linux/drivers/mtd/nand/raw/sh_flctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH FLCTL nand controller
   4 *
   5 * Copyright (c) 2008 Renesas Solutions Corp.
   6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
   7 *
   8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/completion.h>
  14#include <linux/delay.h>
  15#include <linux/dmaengine.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/sh_dma.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26
  27#include <linux/mtd/mtd.h>
  28#include <linux/mtd/rawnand.h>
  29#include <linux/mtd/partitions.h>
  30#include <linux/mtd/sh_flctl.h>
  31
  32static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
  33                                        struct mtd_oob_region *oobregion)
  34{
  35        struct nand_chip *chip = mtd_to_nand(mtd);
  36
  37        if (section)
  38                return -ERANGE;
  39
  40        oobregion->offset = 0;
  41        oobregion->length = chip->ecc.bytes;
  42
  43        return 0;
  44}
  45
  46static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
  47                                         struct mtd_oob_region *oobregion)
  48{
  49        if (section)
  50                return -ERANGE;
  51
  52        oobregion->offset = 12;
  53        oobregion->length = 4;
  54
  55        return 0;
  56}
  57
  58static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
  59        .ecc = flctl_4secc_ooblayout_sp_ecc,
  60        .free = flctl_4secc_ooblayout_sp_free,
  61};
  62
  63static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
  64                                        struct mtd_oob_region *oobregion)
  65{
  66        struct nand_chip *chip = mtd_to_nand(mtd);
  67
  68        if (section >= chip->ecc.steps)
  69                return -ERANGE;
  70
  71        oobregion->offset = (section * 16) + 6;
  72        oobregion->length = chip->ecc.bytes;
  73
  74        return 0;
  75}
  76
  77static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
  78                                         struct mtd_oob_region *oobregion)
  79{
  80        struct nand_chip *chip = mtd_to_nand(mtd);
  81
  82        if (section >= chip->ecc.steps)
  83                return -ERANGE;
  84
  85        oobregion->offset = section * 16;
  86        oobregion->length = 6;
  87
  88        if (!section) {
  89                oobregion->offset += 2;
  90                oobregion->length -= 2;
  91        }
  92
  93        return 0;
  94}
  95
  96static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
  97        .ecc = flctl_4secc_ooblayout_lp_ecc,
  98        .free = flctl_4secc_ooblayout_lp_free,
  99};
 100
 101static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
 102
 103static struct nand_bbt_descr flctl_4secc_smallpage = {
 104        .options = NAND_BBT_SCAN2NDPAGE,
 105        .offs = 11,
 106        .len = 1,
 107        .pattern = scan_ff_pattern,
 108};
 109
 110static struct nand_bbt_descr flctl_4secc_largepage = {
 111        .options = NAND_BBT_SCAN2NDPAGE,
 112        .offs = 0,
 113        .len = 2,
 114        .pattern = scan_ff_pattern,
 115};
 116
 117static void empty_fifo(struct sh_flctl *flctl)
 118{
 119        writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
 120        writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
 121}
 122
 123static void start_translation(struct sh_flctl *flctl)
 124{
 125        writeb(TRSTRT, FLTRCR(flctl));
 126}
 127
 128static void timeout_error(struct sh_flctl *flctl, const char *str)
 129{
 130        dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
 131}
 132
 133static void wait_completion(struct sh_flctl *flctl)
 134{
 135        uint32_t timeout = LOOP_TIMEOUT_MAX;
 136
 137        while (timeout--) {
 138                if (readb(FLTRCR(flctl)) & TREND) {
 139                        writeb(0x0, FLTRCR(flctl));
 140                        return;
 141                }
 142                udelay(1);
 143        }
 144
 145        timeout_error(flctl, __func__);
 146        writeb(0x0, FLTRCR(flctl));
 147}
 148
 149static void flctl_dma_complete(void *param)
 150{
 151        struct sh_flctl *flctl = param;
 152
 153        complete(&flctl->dma_complete);
 154}
 155
 156static void flctl_release_dma(struct sh_flctl *flctl)
 157{
 158        if (flctl->chan_fifo0_rx) {
 159                dma_release_channel(flctl->chan_fifo0_rx);
 160                flctl->chan_fifo0_rx = NULL;
 161        }
 162        if (flctl->chan_fifo0_tx) {
 163                dma_release_channel(flctl->chan_fifo0_tx);
 164                flctl->chan_fifo0_tx = NULL;
 165        }
 166}
 167
 168static void flctl_setup_dma(struct sh_flctl *flctl)
 169{
 170        dma_cap_mask_t mask;
 171        struct dma_slave_config cfg;
