linux/drivers/mtd/spi-nor/intel-spi.c
<<
>>
Prefs
   1/*
   2 * Intel PCH/PCU SPI flash driver.
   3 *
   4 * Copyright (C) 2016, Intel Corporation
   5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/err.h>
  13#include <linux/io.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/sched.h>
  17#include <linux/sizes.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/mtd/partitions.h>
  20#include <linux/mtd/spi-nor.h>
  21#include <linux/platform_data/intel-spi.h>
  22
  23#include "intel-spi.h"
  24
  25/* Offsets are from @ispi->base */
  26#define BFPREG                          0x00
  27
  28#define HSFSTS_CTL                      0x04
  29#define HSFSTS_CTL_FSMIE                BIT(31)
  30#define HSFSTS_CTL_FDBC_SHIFT           24
  31#define HSFSTS_CTL_FDBC_MASK            (0x3f << HSFSTS_CTL_FDBC_SHIFT)
  32
  33#define HSFSTS_CTL_FCYCLE_SHIFT         17
  34#define HSFSTS_CTL_FCYCLE_MASK          (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
  35/* HW sequencer opcodes */
  36#define HSFSTS_CTL_FCYCLE_READ          (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
  37#define HSFSTS_CTL_FCYCLE_WRITE         (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
  38#define HSFSTS_CTL_FCYCLE_ERASE         (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
  39#define HSFSTS_CTL_FCYCLE_ERASE_64K     (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
  40#define HSFSTS_CTL_FCYCLE_RDID          (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
  41#define HSFSTS_CTL_FCYCLE_WRSR          (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
  42#define HSFSTS_CTL_FCYCLE_RDSR          (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
  43
  44#define HSFSTS_CTL_FGO                  BIT(16)
  45#define HSFSTS_CTL_FLOCKDN              BIT(15)
  46#define HSFSTS_CTL_FDV                  BIT(14)
  47#define HSFSTS_CTL_SCIP                 BIT(5)
  48#define HSFSTS_CTL_AEL                  BIT(2)
  49#define HSFSTS_CTL_FCERR                BIT(1)
  50#define HSFSTS_CTL_FDONE                BIT(0)
  51
  52#define FADDR                           0x08
  53#define DLOCK                           0x0c
  54#define FDATA(n)                        (0x10 + ((n) * 4))
  55
  56#define FRACC                           0x50
  57
  58#define FREG(n)                         (0x54 + ((n) * 4))
  59#define FREG_BASE_MASK                  0x3fff
  60#define FREG_LIMIT_SHIFT                16
  61#define FREG_LIMIT_MASK                 (0x03fff << FREG_LIMIT_SHIFT)
  62
  63/* Offset is from @ispi->pregs */
  64#define PR(n)                           ((n) * 4)
  65#define PR_WPE                          BIT(31)
  66#define PR_LIMIT_SHIFT                  16
  67#define PR_LIMIT_MASK                   (0x3fff << PR_LIMIT_SHIFT)
  68#define PR_RPE                          BIT(15)
  69#define PR_BASE_MASK                    0x3fff
  70
  71/* Offsets are from @ispi->sregs */
  72#define SSFSTS_CTL                      0x00
  73#define SSFSTS_CTL_FSMIE                BIT(23)
  74#define SSFSTS_CTL_DS                   BIT(22)
  75#define SSFSTS_CTL_DBC_SHIFT            16
  76#define SSFSTS_CTL_SPOP                 BIT(11)
  77#define SSFSTS_CTL_ACS                  BIT(10)
  78#define SSFSTS_CTL_SCGO                 BIT(9)
  79#define SSFSTS_CTL_COP_SHIFT            12
  80#define SSFSTS_CTL_FRS                  BIT(7)
  81#define SSFSTS_CTL_DOFRS                BIT(6)
  82#define SSFSTS_CTL_AEL                  BIT(4)
  83#define SSFSTS_CTL_FCERR                BIT(3)
  84#define SSFSTS_CTL_FDONE                BIT(2)
  85#define SSFSTS_CTL_SCIP                 BIT(0)
  86
  87#define PREOP_OPTYPE                    0x04
  88#define OPMENU0                         0x08
  89#define OPMENU1                         0x0c
  90
  91#define OPTYPE_READ_NO_ADDR             0
  92#define OPTYPE_WRITE_NO_ADDR            1
  93#define OPTYPE_READ_WITH_ADDR           2
