linux/drivers/net/ethernet/sfc/falcon/farch.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "io.h"
  24#include "workarounds.h"
  25
  26/* Falcon-architecture (SFC4000) support */
  27
  28/**************************************************************************
  29 *
  30 * Configurable values
  31 *
  32 **************************************************************************
  33 */
  34
  35/* This is set to 16 for a good reason.  In summary, if larger than
  36 * 16, the descriptor cache holds more than a default socket
  37 * buffer's worth of packets (for UDP we can only have at most one
  38 * socket buffer's worth outstanding).  This combined with the fact
  39 * that we only get 1 TX event per descriptor cache means the NIC
  40 * goes idle.
  41 */
  42#define TX_DC_ENTRIES 16
  43#define TX_DC_ENTRIES_ORDER 1
  44
  45#define RX_DC_ENTRIES 64
  46#define RX_DC_ENTRIES_ORDER 3
  47
  48/* If EF4_MAX_INT_ERRORS internal errors occur within
  49 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  50 * disable it.
  51 */
  52#define EF4_INT_ERROR_EXPIRE 3600
  53#define EF4_MAX_INT_ERRORS 5
  54
  55/* Depth of RX flush request fifo */
  56#define EF4_RX_FLUSH_COUNT 4
  57
  58/* Driver generated events */
  59#define _EF4_CHANNEL_MAGIC_TEST         0x000101
  60#define _EF4_CHANNEL_MAGIC_FILL         0x000102
  61#define _EF4_CHANNEL_MAGIC_RX_DRAIN     0x000103
  62#define _EF4_CHANNEL_MAGIC_TX_DRAIN     0x000104
  63
  64#define _EF4_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  65#define _EF4_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  66
  67#define EF4_CHANNEL_MAGIC_TEST(_channel)                                \
  68        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
  69#define EF4_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  70        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,                     \
  71                           ef4_rx_queue_index(_rx_queue))
  72#define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  73        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,                 \
  74                           ef4_rx_queue_index(_rx_queue))
  75#define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  76        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,                 \
  77                           (_tx_queue)->queue)
  78
  79static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
  80
  81/**************************************************************************
  82 *
  83 * Hardware access
  84 *
  85 **************************************************************************/
  86
  87static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
  88                                     unsigned int index)
  89{
  90        ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  91                        value, index);
  92}
  93
  94static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
  95                                     const ef4_oword_t *mask)
  96{
  97        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  98                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  99}
 100
 101int ef4_farch_test_registers(struct ef4_nic *efx,
 102                             const struct ef4_farch_register_test *regs,
 103                             size_t n_regs)
 104{
 105        unsigned address = 0;
 106        int i, j;
 107        ef4_oword_t mask, imask, original, reg, buf;
 108
 109        for (i = 0; i < n_regs; ++i) {
 110                address = regs[i].address;
 111                mask = imask = regs[i].mask;
 112                EF4_INVERT_OWORD(imask);
 113
 114                ef4_reado(efx, &original, address);
 115
 116                /* bit sweep on and off */
 117                for (j = 0; j < 128; j++) {
 118                        if (!EF4_EXTRACT_OWORD32(mask, j, j))
 119                                continue;
 120
 121                        /* Test this testable bit can be set in isolation */
 122                        EF4_AND_OWORD(reg, original, mask);
 123                        EF4_SET_OWORD32(reg, j, j, 1);
 124
 125                        ef4_writeo(efx, &reg, address);
 126                        ef4_reado(efx, &buf, address);
 127
 128                        if (ef4_masked_compare_oword(&reg, &buf, &mask))
 129                                goto fail;
 130
 131                        /* Test this testable bit can be cleared in isolation */
 132                        EF4_OR_OWORD(reg, original, mask);
 133                        EF4_SET_OWORD32(reg, j, j, 0);
 134
 135                        ef4_writeo(efx, &reg, address);
 136                        ef4_reado(efx, &buf, address);
 137
 138                        if (ef4_masked_compare_oword(&reg, &buf, &mask))
 139                                goto fail;
 140                }
 141
 142                ef4_writeo(efx, &original, address);
 143        }
 144
 145        return 0;
 146
 147fail:
 148        netif_err(efx, hw, efx->net_dev,
 149                  "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
 150                  " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
 151                  EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
 152        return -EIO;
 153}
 154
 155/**************************************************************************
 156 *
 157 * Special buffer handling
 158 * Special buffers are used for event queues and the TX and RX
 159 * descriptor rings.
 160 *
 161 *************************************************************************/
 162
 163/*
 164 * Initialise a special buffer
 165 *
 166 * This will define a buffer (previously allocated via
 167 * ef4_alloc_special_buffer()) in the buffer table, allowing
 168 * it to be used for event queues, descriptor rings etc.
 169 */
 170static void
 171ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 172{
 173        ef4_qword_t buf_desc;
 174        unsigned int index;
 175        dma_addr_t dma_addr;
 176        int i;
 177
 178        EF4_BUG_ON_PARANOID(!buffer->buf.addr);
 179
 180        /* Write buffer descriptors to NIC */
 181        for (i = 0; i < buffer->entries; i++) {
 182                index = buffer->index + i;
 183                dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
 184                netif_dbg(efx, probe, efx->net_dev,
 185                          "mapping special buffer %d at %llx\n",
 186                          index, (unsigned long long)dma_addr);
 187                EF4_POPULATE_QWORD_3(buf_desc,
 188                                     FRF_AZ_BUF_ADR_REGION, 0,
 189                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 190                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 191                ef4_write_buf_tbl(efx, &buf_desc, index);
 192        }
 193}
 194
 195/* Unmaps a buffer and clears the buffer table entries */
 196static void
 197ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 198{
 199        ef4_oword_t buf_tbl_upd;
 200        unsigned int start = buffer->index;
 201        unsigned int end = (buffer->index + buffer->entries - 1);
 202
 203        if (!buffer->entries)
 204                return;
 205
 206        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 207                  buffer->index, buffer->index + buffer->entries - 1);
 208
 209        EF4_POPULATE_OWORD_4(buf_tbl_upd,
 210                             FRF_AZ_BUF_UPD_CMD, 0,
 211                             FRF_AZ_BUF_CLR_CMD, 1,
 212                             FRF_AZ_BUF_CLR_END_ID, end,
 213                             FRF_AZ_BUF_CLR_START_ID, start);
 214        ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 215}
 216
 217/*
 218 * Allocate a new special buffer
 219 *
 220 * This allocates memory for a new buffer, clears it and allocates a
 221 * new buffer ID range.  It does not write into the buffer table.
 222 *
 223 * This call will allocate 4KB buffers, since 8KB buffers can't be
 224 * used for event queues and descriptor rings.
 225 */
 226static int ef4_alloc_special_buffer(struct ef4_nic *efx,
 227                                    struct ef4_special_buffer *buffer,
 228                                    unsigned int len)
 229{
 230        len = ALIGN(len, EF4_BUF_SIZE);
 231
 232        if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 233                return -ENOMEM;
 234        buffer->entries = len / EF4_BUF_SIZE;
 235        BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
 236
 237        /* Select new buffer ID */
 238        buffer->index = efx->next_buffer_table;
 239        efx->next_buffer_table += buffer->entries;
 240
 241        netif_dbg(efx, probe, efx->net_dev,
 242                  "allocating special buffers %d-%d at %llx+%x "
 243                  "(virt %p phys %llx)\n", buffer->index,
 244                  buffer->index + buffer->entries - 1,
 245                  (u64)buffer->buf.dma_addr, len,
 246                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 247
 248        return 0;
 249}
 250
 251static void
 252ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 253{
 254        if (!buffer->buf.addr)
 255                return;
 256
 257        netif_dbg(efx, hw, efx->net_dev,
 258                  "deallocating special buffers %d-%d at %llx+%x "
 259                  "(virt %p phys %llx)\n", buffer->index,
 260                  buffer->index + buffer->entries - 1,
 261                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 262                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 263
 264        ef4_nic_free_buffer(efx, &buffer->buf);
 265        buffer->entries = 0;
 266}
 267
 268/**************************************************************************
 269 *
 270 * TX path
 271 *
 272 **************************************************************************/
 273
 274/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 275static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
 276{
 277        unsigned write_ptr;
 278        ef4_dword_t reg;
 279
 280        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 281        EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 282        ef4_writed_page(tx_queue->efx, &reg,
 283                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 284}
 285
 286/* Write pointer and first descriptor for TX descriptor ring */
 287static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
 288                                          const ef4_qword_t *txd)
 289{
 290        unsigned write_ptr;
 291        ef4_oword_t reg;
 292
 293        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 294        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 295
 296        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 297        EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 298                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 299        reg.qword[0] = *txd;
 300        ef4_writeo_page(tx_queue->efx, &reg,
 301                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 302}
 303
 304
 305/* For each entry inserted into the software descriptor ring, create a
 306 * descriptor in the hardware TX descriptor ring (in host memory), and
 307 * write a doorbell.
