linux/drivers/mtd/ubi/io.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * UBI input/output sub-system.
  24 *
  25 * This sub-system provides a uniform way to work with all kinds of the
  26 * underlying MTD devices. It also implements handy functions for reading and
  27 * writing UBI headers.
  28 *
  29 * We are trying to have a paranoid mindset and not to trust to what we read
  30 * from the flash media in order to be more secure and robust. So this
  31 * sub-system validates every single header it reads from the flash media.
  32 *
  33 * Some words about how the eraseblock headers are stored.
  34 *
  35 * The erase counter header is always stored at offset zero. By default, the
  36 * VID header is stored after the EC header at the closest aligned offset
  37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  38 * header at the closest aligned offset. But this default layout may be
  39 * changed. For example, for different reasons (e.g., optimization) UBI may be
  40 * asked to put the VID header at further offset, and even at an unaligned
  41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  42 * proper padding in front of it. Data offset may also be changed but it has to
  43 * be aligned.
  44 *
  45 * About minimal I/O units. In general, UBI assumes flash device model where
  46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
  49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  50 * to do different optimizations.
  51 *
  52 * This is extremely useful in case of NAND flashes which admit of several
  53 * write operations to one NAND page. In this case UBI can fit EC and VID
  54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  57 * users.
  58 *
  59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  61 * headers.
  62 *
  63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
  65 *
  66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
  67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  69 * Thus, we prefer to use sub-pages only for EC and VID headers.
  70 *
  71 * As it was noted above, the VID header may start at a non-aligned offset.
  72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
  74 * last sub-page (EC header is always at offset zero). This causes some
  75 * difficulties when reading and writing VID headers.
  76 *
  77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  78 * the data and want to write this VID header out. As we can only write in
  79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  80 * to offset 448 of this buffer.
  81 *
  82 * The I/O sub-system does the following trick in order to avoid this extra
  83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  85 * When the VID header is being written out, it shifts the VID header pointer
  86 * back and writes the whole sub-page.
  87 */
  88
  89#include <linux/crc32.h>
  90#include <linux/err.h>
  91#include <linux/slab.h>
  92#include "ubi.h"
  93
  94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  97                             const struct ubi_ec_hdr *ec_hdr);
  98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
 100                              const struct ubi_vid_hdr *vid_hdr);
 101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
 102                            int offset, int len);
 103
 104/**
 105 * ubi_io_read - read data from a physical eraseblock.
 106 * @ubi: UBI device description object
 107 * @buf: buffer where to store the read data
 108 * @pnum: physical eraseblock number to read from
 109 * @offset: offset within the physical eraseblock from where to read
 110 * @len: how many bytes to read
 111 *
 112 * This function reads data from offset @offset of physical eraseblock @pnum
 113 * and stores the read data in the @buf buffer. The following return codes are
 114 * possible:
 115 *
 116 * o %0 if all the requested data were successfully read;
 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 118 *   correctable bit-flips were detected; this is harmless but may indicate
 119 *   that this eraseblock may become bad soon (but do not have to);
 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 121 *   example it can be an ECC error in case of NAND; this most probably means
 122 *   that the data is corrupted;
 123 * o %-EIO if some I/O error occurred;
 124 * o other negative error codes in case of other errors.
 125 */
 126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
 127                int len)
 128{
 129        int err, retries = 0;
 130        size_t read;
 131        loff_t addr;
 132
 133        dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
 134
 135        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 136        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 137        ubi_assert(len > 0);
 138
 139        err = self_check_not_bad(ubi, pnum);
 140        if (err)
 141                return err;
 142
 143        /*
 144         * Deliberately corrupt the buffer to improve robustness. Indeed, if we
 145         * do not do this, the following may happen:
 146         * 1. The buffer contains data from previous operation, e.g., read from
 147         *    another PEB previously. The data looks like expected, e.g., if we
 148         *    just do not read anything and return - the caller would not
 149         *    notice this. E.g., if we are reading a VID header, the buffer may
 150         *    contain a valid VID header from another PEB.
 151         * 2. The driver is buggy and returns us success or -EBADMSG or
 152         *    -EUCLEAN, but it does not actually put any data to the buffer.
 153         *
 154         * This may confuse UBI or upper layers - they may think the buffer
 155         * contains valid data while in fact it is just old data. This is
 156         * especially possible because UBI (and UBIFS) relies on CRC, and
 157         * treats data as correct even in case of ECC errors if the CRC is
 158         * correct.
 159         *
 160         * Try to prevent this situation by changing the first byte of the
 161         * buffer.
 162         */
 163        *((uint8_t *)buf) ^= 0xFF;
 164
 165        addr = (loff_t)pnum * ubi->peb_size + offset;
 166retry:
 167        err = mtd_read(ubi->mtd, addr, len, &read, buf);
 168        if (err) {
 169                const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
 170
 171                if (mtd_is_bitflip(err)) {
 172                        /*
 173                         * -EUCLEAN is reported if there was a bit-flip which
 174                         * was corrected, so this is harmless.
 175                         *
 176                         * We do not report about it here unless debugging is
 177                         * enabled. A corresponding message will be printed
 178                         * later, when it is has been scrubbed.