  94#define OPTYPE_WRITE_WITH_ADDR          3
  95
  96/* CPU specifics */
  97#define BYT_PR                          0x74
  98#define BYT_SSFSTS_CTL                  0x90
  99#define BYT_BCR                         0xfc
 100#define BYT_BCR_WPD                     BIT(0)
 101#define BYT_FREG_NUM                    5
 102#define BYT_PR_NUM                      5
 103
 104#define LPT_PR                          0x74
 105#define LPT_SSFSTS_CTL                  0x90
 106#define LPT_FREG_NUM                    5
 107#define LPT_PR_NUM                      5
 108
 109#define BXT_PR                          0x84
 110#define BXT_SSFSTS_CTL                  0xa0
 111#define BXT_FREG_NUM                    12
 112#define BXT_PR_NUM                      6
 113
 114#define LVSCC                           0xc4
 115#define UVSCC                           0xc8
 116#define ERASE_OPCODE_SHIFT              8
 117#define ERASE_OPCODE_MASK               (0xff << ERASE_OPCODE_SHIFT)
 118#define ERASE_64K_OPCODE_SHIFT          16
 119#define ERASE_64K_OPCODE_MASK           (0xff << ERASE_OPCODE_SHIFT)
 120
 121#define INTEL_SPI_TIMEOUT               5000 /* ms */
 122#define INTEL_SPI_FIFO_SZ               64
 123
 124/**
 125 * struct intel_spi - Driver private data
 126 * @dev: Device pointer
 127 * @info: Pointer to board specific info
 128 * @nor: SPI NOR layer structure
 129 * @base: Beginning of MMIO space
 130 * @pregs: Start of protection registers
 131 * @sregs: Start of software sequencer registers
 132 * @nregions: Maximum number of regions
 133 * @pr_num: Maximum number of protected range registers
 134 * @writeable: Is the chip writeable
 135 * @locked: Is SPI setting locked
 136 * @swseq_reg: Use SW sequencer in register reads/writes
 137 * @swseq_erase: Use SW sequencer in erase operation
 138 * @erase_64k: 64k erase supported
 139 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
 140 * @opcodes: Opcodes which are supported. This are programmed by BIOS
 141 *           before it locks down the controller.
 142 */
 143struct intel_spi {
 144        struct device *dev;
 145        const struct intel_spi_boardinfo *info;
 146        struct spi_nor nor;
 147        void __iomem *base;
 148        void __iomem *pregs;
 149        void __iomem *sregs;
 150        size_t nregions;
 151        size_t pr_num;
 152        bool writeable;
 153        bool locked;
 154        bool swseq_reg;
 155        bool swseq_erase;
 156        bool erase_64k;
 157        u8 atomic_preopcode;
 158        u8 opcodes[8];
 159};
 160
 161static bool writeable;
 162module_param(writeable, bool, 0);
 163MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
 164
 165static void intel_spi_dump_regs(struct intel_spi *ispi)
 166{
 167        u32 value;
 168        int i;
 169
 170        dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
 171
 172        value = readl(ispi->base + HSFSTS_CTL);
 173        dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
 174        if (value & HSFSTS_CTL_FLOCKDN)
 175                dev_dbg(ispi->dev, "-> Locked\n");
 176
 177        dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
 178        dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
 179
 180        for (i = 0; i < 16; i++)
 181                dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
 182                        i, readl(ispi->base + FDATA(i)));
 183
 184        dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
 185
 186        for (i = 0; i < ispi->nregions; i++)
 187                dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
 188                        readl(ispi->base + FREG(i)));
 189        for (i = 0; i < ispi->pr_num; i++)
 190                dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
 191                        readl(ispi->pregs + PR(i)));
 192
 193        value = readl(ispi->sregs + SSFSTS_CTL);
 194        dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