 308 */
 309void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
 310{
 311        struct ef4_tx_buffer *buffer;
 312        ef4_qword_t *txd;
 313        unsigned write_ptr;
 314        unsigned old_write_count = tx_queue->write_count;
 315
 316        tx_queue->xmit_more_available = false;
 317        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 318                return;
 319
 320        do {
 321                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 322                buffer = &tx_queue->buffer[write_ptr];
 323                txd = ef4_tx_desc(tx_queue, write_ptr);
 324                ++tx_queue->write_count;
 325
 326                EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
 327
 328                /* Create TX descriptor ring entry */
 329                BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
 330                EF4_POPULATE_QWORD_4(*txd,
 331                                     FSF_AZ_TX_KER_CONT,
 332                                     buffer->flags & EF4_TX_BUF_CONT,
 333                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 334                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 335                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 336        } while (tx_queue->write_count != tx_queue->insert_count);
 337
 338        wmb(); /* Ensure descriptors are written before they are fetched */
 339
 340        if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 341                txd = ef4_tx_desc(tx_queue,
 342                                  old_write_count & tx_queue->ptr_mask);
 343                ef4_farch_push_tx_desc(tx_queue, txd);
 344                ++tx_queue->pushes;
 345        } else {
 346                ef4_farch_notify_tx_desc(tx_queue);
 347        }
 348}
 349
 350unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 351                                    dma_addr_t dma_addr, unsigned int len)
 352{
 353        /* Don't cross 4K boundaries with descriptors. */
 354        unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
 355
 356        len = min(limit, len);
 357
 358        if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
 359                len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
 360
 361        return len;
 362}
 363
 364
 365/* Allocate hardware resources for a TX queue */
 366int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
 367{
 368        struct ef4_nic *efx = tx_queue->efx;
 369        unsigned entries;
 370
 371        entries = tx_queue->ptr_mask + 1;
 372        return ef4_alloc_special_buffer(efx, &tx_queue->txd,
 373                                        entries * sizeof(ef4_qword_t));
 374}
 375
 376void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
 377{
 378        struct ef4_nic *efx = tx_queue->efx;
 379        ef4_oword_t reg;
 380
 381        /* Pin TX descriptor ring */
 382        ef4_init_special_buffer(efx, &tx_queue->txd);
 383
 384        /* Push TX descriptor ring to card */
 385        EF4_POPULATE_OWORD_10(reg,
 386                              FRF_AZ_TX_DESCQ_EN, 1,
 387                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 388                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 389                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 390                              FRF_AZ_TX_DESCQ_EVQ_ID,
 391                              tx_queue->channel->channel,
 392                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 393                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 394                              FRF_AZ_TX_DESCQ_SIZE,
 395                              __ffs(tx_queue->txd.entries),
 396                              FRF_AZ_TX_DESCQ_TYPE, 0,
 397                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 398
 399        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 400                int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
 401                EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 402                EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 403                                    !csum);
 404        }
 405
 406        ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 407                         tx_queue->queue);
 408
 409        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
 410                /* Only 128 bits in this register */
 411                BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
 412
 413                ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 414                if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
 415                        __clear_bit_le(tx_queue->queue, &reg);
 416                else
 417                        __set_bit_le(tx_queue->queue, &reg);
 418                ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 419        }
 420
 421        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 422                EF4_POPULATE_OWORD_1(reg,
 423                                     FRF_BZ_TX_PACE,
 424                                     (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
 425                                     FFE_BZ_TX_PACE_OFF :
 426                                     FFE_BZ_TX_PACE_RESERVED);
 427                ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 428                                 tx_queue->queue);
 429        }
 430}
 431
 432static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
 433{
 434        struct ef4_nic *efx = tx_queue->efx;
 435        ef4_oword_t tx_flush_descq;
 436
 437        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 438        atomic_set(&tx_queue->flush_outstanding, 1);
 439
 440        EF4_POPULATE_OWORD_2(tx_flush_descq,
 441                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 442                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 443        ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 444}
 445
 446void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
 447{
 448        struct ef4_nic *efx = tx_queue->efx;
 449        ef4_oword_t tx_desc_ptr;
 450
 451        /* Remove TX descriptor ring from card */
 452        EF4_ZERO_OWORD(tx_desc_ptr);
 453        ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 454                         tx_queue->queue);
 455
 456        /* Unpin TX descriptor ring */
 457        ef4_fini_special_buffer(efx, &tx_queue->txd);
 458}
 459
 460/* Free buffers backing TX queue */
 461void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
 462{
 463        ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 464}
 465
 466/**************************************************************************
 467 *
 468 * RX path
 469 *
 470 **************************************************************************/
 471
 472/* This creates an entry in the RX descriptor queue */
 473static inline void
 474ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
 475{
 476        struct ef4_rx_buffer *rx_buf;
 477        ef4_qword_t *rxd;
 478
 479        rxd = ef4_rx_desc(rx_queue, index);
 480        rx_buf = ef4_rx_buffer(rx_queue, index);
 481        EF4_POPULATE_QWORD_3(*rxd,
 482                             FSF_AZ_RX_KER_BUF_SIZE,
 483                             rx_buf->len -
 484                             rx_queue->efx->type->rx_buffer_padding,
 485                             FSF_AZ_RX_KER_BUF_REGION, 0,
 486                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 487}
 488
 489/* This writes to the RX_DESC_WPTR register for the specified receive
 490 * descriptor ring.
 491 */
 492void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
 493{
 494        struct ef4_nic *efx = rx_queue->efx;
 495        ef4_dword_t reg;
 496        unsigned write_ptr;
 497
 498        while (rx_queue->notified_count != rx_queue->added_count) {
 499                ef4_farch_build_rx_desc(
 500                        rx_queue,
 501                        rx_queue->notified_count & rx_queue->ptr_mask);
 502                ++rx_queue->notified_count;
 503        }
 504
 505        wmb();
 506        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 507        EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 508        ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 509                        ef4_rx_queue_index(rx_queue));
 510}
 511
 512int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
 513{
 514        struct ef4_nic *efx = rx_queue->efx;
 515        unsigned entries;
 516
 517        entries = rx_queue->ptr_mask + 1;
 518        return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
 519                                        entries * sizeof(ef4_qword_t));
 520}
 521
 522void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
 523{
 524        ef4_oword_t rx_desc_ptr;
 525        struct ef4_nic *efx = rx_queue->efx;
 526        bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
 527        bool iscsi_digest_en = is_b0;
 528        bool jumbo_en;
 529
 530        /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 531         * DMA to continue after a PCIe page boundary (and scattering
 532         * is not possible).  In Falcon B0 and Siena, it enables
 533         * scatter.
 534         */
 535        jumbo_en = !is_b0 || efx->rx_scatter;
 536
 537        netif_dbg(efx, hw, efx->net_dev,
 538                  "RX queue %d ring in special buffers %d-%d\n",
 539                  ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
 540                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 541
 542        rx_queue->scatter_n = 0;
 543
 544        /* Pin RX descriptor ring */
 545        ef4_init_special_buffer(efx, &rx_queue->rxd);
 546
 547        /* Push RX descriptor ring to card */
 548        EF4_POPULATE_OWORD_10(rx_desc_ptr,
 549                              FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 550                              FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 551                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 552                              FRF_AZ_RX_DESCQ_EVQ_ID,
 553                              ef4_rx_queue_channel(rx_queue)->channel,
 554                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 555                              FRF_AZ_RX_DESCQ_LABEL,
 556                              ef4_rx_queue_index(rx_queue),
 557                              FRF_AZ_RX_DESCQ_SIZE,
 558                              __ffs(rx_queue->rxd.entries),
 559                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 560                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 561                              FRF_AZ_RX_DESCQ_EN, 1);
 562        ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 563                         ef4_rx_queue_index(rx_queue));
 564}
 565
 566static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
 567{
 568        struct ef4_nic *efx = rx_queue->efx;
 569        ef4_oword_t rx_flush_descq;
 570
 571        EF4_POPULATE_OWORD_2(rx_flush_descq,
 572                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 573                             FRF_AZ_RX_FLUSH_DESCQ,
 574                             ef4_rx_queue_index(rx_queue));
 575        ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 576}
 577
 578void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
 579{
 580        ef4_oword_t rx_desc_ptr;
 581        struct ef4_nic *efx = rx_queue->efx;
 582
 583        /* Remove RX descriptor ring from card */
 584        EF4_ZERO_OWORD(rx_desc_ptr);
 585        ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 586                         ef4_rx_queue_index(rx_queue));
 587
 588        /* Unpin RX descriptor ring */
 589        ef4_fini_special_buffer(efx, &rx_queue->rxd);
 590}
 591
 592/* Free buffers backing RX queue */
 593void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
 594{
 595        ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 596}
 597
 598/**************************************************************************
 599 *
 600 * Flush handling
 601 *
 602 **************************************************************************/
 603
 604/* ef4_farch_flush_queues() must be woken up when all flushes are completed,
 605 * or more RX flushes can be kicked off.