 179                         */
 180                        ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
 181                                pnum);
 182                        ubi_assert(len == read);
 183                        return UBI_IO_BITFLIPS;
 184                }
 185
 186                if (retries++ < UBI_IO_RETRIES) {
 187                        ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
 188                                 err, errstr, len, pnum, offset, read);
 189                        yield();
 190                        goto retry;
 191                }
 192
 193                ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
 194                        err, errstr, len, pnum, offset, read);
 195                dump_stack();
 196
 197                /*
 198                 * The driver should never return -EBADMSG if it failed to read
 199                 * all the requested data. But some buggy drivers might do
 200                 * this, so we change it to -EIO.
 201                 */
 202                if (read != len && mtd_is_eccerr(err)) {
 203                        ubi_assert(0);
 204                        err = -EIO;
 205                }
 206        } else {
 207                ubi_assert(len == read);
 208
 209                if (ubi_dbg_is_bitflip(ubi)) {
 210                        dbg_gen("bit-flip (emulated)");
 211                        err = UBI_IO_BITFLIPS;
 212                }
 213        }
 214
 215        return err;
 216}
 217
 218/**
 219 * ubi_io_write - write data to a physical eraseblock.
 220 * @ubi: UBI device description object
 221 * @buf: buffer with the data to write
 222 * @pnum: physical eraseblock number to write to
 223 * @offset: offset within the physical eraseblock where to write
 224 * @len: how many bytes to write
 225 *
 226 * This function writes @len bytes of data from buffer @buf to offset @offset
 227 * of physical eraseblock @pnum. If all the data were successfully written,
 228 * zero is returned. If an error occurred, this function returns a negative
 229 * error code. If %-EIO is returned, the physical eraseblock most probably went
 230 * bad.
 231 *
 232 * Note, in case of an error, it is possible that something was still written
 233 * to the flash media, but may be some garbage.
 234 */
 235int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
 236                 int len)
 237{
 238        int err;
 239        size_t written;
 240        loff_t addr;
 241
 242        dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
 243
 244        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 245        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 246        ubi_assert(offset % ubi->hdrs_min_io_size == 0);
 247        ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
 248
 249        if (ubi->ro_mode) {
 250                ubi_err(ubi, "read-only mode");
 251                return -EROFS;
 252        }
 253
 254        err = self_check_not_bad(ubi, pnum);
 255        if (err)
 256                return err;
 257
 258        /* The area we are writing to has to contain all 0xFF bytes */
 259        err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 260        if (err)
 261                return err;
 262
 263        if (offset >= ubi->leb_start) {
 264                /*
 265                 * We write to the data area of the physical eraseblock. Make
 266                 * sure it has valid EC and VID headers.
 267                 */
 268                err = self_check_peb_ec_hdr(ubi, pnum);
 269                if (err)
 270                        return err;
 271                err = self_check_peb_vid_hdr(ubi, pnum);
 272                if (err)
 273                        return err;
 274        }
 275
 276        if (ubi_dbg_is_write_failure(ubi)) {
 277                ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
 278                        len, pnum, offset);
 279                dump_stack();
 280                return -EIO;
 281        }
 282
 283        addr = (loff_t)pnum * ubi->peb_size + offset;
 284        err = mtd_write(ubi->mtd, addr, len, &written, buf);
 285        if (err) {
 286                ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
 287                        err, len, pnum, offset, written);
 288                dump_stack();
 289                ubi_dump_flash(ubi, pnum, offset, len);
 290        } else
 291                ubi_assert(written == len);
 292
 293        if (!err) {
 294                err = self_check_write(ubi, buf, pnum, offset, len);
 295                if (err)
 296                        return err;
 297
 298                /*
 299                 * Since we always write sequentially, the rest of the PEB has
 300                 * to contain only 0xFF bytes.
 301                 */
 302                offset += len;
 303                len = ubi->peb_size - offset;
 304                if (len)
 305                        err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 306        }
 307
 308        return err;
 309}
 310
 311/**
 312 * do_sync_erase - synchronously erase a physical eraseblock.
 313 * @ubi: UBI device description object
 314 * @pnum: the physical eraseblock number to erase
 315 *
 316 * This function synchronously erases physical eraseblock @pnum and returns
 317 * zero in case of success and a negative error code in case of failure. If
 318 * %-EIO is returned, the physical eraseblock most probably went bad.
 319 */
 320static int do_sync_erase(struct ubi_device *ubi, int pnum)
 321{
 322        int err, retries = 0;
 323        struct erase_info ei;
 324
 325        dbg_io("erase PEB %d", pnum);
 326        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 327
 328        if (ubi->ro_mode) {
 329                ubi_err(ubi, "read-only mode");
 330                return -EROFS;
 331        }
 332
 333retry:
 334        memset(&ei, 0, sizeof(struct erase_info));
 335
 336        ei.addr     = (loff_t)pnum * ubi->peb_size;
 337        ei.len      = ubi->peb_size;
 338
 339        err = mtd_erase(ubi->mtd, &ei);
 340        if (err) {
 341                if (retries++ < UBI_IO_RETRIES) {
 342                        ubi_warn(ubi, "error %d while erasing PEB %d, retry",
 343                                 err, pnum);
 344                        yield();
 345                        goto retry;
 346                }
 347                ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
 348                dump_stack();
 349                return err;
 350        }
 351
 352        err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
 353        if (err)
 354                return err;
 355
 356        if (ubi_dbg_is_erase_failure(ubi)) {
 357                ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
 358                return -EIO;
 359        }
 360
 361        return 0;
 362}
 363
 364/* Patterns to write to a physical eraseblock when torturing it */
 365static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
 366
 367/**
 368 * torture_peb - test a supposedly bad physical eraseblock.