 195        dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
 196                readl(ispi->sregs + PREOP_OPTYPE));
 197        dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
 198        dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
 199
 200        if (ispi->info->type == INTEL_SPI_BYT)
 201                dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
 202
 203        dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
 204        dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
 205
 206        dev_dbg(ispi->dev, "Protected regions:\n");
 207        for (i = 0; i < ispi->pr_num; i++) {
 208                u32 base, limit;
 209
 210                value = readl(ispi->pregs + PR(i));
 211                if (!(value & (PR_WPE | PR_RPE)))
 212                        continue;
 213
 214                limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
 215                base = value & PR_BASE_MASK;
 216
 217                dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
 218                         i, base << 12, (limit << 12) | 0xfff,
 219                         value & PR_WPE ? 'W' : '.',
 220                         value & PR_RPE ? 'R' : '.');
 221        }
 222
 223        dev_dbg(ispi->dev, "Flash regions:\n");
 224        for (i = 0; i < ispi->nregions; i++) {
 225                u32 region, base, limit;
 226
 227                region = readl(ispi->base + FREG(i));
 228                base = region & FREG_BASE_MASK;
 229                limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
 230
 231                if (base >= limit || (i > 0 && limit == 0))
 232                        dev_dbg(ispi->dev, " %02d disabled\n", i);
 233                else
 234                        dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
 235                                 i, base << 12, (limit << 12) | 0xfff);
 236        }
 237
 238        dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
 239                ispi->swseq_reg ? 'S' : 'H');
 240        dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
 241                ispi->swseq_erase ? 'S' : 'H');
 242}
 243
 244/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
 245static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
 246{
 247        size_t bytes;
 248        int i = 0;
 249
 250        if (size > INTEL_SPI_FIFO_SZ)
 251                return -EINVAL;
 252
 253        while (size > 0) {
 254                bytes = min_t(size_t, size, 4);
 255                memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
 256                size -= bytes;
 257                buf += bytes;
 258                i++;
 259        }
 260
 261        return 0;
 262}
 263
 264/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
 265static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
 266                                 size_t size)
 267{
 268        size_t bytes;
 269        int i = 0;
 270
 271        if (size > INTEL_SPI_FIFO_SZ)
 272                return -EINVAL;
 273
 274        while (size > 0) {
 275                bytes = min_t(size_t, size, 4);
 276                memcpy_toio(ispi->base + FDATA(i), buf, bytes);
 277                size -= bytes;
 278                buf += bytes;
 279                i++;
 280        }
 281
 282        return 0;
 283}
 284
 285static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
 286{
 287        u32 val;
 288
 289        return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
 290                                  !(val & HSFSTS_CTL_SCIP), 40,
 291                                  INTEL_SPI_TIMEOUT * 1000);
 292}
 293
 294static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
 295{
 296        u32 val;
 297
 298        return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
 299                                  !(val & SSFSTS_CTL_SCIP), 40,
 300                                  INTEL_SPI_TIMEOUT * 1000);
