linux/drivers/mmc/host/sdhci-of-esdhc.c
<<
>>
Prefs
   1/*
   2 * Freescale eSDHC controller driver.
   3 *
   4 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
   5 * Copyright (c) 2009 MontaVista Software, Inc.
   6 *
   7 * Authors: Xiaobo Xie <X.Xie@freescale.com>
   8 *          Anton Vorontsov <avorontsov@ru.mvista.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 */
  15
  16#include <linux/err.h>
  17#include <linux/io.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/delay.h>
  21#include <linux/module.h>
  22#include <linux/sys_soc.h>
  23#include <linux/clk.h>
  24#include <linux/ktime.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/mmc/host.h>
  27#include "sdhci-pltfm.h"
  28#include "sdhci-esdhc.h"
  29
  30#define VENDOR_V_22     0x12
  31#define VENDOR_V_23     0x13
  32
  33#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
  34
  35struct esdhc_clk_fixup {
  36        const unsigned int sd_dflt_max_clk;
  37        const unsigned int max_clk[MMC_TIMING_NUM];
  38};
  39
  40static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
  41        .sd_dflt_max_clk = 25000000,
  42        .max_clk[MMC_TIMING_MMC_HS] = 46500000,
  43        .max_clk[MMC_TIMING_SD_HS] = 46500000,
  44};
  45
  46static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
  47        .sd_dflt_max_clk = 25000000,
  48        .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
  49        .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
  50};
  51
  52static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
  53        .sd_dflt_max_clk = 25000000,
  54        .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
  55        .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
  56};
  57
  58static const struct esdhc_clk_fixup p1010_esdhc_clk = {
  59        .sd_dflt_max_clk = 20000000,
  60        .max_clk[MMC_TIMING_LEGACY] = 20000000,
  61        .max_clk[MMC_TIMING_MMC_HS] = 42000000,
  62        .max_clk[MMC_TIMING_SD_HS] = 40000000,
  63};
  64
  65static const struct of_device_id sdhci_esdhc_of_match[] = {
  66        { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
  67        { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
  68        { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
  69        { .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
  70        { .compatible = "fsl,mpc8379-esdhc" },
  71        { .compatible = "fsl,mpc8536-esdhc" },
  72        { .compatible = "fsl,esdhc" },
  73        { }
  74};
  75MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
  76
  77struct sdhci_esdhc {
  78        u8 vendor_ver;
  79        u8 spec_ver;
  80        bool quirk_incorrect_hostver;
  81        bool quirk_limited_clk_division;
  82        bool quirk_unreliable_pulse_detection;
  83        bool quirk_fixup_tuning;
  84        unsigned int peripheral_clock;
  85        const struct esdhc_clk_fixup *clk_fixup;
  86        u32 div_ratio;
  87};
  88
  89/**
  90 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
  91 *                     to make it compatible with SD spec.
  92 *
  93 * @host: pointer to sdhci_host
  94 * @spec_reg: SD spec register address
  95 * @value: 32bit eSDHC register value on spec_reg address
  96 *
  97 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
  98 * registers are 32 bits. There are differences in register size, register
  99 * address, register function, bit position and function between eSDHC spec
 100 * and SD spec.
 101 *
 102 * Return a fixed up register value
 103 */
 104static u32 esdhc_readl_fixup(struct sdhci_host *host,
 105                                     int spec_reg, u32 value)
 106{
 107        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 108        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 109        u32 ret;
 110
 111        /*
 112         * The bit of ADMA flag in eSDHC is not compatible with standard
 113         * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
 114         * supported by eSDHC.
 115         * And for many FSL eSDHC controller, the reset value of field
 116         * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
 117         * only these vendor version is greater than 2.2/0x12 support ADMA.
 118         */
 119        if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
 120                if (esdhc->vendor_ver > VENDOR_V_22) {
 121                        ret = value | SDHCI_CAN_DO_ADMA2;
 122                        return ret;
 123                }
 124        }
 125        /*
 126         * The DAT[3:0] line signal levels and the CMD line signal level are
 127         * not compatible with standard SDHC register. The line signal levels
 128         * DAT[7:0] are at bits 31:24 and the command line signal level is at
 129         * bit 23. All other bits are the same as in the standard SDHC
 130         * register.
 131         */
 132        if (spec_reg == SDHCI_PRESENT_STATE) {
 133                ret = value & 0x000fffff;
 134                ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
 135                ret |= (value << 1) & SDHCI_CMD_LVL;
 136                return ret;
 137        }
 138
 139        /*
 140         * DTS properties of mmc host are used to enable each speed mode
 141         * according to soc and board capability. So clean up
 142         * SDR50/SDR104/DDR50 support bits here.
