs,
2096        .start_conv = stm32h7_adc_start_conv,
2097        .stop_conv = stm32h7_adc_stop_conv,
2098        .prepare = stm32h7_adc_prepare,
2099        .unprepare = stm32h7_adc_unprepare,
2100        .smp_cycles = stm32h7_adc_smp_cycles,
2101};
2102
2103static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2104        .regs = &stm32h7_adc_regspec,
2105        .adc_info = &stm32h7_adc_info,
2106        .trigs = stm32h7_adc_trigs,
2107        .has_vregready = true,
2108        .start_conv = stm32h7_adc_start_conv,
2109        .stop_conv = stm32h7_adc_stop_conv,
2110        .prepare = stm32h7_adc_prepare,
2111        .unprepare = stm32h7_adc_unprepare,
2112        .smp_cycles = stm32h7_adc_smp_cycles,
2113};
2114
2115static const struct of_device_id stm32_adc_of_match[] = {
2116        { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2117        { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2118        { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2119        {},
2120};
2121MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2122
2123static struct platform_driver stm32_adc_driver = {
2124        .probe = stm32_adc_probe,
2125        .remove = stm32_adc_remove,
2126        .driver = {
2127                .name = "stm32-adc",
2128                .of_match_table = stm32_adc_of_match,
2129                .pm = &stm32_adc_pm_ops,
2130        },
2131};
2132module_platform_driver(stm32_adc_driver);
2133
2134MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2135MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2136MODULE_LICENSE("GPL v2");
2137MODULE_ALIAS("platform:stm32-adc");
2138