 172        struct platform_device *pdev = flctl->pdev;
 173        struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
 174        int ret;
 175
 176        if (!pdata)
 177                return;
 178
 179        if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
 180                return;
 181
 182        /* We can only either use DMA for both Tx and Rx or not use it at all */
 183        dma_cap_zero(mask);
 184        dma_cap_set(DMA_SLAVE, mask);
 185
 186        flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
 187                                (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
 188        dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
 189                flctl->chan_fifo0_tx);
 190
 191        if (!flctl->chan_fifo0_tx)
 192                return;
 193
 194        memset(&cfg, 0, sizeof(cfg));
 195        cfg.direction = DMA_MEM_TO_DEV;
 196        cfg.dst_addr = flctl->fifo;
 197        cfg.src_addr = 0;
 198        ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
 199        if (ret < 0)
 200                goto err;
 201
 202        flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
 203                                (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
 204        dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
 205                flctl->chan_fifo0_rx);
 206
 207        if (!flctl->chan_fifo0_rx)
 208                goto err;
 209
 210        cfg.direction = DMA_DEV_TO_MEM;
 211        cfg.dst_addr = 0;
 212        cfg.src_addr = flctl->fifo;
 213        ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
 214        if (ret < 0)
 215                goto err;
 216
 217        init_completion(&flctl->dma_complete);
 218
 219        return;
 220
 221err:
 222        flctl_release_dma(flctl);
 223}
 224
 225static void set_addr(struct mtd_info *mtd, int column, int page_addr)
 226{
 227        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 228        uint32_t addr = 0;
 229
 230        if (column == -1) {
 231                addr = page_addr;       /* ERASE1 */
 232        } else if (page_addr != -1) {
 233                /* SEQIN, READ0, etc.. */
 234                if (flctl->chip.options & NAND_BUSWIDTH_16)
 235                        column >>= 1;
 236                if (flctl->page_size) {
 237                        addr = column & 0x0FFF;
 238                        addr |= (page_addr & 0xff) << 16;
 239                        addr |= ((page_addr >> 8) & 0xff) << 24;
 240                        /* big than 128MB */
 241                        if (flctl->rw_ADRCNT == ADRCNT2_E) {
 242                                uint32_t        addr2;
 243                                addr2 = (page_addr >> 16) & 0xff;
 244                                writel(addr2, FLADR2(flctl));
 245                        }
 246                } else {
 247                        addr = column;
 248                        addr |= (page_addr & 0xff) << 8;
 249                        addr |= ((page_addr >> 8) & 0xff) << 16;
 250                        addr |= ((page_addr >> 16) & 0xff) << 24;
 251                }
 252        }
 253        writel(addr, FLADR(flctl));
 254}
 255
 256static void wait_rfifo_ready(struct sh_flctl *flctl)
 257{
 258        uint32_t timeout = LOOP_TIMEOUT_MAX;
 259
 260        while (timeout--) {
 261                uint32_t val;
 262                /* check FIFO */
 263                val = readl(FLDTCNTR(flctl)) >> 16;
 264                if (val & 0xFF)
 265                        return;
 266                udelay(1);
 267        }
 268        timeout_error(flctl, __func__);
 269}
 270
 271static void wait_wfifo_ready(struct sh_flctl *flctl)
 272{
 273        uint32_t len, timeout = LOOP_TIMEOUT_MAX;
 274
 275        while (timeout--) {
 276                /* check FIFO */
 277                len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
 278                if (len >= 4)
 279                        return;
 280                udelay(1);
 281        }
 282        timeout_error(flctl, __func__);
 283}
 284
 285static enum flctl_ecc_res_t wait_recfifo_ready
 286                (struct sh_flctl *flctl, int sector_number)
 287{
 288        uint32_t timeout = LOOP_TIMEOUT_MAX;
 289        void __iomem *ecc_reg[4];
 290        int i;
 291        int state = FL_SUCCESS;
 292        uint32_t data, size;
 293
 294        /*
 295         * First this loops checks in FLDTCNTR if we are ready to read out the
 296         * oob data. This is the case if either all went fine without errors or
 297         * if the bottom part of the loop corrected the errors or marked them as
 298         * uncorrectable and the controller is given time to push the data into
 299         * the FIFO.