 301}
 302
 303static int intel_spi_init(struct intel_spi *ispi)
 304{
 305        u32 opmenu0, opmenu1, lvscc, uvscc, val;
 306        int i;
 307
 308        switch (ispi->info->type) {
 309        case INTEL_SPI_BYT:
 310                ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
 311                ispi->pregs = ispi->base + BYT_PR;
 312                ispi->nregions = BYT_FREG_NUM;
 313                ispi->pr_num = BYT_PR_NUM;
 314                ispi->swseq_reg = true;
 315
 316                if (writeable) {
 317                        /* Disable write protection */
 318                        val = readl(ispi->base + BYT_BCR);
 319                        if (!(val & BYT_BCR_WPD)) {
 320                                val |= BYT_BCR_WPD;
 321                                writel(val, ispi->base + BYT_BCR);
 322                                val = readl(ispi->base + BYT_BCR);
 323                        }
 324
 325                        ispi->writeable = !!(val & BYT_BCR_WPD);
 326                }
 327
 328                break;
 329
 330        case INTEL_SPI_LPT:
 331                ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
 332                ispi->pregs = ispi->base + LPT_PR;
 333                ispi->nregions = LPT_FREG_NUM;
 334                ispi->pr_num = LPT_PR_NUM;
 335                ispi->swseq_reg = true;
 336                break;
 337
 338        case INTEL_SPI_BXT:
 339                ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
 340                ispi->pregs = ispi->base + BXT_PR;
 341                ispi->nregions = BXT_FREG_NUM;
 342                ispi->pr_num = BXT_PR_NUM;
 343                ispi->erase_64k = true;
 344                break;
 345
 346        default:
 347                return -EINVAL;
 348        }
 349
 350        /* Disable #SMI generation from HW sequencer */
 351        val = readl(ispi->base + HSFSTS_CTL);
 352        val &= ~HSFSTS_CTL_FSMIE;
 353        writel(val, ispi->base + HSFSTS_CTL);
 354
 355        /*
 356         * Determine whether erase operation should use HW or SW sequencer.
 357         *
 358         * The HW sequencer has a predefined list of opcodes, with only the
 359         * erase opcode being programmable in LVSCC and UVSCC registers.
 360         * If these registers don't contain a valid erase opcode, erase
 361         * cannot be done using HW sequencer.
 362         */
 363        lvscc = readl(ispi->base + LVSCC);
 364        uvscc = readl(ispi->base + UVSCC);
 365        if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
 366                ispi->swseq_erase = true;
 367        /* SPI controller on Intel BXT supports 64K erase opcode */
 368        if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
 369                if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
 370                    !(uvscc & ERASE_64K_OPCODE_MASK))
 371                        ispi->erase_64k = false;
 372
 373        /*
 374         * Some controllers can only do basic operations using hardware
 375         * sequencer. All other operations are supposed to be carried out
 376         * using software sequencer.
 377         */
 378        if (ispi->swseq_reg) {
 379                /* Disable #SMI generation from SW sequencer */
 380                val = readl(ispi->sregs + SSFSTS_CTL);
 381                val &= ~SSFSTS_CTL_FSMIE;
 382                writel(val, ispi->sregs + SSFSTS_CTL);
 383        }
 384
 385        /* Check controller's lock status */
 386        val = readl(ispi->base + HSFSTS_CTL);
 387        ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
 388
 389        if (ispi->locked) {
 390                /*
 391                 * BIOS programs allowed opcodes and then locks down the
 392                 * register. So read back what opcodes it decided to support.
 393                 * That's the set we are going to support as well.