 143         */
 144        if (spec_reg == SDHCI_CAPABILITIES_1) {
 145                ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
 146                                SDHCI_SUPPORT_DDR50);
 147                return ret;
 148        }
 149
 150        ret = value;
 151        return ret;
 152}
 153
 154static u16 esdhc_readw_fixup(struct sdhci_host *host,
 155                                     int spec_reg, u32 value)
 156{
 157        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 158        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 159        u16 ret;
 160        int shift = (spec_reg & 0x2) * 8;
 161
 162        if (spec_reg == SDHCI_HOST_VERSION)
 163                ret = value & 0xffff;
 164        else
 165                ret = (value >> shift) & 0xffff;
 166        /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
 167         * vendor version and spec version information.
 168         */
 169        if ((spec_reg == SDHCI_HOST_VERSION) &&
 170            (esdhc->quirk_incorrect_hostver))
 171                ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
 172        return ret;
 173}
 174
 175static u8 esdhc_readb_fixup(struct sdhci_host *host,
 176                                     int spec_reg, u32 value)
 177{
 178        u8 ret;
 179        u8 dma_bits;
 180        int shift = (spec_reg & 0x3) * 8;
 181
 182        ret = (value >> shift) & 0xff;
 183
 184        /*
 185         * "DMA select" locates at offset 0x28 in SD specification, but on
 186         * P5020 or P3041, it locates at 0x29.
 187         */
 188        if (spec_reg == SDHCI_HOST_CONTROL) {
 189                /* DMA select is 22,23 bits in Protocol Control Register */
 190                dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
 191                /* fixup the result */
 192                ret &= ~SDHCI_CTRL_DMA_MASK;
 193                ret |= dma_bits;
 194        }
 195        return ret;
 196}
 197
 198/**
 199 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
 200 *                      written into eSDHC register.
 201 *
 202 * @host: pointer to sdhci_host
 203 * @spec_reg: SD spec register address
 204 * @value: 8/16/32bit SD spec register value that would be written
 205 * @old_value: 32bit eSDHC register value on spec_reg address
 206 *
 207 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 208 * registers are 32 bits. There are differences in register size, register
 209 * address, register function, bit position and function between eSDHC spec
 210 * and SD spec.
 211 *
 212 * Return a fixed up register value
 213 */
 214static u32 esdhc_writel_fixup(struct sdhci_host *host,
 215                                     int spec_reg, u32 value, u32 old_value)
 216{
 217        u32 ret;
 218
 219        /*
 220         * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
 221         * when SYSCTL[RSTD] is set for some special operations.
 222         * No any impact on other operation.
 223         */
 224        if (spec_reg == SDHCI_INT_ENABLE)
 225                ret = value | SDHCI_INT_BLK_GAP;
 226        else
 227                ret = value;
 228
 229        return ret;
 230}
 231
 232static u32 esdhc_writew_fixup(struct sdhci_host *host,
 233                                     int spec_reg, u16 value, u32 old_value)
 234{
 235        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 236        int shift = (spec_reg & 0x2) * 8;
 237        u32 ret;
 238
 239        switch (spec_reg) {
 240        case SDHCI_TRANSFER_MODE:
 241                /*
 242                 * Postpone this write, we must do it together with a
 243                 * command write that is down below. Return old value.
 244                 */
 245                pltfm_host->xfer_mode_shadow = value;
 246                return old_value;
 247        case SDHCI_COMMAND:
 248                ret = (value << 16) | pltfm_host->xfer_mode_shadow;
 249                return ret;
 250        }
 251
 252        ret = old_value & (~(0xffff << shift));
 253        ret |= (value << shift);
 254
 255        if (spec_reg == SDHCI_BLOCK_SIZE) {
 256                /*
 257                 * Two last DMA bits are reserved, and first one is used for
 258                 * non-standard blksz of 4096 bytes that we don't support
 259                 * yet. So clear the DMA boundary bits.
 260                 */
 261                ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
 262        }
 263        return ret;
 264}
 265
 266static u32 esdhc_writeb_fixup(struct sdhci_host *host,
 267                                     int spec_reg, u8 value, u32 old_value)
 268{
 269        u32 ret;
 270        u32 dma_bits;
 271        u8 tmp;
 272        int shift = (spec_reg & 0x3) * 8;
 273
 274        /*
 275         * eSDHC doesn't have a standard power control register, so we do
 276         * nothing here to avoid incorrect operation.