 300         */
 301        while (timeout--) {
 302                /* check if all is ok and we can read out the OOB */
 303                size = readl(FLDTCNTR(flctl)) >> 24;
 304                if ((size & 0xFF) == 4)
 305                        return state;
 306
 307                /* check if a correction code has been calculated */
 308                if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
 309                        /*
 310                         * either we wait for the fifo to be filled or a
 311                         * correction pattern is being generated
 312                         */
 313                        udelay(1);
 314                        continue;
 315                }
 316
 317                /* check for an uncorrectable error */
 318                if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
 319                        /* check if we face a non-empty page */
 320                        for (i = 0; i < 512; i++) {
 321                                if (flctl->done_buff[i] != 0xff) {
 322                                        state = FL_ERROR; /* can't correct */
 323                                        break;
 324                                }
 325                        }
 326
 327                        if (state == FL_SUCCESS)
 328                                dev_dbg(&flctl->pdev->dev,
 329                                "reading empty sector %d, ecc error ignored\n",
 330                                sector_number);
 331
 332                        writel(0, FL4ECCCR(flctl));
 333                        continue;
 334                }
 335
 336                /* start error correction */
 337                ecc_reg[0] = FL4ECCRESULT0(flctl);
 338                ecc_reg[1] = FL4ECCRESULT1(flctl);
 339                ecc_reg[2] = FL4ECCRESULT2(flctl);
 340                ecc_reg[3] = FL4ECCRESULT3(flctl);
 341
 342                for (i = 0; i < 3; i++) {
 343                        uint8_t org;
 344                        unsigned int index;
 345
 346                        data = readl(ecc_reg[i]);
 347
 348                        if (flctl->page_size)
 349                                index = (512 * sector_number) +
 350                                        (data >> 16);
 351                        else
 352                                index = data >> 16;
 353
 354                        org = flctl->done_buff[index];
 355                        flctl->done_buff[index] = org ^ (data & 0xFF);
 356                }
 357                state = FL_REPAIRABLE;
 358                writel(0, FL4ECCCR(flctl));
 359        }
 360
 361        timeout_error(flctl, __func__);
 362        return FL_TIMEOUT;      /* timeout */
 363}
 364
 365static void wait_wecfifo_ready(struct sh_flctl *flctl)
 366{
 367        uint32_t timeout = LOOP_TIMEOUT_MAX;
 368        uint32_t len;
 369
 370        while (timeout--) {
 371                /* check FLECFIFO */
 372                len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
 373                if (len >= 4)
 374                        return;
 375                udelay(1);
 376        }
 377        timeout_error(flctl, __func__);
 378}
 379
 380static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
 381                                        int len, enum dma_data_direction dir)
 382{
 383        struct dma_async_tx_descriptor *desc = NULL;
 384        struct dma_chan *chan;
 385        enum dma_transfer_direction tr_dir;
 386        dma_addr_t dma_addr;
 387        dma_cookie_t cookie;
 388        uint32_t reg;
 389        int ret;
 390
 391        if (dir == DMA_FROM_DEVICE) {
 392                chan = flctl->chan_fifo0_rx;
 393                tr_dir = DMA_DEV_TO_MEM;
 394        } else {
 395                chan = flctl->chan_fifo0_tx;
 396                tr_dir = DMA_MEM_TO_DEV;
 397        }
 398
 399        dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
 400
 401        if (!dma_mapping_error(chan->device->dev, dma_addr))
 402                desc = dmaengine_prep_slave_single(chan, dma_addr, len,
 403                        tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 404
 405        if (desc) {
 406                reg = readl(FLINTDMACR(flctl));
 407                reg |= DREQ0EN;
 408                writel(reg, FLINTDMACR(flctl));
 409
 410                desc->callback = flctl_dma_complete;
 411                desc->callback_param = flctl;
 412                cookie = dmaengine_submit(desc);
 413                if (dma_submit_error(cookie)) {
 414                        ret = dma_submit_error(cookie);
 415                        dev_warn(&flctl->pdev->dev,
 416                                 "DMA submit failed, falling back to PIO\n");
 417                        goto out;
 418                }
 419
 420                dma_async_issue_pending(chan);
 421        } else {
 422                /* DMA failed, fall back to PIO */
 423                flctl_release_dma(flctl);
 424                dev_warn(&flctl->pdev->dev,
 425                         "DMA failed, falling back to PIO\n");
 426                ret = -EIO;
 427                goto out;
 428        }
 429
 430        ret =
 431        wait_for_completion_timeout(&flctl->dma_complete,
 432                                msecs_to_jiffies(3000));
 433
 434        if (ret <= 0) {
 435                dmaengine_terminate_all(chan);
 436                dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
 437        }
 438
 439out:
 440        reg = readl(FLINTDMACR(flctl));
 441        reg &= ~DREQ0EN;
 442        writel(reg, FLINTDMACR(flctl));
 443
 444        dma_unmap_single(chan->device->dev, dma_addr, len, dir);
 445
 446        /* ret > 0 is success */
 447        return ret;
 448}
 449
 450static void read_datareg(struct sh_flctl *flctl, int offset)