 606 */
 607static bool ef4_farch_flush_wake(struct ef4_nic *efx)
 608{
 609        /* Ensure that all updates are visible to ef4_farch_flush_queues() */
 610        smp_mb();
 611
 612        return (atomic_read(&efx->active_queues) == 0 ||
 613                (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
 614                 && atomic_read(&efx->rxq_flush_pending) > 0));
 615}
 616
 617static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
 618{
 619        bool i = true;
 620        ef4_oword_t txd_ptr_tbl;
 621        struct ef4_channel *channel;
 622        struct ef4_tx_queue *tx_queue;
 623
 624        ef4_for_each_channel(channel, efx) {
 625                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 626                        ef4_reado_table(efx, &txd_ptr_tbl,
 627                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 628                        if (EF4_OWORD_FIELD(txd_ptr_tbl,
 629                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 630                            EF4_OWORD_FIELD(txd_ptr_tbl,
 631                                            FRF_AZ_TX_DESCQ_EN)) {
 632                                netif_dbg(efx, hw, efx->net_dev,
 633                                          "flush did not complete on TXQ %d\n",
 634                                          tx_queue->queue);
 635                                i = false;
 636                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 637                                                  1, 0)) {
 638                                /* The flush is complete, but we didn't
 639                                 * receive a flush completion event
 640                                 */
 641                                netif_dbg(efx, hw, efx->net_dev,
 642                                          "flush complete on TXQ %d, so drain "
 643                                          "the queue\n", tx_queue->queue);
 644                                /* Don't need to increment active_queues as it
 645                                 * has already been incremented for the queues
 646                                 * which did not drain
 647                                 */
 648                                ef4_farch_magic_event(channel,
 649                                                      EF4_CHANNEL_MAGIC_TX_DRAIN(
 650                                                              tx_queue));
 651                        }
 652                }
 653        }
 654
 655        return i;
 656}
 657
 658/* Flush all the transmit queues, and continue flushing receive queues until
 659 * they're all flushed. Wait for the DRAIN events to be received so that there
 660 * are no more RX and TX events left on any channel. */
 661static int ef4_farch_do_flush(struct ef4_nic *efx)
 662{
 663        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 664        struct ef4_channel *channel;
 665        struct ef4_rx_queue *rx_queue;
 666        struct ef4_tx_queue *tx_queue;
 667        int rc = 0;
 668
 669        ef4_for_each_channel(channel, efx) {
 670                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 671                        ef4_farch_flush_tx_queue(tx_queue);
 672                }
 673                ef4_for_each_channel_rx_queue(rx_queue, channel) {
 674                        rx_queue->flush_pending = true;
 675                        atomic_inc(&efx->rxq_flush_pending);
 676                }
 677        }
 678
 679        while (timeout && atomic_read(&efx->active_queues) > 0) {
 680                /* The hardware supports four concurrent rx flushes, each of
 681                 * which may need to be retried if there is an outstanding
 682                 * descriptor fetch
 683                 */
 684                ef4_for_each_channel(channel, efx) {
 685                        ef4_for_each_channel_rx_queue(rx_queue, channel) {
 686                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 687                                    EF4_RX_FLUSH_COUNT)
 688                                        break;
 689
 690                                if (rx_queue->flush_pending) {
 691                                        rx_queue->flush_pending = false;
 692                                        atomic_dec(&efx->rxq_flush_pending);
 693                                        atomic_inc(&efx->rxq_flush_outstanding);
 694                                        ef4_farch_flush_rx_queue(rx_queue);
 695                                }
 696                        }
 697                }
 698
 699                timeout = wait_event_timeout(efx->flush_wq,
 700                                             ef4_farch_flush_wake(efx),
 701                                             timeout);
 702        }
 703
 704        if (atomic_read(&efx->active_queues) &&
 705            !ef4_check_tx_flush_complete(efx)) {
 706                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 707                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 708                          atomic_read(&efx->rxq_flush_outstanding),
 709                          atomic_read(&efx->rxq_flush_pending));
 710                rc = -ETIMEDOUT;
 711
 712                atomic_set(&efx->active_queues, 0);
 713                atomic_set(&efx->rxq_flush_pending, 0);
 714                atomic_set(&efx->rxq_flush_outstanding, 0);
 715        }
 716
 717        return rc;
 718}
 719
 720int ef4_farch_fini_dmaq(struct ef4_nic *efx)
 721{
 722        struct ef4_channel *channel;
 723        struct ef4_tx_queue *tx_queue;
 724        struct ef4_rx_queue *rx_queue;
 725        int rc = 0;
 726
 727        /* Do not attempt to write to the NIC during EEH recovery */
 728        if (efx->state != STATE_RECOVERY) {
 729                /* Only perform flush if DMA is enabled */
 730                if (efx->pci_dev->is_busmaster) {
 731                        efx->type->prepare_flush(efx);
 732                        rc = ef4_farch_do_flush(efx);
 733                        efx->type->finish_flush(efx);
 734                }
 735
 736                ef4_for_each_channel(channel, efx) {
 737                        ef4_for_each_channel_rx_queue(rx_queue, channel)
 738                                ef4_farch_rx_fini(rx_queue);
 739                        ef4_for_each_channel_tx_queue(tx_queue, channel)
 740                                ef4_farch_tx_fini(tx_queue);
 741                }
 742        }
 743
 744        return rc;
 745}
 746
 747/* Reset queue and flush accounting after FLR
 748 *
 749 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 750 * mastering was disabled), in which case we don't receive (RXQ) flush
 751 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 752 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 753 * events were received, and we didn't go through ef4_check_tx_flush_complete())
 754 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
 755 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 756 * for batched flush requests; and the efx->active_queues gets messed up because
 757 * we keep incrementing for the newly initialised queues, but it never went to
 758 * zero previously.  Then we get a timeout every time we try to restart the
 759 * queues, as it doesn't go back to zero when we should be flushing the queues.
 760 */
 761void ef4_farch_finish_flr(struct ef4_nic *efx)
 762{
 763        atomic_set(&efx->rxq_flush_pending, 0);
 764        atomic_set(&efx->rxq_flush_outstanding, 0);
 765        atomic_set(&efx->active_queues, 0);
 766}
 767
 768
 769/**************************************************************************
 770 *
 771 * Event queue processing
 772 * Event queues are processed by per-channel tasklets.
 773 *
 774 **************************************************************************/
 775
 776/* Update a channel's event queue's read pointer (RPTR) register
 777 *
 778 * This writes the EVQ_RPTR_REG register for the specified channel's
 779 * event queue.
 780 */
 781void ef4_farch_ev_read_ack(struct ef4_channel *channel)
 782{
 783        ef4_dword_t reg;
 784        struct ef4_nic *efx = channel->efx;
 785
 786        EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 787                             channel->eventq_read_ptr & channel->eventq_mask);
 788
 789        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 790         * of 4 bytes, but it is really 16 bytes just like later revisions.
 791         */
 792        ef4_writed(efx, &reg,
 793                   efx->type->evq_rptr_tbl_base +
 794                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 795}
 796
 797/* Use HW to insert a SW defined event */
 798void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 799                              ef4_qword_t *event)
 800{
 801        ef4_oword_t drv_ev_reg;
 802
 803        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 804                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 805        drv_ev_reg.u32[0] = event->u32[0];
 806        drv_ev_reg.u32[1] = event->u32[1];
 807        drv_ev_reg.u32[2] = 0;
 808        drv_ev_reg.u32[3] = 0;
 809        EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 810        ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 811}
 812
 813static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
 814{
 815        ef4_qword_t event;
 816
 817        EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 818                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 819                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 820        ef4_farch_generate_event(channel->efx, channel->channel, &event);
 821}
 822
 823/* Handle a transmit completion event
 824 *
 825 * The NIC batches TX completion events; the message we receive is of
 826 * the form "complete all TX events up to this index".
 827 */
 828static int
 829ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
 830{
 831        unsigned int tx_ev_desc_ptr;
 832        unsigned int tx_ev_q_label;
 833        struct ef4_tx_queue *tx_queue;
 834        struct ef4_nic *efx = channel->efx;
 835        int tx_packets = 0;
 836
 837        if (unlikely(READ_ONCE(efx->reset_pending)))
 838                return 0;
 839
 840        if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 841                /* Transmit completion */
 842                tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 843                tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 844                tx_queue = ef4_channel_get_tx_queue(
 845                        channel, tx_ev_q_label % EF4_TXQ_TYPES);
 846                tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 847                              tx_queue->ptr_mask);
 848                ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
 849        } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 850                /* Rewrite the FIFO write pointer */
 851                tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 852                tx_queue = ef4_channel_get_tx_queue(
 853                        channel, tx_ev_q_label % EF4_TXQ_TYPES);
 854
 855                netif_tx_lock(efx->net_dev);
 856                ef4_farch_notify_tx_desc(tx_queue);
 857                netif_tx_unlock(efx->net_dev);
 858        } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 859                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 860        } else {
 861                netif_err(efx, tx_err, efx->net_dev,
 862                          "channel %d unexpected TX event "
 863                          EF4_QWORD_FMT"\n", channel->channel,
 864                          EF4_QWORD_VAL(*event));
 865        }
 866
 867        return tx_packets;
 868}
 869
 870/* Detect errors included in the rx_evt_pkt_ok bit. */
 871static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
 872                                      const ef4_qword_t *event)
 873{
 874        struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 875        struct ef4_nic *efx = rx_queue->efx;
 876        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 877        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 878        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 879        bool rx_ev_other_err, rx_ev_pause_frm;
 880        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 881        unsigned rx_ev_pkt_type;
 882
 883        rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 884        rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 885        rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 886        rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 887        rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
 888                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 889        rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
 890                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 891        rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
 892                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 893        rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 894        rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 895        rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
 896                          0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 897        rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 898
 899        /* Every error apart from tobe_disc and pause_frm */
 900        rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 901                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 902                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 903
 904        /* Count errors that are not in MAC stats.  Ignore expected
 905         * checksum errors during self-test. */
 906        if (rx_ev_frm_trunc)
 907                ++channel->n_rx_frm_trunc;
 908        else if (rx_ev_tobe_disc)
 909                ++channel->n_rx_tobe_disc;
 910        else if (!efx->loopback_selftest) {
 911                if (rx_ev_ip_hdr_chksum_err)
 912                        ++channel->n_rx_ip_hdr_chksum_err;
 913                else if (rx_ev_tcp_udp_chksum_err)
 914                        ++channel->n_rx_tcp_udp_chksum_err;
 915        }
 916
 917        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 918         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 919         * to a FIFO overflow.
 920         */
 921#ifdef DEBUG
 922        if (rx_ev_other_err && net_ratelimit()) {
 923                netif_dbg(efx, rx_err, efx->net_dev,
 924                          " RX queue %d unexpected RX event "
 925                          EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 926                          ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
 927                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 928                          rx_ev_ip_hdr_chksum_err ?
 929                          " [IP_HDR_CHKSUM_ERR]" : "",
 930                          rx_ev_tcp_udp_chksum_err ?
 931                          " [TCP_UDP_CHKSUM_ERR]" : "",
 932                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 933                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 934                          rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 935                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 936                          rx_ev_pause_frm ? " [PAUSE]" : "");
 937        }
 938#endif
 939
 940        /* The frame must be discarded if any of these are true. */
 941        return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 942                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 943                EF4_RX_PKT_DISCARD : 0;
 944}
 945
 946/* Handle receive events that are not in-order. Return true if this
 947 * can be handled as a partial packet discard, false if it's more
 948 * serious.