 369 * @ubi: UBI device description object
 370 * @pnum: the physical eraseblock number to test
 371 *
 372 * This function returns %-EIO if the physical eraseblock did not pass the
 373 * test, a positive number of erase operations done if the test was
 374 * successfully passed, and other negative error codes in case of other errors.
 375 */
 376static int torture_peb(struct ubi_device *ubi, int pnum)
 377{
 378        int err, i, patt_count;
 379
 380        ubi_msg(ubi, "run torture test for PEB %d", pnum);
 381        patt_count = ARRAY_SIZE(patterns);
 382        ubi_assert(patt_count > 0);
 383
 384        mutex_lock(&ubi->buf_mutex);
 385        for (i = 0; i < patt_count; i++) {
 386                err = do_sync_erase(ubi, pnum);
 387                if (err)
 388                        goto out;
 389
 390                /* Make sure the PEB contains only 0xFF bytes */
 391                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 392                if (err)
 393                        goto out;
 394
 395                err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
 396                if (err == 0) {
 397                        ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
 398                                pnum);
 399                        err = -EIO;
 400                        goto out;
 401                }
 402
 403                /* Write a pattern and check it */
 404                memset(ubi->peb_buf, patterns[i], ubi->peb_size);
 405                err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 406                if (err)
 407                        goto out;
 408
 409                memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
 410                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 411                if (err)
 412                        goto out;
 413
 414                err = ubi_check_pattern(ubi->peb_buf, patterns[i],
 415                                        ubi->peb_size);
 416                if (err == 0) {
 417                        ubi_err(ubi, "pattern %x checking failed for PEB %d",
 418                                patterns[i], pnum);
 419                        err = -EIO;
 420                        goto out;
 421                }
 422        }
 423
 424        err = patt_count;
 425        ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
 426
 427out:
 428        mutex_unlock(&ubi->buf_mutex);
 429        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 430                /*
 431                 * If a bit-flip or data integrity error was detected, the test
 432                 * has not passed because it happened on a freshly erased
 433                 * physical eraseblock which means something is wrong with it.
 434                 */
 435                ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
 436                        pnum);
 437                err = -EIO;
 438        }
 439        return err;
 440}
 441
 442/**
 443 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
 444 * @ubi: UBI device description object
 445 * @pnum: physical eraseblock number to prepare
 446 *
 447 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
 448 * algorithm: the PEB is first filled with zeroes, then it is erased. And
 449 * filling with zeroes starts from the end of the PEB. This was observed with
 450 * Spansion S29GL512N NOR flash.
 451 *
 452 * This means that in case of a power cut we may end up with intact data at the
 453 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
 454 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
 455 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
 456 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
 457 *
 458 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
 459 * magic numbers in order to invalidate them and prevent the failures. Returns
 460 * zero in case of success and a negative error code in case of failure.
 461 */
 462static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
 463{
 464        int err;
 465        size_t written;
 466        loff_t addr;
 467        uint32_t data = 0;
 468        struct ubi_ec_hdr ec_hdr;
 469        struct ubi_vid_io_buf vidb;
 470
 471        /*
 472         * Note, we cannot generally define VID header buffers on stack,
 473         * because of the way we deal with these buffers (see the header
 474         * comment in this file). But we know this is a NOR-specific piece of
 475         * code, so we can do this. But yes, this is error-prone and we should
 476         * (pre-)allocate VID header buffer instead.
 477         */
 478        struct ubi_vid_hdr vid_hdr;
 479
 480        /*
 481         * If VID or EC is valid, we have to corrupt them before erasing.
 482         * It is important to first invalidate the EC header, and then the VID
 483         * header. Otherwise a power cut may lead to valid EC header and
 484         * invalid VID header, in which case UBI will treat this PEB as
 485         * corrupted and will try to preserve it, and print scary warnings.
 486         */
 487        addr = (loff_t)pnum * ubi->peb_size;
 488        err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
 489        if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 490            err != UBI_IO_FF){
 491                err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 492                if(err)
 493                        goto error;
 494        }
 495
 496        ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
 497        ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
 498
 499        err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
 500        if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 501            err != UBI_IO_FF){
 502                addr += ubi->vid_hdr_aloffset;
 503                err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 504                if (err)
 505                        goto error;
 506        }
 507        return 0;
 508
 509error:
 510        /*
 511         * The PEB contains a valid VID or EC header, but we cannot invalidate
 512         * it. Supposedly the flash media or the driver is screwed up, so
 513         * return an error.
 514         */
 515        ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
 516        ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
 517        return -EIO;
 518}
 519
 520/**
 521 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
 522 * @ubi: UBI device description object
 523 * @pnum: physical eraseblock number to erase
 524 * @torture: if this physical eraseblock has to be tortured
 525 *
 526 * This function synchronously erases physical eraseblock @pnum. If @torture
 527 * flag is not zero, the physical eraseblock is checked by means of writing
 528 * different patterns to it and reading them back. If the torturing is enabled,
 529 * the physical eraseblock is erased more than once.