 277         */
 278        if (spec_reg == SDHCI_POWER_CONTROL)
 279                return old_value;
 280        /*
 281         * "DMA select" location is offset 0x28 in SD specification, but on
 282         * P5020 or P3041, it's located at 0x29.
 283         */
 284        if (spec_reg == SDHCI_HOST_CONTROL) {
 285                /*
 286                 * If host control register is not standard, exit
 287                 * this function
 288                 */
 289                if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
 290                        return old_value;
 291
 292                /* DMA select is 22,23 bits in Protocol Control Register */
 293                dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
 294                ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
 295                tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
 296                      (old_value & SDHCI_CTRL_DMA_MASK);
 297                ret = (ret & (~0xff)) | tmp;
 298
 299                /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
 300                ret &= ~ESDHC_HOST_CONTROL_RES;
 301                return ret;
 302        }
 303
 304        ret = (old_value & (~(0xff << shift))) | (value << shift);
 305        return ret;
 306}
 307
 308static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
 309{
 310        u32 ret;
 311        u32 value;
 312
 313        if (reg == SDHCI_CAPABILITIES_1)
 314                value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
 315        else
 316                value = ioread32be(host->ioaddr + reg);
 317
 318        ret = esdhc_readl_fixup(host, reg, value);
 319
 320        return ret;
 321}
 322
 323static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
 324{
 325        u32 ret;
 326        u32 value;
 327
 328        if (reg == SDHCI_CAPABILITIES_1)
 329                value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
 330        else
 331                value = ioread32(host->ioaddr + reg);
 332
 333        ret = esdhc_readl_fixup(host, reg, value);
 334
 335        return ret;
 336}
 337
 338static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
 339{
 340        u16 ret;
 341        u32 value;
 342        int base = reg & ~0x3;
 343
 344        value = ioread32be(host->ioaddr + base);
 345        ret = esdhc_readw_fixup(host, reg, value);
 346        return ret;
 347}
 348
 349static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
 350{
 351        u16 ret;
 352        u32 value;
 353        int base = reg & ~0x3;
 354
 355        value = ioread32(host->ioaddr + base);
 356        ret = esdhc_readw_fixup(host, reg, value);
 357        return ret;
 358}
 359
 360static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
 361{
 362        u8 ret;
 363        u32 value;
 364        int base = reg & ~0x3;
 365
 366        value = ioread32be(host->ioaddr + base);
 367        ret = esdhc_readb_fixup(host, reg, value);
 368        return ret;
 369}
 370
 371static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
 372{
 373        u8 ret;
 374        u32 value;
 375        int base = reg & ~0x3;
 376
 377        value = ioread32(host->ioaddr + base);
 378        ret = esdhc_readb_fixup(host, reg, value);
 379        return ret;
 380}
 381
 382static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
 383{
 384        u32 value;
 385
 386        value = esdhc_writel_fixup(host, reg, val, 0);
 387        iowrite32be(value, host->ioaddr + reg);
 388}
 389
 390static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
 391{
 392        u32 value;
 393
 394        value = esdhc_writel_fixup(host, reg, val, 0);
 395        iowrite32(value, host->ioaddr + reg);
 396}
 397
 398static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
 399{
 400        int base = reg & ~0x3;
 401        u32 value;
 402        u32 ret;
 403
 404        value = ioread32be(host->ioaddr + base);
 405        ret = esdhc_writew_fixup(host, reg, val, value);
 406        if (reg != SDHCI_TRANSFER_MODE)
 407                iowrite32be(ret, host->ioaddr + base);
 408}
 409
 410static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
 411{
 412        int base = reg & ~0x3;
 413        u32 value;
 414        u32 ret;
 415
 416        value = ioread32(host->ioaddr + base);
 417        ret = esdhc_writew_fixup(host, reg, val, value);
 418        if (reg != SDHCI_TRANSFER_MODE)
 419                iowrite32(ret, host->ioaddr + base);
 420}
 421
 422static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
 423{
 424        int base = reg & ~0x3;
 425        u32 value;
 426        u32 ret;
 427
 428        value = ioread32be(host->ioaddr + base);
 429        ret = esdhc_writeb_fixup(host, reg, val, value);
 430        iowrite32be(ret, host->ioaddr + base);
 431}
 432
 433static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
 434{
 435        int base = reg & ~0x3;
 436        u32 value;
 437        u32 ret;
 438
 439        value = ioread32(host->ioaddr + base);
 440        ret = esdhc_writeb_fixup(host, reg, val, value);
 441        iowrite32(ret, host->ioaddr + base);
 442}
 443
 444/*
 445 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
 446 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
 447 * and Block Gap Event(IRQSTAT[BGE]) are also set.