 949 */
 950static bool
 951ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
 952{
 953        struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 954        struct ef4_nic *efx = rx_queue->efx;
 955        unsigned expected, dropped;
 956
 957        if (rx_queue->scatter_n &&
 958            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 959                      rx_queue->ptr_mask)) {
 960                ++channel->n_rx_nodesc_trunc;
 961                return true;
 962        }
 963
 964        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 965        dropped = (index - expected) & rx_queue->ptr_mask;
 966        netif_info(efx, rx_err, efx->net_dev,
 967                   "dropped %d events (index=%d expected=%d)\n",
 968                   dropped, index, expected);
 969
 970        ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
 971                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 972        return false;
 973}
 974
 975/* Handle a packet received event
 976 *
 977 * The NIC gives a "discard" flag if it's a unicast packet with the
 978 * wrong destination address
 979 * Also "is multicast" and "matches multicast filter" flags can be used to
 980 * discard non-matching multicast packets.
 981 */
 982static void
 983ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
 984{
 985        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 986        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 987        unsigned expected_ptr;
 988        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 989        u16 flags;
 990        struct ef4_rx_queue *rx_queue;
 991        struct ef4_nic *efx = channel->efx;
 992
 993        if (unlikely(READ_ONCE(efx->reset_pending)))
 994                return;
 995
 996        rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 997        rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 998        WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 999                channel->channel);
1000
1001        rx_queue = ef4_channel_get_rx_queue(channel);
1002
1003        rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1004        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1005                        rx_queue->ptr_mask);
1006
1007        /* Check for partial drops and other errors */
1008        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1009            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1010                if (rx_ev_desc_ptr != expected_ptr &&
1011                    !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1012                        return;
1013
1014                /* Discard all pending fragments */
1015                if (rx_queue->scatter_n) {
1016                        ef4_rx_packet(
1017                                rx_queue,
1018                                rx_queue->removed_count & rx_queue->ptr_mask,
1019                                rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1020                        rx_queue->removed_count += rx_queue->scatter_n;
1021                        rx_queue->scatter_n = 0;
1022                }
1023
1024                /* Return if there is no new fragment */
1025                if (rx_ev_desc_ptr != expected_ptr)
1026                        return;
1027
1028                /* Discard new fragment if not SOP */
1029                if (!rx_ev_sop) {
1030                        ef4_rx_packet(
1031                                rx_queue,
1032                                rx_queue->removed_count & rx_queue->ptr_mask,
1033                                1, 0, EF4_RX_PKT_DISCARD);
1034                        ++rx_queue->removed_count;
1035                        return;
1036                }
1037        }
1038
1039        ++rx_queue->scatter_n;
1040        if (rx_ev_cont)
1041                return;
1042
1043        rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1044        rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1045        rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1046
1047        if (likely(rx_ev_pkt_ok)) {
1048                /* If packet is marked as OK then we can rely on the
1049                 * hardware checksum and classification.
1050                 */
1051                flags = 0;
1052                switch (rx_ev_hdr_type) {
1053                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1054                        flags |= EF4_RX_PKT_TCP;
1055                        /* fall through */
1056                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1057                        flags |= EF4_RX_PKT_CSUMMED;
1058                        /* fall through */
1059                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1060                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1061                        break;
1062                }
1063        } else {
1064                flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1065        }
1066
1067        /* Detect multicast packets that didn't match the filter */
1068        rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1069        if (rx_ev_mcast_pkt) {
1070                unsigned int rx_ev_mcast_hash_match =
1071                        EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1072
1073                if (unlikely(!rx_ev_mcast_hash_match)) {
1074                        ++channel->n_rx_mcast_mismatch;
1075                        flags |= EF4_RX_PKT_DISCARD;
1076                }
1077        }
1078
1079        channel->irq_mod_score += 2;
1080
1081        /* Handle received packet */
1082        ef4_rx_packet(rx_queue,
1083                      rx_queue->removed_count & rx_queue->ptr_mask,
1084                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1085        rx_queue->removed_count += rx_queue->scatter_n;
1086        rx_queue->scatter_n = 0;
1087}
1088
1089/* If this flush done event corresponds to a &struct ef4_tx_queue, then
1090 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091 * of all transmit completions.
1092 */
1093static void
1094ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1095{
1096        struct ef4_tx_queue *tx_queue;
1097        int qid;
1098
1099        qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1100        if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1101                tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1102                                            qid % EF4_TXQ_TYPES);
1103                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1104                        ef4_farch_magic_event(tx_queue->channel,
1105                                              EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1106                }
1107        }
1108}
1109
1110/* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1111 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112 * the RX queue back to the mask of RX queues in need of flushing.
1113 */
1114static void
1115ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1116{
1117        struct ef4_channel *channel;
1118        struct ef4_rx_queue *rx_queue;
1119        int qid;
1120        bool failed;
1121
1122        qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1123        failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1124        if (qid >= efx->n_channels)
1125                return;
1126        channel = ef4_get_channel(efx, qid);
1127        if (!ef4_channel_has_rx_queue(channel))
1128                return;
1129        rx_queue = ef4_channel_get_rx_queue(channel);
1130
1131        if (failed) {
1132                netif_info(efx, hw, efx->net_dev,
1133                           "RXQ %d flush retry\n", qid);
1134                rx_queue->flush_pending = true;
1135                atomic_inc(&efx->rxq_flush_pending);
1136        } else {
1137                ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1138                                      EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1139        }
1140        atomic_dec(&efx->rxq_flush_outstanding);
1141        if (ef4_farch_flush_wake(efx))
1142                wake_up(&efx->flush_wq);
1143}
1144
1145static void
1146ef4_farch_handle_drain_event(struct ef4_channel *channel)
1147{
1148        struct ef4_nic *efx = channel->efx;
1149
1150        WARN_ON(atomic_read(&efx->active_queues) == 0);
1151        atomic_dec(&efx->active_queues);
1152        if (ef4_farch_flush_wake(efx))
1153                wake_up(&efx->flush_wq);
1154}
1155
1156static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1157                                             ef4_qword_t *event)
1158{
1159        struct ef4_nic *efx = channel->efx;
1160        struct ef4_rx_queue *rx_queue =
1161                ef4_channel_has_rx_queue(channel) ?
1162                ef4_channel_get_rx_queue(channel) : NULL;
1163        unsigned magic, code;
1164
1165        magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1166        code = _EF4_CHANNEL_MAGIC_CODE(magic);
1167
1168        if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1169                channel->event_test_cpu = raw_smp_processor_id();
1170        } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1171                /* The queue must be empty, so we won't receive any rx
1172                 * events, so ef4_process_channel() won't refill the
1173                 * queue. Refill it here */
1174                ef4_fast_push_rx_descriptors(rx_queue, true);
1175        } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1176                ef4_farch_handle_drain_event(channel);
1177        } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1178                ef4_farch_handle_drain_event(channel);
1179        } else {
1180                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1181                          "generated event "EF4_QWORD_FMT"\n",
1182                          channel->channel, EF4_QWORD_VAL(*event));
1183        }
1184}
1185
1186static void
1187ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1188{
1189        struct ef4_nic *efx = channel->efx;
1190        unsigned int ev_sub_code;
1191        unsigned int ev_sub_data;
1192
1193        ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1194        ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1195
1196        switch (ev_sub_code) {
1197        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1198                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1199                           channel->channel, ev_sub_data);
1200                ef4_farch_handle_tx_flush_done(efx, event);
1201                break;
1202        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1203                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1204                           channel->channel, ev_sub_data);
1205                ef4_farch_handle_rx_flush_done(efx, event);
1206                break;
1207        case FSE_AZ_EVQ_INIT_DONE_EV:
1208                netif_dbg(efx, hw, efx->net_dev,
1209                          "channel %d EVQ %d initialised\n",
1210                          channel->channel, ev_sub_data);
1211                break;
1212        case FSE_AZ_SRM_UPD_DONE_EV:
1213                netif_vdbg(efx, hw, efx->net_dev,
1214                           "channel %d SRAM update done\n", channel->channel);
1215                break;
1216        case FSE_AZ_WAKE_UP_EV:
1217                netif_vdbg(efx, hw, efx->net_dev,
1218                           "channel %d RXQ %d wakeup event\n",
1219                           channel->channel, ev_sub_data);
1220                break;
1221        case FSE_AZ_TIMER_EV:
1222                netif_vdbg(efx, hw, efx->net_dev,
1223                           "channel %d RX queue %d timer expired\n",
1224                           channel->channel, ev_sub_data);
1225                break;
1226        case FSE_AA_RX_RECOVER_EV:
1227                netif_err(efx, rx_err, efx->net_dev,
1228                          "channel %d seen DRIVER RX_RESET event. "
1229                        "Resetting.\n", channel->channel);
1230                atomic_inc(&efx->rx_reset);
1231                ef4_schedule_reset(efx,
1232                                   EF4_WORKAROUND_6555(efx) ?
1233                                   RESET_TYPE_RX_RECOVERY :
1234                                   RESET_TYPE_DISABLE);
1235                break;
1236        case FSE_BZ_RX_DSC_ERROR_EV:
1237                netif_err(efx, rx_err, efx->net_dev,
1238                          "RX DMA Q %d reports descriptor fetch error."
1239                          " RX Q %d is disabled.\n", ev_sub_data,
1240                          ev_sub_data);
1241                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1242                break;
1243        case FSE_BZ_TX_DSC_ERROR_EV:
1244                netif_err(efx, tx_err, efx->net_dev,
1245                          "TX DMA Q %d reports descriptor fetch error."