 530 *
 531 * This function returns the number of erasures made in case of success, %-EIO
 532 * if the erasure failed or the torturing test failed, and other negative error
 533 * codes in case of other errors. Note, %-EIO means that the physical
 534 * eraseblock is bad.
 535 */
 536int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
 537{
 538        int err, ret = 0;
 539
 540        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 541
 542        err = self_check_not_bad(ubi, pnum);
 543        if (err != 0)
 544                return err;
 545
 546        if (ubi->ro_mode) {
 547                ubi_err(ubi, "read-only mode");
 548                return -EROFS;
 549        }
 550
 551        if (ubi->nor_flash) {
 552                err = nor_erase_prepare(ubi, pnum);
 553                if (err)
 554                        return err;
 555        }
 556
 557        if (torture) {
 558                ret = torture_peb(ubi, pnum);
 559                if (ret < 0)
 560                        return ret;
 561        }
 562
 563        err = do_sync_erase(ubi, pnum);
 564        if (err)
 565                return err;
 566
 567        return ret + 1;
 568}
 569
 570/**
 571 * ubi_io_is_bad - check if a physical eraseblock is bad.
 572 * @ubi: UBI device description object
 573 * @pnum: the physical eraseblock number to check
 574 *
 575 * This function returns a positive number if the physical eraseblock is bad,
 576 * zero if not, and a negative error code if an error occurred.
 577 */
 578int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
 579{
 580        struct mtd_info *mtd = ubi->mtd;
 581
 582        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 583
 584        if (ubi->bad_allowed) {
 585                int ret;
 586
 587                ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
 588                if (ret < 0)
 589                        ubi_err(ubi, "error %d while checking if PEB %d is bad",
 590                                ret, pnum);
 591                else if (ret)
 592                        dbg_io("PEB %d is bad", pnum);
 593                return ret;
 594        }
 595
 596        return 0;
 597}
 598
 599/**
 600 * ubi_io_mark_bad - mark a physical eraseblock as bad.
 601 * @ubi: UBI device description object
 602 * @pnum: the physical eraseblock number to mark
 603 *
 604 * This function returns zero in case of success and a negative error code in
 605 * case of failure.
 606 */
 607int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
 608{
 609        int err;
 610        struct mtd_info *mtd = ubi->mtd;
 611
 612        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 613
 614        if (ubi->ro_mode) {
 615                ubi_err(ubi, "read-only mode");
 616                return -EROFS;
 617        }
 618
 619        if (!ubi->bad_allowed)
 620                return 0;
 621
 622        err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
 623        if (err)
 624                ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
 625        return err;
 626}
 627
 628/**
 629 * validate_ec_hdr - validate an erase counter header.
 630 * @ubi: UBI device description object
 631 * @ec_hdr: the erase counter header to check
 632 *
 633 * This function returns zero if the erase counter header is OK, and %1 if
 634 * not.
 635 */
 636static int validate_ec_hdr(const struct ubi_device *ubi,
 637                           const struct ubi_ec_hdr *ec_hdr)
 638{
 639        long long ec;
 640        int vid_hdr_offset, leb_start;
 641
 642        ec = be64_to_cpu(ec_hdr->ec);
 643        vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
 644        leb_start = be32_to_cpu(ec_hdr->data_offset);
 645
 646        if (ec_hdr->version != UBI_VERSION) {
 647                ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
 648                        UBI_VERSION, (int)ec_hdr->version);
 649                goto bad;
 650        }
 651
 652        if (vid_hdr_offset != ubi->vid_hdr_offset) {
 653                ubi_err(ubi, "bad VID header offset %d, expected %d",
 654                        vid_hdr_offset, ubi->vid_hdr_offset);
 655                goto bad;
 656        }
 657
 658        if (leb_start != ubi->leb_start) {
 659                ubi_err(ubi, "bad data offset %d, expected %d",
 660                        leb_start, ubi->leb_start);
 661                goto bad;
 662        }
 663
 664        if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
 665                ubi_err(ubi, "bad erase counter %lld", ec);
 666                goto bad;
 667        }
 668
 669        return 0;
 670
 671bad:
 672        ubi_err(ubi, "bad EC header");
 673        ubi_dump_ec_hdr(ec_hdr);
 674        dump_stack();
 675        return 1;
 676}
 677
 678/**
 679 * ubi_io_read_ec_hdr - read and check an erase counter header.
 680 * @ubi: UBI device description object
 681 * @pnum: physical eraseblock to read from
 682 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
 683 * header
 684 * @verbose: be verbose if the header is corrupted or was not found
 685 *
 686 * This function reads erase counter header from physical eraseblock @pnum and
 687 * stores it in @ec_hdr. This function also checks CRC checksum of the read
 688 * erase counter header. The following codes may be returned:
 689 *
 690 * o %0 if the CRC checksum is correct and the header was successfully read;
 691 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
 692 *   and corrected by the flash driver; this is harmless but may indicate that
 693 *   this eraseblock may become bad soon (but may be not);
 694 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
 695 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
 696 *   a data integrity error (uncorrectable ECC error in case of NAND);
 697 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
 698 * o a negative error code in case of failure.