 448 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
 449 * and re-issue the entire read transaction from beginning.
 450 */
 451static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
 452{
 453        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 454        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 455        bool applicable;
 456        dma_addr_t dmastart;
 457        dma_addr_t dmanow;
 458
 459        applicable = (intmask & SDHCI_INT_DATA_END) &&
 460                     (intmask & SDHCI_INT_BLK_GAP) &&
 461                     (esdhc->vendor_ver == VENDOR_V_23);
 462        if (!applicable)
 463                return;
 464
 465        host->data->error = 0;
 466        dmastart = sg_dma_address(host->data->sg);
 467        dmanow = dmastart + host->data->bytes_xfered;
 468        /*
 469         * Force update to the next DMA block boundary.
 470         */
 471        dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
 472                SDHCI_DEFAULT_BOUNDARY_SIZE;
 473        host->data->bytes_xfered = dmanow - dmastart;
 474        sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
 475}
 476
 477static int esdhc_of_enable_dma(struct sdhci_host *host)
 478{
 479        u32 value;
 480        struct device *dev = mmc_dev(host->mmc);
 481
 482        if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
 483            of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
 484                dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
 485
 486        value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 487        value |= ESDHC_DMA_SNOOP;
 488        sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
 489        return 0;
 490}
 491
 492static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
 493{
 494        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 495        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 496
 497        if (esdhc->peripheral_clock)
 498                return esdhc->peripheral_clock;
 499        else
 500                return pltfm_host->clock;
 501}
 502
 503static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
 504{
 505        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 506        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 507        unsigned int clock;
 508
 509        if (esdhc->peripheral_clock)
 510                clock = esdhc->peripheral_clock;
 511        else
 512                clock = pltfm_host->clock;
 513        return clock / 256 / 16;
 514}
 515
 516static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
 517{
 518        u32 val;
 519        ktime_t timeout;
 520
 521        val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 522
 523        if (enable)
 524                val |= ESDHC_CLOCK_SDCLKEN;
 525        else
 526                val &= ~ESDHC_CLOCK_SDCLKEN;
 527
 528        sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
 529
 530        /* Wait max 20 ms */
 531        timeout = ktime_add_ms(ktime_get(), 20);
 532        val = ESDHC_CLOCK_STABLE;
 533        while  (1) {
 534                bool timedout = ktime_after(ktime_get(), timeout);
 535
 536                if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
 537                        break;
 538                if (timedout) {
 539                        pr_err("%s: Internal clock never stabilised.\n",
 540                                mmc_hostname(host->mmc));
 541                        break;
 542                }
 543                udelay(10);
 544        }
 545}
 546
 547static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
 548{
 549        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 550        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 551        int pre_div = 1;
 552        int div = 1;
 553        int division;
 554        ktime_t timeout;
 555        long fixup = 0;
 556        u32 temp;
 557
 558        host->mmc->actual_clock = 0;
 559
 560        if (clock == 0) {
 561                esdhc_clock_enable(host, false);
 562                return;
 563        }
 564
 565        /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
 566        if (esdhc->vendor_ver < VENDOR_V_23)
 567                pre_div = 2;
 568
 569        if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
 570                esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
 571                fixup = esdhc->clk_fixup->sd_dflt_max_clk;
 572        else if (esdhc->clk_fixup)
 573                fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
 574
 575        if (fixup && clock > fixup)
 576                clock = fixup;
 577
 578        temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 579        temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
 580                  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
 581        sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 582
 583        while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
 584                pre_div *= 2;
 585
 586        while (host->max_clk / pre_div / div > clock && div < 16)
 587                div++;
 588
 589        if (esdhc->quirk_limited_clk_division &&
 590            clock == MMC_HS200_MAX_DTR &&
 591            (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
 592             host->flags & SDHCI_HS400_TUNING)) {
 593                division = pre_div * div;
 594                if (division <= 4) {
 595                        pre_div = 4;
 596                        div = 1;
 597                } else if (division <= 8) {
 598                        pre_div = 4;