1246                          " TX Q %d is disabled.\n", ev_sub_data,
1247                          ev_sub_data);
1248                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1249                break;
1250        default:
1251                netif_vdbg(efx, hw, efx->net_dev,
1252                           "channel %d unknown driver event code %d "
1253                           "data %04x\n", channel->channel, ev_sub_code,
1254                           ev_sub_data);
1255                break;
1256        }
1257}
1258
1259int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1260{
1261        struct ef4_nic *efx = channel->efx;
1262        unsigned int read_ptr;
1263        ef4_qword_t event, *p_event;
1264        int ev_code;
1265        int tx_packets = 0;
1266        int spent = 0;
1267
1268        if (budget <= 0)
1269                return spent;
1270
1271        read_ptr = channel->eventq_read_ptr;
1272
1273        for (;;) {
1274                p_event = ef4_event(channel, read_ptr);
1275                event = *p_event;
1276
1277                if (!ef4_event_present(&event))
1278                        /* End of events */
1279                        break;
1280
1281                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282                           "channel %d event is "EF4_QWORD_FMT"\n",
1283                           channel->channel, EF4_QWORD_VAL(event));
1284
1285                /* Clear this event by marking it all ones */
1286                EF4_SET_QWORD(*p_event);
1287
1288                ++read_ptr;
1289
1290                ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1291
1292                switch (ev_code) {
1293                case FSE_AZ_EV_CODE_RX_EV:
1294                        ef4_farch_handle_rx_event(channel, &event);
1295                        if (++spent == budget)
1296                                goto out;
1297                        break;
1298                case FSE_AZ_EV_CODE_TX_EV:
1299                        tx_packets += ef4_farch_handle_tx_event(channel,
1300                                                                &event);
1301                        if (tx_packets > efx->txq_entries) {
1302                                spent = budget;
1303                                goto out;
1304                        }
1305                        break;
1306                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1307                        ef4_farch_handle_generated_event(channel, &event);
1308                        break;
1309                case FSE_AZ_EV_CODE_DRIVER_EV:
1310                        ef4_farch_handle_driver_event(channel, &event);
1311                        break;
1312                case FSE_AZ_EV_CODE_GLOBAL_EV:
1313                        if (efx->type->handle_global_event &&
1314                            efx->type->handle_global_event(channel, &event))
1315                                break;
1316                        /* else fall through */
1317                default:
1318                        netif_err(channel->efx, hw, channel->efx->net_dev,
1319                                  "channel %d unknown event type %d (data "
1320                                  EF4_QWORD_FMT ")\n", channel->channel,
1321                                  ev_code, EF4_QWORD_VAL(event));
1322                }
1323        }
1324
1325out:
1326        channel->eventq_read_ptr = read_ptr;
1327        return spent;
1328}
1329
1330/* Allocate buffer table entries for event queue */
1331int ef4_farch_ev_probe(struct ef4_channel *channel)
1332{
1333        struct ef4_nic *efx = channel->efx;
1334        unsigned entries;
1335
1336        entries = channel->eventq_mask + 1;
1337        return ef4_alloc_special_buffer(efx, &channel->eventq,
1338                                        entries * sizeof(ef4_qword_t));
1339}
1340
1341int ef4_farch_ev_init(struct ef4_channel *channel)
1342{
1343        ef4_oword_t reg;
1344        struct ef4_nic *efx = channel->efx;
1345
1346        netif_dbg(efx, hw, efx->net_dev,
1347                  "channel %d event queue in special buffers %d-%d\n",
1348                  channel->channel, channel->eventq.index,
1349                  channel->eventq.index + channel->eventq.entries - 1);
1350
1351        /* Pin event queue buffer */
1352        ef4_init_special_buffer(efx, &channel->eventq);
1353
1354        /* Fill event queue with all ones (i.e. empty events) */
1355        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1356
1357        /* Push event queue to card */
1358        EF4_POPULATE_OWORD_3(reg,
1359                             FRF_AZ_EVQ_EN, 1,
1360                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1361                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1362        ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1363                         channel->channel);
1364
1365        return 0;
1366}
1367
1368void ef4_farch_ev_fini(struct ef4_channel *channel)
1369{
1370        ef4_oword_t reg;
1371        struct ef4_nic *efx = channel->efx;
1372
1373        /* Remove event queue from card */
1374        EF4_ZERO_OWORD(reg);
1375        ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1376                         channel->channel);
1377
1378        /* Unpin event queue */
1379        ef4_fini_special_buffer(efx, &channel->eventq);
1380}
1381
1382/* Free buffers backing event queue */
1383void ef4_farch_ev_remove(struct ef4_channel *channel)
1384{
1385        ef4_free_special_buffer(channel->efx, &channel->eventq);
1386}
1387
1388
1389void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1390{
1391        ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1392}
1393
1394void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1395{
1396        ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1397                              EF4_CHANNEL_MAGIC_FILL(rx_queue));
1398}
1399
1400/**************************************************************************
1401 *
1402 * Hardware interrupts
1403 * The hardware interrupt handler does very little work; all the event
1404 * queue processing is carried out by per-channel tasklets.
1405 *
1406 **************************************************************************/
1407
1408/* Enable/disable/generate interrupts */
1409static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1410                                      bool enabled, bool force)
1411{
1412        ef4_oword_t int_en_reg_ker;
1413
1414        EF4_POPULATE_OWORD_3(int_en_reg_ker,
1415                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1416                             FRF_AZ_KER_INT_KER, force,
1417                             FRF_AZ_DRV_INT_EN_KER, enabled);
1418        ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1419}
1420
1421void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1422{
1423        EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1424        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1425
1426        ef4_farch_interrupts(efx, true, false);
1427}
1428
1429void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1430{
1431        /* Disable interrupts */
1432        ef4_farch_interrupts(efx, false, false);
1433}
1434
1435/* Generate a test interrupt
1436 * Interrupt must already have been enabled, otherwise nasty things
1437 * may happen.
1438 */
1439int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1440{
1441        ef4_farch_interrupts(efx, true, true);
1442        return 0;
1443}
1444
1445/* Process a fatal interrupt
1446 * Disable bus mastering ASAP and schedule a reset
1447 */
1448irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1449{
1450        struct falcon_nic_data *nic_data = efx->nic_data;
1451        ef4_oword_t *int_ker = efx->irq_status.addr;
1452        ef4_oword_t fatal_intr;
1453        int error, mem_perr;
1454
1455        ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1456        error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1457
1458        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1459                  EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1460                  EF4_OWORD_VAL(fatal_intr),
1461                  error ? "disabling bus mastering" : "no recognised error");
1462
1463        /* If this is a memory parity error dump which blocks are offending */
1464        mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1465                    EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1466        if (mem_perr) {
1467                ef4_oword_t reg;
1468                ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1469                netif_err(efx, hw, efx->net_dev,
1470                          "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1471                          EF4_OWORD_VAL(reg));
1472        }
1473
1474        /* Disable both devices */
1475        pci_clear_master(efx->pci_dev);
1476        if (ef4_nic_is_dual_func(efx))
1477                pci_clear_master(nic_data->pci_dev2);
1478        ef4_farch_irq_disable_master(efx);
1479
1480        /* Count errors and reset or disable the NIC accordingly */
1481        if (efx->int_error_count == 0 ||
1482            time_after(jiffies, efx->int_error_expire)) {
1483                efx->int_error_count = 0;
1484                efx->int_error_expire =
1485                        jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1486        }
1487        if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1488                netif_err(efx, hw, efx->net_dev,
1489                          "SYSTEM ERROR - reset scheduled\n");
1490                ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1491        } else {
1492                netif_err(efx, hw, efx->net_dev,
1493                          "SYSTEM ERROR - max number of errors seen."
1494                          "NIC will be disabled\n");
1495                ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1496        }
1497
1498        return IRQ_HANDLED;
1499}
1500
1501/* Handle a legacy interrupt
1502 * Acknowledges the interrupt and schedule event queue processing.
1503 */
1504irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1505{
1506        struct ef4_nic *efx = dev_id;
1507        bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1508        ef4_oword_t *int_ker = efx->irq_status.addr;
1509        irqreturn_t result = IRQ_NONE;
1510        struct ef4_channel *channel;
1511        ef4_dword_t reg;
1512        u32 queues;
1513        int syserr;
1514
1515        /* Read the ISR which also ACKs the interrupts */
1516        ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1517        queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1518
1519        /* Legacy interrupts are disabled too late by the EEH kernel
1520         * code. Disable them earlier.
1521         * If an EEH error occurred, the read will have returned all ones.
1522         */
1523        if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1524            !efx->eeh_disabled_legacy_irq) {
1525                disable_irq_nosync(efx->legacy_irq);
1526                efx->eeh_disabled_legacy_irq = true;
1527        }
1528
1529        /* Handle non-event-queue sources */
1530        if (queues & (1U << efx->irq_level) && soft_enabled) {
1531                syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1532                if (unlikely(syserr))
1533                        return ef4_farch_fatal_interrupt(efx);
1534                efx->last_irq_cpu = raw_smp_processor_id();
1535        }
1536
1537        if (queues != 0) {
1538                efx->irq_zero_count = 0;
1539
1540                /* Schedule processing of any interrupting queues */
1541                if (likely(soft_enabled)) {
1542                        ef4_for_each_channel(channel, efx) {
1543                                if (queues & 1)
1544                                        ef4_schedule_channel_irq(channel);
1545                                queues >>= 1;
1546                        }
1547                }
1548                result = IRQ_HANDLED;
1549
1550        } else {
1551                ef4_qword_t *event;
1552
1553                /* Legacy ISR read can return zero once (SF bug 15783) */
1554
1555                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1556                 * because this might be a shared interrupt. */
1557                if (efx->irq_zero_count++ == 0)
1558                        result = IRQ_HANDLED;
1559
1560                /* Ensure we schedule or rearm all event queues */
1561                if (likely(soft_enabled)) {
1562                        ef4_for_each_channel(channel, efx) {
1563                                event = ef4_event(channel,
1564                                                  channel->eventq_read_ptr);
1565                                if (ef4_event_present(event))
1566                                        ef4_schedule_channel_irq(channel);
1567                                else
1568                                        ef4_farch_ev_read_ack(channel);
1569                        }
1570                }
1571        }
1572
1573        if (result == IRQ_HANDLED)
1574                netif_vdbg(efx, intr, efx->net_dev,
1575                           "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1576                           irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1577
1578        return result;
1579}
1580
1581/* Handle an MSI interrupt
1582 *
1583 * Handle an MSI hardware interrupt.  This routine schedules event
1584 * queue processing.  No interrupt acknowledgement cycle is necessary.