 699 */
 700int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
 701                       struct ubi_ec_hdr *ec_hdr, int verbose)
 702{
 703        int err, read_err;
 704        uint32_t crc, magic, hdr_crc;
 705
 706        dbg_io("read EC header from PEB %d", pnum);
 707        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 708
 709        read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
 710        if (read_err) {
 711                if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 712                        return read_err;
 713
 714                /*
 715                 * We read all the data, but either a correctable bit-flip
 716                 * occurred, or MTD reported a data integrity error
 717                 * (uncorrectable ECC error in case of NAND). The former is
 718                 * harmless, the later may mean that the read data is
 719                 * corrupted. But we have a CRC check-sum and we will detect
 720                 * this. If the EC header is still OK, we just report this as
 721                 * there was a bit-flip, to force scrubbing.
 722                 */
 723        }
 724
 725        magic = be32_to_cpu(ec_hdr->magic);
 726        if (magic != UBI_EC_HDR_MAGIC) {
 727                if (mtd_is_eccerr(read_err))
 728                        return UBI_IO_BAD_HDR_EBADMSG;
 729
 730                /*
 731                 * The magic field is wrong. Let's check if we have read all
 732                 * 0xFF. If yes, this physical eraseblock is assumed to be
 733                 * empty.
 734                 */
 735                if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
 736                        /* The physical eraseblock is supposedly empty */
 737                        if (verbose)
 738                                ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
 739                                         pnum);
 740                        dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
 741                                pnum);
 742                        if (!read_err)
 743                                return UBI_IO_FF;
 744                        else
 745                                return UBI_IO_FF_BITFLIPS;
 746                }
 747
 748                /*
 749                 * This is not a valid erase counter header, and these are not
 750                 * 0xFF bytes. Report that the header is corrupted.
 751                 */
 752                if (verbose) {
 753                        ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
 754                                 pnum, magic, UBI_EC_HDR_MAGIC);
 755                        ubi_dump_ec_hdr(ec_hdr);
 756                }
 757                dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
 758                        pnum, magic, UBI_EC_HDR_MAGIC);
 759                return UBI_IO_BAD_HDR;
 760        }
 761
 762        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 763        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
 764
 765        if (hdr_crc != crc) {
 766                if (verbose) {
 767                        ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 768                                 pnum, crc, hdr_crc);
 769                        ubi_dump_ec_hdr(ec_hdr);
 770                }
 771                dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 772                        pnum, crc, hdr_crc);
 773
 774                if (!read_err)
 775                        return UBI_IO_BAD_HDR;
 776                else
 777                        return UBI_IO_BAD_HDR_EBADMSG;
 778        }
 779
 780        /* And of course validate what has just been read from the media */
 781        err = validate_ec_hdr(ubi, ec_hdr);
 782        if (err) {
 783                ubi_err(ubi, "validation failed for PEB %d", pnum);
 784                return -EINVAL;
 785        }
 786
 787        /*
 788         * If there was %-EBADMSG, but the header CRC is still OK, report about
 789         * a bit-flip to force scrubbing on this PEB.
 790         */
 791        return read_err ? UBI_IO_BITFLIPS : 0;
 792}
 793
 794/**
 795 * ubi_io_write_ec_hdr - write an erase counter header.
 796 * @ubi: UBI device description object
 797 * @pnum: physical eraseblock to write to
 798 * @ec_hdr: the erase counter header to write
 799 *
 800 * This function writes erase counter header described by @ec_hdr to physical
 801 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
 802 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
 803 * field.
 804 *
 805 * This function returns zero in case of success and a negative error code in
 806 * case of failure. If %-EIO is returned, the physical eraseblock most probably
 807 * went bad.
 808 */
 809int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
 810                        struct ubi_ec_hdr *ec_hdr)
 811{
 812        int err;
 813        uint32_t crc;
 814
 815        dbg_io("write EC header to PEB %d", pnum);
 816        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 817
 818        ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
 819        ec_hdr->version = UBI_VERSION;
 820        ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
 821        ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
 822        ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
 823        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 824        ec_hdr->hdr_crc = cpu_to_be32(crc);
 825
 826        err = self_check_ec_hdr(ubi, pnum, ec_hdr);
 827        if (err)
 828                return err;
 829
 830        if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
 831                return -EROFS;
 832
 833        err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
 834        return err;
 835}
 836
 837/**
 838 * validate_vid_hdr - validate a volume identifier header.