 599                        div = 2;
 600                } else if (division <= 12) {
 601                        pre_div = 4;
 602                        div = 3;
 603                } else {
 604                        pr_warn("%s: using unsupported clock division.\n",
 605                                mmc_hostname(host->mmc));
 606                }
 607        }
 608
 609        dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
 610                clock, host->max_clk / pre_div / div);
 611        host->mmc->actual_clock = host->max_clk / pre_div / div;
 612        esdhc->div_ratio = pre_div * div;
 613        pre_div >>= 1;
 614        div--;
 615
 616        temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 617        temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
 618                | (div << ESDHC_DIVIDER_SHIFT)
 619                | (pre_div << ESDHC_PREDIV_SHIFT));
 620        sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 621
 622        if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
 623            clock == MMC_HS200_MAX_DTR) {
 624                temp = sdhci_readl(host, ESDHC_TBCTL);
 625                sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
 626                temp = sdhci_readl(host, ESDHC_SDCLKCTL);
 627                sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
 628                esdhc_clock_enable(host, true);
 629
 630                temp = sdhci_readl(host, ESDHC_DLLCFG0);
 631                temp |= ESDHC_DLL_ENABLE;
 632                if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
 633                        temp |= ESDHC_DLL_FREQ_SEL;
 634                sdhci_writel(host, temp, ESDHC_DLLCFG0);
 635                temp = sdhci_readl(host, ESDHC_TBCTL);
 636                sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
 637
 638                esdhc_clock_enable(host, false);
 639                temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 640                temp |= ESDHC_FLUSH_ASYNC_FIFO;
 641                sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
 642        }
 643
 644        /* Wait max 20 ms */
 645        timeout = ktime_add_ms(ktime_get(), 20);
 646        while (1) {
 647                bool timedout = ktime_after(ktime_get(), timeout);
 648
 649                if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 650                        break;
 651                if (timedout) {
 652                        pr_err("%s: Internal clock never stabilised.\n",
 653                                mmc_hostname(host->mmc));
 654                        return;
 655                }
 656                udelay(10);
 657        }
 658
 659        temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 660        temp |= ESDHC_CLOCK_SDCLKEN;
 661        sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 662}
 663
 664static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
 665{
 666        u32 ctrl;
 667
 668        ctrl = sdhci_readl(host, ESDHC_PROCTL);
 669        ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
 670        switch (width) {
 671        case MMC_BUS_WIDTH_8:
 672                ctrl |= ESDHC_CTRL_8BITBUS;
 673                break;
 674
 675        case MMC_BUS_WIDTH_4:
 676                ctrl |= ESDHC_CTRL_4BITBUS;
 677                break;
 678
 679        default:
 680                break;
 681        }
 682
 683        sdhci_writel(host, ctrl, ESDHC_PROCTL);
 684}
 685
 686static void esdhc_reset(struct sdhci_host *host, u8 mask)
 687{
 688        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 689        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 690        u32 val;
 691
 692        sdhci_reset(host, mask);
 693
 694        sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
 695        sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
 696
 697        if (mask & SDHCI_RESET_ALL) {
 698                val = sdhci_readl(host, ESDHC_TBCTL);
 699                val &= ~ESDHC_TB_EN;
 700                sdhci_writel(host, val, ESDHC_TBCTL);
 701
 702                if (esdhc->quirk_unreliable_pulse_detection) {
 703                        val = sdhci_readl(host, ESDHC_DLLCFG1);
 704                        val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
 705                        sdhci_writel(host, val, ESDHC_DLLCFG1);
 706                }
 707        }
 708}
 709
 710/* The SCFG, Supplemental Configuration Unit, provides SoC specific
 711 * configuration and status registers for the device. There is a
 712 * SDHC IO VSEL control register on SCFG for some platforms. It's
 713 * used to support SDHC IO voltage switching.
 714 */
 715static const struct of_device_id scfg_device_ids[] = {
 716        { .compatible = "fsl,t1040-scfg", },
 717        { .compatible = "fsl,ls1012a-scfg", },
 718        { .compatible = "fsl,ls1046a-scfg", },
 719        {}
 720};
 721
 722/* SDHC IO VSEL control register definition */
 723#define SCFG_SDHCIOVSELCR       0x408
 724#define SDHCIOVSELCR_TGLEN      0x80000000
 725#define SDHCIOVSELCR_VSELVAL    0x60000000
 726#define SDHCIOVSELCR_SDHC_VS    0x00000001
 727
 728static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
 729                                       struct mmc_ios *ios)
 730{
 731        struct sdhci_host *host = mmc_priv(mmc);
 732        struct device_node *scfg_node;
 733        void __iomem *scfg_base = NULL;
 734        u32 sdhciovselcr;
 735        u32 val;
 736
 737        /*
 738         * Signal Voltage Switching is only applicable for Host Controllers
 739         * v3.00 and above.