 394                 */
 395                opmenu0 = readl(ispi->sregs + OPMENU0);
 396                opmenu1 = readl(ispi->sregs + OPMENU1);
 397
 398                if (opmenu0 && opmenu1) {
 399                        for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
 400                                ispi->opcodes[i] = opmenu0 >> i * 8;
 401                                ispi->opcodes[i + 4] = opmenu1 >> i * 8;
 402                        }
 403                }
 404        }
 405
 406        intel_spi_dump_regs(ispi);
 407
 408        return 0;
 409}
 410
 411static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
 412{
 413        int i;
 414        int preop;
 415
 416        if (ispi->locked) {
 417                for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
 418                        if (ispi->opcodes[i] == opcode)
 419                                return i;
 420
 421                return -EINVAL;
 422        }
 423
 424        /* The lock is off, so just use index 0 */
 425        writel(opcode, ispi->sregs + OPMENU0);
 426        preop = readw(ispi->sregs + PREOP_OPTYPE);
 427        writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
 428
 429        return 0;
 430}
 431
 432static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
 433{
 434        u32 val, status;
 435        int ret;
 436
 437        val = readl(ispi->base + HSFSTS_CTL);
 438        val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
 439
 440        switch (opcode) {
 441        case SPINOR_OP_RDID:
 442                val |= HSFSTS_CTL_FCYCLE_RDID;
 443                break;
 444        case SPINOR_OP_WRSR:
 445                val |= HSFSTS_CTL_FCYCLE_WRSR;
 446                break;
 447        case SPINOR_OP_RDSR:
 448                val |= HSFSTS_CTL_FCYCLE_RDSR;
 449                break;
 450        default:
 451                return -EINVAL;
 452        }
 453
 454        if (len > INTEL_SPI_FIFO_SZ)
 455                return -EINVAL;
 456
 457        val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
 458        val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 459        val |= HSFSTS_CTL_FGO;
 460        writel(val, ispi->base + HSFSTS_CTL);
 461
 462        ret = intel_spi_wait_hw_busy(ispi);
 463        if (ret)
 464                return ret;
 465
 466        status = readl(ispi->base + HSFSTS_CTL);
 467        if (status & HSFSTS_CTL_FCERR)
 468                return -EIO;
 469        else if (status & HSFSTS_CTL_AEL)
 470                return -EACCES;
 471
 472        return 0;
 473}
 474
 475static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
 476                              int optype)
 477{
 478        u32 val = 0, status;
 479        u8 atomic_preopcode;
 480        int ret;
 481
 482        ret = intel_spi_opcode_index(ispi, opcode, optype);
 483        if (ret < 0)
 484                return ret;
 485
 486        if (len > INTEL_SPI_FIFO_SZ)
 487                return -EINVAL;
 488
 489        /*
 490         * Always clear it after each SW sequencer operation regardless
 491         * of whether it is successful or not.
 492         */
 493        atomic_preopcode = ispi->atomic_preopcode;
 494        ispi->atomic_preopcode = 0;
 495
 496        /* Only mark 'Data Cycle' bit when there is data to be transferred */
 497        if (len > 0)
 498                val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
 499        val |= ret << SSFSTS_CTL_COP_SHIFT;
 500        val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
 501        val |= SSFSTS_CTL_SCGO;
 502        if (atomic_preopcode) {
 503                u16 preop;
 504
 505                switch (optype) {
 506                case OPTYPE_WRITE_NO_ADDR:
 507                case OPTYPE_WRITE_WITH_ADDR:
 508                        /* Pick matching preopcode for the atomic sequence */
 509                        preop = readw(ispi->sregs + PREOP_OPTYPE);
 510                        if ((preop & 0xff) == atomic_preopcode)
 511                                ; /* Do nothing */
 512                        else if ((preop >> 8) == atomic_preopcode)
 513                                val |= SSFSTS_CTL_SPOP;
 514                        else
 515                                return -EINVAL;
 516
 517                        /* Enable atomic sequence */
 518                        val |= SSFSTS_CTL_ACS;
 519                        break;
 520
 521                default:
 522                        return -EINVAL;
 523                }
 524
 525        }
 526        writel(val, ispi->sregs + SSFSTS_CTL);
 527
 528        ret = intel_spi_wait_sw_busy(ispi);
 529        if (ret)
 530                return ret;
 531
 532        status = readl(ispi->sregs + SSFSTS_CTL);
 533        if (status & SSFSTS_CTL_FCERR)
 534                return -EIO;
 535        else if (status & SSFSTS_CTL_AEL)
 536                return -EACCES;
 537
 538        return 0;
 539}
 540
 541static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 542{
 543        struct intel_spi *ispi = nor->priv;
 544        int ret;
 545
 546        /* Address of the first chip */
 547        writel(0, ispi->base + FADDR);
 548
 549        if (ispi->swseq_reg)
 550                ret = intel_spi_sw_cycle(ispi, opcode, len,
 551                                         OPTYPE_READ_NO_ADDR);
 552        else
 553                ret = intel_spi_hw_cycle(ispi, opcode, len);
 554
 555        if (ret)
 556                return ret;
 557
 558        return intel_spi_read_block(ispi, buf, len);
 559}
 560
 561static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 562{
 563        struct intel_spi *ispi = nor->priv;
 564        int ret;
 565
 566        /*
 567         * This is handled with atomic operation and preop code in Intel
 568         * controller so we only verify that it is available. If the
 569         * controller is not locked, program the opcode to the PREOP
 570         * register for later use.