 839 * @ubi: UBI device description object
 840 * @vid_hdr: the volume identifier header to check
 841 *
 842 * This function checks that data stored in the volume identifier header
 843 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
 844 */
 845static int validate_vid_hdr(const struct ubi_device *ubi,
 846                            const struct ubi_vid_hdr *vid_hdr)
 847{
 848        int vol_type = vid_hdr->vol_type;
 849        int copy_flag = vid_hdr->copy_flag;
 850        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 851        int lnum = be32_to_cpu(vid_hdr->lnum);
 852        int compat = vid_hdr->compat;
 853        int data_size = be32_to_cpu(vid_hdr->data_size);
 854        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 855        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 856        int data_crc = be32_to_cpu(vid_hdr->data_crc);
 857        int usable_leb_size = ubi->leb_size - data_pad;
 858
 859        if (copy_flag != 0 && copy_flag != 1) {
 860                ubi_err(ubi, "bad copy_flag");
 861                goto bad;
 862        }
 863
 864        if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
 865            data_pad < 0) {
 866                ubi_err(ubi, "negative values");
 867                goto bad;
 868        }
 869
 870        if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
 871                ubi_err(ubi, "bad vol_id");
 872                goto bad;
 873        }
 874
 875        if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
 876                ubi_err(ubi, "bad compat");
 877                goto bad;
 878        }
 879
 880        if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
 881            compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
 882            compat != UBI_COMPAT_REJECT) {
 883                ubi_err(ubi, "bad compat");
 884                goto bad;
 885        }
 886
 887        if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 888                ubi_err(ubi, "bad vol_type");
 889                goto bad;
 890        }
 891
 892        if (data_pad >= ubi->leb_size / 2) {
 893                ubi_err(ubi, "bad data_pad");
 894                goto bad;
 895        }
 896
 897        if (data_size > ubi->leb_size) {
 898                ubi_err(ubi, "bad data_size");
 899                goto bad;
 900        }
 901
 902        if (vol_type == UBI_VID_STATIC) {
 903                /*
 904                 * Although from high-level point of view static volumes may
 905                 * contain zero bytes of data, but no VID headers can contain
 906                 * zero at these fields, because they empty volumes do not have
 907                 * mapped logical eraseblocks.
 908                 */
 909                if (used_ebs == 0) {
 910                        ubi_err(ubi, "zero used_ebs");
 911                        goto bad;
 912                }
 913                if (data_size == 0) {
 914                        ubi_err(ubi, "zero data_size");
 915                        goto bad;
 916                }
 917                if (lnum < used_ebs - 1) {
 918                        if (data_size != usable_leb_size) {
 919                                ubi_err(ubi, "bad data_size");
 920                                goto bad;
 921                        }
 922                } else if (lnum == used_ebs - 1) {
 923                        if (data_size == 0) {
 924                                ubi_err(ubi, "bad data_size at last LEB");
 925                                goto bad;
 926                        }
 927                } else {
 928                        ubi_err(ubi, "too high lnum");
 929                        goto bad;
 930                }
 931        } else {
 932                if (copy_flag == 0) {
 933                        if (data_crc != 0) {
 934                                ubi_err(ubi, "non-zero data CRC");
 935                                goto bad;
 936                        }
 937                        if (data_size != 0) {
 938                                ubi_err(ubi, "non-zero data_size");
 939                                goto bad;
 940                        }
 941                } else {
 942                        if (data_size == 0) {
 943                                ubi_err(ubi, "zero data_size of copy");
 944                                goto bad;
 945                        }
 946                }
 947                if (used_ebs != 0) {
 948                        ubi_err(ubi, "bad used_ebs");
 949                        goto bad;
 950                }
 951        }
 952
 953        return 0;
 954
 955bad:
 956        ubi_err(ubi, "bad VID header");
 957        ubi_dump_vid_hdr(vid_hdr);
 958        dump_stack();
 959        return 1;
 960}
 961
 962/**
 963 * ubi_io_read_vid_hdr - read and check a volume identifier header.
 964 * @ubi: UBI device description object
 965 * @pnum: physical eraseblock number to read from
 966 * @vidb: the volume identifier buffer to store data in
 967 * @verbose: be verbose if the header is corrupted or wasn't found
 968 *
 969 * This function reads the volume identifier header from physical eraseblock
 970 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
 971 * volume identifier header. The error codes are the same as in
 972 * 'ubi_io_read_ec_hdr()'.
 973 *
 974 * Note, the implementation of this function is also very similar to
 975 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
 976 */
 977int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
 978                        struct ubi_vid_io_buf *vidb, int verbose)
 979{
 980        int err, read_err;
 981        uint32_t crc, magic, hdr_crc;
 982        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
 983        void *p = vidb->buffer;
 984
 985        dbg_io("read VID header from PEB %d", pnum);
 986        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 987
 988        read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
 989                          ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
 990        if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 991                return read_err;
 992
 993        magic = be32_to_cpu(vid_hdr->magic);
 994        if (magic != UBI_VID_HDR_MAGIC) {
 995                if (mtd_is_eccerr(read_err))
 996                        return UBI_IO_BAD_HDR_EBADMSG;
 997
 998                if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
 999                        if (verbose)
1000                                ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1001                                         pnum);
1002                        dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1003                                pnum);
1004                        if (!read_err)
1005                                return UBI_IO_FF;
1006                        else
1007                                return UBI_IO_FF_BITFLIPS;
1008                }
1009
1010                if (verbose) {
1011                        ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1012                                 pnum, magic, UBI_VID_HDR_MAGIC);
1013                        ubi_dump_vid_hdr(vid_hdr);
1014                }
1015                dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1016                        pnum, magic, UBI_VID_HDR_MAGIC);
1017                return UBI_IO_BAD_HDR;
1018        }
1019
1020        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1021        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1022
1023        if (hdr_crc != crc) {
1024                if (verbose) {
1025                        ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1026                                 pnum, crc, hdr_crc);
1027                        ubi_dump_vid_hdr(vid_hdr);
1028                }
1029                dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1030                        pnum, crc, hdr_crc);
1031                if (!read_err)
1032                        return UBI_IO_BAD_HDR;
1033                else
1034                        return UBI_IO_BAD_HDR_EBADMSG;
1035        }
1036
1037        err = validate_vid_hdr(ubi, vid_hdr);
1038        if (err) {
1039                ubi_err(ubi, "validation failed for PEB %d", pnum);
1040                return -EINVAL;
1041        }
1042
1043        return read_err ? UBI_IO_BITFLIPS : 0;
1044}
1045
1046/**
1047 * ubi_io_write_vid_hdr - write a volume identifier header.