 740         */
 741        if (host->version < SDHCI_SPEC_300)
 742                return 0;
 743
 744        val = sdhci_readl(host, ESDHC_PROCTL);
 745
 746        switch (ios->signal_voltage) {
 747        case MMC_SIGNAL_VOLTAGE_330:
 748                val &= ~ESDHC_VOLT_SEL;
 749                sdhci_writel(host, val, ESDHC_PROCTL);
 750                return 0;
 751        case MMC_SIGNAL_VOLTAGE_180:
 752                scfg_node = of_find_matching_node(NULL, scfg_device_ids);
 753                if (scfg_node)
 754                        scfg_base = of_iomap(scfg_node, 0);
 755                if (scfg_base) {
 756                        sdhciovselcr = SDHCIOVSELCR_TGLEN |
 757                                       SDHCIOVSELCR_VSELVAL;
 758                        iowrite32be(sdhciovselcr,
 759                                scfg_base + SCFG_SDHCIOVSELCR);
 760
 761                        val |= ESDHC_VOLT_SEL;
 762                        sdhci_writel(host, val, ESDHC_PROCTL);
 763                        mdelay(5);
 764
 765                        sdhciovselcr = SDHCIOVSELCR_TGLEN |
 766                                       SDHCIOVSELCR_SDHC_VS;
 767                        iowrite32be(sdhciovselcr,
 768                                scfg_base + SCFG_SDHCIOVSELCR);
 769                        iounmap(scfg_base);
 770                } else {
 771                        val |= ESDHC_VOLT_SEL;
 772                        sdhci_writel(host, val, ESDHC_PROCTL);
 773                }
 774                return 0;
 775        default:
 776                return 0;
 777        }
 778}
 779
 780static struct soc_device_attribute soc_fixup_tuning[] = {
 781        { .family = "QorIQ T1040", .revision = "1.0", },
 782        { .family = "QorIQ T2080", .revision = "1.0", },
 783        { .family = "QorIQ T1023", .revision = "1.0", },
 784        { .family = "QorIQ LS1021A", .revision = "1.0", },
 785        { .family = "QorIQ LS1080A", .revision = "1.0", },
 786        { .family = "QorIQ LS2080A", .revision = "1.0", },
 787        { .family = "QorIQ LS1012A", .revision = "1.0", },
 788        { .family = "QorIQ LS1043A", .revision = "1.*", },
 789        { .family = "QorIQ LS1046A", .revision = "1.0", },
 790        { },
 791};
 792
 793static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
 794{
 795        u32 val;
 796
 797        esdhc_clock_enable(host, false);
 798
 799        val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 800        val |= ESDHC_FLUSH_ASYNC_FIFO;
 801        sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
 802
 803        val = sdhci_readl(host, ESDHC_TBCTL);
 804        if (enable)
 805                val |= ESDHC_TB_EN;
 806        else
 807                val &= ~ESDHC_TB_EN;
 808        sdhci_writel(host, val, ESDHC_TBCTL);
 809
 810        esdhc_clock_enable(host, true);
 811}
 812
 813static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
 814{
 815        struct sdhci_host *host = mmc_priv(mmc);
 816        struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 817        struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 818        bool hs400_tuning;
 819        u32 val;
 820        int ret;
 821
 822        if (esdhc->quirk_limited_clk_division &&
 823            host->flags & SDHCI_HS400_TUNING)
 824                esdhc_of_set_clock(host, host->clock);
 825
 826        esdhc_tuning_block_enable(host, true);
 827
 828        hs400_tuning = host->flags & SDHCI_HS400_TUNING;
 829        ret = sdhci_execute_tuning(mmc, opcode);
 830
 831        if (hs400_tuning) {
 832                val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
 833                val |= ESDHC_FLW_CTL_BG;
 834                sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
 835        }
 836
 837        if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
 838
 839                /* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
 840                 * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
 841                 */
 842                val = sdhci_readl(host, ESDHC_TBPTR);
 843                val = (val & ~((0x7f << 8) | 0x7f)) |
 844                (3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
 845                sdhci_writel(host, val, ESDHC_TBPTR);
 846
 847                /* program the software tuning mode by setting
 848                 * TBCTL[TB_MODE]=2'h3
 849                 */
 850                val = sdhci_readl(host, ESDHC_TBCTL);
 851                val |= 0x3;
 852                sdhci_writel(host, val, ESDHC_TBCTL);
 853                sdhci_execute_tuning(mmc, opcode);
 854        }
 855        return ret;
 856}
 857
 858static void esdhc_set_uhs_signaling(struct sdhci_host *host,
 859                                   unsigned int timing)
 860{
 861        if (timing == MMC_TIMING_MMC_HS400)
 862                esdhc_tuning_block_enable(host, true);
 863        else
 864                sdhci_set_uhs_signaling(host, timing);
 865}
 866
 867#ifdef CONFIG_PM_SLEEP
 868static u32 esdhc_proctl;
 869static int esdhc_of_suspend(struct device *dev)
 870{
 871        struct sdhci_host *host = dev_get_drvdata(dev);
 872