 451{
 452        unsigned long data;
 453        unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
 454
 455        wait_completion(flctl);
 456
 457        data = readl(FLDATAR(flctl));
 458        *buf = le32_to_cpu(data);
 459}
 460
 461static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
 462{
 463        int i, len_4align;
 464        unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
 465
 466        len_4align = (rlen + 3) / 4;
 467
 468        /* initiate DMA transfer */
 469        if (flctl->chan_fifo0_rx && rlen >= 32 &&
 470                flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
 471                        goto convert;   /* DMA success */
 472
 473        /* do polling transfer */
 474        for (i = 0; i < len_4align; i++) {
 475                wait_rfifo_ready(flctl);
 476                buf[i] = readl(FLDTFIFO(flctl));
 477        }
 478
 479convert:
 480        for (i = 0; i < len_4align; i++)
 481                buf[i] = be32_to_cpu(buf[i]);
 482}
 483
 484static enum flctl_ecc_res_t read_ecfiforeg
 485                (struct sh_flctl *flctl, uint8_t *buff, int sector)
 486{
 487        int i;
 488        enum flctl_ecc_res_t res;
 489        unsigned long *ecc_buf = (unsigned long *)buff;
 490
 491        res = wait_recfifo_ready(flctl , sector);
 492
 493        if (res != FL_ERROR) {
 494                for (i = 0; i < 4; i++) {
 495                        ecc_buf[i] = readl(FLECFIFO(flctl));
 496                        ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
 497                }
 498        }
 499
 500        return res;
 501}
 502
 503static void write_fiforeg(struct sh_flctl *flctl, int rlen,
 504                                                unsigned int offset)
 505{
 506        int i, len_4align;
 507        unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
 508
 509        len_4align = (rlen + 3) / 4;
 510        for (i = 0; i < len_4align; i++) {
 511                wait_wfifo_ready(flctl);
 512                writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
 513        }
 514}
 515
 516static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
 517                                                unsigned int offset)
 518{
 519        int i, len_4align;
 520        unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
 521
 522        len_4align = (rlen + 3) / 4;
 523
 524        for (i = 0; i < len_4align; i++)
 525                buf[i] = cpu_to_be32(buf[i]);
 526
 527        /* initiate DMA transfer */
 528        if (flctl->chan_fifo0_tx && rlen >= 32 &&
 529                flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
 530                        return; /* DMA success */
 531
 532        /* do polling transfer */
 533        for (i = 0; i < len_4align; i++) {
 534                wait_wecfifo_ready(flctl);
 535                writel(buf[i], FLECFIFO(flctl));
 536        }
 537}
 538
 539static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
 540{
 541        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 542        uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
 543        uint32_t flcmdcr_val, addr_len_bytes = 0;
 544
 545        /* Set SNAND bit if page size is 2048byte */
 546        if (flctl->page_size)
 547                flcmncr_val |= SNAND_E;
 548        else
 549                flcmncr_val &= ~SNAND_E;
 550
 551        /* default FLCMDCR val */
 552        flcmdcr_val = DOCMD1_E | DOADR_E;
 553
 554        /* Set for FLCMDCR */
 555        switch (cmd) {
 556        case NAND_CMD_ERASE1:
 557                addr_len_bytes = flctl->erase_ADRCNT;
 558                flcmdcr_val |= DOCMD2_E;
 559                break;
 560        case NAND_CMD_READ0:
 561        case NAND_CMD_READOOB:
 562        case NAND_CMD_RNDOUT:
 563                addr_len_bytes = flctl->rw_ADRCNT;
 564                flcmdcr_val |= CDSRC_E;
 565                if (flctl->chip.options & NAND_BUSWIDTH_16)
 566                        flcmncr_val |= SEL_16BIT;
 567                break;
 568        case NAND_CMD_SEQIN:
 569                /* This case is that cmd is READ0 or READ1 or READ00 */
 570                flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
 571                break;
 572        case NAND_CMD_PAGEPROG:
 573                addr_len_bytes = flctl->rw_ADRCNT;
 574                flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
 575                if (flctl->chip.options & NAND_BUSWIDTH_16)
 576                        flcmncr_val |= SEL_16BIT;
 577                break;
 578        case NAND_CMD_READID:
 579                flcmncr_val &= ~SNAND_E;
 580                flcmdcr_val |= CDSRC_E;
 581                addr_len_bytes = ADRCNT_1;
 582                break;
 583        case NAND_CMD_STATUS:
 584        case NAND_CMD_RESET:
 585                flcmncr_val &= ~SNAND_E;
 586                flcmdcr_val &= ~(DOADR_E | DOSR_E);
 587                break;
 588        default:
 589                break;
 590        }
 591
 592        /* Set address bytes parameter */
 593        flcmdcr_val |= addr_len_bytes;
 594
 595        /* Now actually write */
 596        writel(flcmncr_val, FLCMNCR(flctl));
 597        writel(flcmdcr_val, FLCMDCR(flctl));
 598        writel(flcmcdr_val, FLCMCDR(flctl));
 599}
 600
 601static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
 602                                 int oob_required, int page)
 603{
 604        struct mtd_info *mtd = nand_to_mtd(chip);
 605
 606        nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 607        if (oob_required)
 608                chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 609        return 0;
 610}
 611
 612static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
 613                                  int oob_required, int page)