1048 * @ubi: UBI device description object
1049 * @pnum: the physical eraseblock number to write to
1050 * @vidb: the volume identifier buffer to write
1051 *
1052 * This function writes the volume identifier header described by @vid_hdr to
1053 * physical eraseblock @pnum. This function automatically fills the
1054 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1055 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1056 *
1057 * This function returns zero in case of success and a negative error code in
1058 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1059 * bad.
1060 */
1061int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1062                         struct ubi_vid_io_buf *vidb)
1063{
1064        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1065        int err;
1066        uint32_t crc;
1067        void *p = vidb->buffer;
1068
1069        dbg_io("write VID header to PEB %d", pnum);
1070        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1071
1072        err = self_check_peb_ec_hdr(ubi, pnum);
1073        if (err)
1074                return err;
1075
1076        vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1077        vid_hdr->version = UBI_VERSION;
1078        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1079        vid_hdr->hdr_crc = cpu_to_be32(crc);
1080
1081        err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1082        if (err)
1083                return err;
1084
1085        if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1086                return -EROFS;
1087
1088        err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1089                           ubi->vid_hdr_alsize);
1090        return err;
1091}
1092
1093/**
1094 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1095 * @ubi: UBI device description object
1096 * @pnum: physical eraseblock number to check
1097 *
1098 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1099 * it is bad and a negative error code if an error occurred.
1100 */
1101static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1102{
1103        int err;
1104
1105        if (!ubi_dbg_chk_io(ubi))
1106                return 0;
1107
1108        err = ubi_io_is_bad(ubi, pnum);
1109        if (!err)
1110                return err;
1111
1112        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1113        dump_stack();
1114        return err > 0 ? -EINVAL : err;
1115}
1116
1117/**
1118 * self_check_ec_hdr - check if an erase counter header is all right.
1119 * @ubi: UBI device description object
1120 * @pnum: physical eraseblock number the erase counter header belongs to
1121 * @ec_hdr: the erase counter header to check
1122 *
1123 * This function returns zero if the erase counter header contains valid
1124 * values, and %-EINVAL if not.
1125 */
1126static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1127                             const struct ubi_ec_hdr *ec_hdr)
1128{
1129        int err;
1130        uint32_t magic;
1131
1132        if (!ubi_dbg_chk_io(ubi))
1133                return 0;
1134
1135        magic = be32_to_cpu(ec_hdr->magic);
1136        if (magic != UBI_EC_HDR_MAGIC) {
1137                ubi_err(ubi, "bad magic %#08x, must be %#08x",
1138                        magic, UBI_EC_HDR_MAGIC);
1139                goto fail;
1140        }
1141
1142        err = validate_ec_hdr(ubi, ec_hdr);
1143        if (err) {
1144                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1145                goto fail;
1146        }
1147
1148        return 0;
1149
1150fail:
1151        ubi_dump_ec_hdr(ec_hdr);
1152        dump_stack();
1153        return -EINVAL;
1154}
1155
1156/**
1157 * self_check_peb_ec_hdr - check erase counter header.
1158 * @ubi: UBI device description object
1159 * @pnum: the physical eraseblock number to check
1160 *
1161 * This function returns zero if the erase counter header is all right and and
1162 * a negative error code if not or if an error occurred.
1163 */
1164static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1165{
1166        int err;
1167        uint32_t crc, hdr_crc;
1168        struct ubi_ec_hdr *ec_hdr;
1169
1170        if (!ubi_dbg_chk_io(ubi))
1171                return 0;
1172
1173        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1174        if (!ec_hdr)
1175                return -ENOMEM;
1176
1177        err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1178        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1179                goto exit;
1180
1181        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1182        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1183        if (hdr_crc != crc) {
1184                ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1185                        crc, hdr_crc);
1186                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1187                ubi_dump_ec_hdr(ec_hdr);
1188                dump_stack();
1189                err = -EINVAL;
1190                goto exit;
1191        }
1192
1193        err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1194
1195exit:
1196        kfree(ec_hdr);
1197        return err;
1198}
1199
1200/**
1201 * self_check_vid_hdr - check that a volume identifier header is all right.
1202 * @ubi: UBI device description object
1203 * @pnum: physical eraseblock number the volume identifier header belongs to
1204 * @vid_hdr: the volume identifier header to check
1205 *
1206 * This function returns zero if the volume identifier header is all right, and
1207 * %-EINVAL if not.