 571         *
 572         * When hardware sequencer is used there is no need to program
 573         * any opcodes (it handles them automatically as part of a command).
 574         */
 575        if (opcode == SPINOR_OP_WREN) {
 576                u16 preop;
 577
 578                if (!ispi->swseq_reg)
 579                        return 0;
 580
 581                preop = readw(ispi->sregs + PREOP_OPTYPE);
 582                if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
 583                        if (ispi->locked)
 584                                return -EINVAL;
 585                        writel(opcode, ispi->sregs + PREOP_OPTYPE);
 586                }
 587
 588                /*
 589                 * This enables atomic sequence on next SW sycle. Will
 590                 * be cleared after next operation.
 591                 */
 592                ispi->atomic_preopcode = opcode;
 593                return 0;
 594        }
 595
 596        writel(0, ispi->base + FADDR);
 597
 598        /* Write the value beforehand */
 599        ret = intel_spi_write_block(ispi, buf, len);
 600        if (ret)
 601                return ret;
 602
 603        if (ispi->swseq_reg)
 604                return intel_spi_sw_cycle(ispi, opcode, len,
 605                                          OPTYPE_WRITE_NO_ADDR);
 606        return intel_spi_hw_cycle(ispi, opcode, len);
 607}
 608
 609static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
 610                              u_char *read_buf)
 611{
 612        struct intel_spi *ispi = nor->priv;
 613        size_t block_size, retlen = 0;
 614        u32 val, status;
 615        ssize_t ret;
 616
 617        /*
 618         * Atomic sequence is not expected with HW sequencer reads. Make
 619         * sure it is cleared regardless.
 620         */
 621        if (WARN_ON_ONCE(ispi->atomic_preopcode))
 622                ispi->atomic_preopcode = 0;
 623
 624        switch (nor->read_opcode) {
 625        case SPINOR_OP_READ:
 626        case SPINOR_OP_READ_FAST:
 627                break;
 628        default:
 629                return -EINVAL;
 630        }
 631
 632        while (len > 0) {
 633                block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
 634
 635                writel(from, ispi->base + FADDR);
 636
 637                val = readl(ispi->base + HSFSTS_CTL);
 638                val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 639                val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 640                val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
 641                val |= HSFSTS_CTL_FCYCLE_READ;
 642                val |= HSFSTS_CTL_FGO;
 643                writel(val, ispi->base + HSFSTS_CTL);
 644
 645                ret = intel_spi_wait_hw_busy(ispi);
 646                if (ret)
 647                        return ret;
 648
 649                status = readl(ispi->base + HSFSTS_CTL);
 650                if (status & HSFSTS_CTL_FCERR)
 651                        ret = -EIO;
 652                else if (status & HSFSTS_CTL_AEL)
 653                        ret = -EACCES;
 654
 655                if (ret < 0) {
 656                        dev_err(ispi->dev, "read error: %llx: %#x\n", from,
 657                                status);
 658                        return ret;
 659                }
 660
 661                ret = intel_spi_read_block(ispi, read_buf, block_size);
 662                if (ret)
 663                        return ret;
 664
 665                len -= block_size;
 666                from += block_size;
 667                retlen += block_size;
 668                read_buf += block_size;
 669        }
 670
 671        return retlen;
 672}
 673
 674static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
 675                               const u_char *write_buf)
 676{
 677        struct intel_spi *ispi = nor->priv;
 678        size_t block_size, retlen = 0;
 679        u32 val, status;
 680        ssize_t ret;
 681
 682        /* Not needed with HW sequencer write, make sure it is cleared */
 683        ispi->atomic_preopcode = 0;
 684
 685        while (len > 0) {
 686                block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
 687
 688                writel(to, ispi->base + FADDR);
 689
 690                val = readl(ispi->base + HSFSTS_CTL);
 691                val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 692                val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 693                val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