 614{
 615        struct mtd_info *mtd = nand_to_mtd(chip);
 616
 617        nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 618        chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 619        return nand_prog_page_end_op(chip);
 620}
 621
 622static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
 623{
 624        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 625        int sector, page_sectors;
 626        enum flctl_ecc_res_t ecc_result;
 627
 628        page_sectors = flctl->page_size ? 4 : 1;
 629
 630        set_cmd_regs(mtd, NAND_CMD_READ0,
 631                (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
 632
 633        writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
 634                 FLCMNCR(flctl));
 635        writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
 636        writel(page_addr << 2, FLADR(flctl));
 637
 638        empty_fifo(flctl);
 639        start_translation(flctl);
 640
 641        for (sector = 0; sector < page_sectors; sector++) {
 642                read_fiforeg(flctl, 512, 512 * sector);
 643
 644                ecc_result = read_ecfiforeg(flctl,
 645                        &flctl->done_buff[mtd->writesize + 16 * sector],
 646                        sector);
 647
 648                switch (ecc_result) {
 649                case FL_REPAIRABLE:
 650                        dev_info(&flctl->pdev->dev,
 651                                "applied ecc on page 0x%x", page_addr);
 652                        mtd->ecc_stats.corrected++;
 653                        break;
 654                case FL_ERROR:
 655                        dev_warn(&flctl->pdev->dev,
 656                                "page 0x%x contains corrupted data\n",
 657                                page_addr);
 658                        mtd->ecc_stats.failed++;
 659                        break;
 660                default:
 661                        ;
 662                }
 663        }
 664
 665        wait_completion(flctl);
 666
 667        writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
 668                        FLCMNCR(flctl));
 669}
 670
 671static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
 672{
 673        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 674        int page_sectors = flctl->page_size ? 4 : 1;
 675        int i;
 676
 677        set_cmd_regs(mtd, NAND_CMD_READ0,
 678                (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
 679
 680        empty_fifo(flctl);
 681
 682        for (i = 0; i < page_sectors; i++) {
 683                set_addr(mtd, (512 + 16) * i + 512 , page_addr);
 684                writel(16, FLDTCNTR(flctl));
 685
 686                start_translation(flctl);
 687                read_fiforeg(flctl, 16, 16 * i);
 688                wait_completion(flctl);
 689        }
 690}
 691
 692static void execmd_write_page_sector(struct mtd_info *mtd)
 693{
 694        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 695        int page_addr = flctl->seqin_page_addr;
 696        int sector, page_sectors;
 697
 698        page_sectors = flctl->page_size ? 4 : 1;
 699
 700        set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
 701                        (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
 702
 703        empty_fifo(flctl);
 704        writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
 705        writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
 706        writel(page_addr << 2, FLADR(flctl));
 707        start_translation(flctl);
 708
 709        for (sector = 0; sector < page_sectors; sector++) {
 710                write_fiforeg(flctl, 512, 512 * sector);
 711                write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
 712        }
 713
 714        wait_completion(flctl);
 715        writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
 716}
 717
 718static void execmd_write_oob(struct mtd_info *mtd)
 719{
 720        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 721        int page_addr = flctl->seqin_page_addr;
 722        int sector, page_sectors;
 723
 724        page_sectors = flctl->page_size ? 4 : 1;
 725
 726        set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
 727                        (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
 728
 729        for (sector = 0; sector < page_sectors; sector++) {
 730                empty_fifo(flctl);
 731                set_addr(mtd, sector * 528 + 512, page_addr);
 732                writel(16, FLDTCNTR(flctl));    /* set read size */
 733
 734                start_translation(flctl);
 735                write_fiforeg(flctl, 16, 16 * sector);
 736                wait_completion(flctl);
 737        }
 738}
 739
 740static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
 741                        int column, int page_addr)
 742{
 743        struct mtd_info *mtd = nand_to_mtd(chip);
 744        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 745        uint32_t read_cmd = 0;
 746
 747        pm_runtime_get_sync(&flctl->pdev->dev);
 748
 749        flctl->read_bytes = 0;
 750        if (command != NAND_CMD_PAGEPROG)
 751                flctl->index = 0;
 752
 753        switch (command) {
 754        case NAND_CMD_READ1:
 755        case NAND_CMD_READ0:
 756                if (flctl->hwecc) {
 757                        /* read page with hwecc */
 758                        execmd_read_page_sector(mtd, page_addr);
 759                        break;
 760                }
 761                if (flctl->page_size)
 762                        set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
 763                                | command);
 764                else
 765                        set_cmd_regs(mtd, command, command);
 766