 873        esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
 874
 875        if (host->tuning_mode != SDHCI_TUNING_MODE_3)
 876                mmc_retune_needed(host->mmc);
 877
 878        return sdhci_suspend_host(host);
 879}
 880
 881static int esdhc_of_resume(struct device *dev)
 882{
 883        struct sdhci_host *host = dev_get_drvdata(dev);
 884        int ret = sdhci_resume_host(host);
 885
 886        if (ret == 0) {
 887                /* Isn't this already done by sdhci_resume_host() ? --rmk */
 888                esdhc_of_enable_dma(host);
 889                sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
 890        }
 891        return ret;
 892}
 893#endif
 894
 895static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
 896                        esdhc_of_suspend,
 897                        esdhc_of_resume);
 898
 899static const struct sdhci_ops sdhci_esdhc_be_ops = {
 900        .read_l = esdhc_be_readl,
 901        .read_w = esdhc_be_readw,
 902        .read_b = esdhc_be_readb,
 903        .write_l = esdhc_be_writel,
 904        .write_w = esdhc_be_writew,
 905        .write_b = esdhc_be_writeb,
 906        .set_clock = esdhc_of_set_clock,
 907        .enable_dma = esdhc_of_enable_dma,
 908        .get_max_clock = esdhc_of_get_max_clock,
 909        .get_min_clock = esdhc_of_get_min_clock,
 910        .adma_workaround = esdhc_of_adma_workaround,
 911        .set_bus_width = esdhc_pltfm_set_bus_width,
 912        .reset = esdhc_reset,
 913        .set_uhs_signaling = esdhc_set_uhs_signaling,
 914};
 915
 916static const struct sdhci_ops sdhci_esdhc_le_ops = {
 917        .read_l = esdhc_le_readl,
 918        .read_w = esdhc_le_readw,
 919        .read_b = esdhc_le_readb,
 920        .write_l = esdhc_le_writel,
 921        .write_w = esdhc_le_writew,
 922        .write_b = esdhc_le_writeb,
 923        .set_clock = esdhc_of_set_clock,
 924        .enable_dma = esdhc_of_enable_dma,
 925        .get_max_clock = esdhc_of_get_max_clock,
 926        .get_min_clock = esdhc_of_get_min_clock,
 927        .adma_workaround = esdhc_of_adma_workaround,
 928        .set_bus_width = esdhc_pltfm_set_bus_width,
 929        .reset = esdhc_reset,
 930        .set_uhs_signaling = esdhc_set_uhs_signaling,
 931};
 932
 933static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
 934        .quirks = ESDHC_DEFAULT_QUIRKS |
 935#ifdef CONFIG_PPC
 936                  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
 937#endif
 938                  SDHCI_QUIRK_NO_CARD_NO_RESET |
 939                  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
 940        .ops = &sdhci_esdhc_be_ops,
 941};
 942
 943static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
 944        .quirks = ESDHC_DEFAULT_QUIRKS |
 945                  SDHCI_QUIRK_NO_CARD_NO_RESET |
 946                  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
 947        .ops = &sdhci_esdhc_le_ops,
 948};
 949
 950static struct soc_device_attribute soc_incorrect_hostver[] = {
 951        { .family = "QorIQ T4240", .revision = "1.0", },
 952        { .family = "QorIQ T4240", .revision = "2.0", },
 953        { },
 954};
 955
 956static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
 957        { .family = "QorIQ LX2160A", .revision = "1.0", },
 958        { },
 959};
 960
 961static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
 962        { .family = "QorIQ LX2160A", .revision = "1.0", },
 963        { },
 964};
 965
 966static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
 967{
 968        const struct of_device_id *match;
 969        struct sdhci_pltfm_host *pltfm_host;
 970        struct sdhci_esdhc *esdhc;
 971        struct device_node *np;
 972        struct clk *clk;
 973        u32 val;
 974        u16 host_ver;
 975
 976        pltfm_host = sdhci_priv(host);
 977        esdhc = sdhci_pltfm_priv(pltfm_host);
 978
 979        host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
 980        esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
 981                             SDHCI_VENDOR_VER_SHIFT;
 982        esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
 983        if (soc_device_match(soc_incorrect_hostver))
 984                esdhc->quirk_incorrect_hostver = true;
 985        else
 986                esdhc->quirk_incorrect_hostver = false;
 987
 988        if (soc_device_match(soc_fixup_sdhc_clkdivs))
 989                esdhc->quirk_limited_clk_division = true;
 990        else
 991                esdhc->quirk_limited_clk_division = false;
 992
 993        if (soc_device_match(soc_unreliable_pulse_detection))
 994                esdhc->quirk_unreliable_pulse_detection = true;
 995        else
 996                esdhc->quirk_unreliable_pulse_detection = false;
 997
 998        match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
 999        if (match)
1000                esdhc->clk_fixup = match->data;
1001        np = pdev->dev.of_node;
1002        clk = of_clk_get(np, 0);
1003        if (!IS_ERR(clk)) {
1004                /*
1005                 * esdhc->peripheral_clock would be assigned with a value
1006                 * which is eSDHC base clock when use periperal clock.