 694                val |= HSFSTS_CTL_FCYCLE_WRITE;
 695
 696                ret = intel_spi_write_block(ispi, write_buf, block_size);
 697                if (ret) {
 698                        dev_err(ispi->dev, "failed to write block\n");
 699                        return ret;
 700                }
 701
 702                /* Start the write now */
 703                val |= HSFSTS_CTL_FGO;
 704                writel(val, ispi->base + HSFSTS_CTL);
 705
 706                ret = intel_spi_wait_hw_busy(ispi);
 707                if (ret) {
 708                        dev_err(ispi->dev, "timeout\n");
 709                        return ret;
 710                }
 711
 712                status = readl(ispi->base + HSFSTS_CTL);
 713                if (status & HSFSTS_CTL_FCERR)
 714                        ret = -EIO;
 715                else if (status & HSFSTS_CTL_AEL)
 716                        ret = -EACCES;
 717
 718                if (ret < 0) {
 719                        dev_err(ispi->dev, "write error: %llx: %#x\n", to,
 720                                status);
 721                        return ret;
 722                }
 723
 724                len -= block_size;
 725                to += block_size;
 726                retlen += block_size;
 727                write_buf += block_size;
 728        }
 729
 730        return retlen;
 731}
 732
 733static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
 734{
 735        size_t erase_size, len = nor->mtd.erasesize;
 736        struct intel_spi *ispi = nor->priv;
 737        u32 val, status, cmd;
 738        int ret;
 739
 740        /* If the hardware can do 64k erase use that when possible */
 741        if (len >= SZ_64K && ispi->erase_64k) {
 742                cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
 743                erase_size = SZ_64K;
 744        } else {
 745                cmd = HSFSTS_CTL_FCYCLE_ERASE;
 746                erase_size = SZ_4K;
 747        }
 748
 749        if (ispi->swseq_erase) {
 750                while (len > 0) {
 751                        writel(offs, ispi->base + FADDR);
 752
 753                        ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
 754                                                 0, OPTYPE_WRITE_WITH_ADDR);
 755                        if (ret)
 756                                return ret;
 757
 758                        offs += erase_size;
 759                        len -= erase_size;
 760                }
 761
 762                return 0;
 763        }
 764
 765        /* Not needed with HW sequencer erase, make sure it is cleared */
 766        ispi->atomic_preopcode = 0;
 767
 768        while (len > 0) {
 769                writel(offs, ispi->base + FADDR);
 770
 771                val = readl(ispi->base + HSFSTS_CTL);
 772                val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 773                val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 774                val |= cmd;
 775                val |= HSFSTS_CTL_FGO;
 776                writel(val, ispi->base + HSFSTS_CTL);
 777
 778                ret = intel_spi_wait_hw_busy(ispi);
 779                if (ret)
 780                        return ret;
 781
 782                status = readl(ispi->base + HSFSTS_CTL);
 783                if (status & HSFSTS_CTL_FCERR)
 784                        return -EIO;
 785                else if (status & HSFSTS_CTL_AEL)
 786                        return -EACCES;
 787
 788                offs += erase_size;
 789                len -= erase_size;
 790        }
 791
 792        return 0;
 793}
 794
 795static bool intel_spi_is_protected(const struct intel_spi *ispi,
 796                                   unsigned int base, unsigned int limit)
 797{
 798        int i;
 799
 800        for (i = 0; i < ispi->pr_num; i++) {
 801                u32 pr_base, pr_limit, pr_value;
 802
 803                pr_value = readl(ispi->pregs + PR(i));
 804                if (!(pr_value & (PR_WPE | PR_RPE)))
 805                        continue;
 806
 807                pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
 808                pr_base = pr_value & PR_BASE_MASK;
 809
 810                if (pr_base >= base && pr_limit <= limit)
 811                        return true;
 812        }
 813
 814        return false;
 815}
 816
 817/*
 818 * There will be a single partition holding all enabled flash regions. We
 819 * call this "BIOS".