 767                set_addr(mtd, 0, page_addr);
 768
 769                flctl->read_bytes = mtd->writesize + mtd->oobsize;
 770                if (flctl->chip.options & NAND_BUSWIDTH_16)
 771                        column >>= 1;
 772                flctl->index += column;
 773                goto read_normal_exit;
 774
 775        case NAND_CMD_READOOB:
 776                if (flctl->hwecc) {
 777                        /* read page with hwecc */
 778                        execmd_read_oob(mtd, page_addr);
 779                        break;
 780                }
 781
 782                if (flctl->page_size) {
 783                        set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
 784                                | NAND_CMD_READ0);
 785                        set_addr(mtd, mtd->writesize, page_addr);
 786                } else {
 787                        set_cmd_regs(mtd, command, command);
 788                        set_addr(mtd, 0, page_addr);
 789                }
 790                flctl->read_bytes = mtd->oobsize;
 791                goto read_normal_exit;
 792
 793        case NAND_CMD_RNDOUT:
 794                if (flctl->hwecc)
 795                        break;
 796
 797                if (flctl->page_size)
 798                        set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
 799                                | command);
 800                else
 801                        set_cmd_regs(mtd, command, command);
 802
 803                set_addr(mtd, column, 0);
 804
 805                flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
 806                goto read_normal_exit;
 807
 808        case NAND_CMD_READID:
 809                set_cmd_regs(mtd, command, command);
 810
 811                /* READID is always performed using an 8-bit bus */
 812                if (flctl->chip.options & NAND_BUSWIDTH_16)
 813                        column <<= 1;
 814                set_addr(mtd, column, 0);
 815
 816                flctl->read_bytes = 8;
 817                writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
 818                empty_fifo(flctl);
 819                start_translation(flctl);
 820                read_fiforeg(flctl, flctl->read_bytes, 0);
 821                wait_completion(flctl);
 822                break;
 823
 824        case NAND_CMD_ERASE1:
 825                flctl->erase1_page_addr = page_addr;
 826                break;
 827
 828        case NAND_CMD_ERASE2:
 829                set_cmd_regs(mtd, NAND_CMD_ERASE1,
 830                        (command << 8) | NAND_CMD_ERASE1);
 831                set_addr(mtd, -1, flctl->erase1_page_addr);
 832                start_translation(flctl);
 833                wait_completion(flctl);
 834                break;
 835
 836        case NAND_CMD_SEQIN:
 837                if (!flctl->page_size) {
 838                        /* output read command */
 839                        if (column >= mtd->writesize) {
 840                                column -= mtd->writesize;
 841                                read_cmd = NAND_CMD_READOOB;
 842                        } else if (column < 256) {
 843                                read_cmd = NAND_CMD_READ0;
 844                        } else {
 845                                column -= 256;
 846                                read_cmd = NAND_CMD_READ1;
 847                        }
 848                }
 849                flctl->seqin_column = column;
 850                flctl->seqin_page_addr = page_addr;
 851                flctl->seqin_read_cmd = read_cmd;
 852                break;
 853
 854        case NAND_CMD_PAGEPROG:
 855                empty_fifo(flctl);
 856                if (!flctl->page_size) {
 857                        set_cmd_regs(mtd, NAND_CMD_SEQIN,
 858                                        flctl->seqin_read_cmd);
 859                        set_addr(mtd, -1, -1);
 860                        writel(0, FLDTCNTR(flctl));     /* set 0 size */
 861                        start_translation(flctl);
 862                        wait_completion(flctl);
 863                }
 864                if (flctl->hwecc) {
 865                        /* write page with hwecc */
 866                        if (flctl->seqin_column == mtd->writesize)
 867                                execmd_write_oob(mtd);
 868                        else if (!flctl->seqin_column)
 869                                execmd_write_page_sector(mtd);
 870                        else
 871                                pr_err("Invalid address !?\n");
 872                        break;
 873                }
 874                set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
 875                set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
 876                writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
 877                start_translation(flctl);
 878                write_fiforeg(flctl, flctl->index, 0);
 879                wait_completion(flctl);
 880                break;
 881
 882        case NAND_CMD_STATUS:
 883                set_cmd_regs(mtd, command, command);
 884                set_addr(mtd, -1, -1);
 885
 886                flctl->read_bytes = 1;
 887                writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
 888                start_translation(flctl);
 889                read_datareg(flctl, 0); /* read and end */
 890                break;
 891
 892        case NAND_CMD_RESET:
 893                set_cmd_regs(mtd, command, command);
 894                set_addr(mtd, -1, -1);
 895
 896                writel(0, FLDTCNTR(flctl));     /* set 0 size */
 897                start_translation(flctl);
 898                wait_completion(flctl);
 899                break;
 900
 901        default:
 902                break;
 903        }
 904        goto runtime_exit;
 905