1585 * Also, we never need to check that the interrupt is for us, since
1586 * MSI interrupts cannot be shared.
1587 */
1588irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1589{
1590        struct ef4_msi_context *context = dev_id;
1591        struct ef4_nic *efx = context->efx;
1592        ef4_oword_t *int_ker = efx->irq_status.addr;
1593        int syserr;
1594
1595        netif_vdbg(efx, intr, efx->net_dev,
1596                   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1597                   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1598
1599        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1600                return IRQ_HANDLED;
1601
1602        /* Handle non-event-queue sources */
1603        if (context->index == efx->irq_level) {
1604                syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1605                if (unlikely(syserr))
1606                        return ef4_farch_fatal_interrupt(efx);
1607                efx->last_irq_cpu = raw_smp_processor_id();
1608        }
1609
1610        /* Schedule processing of the channel */
1611        ef4_schedule_channel_irq(efx->channel[context->index]);
1612
1613        return IRQ_HANDLED;
1614}
1615
1616/* Setup RSS indirection table.
1617 * This maps from the hash value of the packet to RXQ
1618 */
1619void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1620{
1621        size_t i = 0;
1622        ef4_dword_t dword;
1623
1624        BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1625
1626        BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1627                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1628
1629        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1630                EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1631                                     efx->rx_indir_table[i]);
1632                ef4_writed(efx, &dword,
1633                           FR_BZ_RX_INDIRECTION_TBL +
1634                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1635        }
1636}
1637
1638/* Looks at available SRAM resources and works out how many queues we
1639 * can support, and where things like descriptor caches should live.
1640 *
1641 * SRAM is split up as follows:
1642 * 0                          buftbl entries for channels
1643 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1644 * efx->rx_dc_base            RX descriptor caches
1645 * efx->tx_dc_base            TX descriptor caches
1646 */
1647void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1648{
1649        unsigned vi_count, buftbl_min;
1650
1651        /* Account for the buffer table entries backing the datapath channels
1652         * and the descriptor caches for those channels.
1653         */
1654        buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1655                       efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1656                       efx->n_channels * EF4_MAX_EVQ_SIZE)
1657                      * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1658        vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1659
1660        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1661        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1662}
1663
1664u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1665{
1666        ef4_oword_t altera_build;
1667        ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1668        return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1669}
1670
1671void ef4_farch_init_common(struct ef4_nic *efx)
1672{
1673        ef4_oword_t temp;
1674
1675        /* Set positions of descriptor caches in SRAM. */
1676        EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1677        ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1678        EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1679        ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1680
1681        /* Set TX descriptor cache size. */
1682        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1683        EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1684        ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1685
1686        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1687         * this allows most efficient prefetching.
1688         */
1689        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1690        EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1691        ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1692        EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1693        ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1694
1695        /* Program INT_KER address */
1696        EF4_POPULATE_OWORD_2(temp,
1697                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1698                             EF4_INT_MODE_USE_MSI(efx),
1699                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1700        ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1701
1702        /* Use a valid MSI-X vector */
1703        efx->irq_level = 0;
1704
1705        /* Enable all the genuinely fatal interrupts.  (They are still
1706         * masked by the overall interrupt mask, controlled by
1707         * falcon_interrupts()).
1708         *
1709         * Note: All other fatal interrupts are enabled
1710         */
1711        EF4_POPULATE_OWORD_3(temp,
1712                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1713                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1714                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1715        EF4_INVERT_OWORD(temp);
1716        ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1717
1718        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1719         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1720         */
1721        ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1722        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1723        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1724        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1725        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1726        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1727        /* Enable SW_EV to inherit in char driver - assume harmless here */
1728        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1729        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1730        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1731        /* Disable hardware watchdog which can misfire */
1732        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1733        /* Squash TX of packets of 16 bytes or less */
1734        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1735                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1736        ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1737
1738        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1739                EF4_POPULATE_OWORD_4(temp,
1740                                     /* Default values */
1741                                     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1742                                     FRF_BZ_TX_PACE_SB_AF, 0xb,
1743                                     FRF_BZ_TX_PACE_FB_BASE, 0,
1744                                     /* Allow large pace values in the
1745                                      * fast bin. */
1746                                     FRF_BZ_TX_PACE_BIN_TH,
1747                                     FFE_BZ_TX_PACE_RESERVED);
1748                ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1749        }
1750}
1751
1752/**************************************************************************
1753 *
1754 * Filter tables
1755 *
1756 **************************************************************************
1757 */
1758
1759/* "Fudge factors" - difference between programmed value and actual depth.
1760 * Due to pipelined implementation we need to program H/W with a value that
1761 * is larger than the hop limit we want.
1762 */
1763#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1764#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1765
1766/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1767 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1768 * table is full.
1769 */
1770#define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1771
1772/* Don't try very hard to find space for performance hints, as this is
1773 * counter-productive. */
1774#define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1775
1776enum ef4_farch_filter_type {
1777        EF4_FARCH_FILTER_TCP_FULL = 0,
1778        EF4_FARCH_FILTER_TCP_WILD,
1779        EF4_FARCH_FILTER_UDP_FULL,
1780        EF4_FARCH_FILTER_UDP_WILD,
1781        EF4_FARCH_FILTER_MAC_FULL = 4,
1782        EF4_FARCH_FILTER_MAC_WILD,
1783        EF4_FARCH_FILTER_UC_DEF = 8,
1784        EF4_FARCH_FILTER_MC_DEF,
1785        EF4_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1786};
1787
1788enum ef4_farch_filter_table_id {
1789        EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1790        EF4_FARCH_FILTER_TABLE_RX_MAC,
1791        EF4_FARCH_FILTER_TABLE_RX_DEF,
1792        EF4_FARCH_FILTER_TABLE_TX_MAC,
1793        EF4_FARCH_FILTER_TABLE_COUNT,
1794};
1795
1796enum ef4_farch_filter_index {
1797        EF4_FARCH_FILTER_INDEX_UC_DEF,
1798        EF4_FARCH_FILTER_INDEX_MC_DEF,
1799        EF4_FARCH_FILTER_SIZE_RX_DEF,
1800};
1801
1802struct ef4_farch_filter_spec {
1803        u8      type:4;
1804        u8      priority:4;
1805        u8      flags;
1806        u16     dmaq_id;
1807        u32     data[3];
1808};
1809
1810struct ef4_farch_filter_table {
1811        enum ef4_farch_filter_table_id id;
1812        u32             offset;         /* address of table relative to BAR */
1813        unsigned        size;           /* number of entries */
1814        unsigned        step;           /* step between entries */
1815        unsigned        used;           /* number currently used */
1816        unsigned long   *used_bitmap;
1817        struct ef4_farch_filter_spec *spec;
1818        unsigned        search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1819};
1820
1821struct ef4_farch_filter_state {
1822        struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1823};
1824
1825static void
1826ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1827                                   struct ef4_farch_filter_table *table,
1828                                   unsigned int filter_idx);
1829
1830/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1831 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1832static u16 ef4_farch_filter_hash(u32 key)
1833{
1834        u16 tmp;
1835
1836        /* First 16 rounds */
1837        tmp = 0x1fff ^ key >> 16;
1838        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1839        tmp = tmp ^ tmp >> 9;
1840        /* Last 16 rounds */
1841        tmp = tmp ^ tmp << 13 ^ key;
1842        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1843        return tmp ^ tmp >> 9;
1844}
1845
1846/* To allow for hash collisions, filter search continues at these
1847 * increments from the first possible entry selected by the hash. */
1848static u16 ef4_farch_filter_increment(u32 key)
1849{
1850        return key * 2 - 1;
1851}
1852
1853static enum ef4_farch_filter_table_id
1854ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1855{
1856        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1857                     (EF4_FARCH_FILTER_TCP_FULL >> 2));
1858        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1859                     (EF4_FARCH_FILTER_TCP_WILD >> 2));
1860        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1861                     (EF4_FARCH_FILTER_UDP_FULL >> 2));
1862        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1863                     (EF4_FARCH_FILTER_UDP_WILD >> 2));
1864        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1865                     (EF4_FARCH_FILTER_MAC_FULL >> 2));
1866        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1867                     (EF4_FARCH_FILTER_MAC_WILD >> 2));
1868        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1869                     EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1870        return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1871}
1872
1873static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1874{
1875        struct ef4_farch_filter_state *state = efx->filter_state;
1876        struct ef4_farch_filter_table *table;
1877        ef4_oword_t filter_ctl;
1878
1879        ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1880
1881        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1882        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1883                            table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1884                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1885        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1886                            table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1887                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1888        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1889                            table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1890                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1891        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1892                            table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1893                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1894
1895        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1896        if (table->size) {
1897                EF4_SET_OWORD_FIELD(
1898                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1899                        table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1900                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1901                EF4_SET_OWORD_FIELD(
1902                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1903                        table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1904                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1905        }
1906
1907        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1908        if (table->size) {
1909                EF4_SET_OWORD_FIELD(
1910                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1911                        table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1912                EF4_SET_OWORD_FIELD(
1913                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1914                        !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1915                           EF4_FILTER_FLAG_RX_RSS));
1916                EF4_SET_OWORD_FIELD(
1917                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1918                        table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1919                EF4_SET_OWORD_FIELD(
1920                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1921                        !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1922                           EF4_FILTER_FLAG_RX_RSS));
1923
1924                /* There is a single bit to enable RX scatter for all
1925                 * unmatched packets.  Only set it if scatter is
1926                 * enabled in both filter specs.
1927                 */
1928                EF4_SET_OWORD_FIELD(
1929                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1930                        !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1931                           table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1932                           EF4_FILTER_FLAG_RX_SCATTER));
1933        } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1934                /* We don't expose 'default' filters because unmatched
1935                 * packets always go to the queue number found in the
1936                 * RSS table.  But we still need to set the RX scatter
1937                 * bit here.