1007                 * For ls1046a, the clock value got by common clk API is
1008                 * peripheral clock while the eSDHC base clock is 1/2
1009                 * peripheral clock.
1010                 */
1011                if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
1012                        esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1013                else
1014                        esdhc->peripheral_clock = clk_get_rate(clk);
1015
1016                clk_put(clk);
1017        }
1018
1019        if (esdhc->peripheral_clock) {
1020                esdhc_clock_enable(host, false);
1021                val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1022                val |= ESDHC_PERIPHERAL_CLK_SEL;
1023                sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1024                esdhc_clock_enable(host, true);
1025        }
1026}
1027
1028static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1029{
1030        esdhc_tuning_block_enable(mmc_priv(mmc), false);
1031        return 0;
1032}
1033
1034static int sdhci_esdhc_probe(struct platform_device *pdev)
1035{
1036        struct sdhci_host *host;
1037        struct device_node *np;
1038        struct sdhci_pltfm_host *pltfm_host;
1039        struct sdhci_esdhc *esdhc;
1040        int ret;
1041
1042        np = pdev->dev.of_node;
1043
1044        if (of_property_read_bool(np, "little-endian"))
1045                host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1046                                        sizeof(struct sdhci_esdhc));
1047        else
1048                host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1049                                        sizeof(struct sdhci_esdhc));
1050
1051        if (IS_ERR(host))
1052                return PTR_ERR(host);
1053
1054        host->mmc_host_ops.start_signal_voltage_switch =
1055                esdhc_signal_voltage_switch;
1056        host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1057        host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1058        host->tuning_delay = 1;
1059
1060        esdhc_init(pdev, host);
1061
1062        sdhci_get_of_property(pdev);
1063
1064        pltfm_host = sdhci_priv(host);
1065        esdhc = sdhci_pltfm_priv(pltfm_host);
1066        if (soc_device_match(soc_fixup_tuning))
1067                esdhc->quirk_fixup_tuning = true;
1068        else
1069                esdhc->quirk_fixup_tuning = false;
1070
1071        if (esdhc->vendor_ver == VENDOR_V_22)
1072                host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1073
1074        if (esdhc->vendor_ver > VENDOR_V_22)
1075                host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1076
1077        if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1078            of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1079            of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1080            of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1081            of_device_is_compatible(np, "fsl,t1040-esdhc"))
1082                host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1083
1084        if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1085                host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1086
1087        if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1088                /*
1089                 * Freescale messed up with P2020 as it has a non-standard
1090                 * host control register
1091                 */
1092                host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1093        }
1094
1095        /* call to generic mmc_of_parse to support additional capabilities */
1096        ret = mmc_of_parse(host->mmc);
1097        if (ret)
1098                goto err;
1099
1100        mmc_of_parse_voltage(np, &host->ocr_mask);
1101
1102        ret = sdhci_add_host(host);
1103        if (ret)
1104                goto err;
1105
1106        return 0;
1107 err:
1108        sdhci_pltfm_free(pdev);
1109        return ret;
1110}
1111
1112static struct platform_driver sdhci_esdhc_driver = {
1113        .driver = {
1114                .name = "sdhci-esdhc",
1115                .of_match_table = sdhci_esdhc_of_match,
1116                .pm = &esdhc_of_dev_pm_ops,
1117        },
1118        .probe = sdhci_esdhc_probe,
1119        .remove = sdhci_pltfm_unregister,
1120};
1121
1122module_platform_driver(sdhci_esdhc_driver);
1123
1124MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1125MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1126              "Anton Vorontsov <avorontsov@ru.mvista.com>");
1127MODULE_LICENSE("GPL v2");
1128