 906read_normal_exit:
 907        writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
 908        empty_fifo(flctl);
 909        start_translation(flctl);
 910        read_fiforeg(flctl, flctl->read_bytes, 0);
 911        wait_completion(flctl);
 912runtime_exit:
 913        pm_runtime_put_sync(&flctl->pdev->dev);
 914        return;
 915}
 916
 917static void flctl_select_chip(struct nand_chip *chip, int chipnr)
 918{
 919        struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 920        int ret;
 921
 922        switch (chipnr) {
 923        case -1:
 924                flctl->flcmncr_base &= ~CE0_ENABLE;
 925
 926                pm_runtime_get_sync(&flctl->pdev->dev);
 927                writel(flctl->flcmncr_base, FLCMNCR(flctl));
 928
 929                if (flctl->qos_request) {
 930                        dev_pm_qos_remove_request(&flctl->pm_qos);
 931                        flctl->qos_request = 0;
 932                }
 933
 934                pm_runtime_put_sync(&flctl->pdev->dev);
 935                break;
 936        case 0:
 937                flctl->flcmncr_base |= CE0_ENABLE;
 938
 939                if (!flctl->qos_request) {
 940                        ret = dev_pm_qos_add_request(&flctl->pdev->dev,
 941                                                        &flctl->pm_qos,
 942                                                        DEV_PM_QOS_RESUME_LATENCY,
 943                                                        100);
 944                        if (ret < 0)
 945                                dev_err(&flctl->pdev->dev,
 946                                        "PM QoS request failed: %d\n", ret);
 947                        flctl->qos_request = 1;
 948                }
 949
 950                if (flctl->holden) {
 951                        pm_runtime_get_sync(&flctl->pdev->dev);
 952                        writel(HOLDEN, FLHOLDCR(flctl));
 953                        pm_runtime_put_sync(&flctl->pdev->dev);
 954                }
 955                break;
 956        default:
 957                BUG();
 958        }
 959}
 960
 961static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 962{
 963        struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 964
 965        memcpy(&flctl->done_buff[flctl->index], buf, len);
 966        flctl->index += len;
 967}
 968
 969static uint8_t flctl_read_byte(struct nand_chip *chip)
 970{
 971        struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 972        uint8_t data;
 973
 974        data = flctl->done_buff[flctl->index];
 975        flctl->index++;
 976        return data;
 977}
 978
 979static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 980{
 981        struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 982
 983        memcpy(buf, &flctl->done_buff[flctl->index], len);
 984        flctl->index += len;
 985}
 986
 987static int flctl_chip_attach_chip(struct nand_chip *chip)
 988{
 989        struct mtd_info *mtd = nand_to_mtd(chip);
 990        struct sh_flctl *flctl = mtd_to_flctl(mtd);
 991
 992        /*
 993         * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
 994         * Add the SEL_16BIT flag in flctl->flcmncr_base.
 995         */
 996        if (chip->options & NAND_BUSWIDTH_16)
 997                flctl->flcmncr_base |= SEL_16BIT;
 998
 999        if (mtd->writesize == 512) {
1000                flctl->page_size = 0;
1001                if (chip->chipsize > (32 << 20)) {
1002                        /* big than 32MB */
1003                        flctl->rw_ADRCNT = ADRCNT_4;
1004                        flctl->erase_ADRCNT = ADRCNT_3;
1005                } else if (chip->chipsize > (2 << 16)) {
1006                        /* big than 128KB */
1007                        flctl->rw_ADRCNT = ADRCNT_3;
1008                        flctl->erase_ADRCNT = ADRCNT_2;
1009                } else {
1010                        flctl->rw_ADRCNT = ADRCNT_2;
1011                        flctl->erase_ADRCNT = ADRCNT_1;
1012                }
1013        } else {
1014                flctl->page_size = 1;
1015                if (chip->chipsize > (128 << 20)) {
1016                        /* big than 128MB */
1017                        flctl->rw_ADRCNT = ADRCNT2_E;
1018                        flctl->erase_ADRCNT = ADRCNT_3;
1019                } else if (chip->chipsize > (8 << 16)) {
1020                        /* big than 512KB */
1021                        flctl->rw_ADRCNT = ADRCNT_4;
1022                        flctl->erase_ADRCNT = ADRCNT_2;
1023                } else {
1024                        flctl->rw_ADRCNT = ADRCNT_3;
1025                        flctl->erase_ADRCNT = ADRCNT_1;
1026                }
1027        }
1028
1029        if (flctl->hwecc) {
1030                if (mtd->writesize == 512) {
1031                        mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1032                        chip->badblock_pattern = &flctl_4secc_smallpage;
1033                } else {
1034                        mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1035                        chip->badblock_pattern = &flctl_4secc_largepage;
1036                }
1037
1038                chip->ecc.size = 512;
1039                chip->ecc.bytes = 10;
1040                chip->ecc.strength = 4;
1041                chip->ecc.read_page = flctl_read_page_hwecc;
1042                chip->ecc.write_page = flctl_write_page_hwecc;
1043                chip->ecc.mode = NAND_ECC_HW;
1044
1045                /* 4 symbols ECC enabled */
1046                flctl->flcmncr_base |= _4ECCEN;
1047        } else {
1048                chip->ecc.mode = NAND_ECC_SOFT;
1049                chip->ecc.algo = NAND_ECC_HAMMING;
1050        }
1051
1052        return 0;
1053}
1054
1055static const struct nand_controller_ops flctl_nand_controller_ops = {