1938                 */
1939                EF4_SET_OWORD_FIELD(
1940                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1941                        efx->rx_scatter);
1942        }
1943
1944        ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1945}
1946
1947static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1948{
1949        struct ef4_farch_filter_state *state = efx->filter_state;
1950        struct ef4_farch_filter_table *table;
1951        ef4_oword_t tx_cfg;
1952
1953        ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1954
1955        table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1956        if (table->size) {
1957                EF4_SET_OWORD_FIELD(
1958                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1959                        table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1960                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961                EF4_SET_OWORD_FIELD(
1962                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1963                        table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1964                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965        }
1966
1967        ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1968}
1969
1970static int
1971ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1972                               const struct ef4_filter_spec *gen_spec)
1973{
1974        bool is_full = false;
1975
1976        if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1977            gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1978                return -EINVAL;
1979
1980        spec->priority = gen_spec->priority;
1981        spec->flags = gen_spec->flags;
1982        spec->dmaq_id = gen_spec->dmaq_id;
1983
1984        switch (gen_spec->match_flags) {
1985        case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1986              EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1987              EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1988                is_full = true;
1989                /* fall through */
1990        case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1991              EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1992                __be32 rhost, host1, host2;
1993                __be16 rport, port1, port2;
1994
1995                EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1996
1997                if (gen_spec->ether_type != htons(ETH_P_IP))
1998                        return -EPROTONOSUPPORT;
1999                if (gen_spec->loc_port == 0 ||
2000                    (is_full && gen_spec->rem_port == 0))
2001                        return -EADDRNOTAVAIL;
2002                switch (gen_spec->ip_proto) {
2003                case IPPROTO_TCP:
2004                        spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2005                                      EF4_FARCH_FILTER_TCP_WILD);
2006                        break;
2007                case IPPROTO_UDP:
2008                        spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2009                                      EF4_FARCH_FILTER_UDP_WILD);
2010                        break;
2011                default:
2012                        return -EPROTONOSUPPORT;
2013                }
2014
2015                /* Filter is constructed in terms of source and destination,
2016                 * with the odd wrinkle that the ports are swapped in a UDP
2017                 * wildcard filter.  We need to convert from local and remote
2018                 * (= zero for wildcard) addresses.
2019                 */
2020                rhost = is_full ? gen_spec->rem_host[0] : 0;
2021                rport = is_full ? gen_spec->rem_port : 0;
2022                host1 = rhost;
2023                host2 = gen_spec->loc_host[0];
2024                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2025                        port1 = gen_spec->loc_port;
2026                        port2 = rport;
2027                } else {
2028                        port1 = rport;
2029                        port2 = gen_spec->loc_port;
2030                }
2031                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2032                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2033                spec->data[2] = ntohl(host2);
2034
2035                break;
2036        }
2037
2038        case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2039                is_full = true;
2040                /* fall through */
2041        case EF4_FILTER_MATCH_LOC_MAC:
2042                spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2043                              EF4_FARCH_FILTER_MAC_WILD);
2044                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2045                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2046                                 gen_spec->loc_mac[3] << 16 |
2047                                 gen_spec->loc_mac[4] << 8 |
2048                                 gen_spec->loc_mac[5]);
2049                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2050                                 gen_spec->loc_mac[1]);
2051                break;
2052
2053        case EF4_FILTER_MATCH_LOC_MAC_IG:
2054                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2055                              EF4_FARCH_FILTER_MC_DEF :
2056                              EF4_FARCH_FILTER_UC_DEF);
2057                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2058                break;
2059
2060        default:
2061                return -EPROTONOSUPPORT;
2062        }
2063
2064        return 0;
2065}
2066
2067static void
2068ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2069                             const struct ef4_farch_filter_spec *spec)
2070{
2071        bool is_full = false;
2072
2073        /* *gen_spec should be completely initialised, to be consistent
2074         * with ef4_filter_init_{rx,tx}() and in case we want to copy
2075         * it back to userland.
2076         */
2077        memset(gen_spec, 0, sizeof(*gen_spec));
2078
2079        gen_spec->priority = spec->priority;
2080        gen_spec->flags = spec->flags;
2081        gen_spec->dmaq_id = spec->dmaq_id;
2082
2083        switch (spec->type) {
2084        case EF4_FARCH_FILTER_TCP_FULL:
2085        case EF4_FARCH_FILTER_UDP_FULL:
2086                is_full = true;
2087                /* fall through */
2088        case EF4_FARCH_FILTER_TCP_WILD:
2089        case EF4_FARCH_FILTER_UDP_WILD: {
2090                __be32 host1, host2;
2091                __be16 port1, port2;
2092
2093                gen_spec->match_flags =
2094                        EF4_FILTER_MATCH_ETHER_TYPE |
2095                        EF4_FILTER_MATCH_IP_PROTO |
2096                        EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2097                if (is_full)
2098                        gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2099                                                  EF4_FILTER_MATCH_REM_PORT);
2100                gen_spec->ether_type = htons(ETH_P_IP);
2101                gen_spec->ip_proto =
2102                        (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2103                         spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2104                        IPPROTO_TCP : IPPROTO_UDP;
2105
2106                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2107                port1 = htons(spec->data[0]);
2108                host2 = htonl(spec->data[2]);
2109                port2 = htons(spec->data[1] >> 16);
2110                if (spec->flags & EF4_FILTER_FLAG_TX) {
2111                        gen_spec->loc_host[0] = host1;
2112                        gen_spec->rem_host[0] = host2;
2113                } else {
2114                        gen_spec->loc_host[0] = host2;
2115                        gen_spec->rem_host[0] = host1;
2116                }
2117                if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2118                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2119                        gen_spec->loc_port = port1;
2120                        gen_spec->rem_port = port2;
2121                } else {
2122                        gen_spec->loc_port = port2;
2123                        gen_spec->rem_port = port1;
2124                }
2125
2126                break;
2127        }
2128
2129        case EF4_FARCH_FILTER_MAC_FULL:
2130                is_full = true;
2131                /* fall through */
2132        case EF4_FARCH_FILTER_MAC_WILD:
2133                gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2134                if (is_full)
2135                        gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2136                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2137                gen_spec->loc_mac[1] = spec->data[2];
2138                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2139                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2140                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2141                gen_spec->loc_mac[5] = spec->data[1];
2142                gen_spec->outer_vid = htons(spec->data[0]);
2143                break;
2144
2145        case EF4_FARCH_FILTER_UC_DEF:
2146        case EF4_FARCH_FILTER_MC_DEF:
2147                gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2148                gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2149                break;
2150
2151        default:
2152                WARN_ON(1);
2153                break;
2154        }
2155}
2156
2157static void
2158ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2159                              struct ef4_farch_filter_spec *spec)
2160{
2161        /* If there's only one channel then disable RSS for non VF
2162         * traffic, thereby allowing VFs to use RSS when the PF can't.
2163         */
2164        spec->priority = EF4_FILTER_PRI_AUTO;
2165        spec->flags = (EF4_FILTER_FLAG_RX |
2166                       (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2167                       (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2168        spec->dmaq_id = 0;
2169}
2170
2171/* Build a filter entry and return its n-tuple key. */
2172static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2173                                  struct ef4_farch_filter_spec *spec)
2174{
2175        u32 data3;
2176
2177        switch (ef4_farch_filter_spec_table_id(spec)) {
2178        case EF4_FARCH_FILTER_TABLE_RX_IP: {
2179                bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2180                               spec->type == EF4_FARCH_FILTER_UDP_WILD);
2181                EF4_POPULATE_OWORD_7(
2182                        *filter,
2183                        FRF_BZ_RSS_EN,
2184                        !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2185                        FRF_BZ_SCATTER_EN,
2186                        !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2187                        FRF_BZ_TCP_UDP, is_udp,
2188                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2189                        EF4_DWORD_2, spec->data[2],
2190                        EF4_DWORD_1, spec->data[1],
2191                        EF4_DWORD_0, spec->data[0]);
2192                data3 = is_udp;
2193                break;
2194        }
2195
2196        case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2197                bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2198                EF4_POPULATE_OWORD_7(
2199                        *filter,
2200                        FRF_CZ_RMFT_RSS_EN,
2201                        !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2202                        FRF_CZ_RMFT_SCATTER_EN,
2203                        !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2204                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2205                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2206                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2207                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2208                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2209                data3 = is_wild;
2210                break;
2211        }
2212
2213        case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2214                bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2215                EF4_POPULATE_OWORD_5(*filter,
2216                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2217                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2218                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2219                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2220                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2221                data3 = is_wild | spec->dmaq_id << 1;
2222                break;
2223        }
2224
2225        default:
2226                BUG();
2227        }
2228
2229        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2230}
2231
2232static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2233                                   const struct ef4_farch_filter_spec *right)
2234{
2235        if (left->type != right->type ||
2236            memcmp(left->data, right->data, sizeof(left->data)))
2237                return false;
2238
2239        if (left->flags & EF4_FILTER_FLAG_TX &&
2240            left->dmaq_id != right->dmaq_id)
2241                return false;
2242
2243        return true;
2244}
2245
2246/*
2247 * Construct/deconstruct external filter IDs.  At least the RX filter
2248 * IDs must be ordered by matching priority, for RX NFC semantics.
2249 *
2250 * Deconstruction needs to be robust against invalid IDs so that
2251 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2252 * accept user-provided IDs.