 820 */
 821static void intel_spi_fill_partition(struct intel_spi *ispi,
 822                                     struct mtd_partition *part)
 823{
 824        u64 end;
 825        int i;
 826
 827        memset(part, 0, sizeof(*part));
 828
 829        /* Start from the mandatory descriptor region */
 830        part->size = 4096;
 831        part->name = "BIOS";
 832
 833        /*
 834         * Now try to find where this partition ends based on the flash
 835         * region registers.
 836         */
 837        for (i = 1; i < ispi->nregions; i++) {
 838                u32 region, base, limit;
 839
 840                region = readl(ispi->base + FREG(i));
 841                base = region & FREG_BASE_MASK;
 842                limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
 843
 844                if (base >= limit || limit == 0)
 845                        continue;
 846
 847                /*
 848                 * If any of the regions have protection bits set, make the
 849                 * whole partition read-only to be on the safe side.
 850                 */
 851                if (intel_spi_is_protected(ispi, base, limit))
 852                        ispi->writeable = false;
 853
 854                end = (limit << 12) + 4096;
 855                if (end > part->size)
 856                        part->size = end;
 857        }
 858}
 859
 860struct intel_spi *intel_spi_probe(struct device *dev,
 861        struct resource *mem, const struct intel_spi_boardinfo *info)
 862{
 863        const struct spi_nor_hwcaps hwcaps = {
 864                .mask = SNOR_HWCAPS_READ |
 865                        SNOR_HWCAPS_READ_FAST |
 866                        SNOR_HWCAPS_PP,
 867        };
 868        struct mtd_partition part;
 869        struct intel_spi *ispi;
 870        int ret;
 871
 872        if (!info || !mem)
 873                return ERR_PTR(-EINVAL);
 874
 875        ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
 876        if (!ispi)
 877                return ERR_PTR(-ENOMEM);
 878
 879        ispi->base = devm_ioremap_resource(dev, mem);
 880        if (IS_ERR(ispi->base))
 881                return ERR_CAST(ispi->base);
 882
 883        ispi->dev = dev;
 884        ispi->info = info;
 885        ispi->writeable = info->writeable;
 886
 887        ret = intel_spi_init(ispi);
 888        if (ret)
 889                return ERR_PTR(ret);
 890
 891        ispi->nor.dev = ispi->dev;
 892        ispi->nor.priv = ispi;
 893        ispi->nor.read_reg = intel_spi_read_reg;
 894        ispi->nor.write_reg = intel_spi_write_reg;
 895        ispi->nor.read = intel_spi_read;
 896        ispi->nor.write = intel_spi_write;
 897        ispi->nor.erase = intel_spi_erase;
 898
 899        ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
 900        if (ret) {
 901                dev_info(dev, "failed to locate the chip\n");
 902                return ERR_PTR(ret);
 903        }
 904
 905        intel_spi_fill_partition(ispi, &part);
 906
 907        /* Prevent writes if not explicitly enabled */
 908        if (!ispi->writeable || !writeable)
 909                ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
 910
 911        ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
 912        if (ret)
 913                return ERR_PTR(ret);
 914
 915        return ispi;
 916}
 917EXPORT_SYMBOL_GPL(intel_spi_probe);
 918
 919int intel_spi_remove(struct intel_spi *ispi)
 920{
 921        return mtd_device_unregister(&ispi->nor.mtd);
 922}
 923EXPORT_SYMBOL_GPL(intel_spi_remove);
 924
 925MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
 926MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
 927MODULE_LICENSE("GPL v2");
 928