1056        .attach_chip = flctl_chip_attach_chip,
1057};
1058
1059static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1060{
1061        struct sh_flctl *flctl = dev_id;
1062
1063        dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1064        writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1065
1066        return IRQ_HANDLED;
1067}
1068
1069struct flctl_soc_config {
1070        unsigned long flcmncr_val;
1071        unsigned has_hwecc:1;
1072        unsigned use_holden:1;
1073};
1074
1075static struct flctl_soc_config flctl_sh7372_config = {
1076        .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1077        .has_hwecc = 1,
1078        .use_holden = 1,
1079};
1080
1081static const struct of_device_id of_flctl_match[] = {
1082        { .compatible = "renesas,shmobile-flctl-sh7372",
1083                                .data = &flctl_sh7372_config },
1084        {},
1085};
1086MODULE_DEVICE_TABLE(of, of_flctl_match);
1087
1088static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1089{
1090        const struct flctl_soc_config *config;
1091        struct sh_flctl_platform_data *pdata;
1092
1093        config = of_device_get_match_data(dev);
1094        if (!config) {
1095                dev_err(dev, "%s: no OF configuration attached\n", __func__);
1096                return NULL;
1097        }
1098
1099        pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1100                                                                GFP_KERNEL);
1101        if (!pdata)
1102                return NULL;
1103
1104        /* set SoC specific options */
1105        pdata->flcmncr_val = config->flcmncr_val;
1106        pdata->has_hwecc = config->has_hwecc;
1107        pdata->use_holden = config->use_holden;
1108
1109        return pdata;
1110}
1111
1112static int flctl_probe(struct platform_device *pdev)
1113{
1114        struct resource *res;
1115        struct sh_flctl *flctl;
1116        struct mtd_info *flctl_mtd;
1117        struct nand_chip *nand;
1118        struct sh_flctl_platform_data *pdata;
1119        int ret;
1120        int irq;
1121
1122        flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1123        if (!flctl)
1124                return -ENOMEM;
1125
1126        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1127        flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1128        if (IS_ERR(flctl->reg))
1129                return PTR_ERR(flctl->reg);
1130        flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1131
1132        irq = platform_get_irq(pdev, 0);
1133        if (irq < 0) {
1134                dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
1135                return irq;
1136        }
1137
1138        ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1139                               "flste", flctl);
1140        if (ret) {
1141                dev_err(&pdev->dev, "request interrupt failed.\n");
1142                return ret;
1143        }
1144
1145        if (pdev->dev.of_node)
1146                pdata = flctl_parse_dt(&pdev->dev);
1147        else
1148                pdata = dev_get_platdata(&pdev->dev);
1149
1150        if (!pdata) {
1151                dev_err(&pdev->dev, "no setup data defined\n");
1152                return -EINVAL;
1153        }
1154
1155        platform_set_drvdata(pdev, flctl);
1156        nand = &flctl->chip;
1157        flctl_mtd = nand_to_mtd(nand);
1158        nand_set_flash_node(nand, pdev->dev.of_node);
1159        flctl_mtd->dev.parent = &pdev->dev;
1160        flctl->pdev = pdev;
1161        flctl->hwecc = pdata->has_hwecc;
1162        flctl->holden = pdata->use_holden;
1163        flctl->flcmncr_base = pdata->flcmncr_val;
1164        flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1165
1166        /* Set address of hardware control function */
1167        /* 20 us command delay time */
1168        nand->legacy.chip_delay = 20;
1169
1170        nand->legacy.read_byte = flctl_read_byte;
1171        nand->legacy.write_buf = flctl_write_buf;
1172        nand->legacy.read_buf = flctl_read_buf;
1173        nand->legacy.select_chip = flctl_select_chip;
1174        nand->legacy.cmdfunc = flctl_cmdfunc;
1175        nand->legacy.set_features = nand_get_set_features_notsupp;
1176        nand->legacy.get_features = nand_get_set_features_notsupp;
1177
1178        if (pdata->flcmncr_val & SEL_16BIT)
1179                nand->options |= NAND_BUSWIDTH_16;
1180
1181        pm_runtime_enable(&pdev->dev);
1182        pm_runtime_resume(&pdev->dev);
1183
1184        flctl_setup_dma(flctl);
1185
1186        nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1187        ret = nand_scan(nand, 1);
1188        if (ret)
1189                goto err_chip;
1190
1191        ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1192        if (ret)
1193                goto cleanup_nand;
1194
1195        return 0;
1196
1197cleanup_nand:
1198        nand_cleanup(nand);
1199err_chip:
1200        flctl_release_dma(flctl);
1201        pm_runtime_disable(&pdev->dev);
1202        return ret;
1203}
1204
1205static int flctl_remove(struct platform_device *pdev)
1206{
1207        struct sh_flctl *flctl = platform_get_drvdata(pdev);
1208
1209        flctl_release_dma(flctl);
1210        nand_release(&flctl->chip);
1211        pm_runtime_disable(&pdev->dev);
1212
1213        return 0;
1214}
1215
1216static struct platform_driver flctl_driver = {
1217        .remove         = flctl_remove,
1218        .driver = {
1219                .name   = "sh_flctl",
1220                .of_match_table = of_match_ptr(of_flctl_match),
1221        },
1222};
1223
1224module_platform_driver_probe(flctl_driver, flctl_probe);
1225
1226MODULE_LICENSE("GPL v2");
1227MODULE_AUTHOR("Yoshihiro Shimoda");
1228MODULE_DESCRIPTION("SuperH FLCTL driver");
1229MODULE_ALIAS("platform:sh_flctl");
1230