1208 */
1209static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1210                              const struct ubi_vid_hdr *vid_hdr)
1211{
1212        int err;
1213        uint32_t magic;
1214
1215        if (!ubi_dbg_chk_io(ubi))
1216                return 0;
1217
1218        magic = be32_to_cpu(vid_hdr->magic);
1219        if (magic != UBI_VID_HDR_MAGIC) {
1220                ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1221                        magic, pnum, UBI_VID_HDR_MAGIC);
1222                goto fail;
1223        }
1224
1225        err = validate_vid_hdr(ubi, vid_hdr);
1226        if (err) {
1227                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1228                goto fail;
1229        }
1230
1231        return err;
1232
1233fail:
1234        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1235        ubi_dump_vid_hdr(vid_hdr);
1236        dump_stack();
1237        return -EINVAL;
1238
1239}
1240
1241/**
1242 * self_check_peb_vid_hdr - check volume identifier header.
1243 * @ubi: UBI device description object
1244 * @pnum: the physical eraseblock number to check
1245 *
1246 * This function returns zero if the volume identifier header is all right,
1247 * and a negative error code if not or if an error occurred.
1248 */
1249static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1250{
1251        int err;
1252        uint32_t crc, hdr_crc;
1253        struct ubi_vid_io_buf *vidb;
1254        struct ubi_vid_hdr *vid_hdr;
1255        void *p;
1256
1257        if (!ubi_dbg_chk_io(ubi))
1258                return 0;
1259
1260        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1261        if (!vidb)
1262                return -ENOMEM;
1263
1264        vid_hdr = ubi_get_vid_hdr(vidb);
1265        p = vidb->buffer;
1266        err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1267                          ubi->vid_hdr_alsize);
1268        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1269                goto exit;
1270
1271        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1272        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1273        if (hdr_crc != crc) {
1274                ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1275                        pnum, crc, hdr_crc);
1276                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1277                ubi_dump_vid_hdr(vid_hdr);
1278                dump_stack();
1279                err = -EINVAL;
1280                goto exit;
1281        }
1282
1283        err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1284
1285exit:
1286        ubi_free_vid_buf(vidb);
1287        return err;
1288}
1289
1290/**
1291 * self_check_write - make sure write succeeded.
1292 * @ubi: UBI device description object
1293 * @buf: buffer with data which were written
1294 * @pnum: physical eraseblock number the data were written to
1295 * @offset: offset within the physical eraseblock the data were written to
1296 * @len: how many bytes were written
1297 *
1298 * This functions reads data which were recently written and compares it with
1299 * the original data buffer - the data have to match. Returns zero if the data
1300 * match and a negative error code if not or in case of failure.
1301 */
1302static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1303                            int offset, int len)
1304{
1305        int err, i;
1306        size_t read;
1307        void *buf1;
1308        loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1309
1310        if (!ubi_dbg_chk_io(ubi))
1311                return 0;
1312
1313        buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1314        if (!buf1) {
1315                ubi_err(ubi, "cannot allocate memory to check writes");
1316                return 0;
1317        }
1318
1319        err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1320        if (err && !mtd_is_bitflip(err))
1321                goto out_free;
1322
1323        for (i = 0; i < len; i++) {
1324                uint8_t c = ((uint8_t *)buf)[i];
1325                uint8_t c1 = ((uint8_t *)buf1)[i];
1326                int dump_len;
1327
1328                if (c == c1)
1329                        continue;
1330
1331                ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1332                        pnum, offset, len);
1333                ubi_msg(ubi, "data differ at position %d", i);
1334                dump_len = max_t(int, 128, len - i);
1335                ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1336                        i, i + dump_len);
1337                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1338                               buf + i, dump_len, 1);
1339                ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1340                        i, i + dump_len);
1341                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1342                               buf1 + i, dump_len, 1);
1343                dump_stack();
1344                err = -EINVAL;
1345                goto out_free;
1346        }
1347
1348        vfree(buf1);
1349        return 0;
1350
1351out_free:
1352        vfree(buf1);
1353        return err;
1354}
1355
1356/**
1357 * ubi_self_check_all_ff - check that a region of flash is empty.
1358 * @ubi: UBI device description object
1359 * @pnum: the physical eraseblock number to check
1360 * @offset: the starting offset within the physical eraseblock to check
1361 * @len: the length of the region to check
1362 *
1363 * This function returns zero if only 0xFF bytes are present at offset
1364 * @offset of the physical eraseblock @pnum, and a negative error code if not
1365 * or if an error occurred.
1366 */
1367int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1368{
1369        size_t read;
1370        int err;
1371        void *buf;
1372        loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1373
1374        if (!ubi_dbg_chk_io(ubi))
1375                return 0;
1376
1377        buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1378        if (!buf) {
1379                ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1380                return 0;
1381        }
1382
1383        err = mtd_read(ubi->mtd, addr, len, &read, buf);
1384        if (err && !mtd_is_bitflip(err)) {
1385                ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1386                        err, len, pnum, offset, read);
1387                goto error;
1388        }
1389
1390        err = ubi_check_pattern(buf, 0xFF, len);
1391        if (err == 0) {
1392                ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1393                        pnum, offset, len);
1394                goto fail;
1395        }
1396
1397        vfree(buf);
1398        return 0;
1399
1400fail:
1401        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1402        ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1403        print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1404        err = -EINVAL;
1405error:
1406        dump_stack();
1407        vfree(buf);
1408        return err;
1409}
1410