2253 */
2254
2255#define EF4_FARCH_FILTER_MATCH_PRI_COUNT        5
2256
2257static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2258        [EF4_FARCH_FILTER_TCP_FULL]     = 0,
2259        [EF4_FARCH_FILTER_UDP_FULL]     = 0,
2260        [EF4_FARCH_FILTER_TCP_WILD]     = 1,
2261        [EF4_FARCH_FILTER_UDP_WILD]     = 1,
2262        [EF4_FARCH_FILTER_MAC_FULL]     = 2,
2263        [EF4_FARCH_FILTER_MAC_WILD]     = 3,
2264        [EF4_FARCH_FILTER_UC_DEF]       = 4,
2265        [EF4_FARCH_FILTER_MC_DEF]       = 4,
2266};
2267
2268static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2269        EF4_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2270        EF4_FARCH_FILTER_TABLE_RX_IP,
2271        EF4_FARCH_FILTER_TABLE_RX_MAC,
2272        EF4_FARCH_FILTER_TABLE_RX_MAC,
2273        EF4_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2274        EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2275        EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2276};
2277
2278#define EF4_FARCH_FILTER_INDEX_WIDTH 13
2279#define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2280
2281static inline u32
2282ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2283                         unsigned int index)
2284{
2285        unsigned int range;
2286
2287        range = ef4_farch_filter_type_match_pri[spec->type];
2288        if (!(spec->flags & EF4_FILTER_FLAG_RX))
2289                range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2290
2291        return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2292}
2293
2294static inline enum ef4_farch_filter_table_id
2295ef4_farch_filter_id_table_id(u32 id)
2296{
2297        unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2298
2299        if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2300                return ef4_farch_filter_range_table[range];
2301        else
2302                return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2303}
2304
2305static inline unsigned int ef4_farch_filter_id_index(u32 id)
2306{
2307        return id & EF4_FARCH_FILTER_INDEX_MASK;
2308}
2309
2310u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2311{
2312        struct ef4_farch_filter_state *state = efx->filter_state;
2313        unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2314        enum ef4_farch_filter_table_id table_id;
2315
2316        do {
2317                table_id = ef4_farch_filter_range_table[range];
2318                if (state->table[table_id].size != 0)
2319                        return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2320                                state->table[table_id].size;
2321        } while (range--);
2322
2323        return 0;
2324}
2325
2326s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2327                            struct ef4_filter_spec *gen_spec,
2328                            bool replace_equal)
2329{
2330        struct ef4_farch_filter_state *state = efx->filter_state;
2331        struct ef4_farch_filter_table *table;
2332        struct ef4_farch_filter_spec spec;
2333        ef4_oword_t filter;
2334        int rep_index, ins_index;
2335        unsigned int depth = 0;
2336        int rc;
2337
2338        rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2339        if (rc)
2340                return rc;
2341
2342        table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2343        if (table->size == 0)
2344                return -EINVAL;
2345
2346        netif_vdbg(efx, hw, efx->net_dev,
2347                   "%s: type %d search_limit=%d", __func__, spec.type,
2348                   table->search_limit[spec.type]);
2349
2350        if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2351                /* One filter spec per type */
2352                BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2353                BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2354                             EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2355                rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2356                ins_index = rep_index;
2357
2358                spin_lock_bh(&efx->filter_lock);
2359        } else {
2360                /* Search concurrently for
2361                 * (1) a filter to be replaced (rep_index): any filter
2362                 *     with the same match values, up to the current
2363                 *     search depth for this type, and
2364                 * (2) the insertion point (ins_index): (1) or any
2365                 *     free slot before it or up to the maximum search
2366                 *     depth for this priority
2367                 * We fail if we cannot find (2).
2368                 *
2369                 * We can stop once either
2370                 * (a) we find (1), in which case we have definitely
2371                 *     found (2) as well; or
2372                 * (b) we have searched exhaustively for (1), and have
2373                 *     either found (2) or searched exhaustively for it
2374                 */
2375                u32 key = ef4_farch_filter_build(&filter, &spec);
2376                unsigned int hash = ef4_farch_filter_hash(key);
2377                unsigned int incr = ef4_farch_filter_increment(key);
2378                unsigned int max_rep_depth = table->search_limit[spec.type];
2379                unsigned int max_ins_depth =
2380                        spec.priority <= EF4_FILTER_PRI_HINT ?
2381                        EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2382                        EF4_FARCH_FILTER_CTL_SRCH_MAX;
2383                unsigned int i = hash & (table->size - 1);
2384
2385                ins_index = -1;
2386                depth = 1;
2387
2388                spin_lock_bh(&efx->filter_lock);
2389
2390                for (;;) {
2391                        if (!test_bit(i, table->used_bitmap)) {
2392                                if (ins_index < 0)
2393                                        ins_index = i;
2394                        } else if (ef4_farch_filter_equal(&spec,
2395                                                          &table->spec[i])) {
2396                                /* Case (a) */
2397                                if (ins_index < 0)
2398                                        ins_index = i;
2399                                rep_index = i;
2400                                break;
2401                        }
2402
2403                        if (depth >= max_rep_depth &&
2404                            (ins_index >= 0 || depth >= max_ins_depth)) {
2405                                /* Case (b) */
2406                                if (ins_index < 0) {
2407                                        rc = -EBUSY;
2408                                        goto out;
2409                                }
2410                                rep_index = -1;
2411                                break;
2412                        }
2413
2414                        i = (i + incr) & (table->size - 1);
2415                        ++depth;
2416                }
2417        }
2418
2419        /* If we found a filter to be replaced, check whether we
2420         * should do so
2421         */
2422        if (rep_index >= 0) {
2423                struct ef4_farch_filter_spec *saved_spec =
2424                        &table->spec[rep_index];
2425
2426                if (spec.priority == saved_spec->priority && !replace_equal) {
2427                        rc = -EEXIST;
2428                        goto out;
2429                }
2430                if (spec.priority < saved_spec->priority) {
2431                        rc = -EPERM;
2432                        goto out;
2433                }
2434                if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2435                    saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2436                        spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2437        }
2438
2439        /* Insert the filter */
2440        if (ins_index != rep_index) {
2441                __set_bit(ins_index, table->used_bitmap);
2442                ++table->used;
2443        }
2444        table->spec[ins_index] = spec;
2445
2446        if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2447                ef4_farch_filter_push_rx_config(efx);
2448        } else {
2449                if (table->search_limit[spec.type] < depth) {
2450                        table->search_limit[spec.type] = depth;
2451                        if (spec.flags & EF4_FILTER_FLAG_TX)
2452                                ef4_farch_filter_push_tx_limits(efx);
2453                        else
2454                                ef4_farch_filter_push_rx_config(efx);
2455                }
2456
2457                ef4_writeo(efx, &filter,
2458                           table->offset + table->step * ins_index);
2459
2460                /* If we were able to replace a filter by inserting
2461                 * at a lower depth, clear the replaced filter
2462                 */
2463                if (ins_index != rep_index && rep_index >= 0)
2464                        ef4_farch_filter_table_clear_entry(efx, table,
2465                                                           rep_index);
2466        }
2467
2468        netif_vdbg(efx, hw, efx->net_dev,
2469                   "%s: filter type %d index %d rxq %u set",
2470                   __func__, spec.type, ins_index, spec.dmaq_id);
2471        rc = ef4_farch_filter_make_id(&spec, ins_index);
2472
2473out:
2474        spin_unlock_bh(&efx->filter_lock);
2475        return rc;
2476}
2477
2478static void
2479ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2480                                   struct ef4_farch_filter_table *table,
2481                                   unsigned int filter_idx)
2482{
2483        static ef4_oword_t filter;
2484
2485        EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2486        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2487
2488        __clear_bit(filter_idx, table->used_bitmap);
2489        --table->used;
2490        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2491
2492        ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2493
2494        /* If this filter required a greater search depth than
2495         * any other, the search limit for its type can now be
2496         * decreased.  However, it is hard to determine that
2497         * unless the table has become completely empty - in
2498         * which case, all its search limits can be set to 0.
2499         */
2500        if (unlikely(table->used == 0)) {
2501                memset(table->search_limit, 0, sizeof(table->search_limit));
2502                if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2503                        ef4_farch_filter_push_tx_limits(efx);
2504                else
2505                        ef4_farch_filter_push_rx_config(efx);
2506        }
2507}
2508
2509static int ef4_farch_filter_remove(struct ef4_nic *efx,
2510                                   struct ef4_farch_filter_table *table,
2511                                   unsigned int filter_idx,
2512                                   enum ef4_filter_priority priority)
2513{
2514        struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2515
2516        if (!test_bit(filter_idx, table->used_bitmap) ||
2517            spec->priority != priority)
2518                return -ENOENT;
2519
2520        if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2521                ef4_farch_filter_init_rx_auto(efx, spec);
2522                ef4_farch_filter_push_rx_config(efx);
2523        } else {
2524                ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2525        }
2526
2527        return 0;
2528}
2529
2530int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2531                                 enum ef4_filter_priority priority,
2532                                 u32 filter_id)
2533{
2534        struct ef4_farch_filter_state *state = efx->filter_state;
2535        enum ef4_farch_filter_table_id table_id;
2536        struct ef4_farch_filter_table *table;
2537        unsigned int filter_idx;
2538        struct ef4_farch_filter_spec *spec;
2539        int rc;
2540
2541        table_id = ef4_farch_filter_id_table_id(filter_id);
2542        if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2543                return -ENOENT;
2544        table = &state->table[table_id];
2545
2546        filter_idx = ef4_farch_filter_id_index(filter_id);
2547        if (filter_idx >= table->size)
2548                return -ENOENT;
2549        spec = &table->spec[filter_idx];
2550
2551        spin_lock_bh(&efx->filter_lock);
2552        rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2553        spin_unlock_bh(&efx->filter_lock);
2554
2555        return rc;
2556}
2557
2558int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2559                              enum ef4_filter_priority priority,
2560                              u32 filter_id, struct ef4_filter_spec *spec_buf)
2561{
2562        struct ef4_farch_filter_state *state = efx->filter_state;
2563        enum ef4_farch_filter_table_id table_id;
2564        struct ef4_farch_filter_table *table;
2565        struct ef4_farch_filter_spec *spec;
2566        unsigned int filter_idx;
2567        int rc;
2568
2569        table_id = ef4_farch_filter_id_table_id(filter_id);
2570        if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2571                return -ENOENT;
2572        table = &state->table[table_id];
2573
2574        filter_idx = ef4_farch_filter_id_index(filter_id);
2575        if (filter_idx >= table->size)
2576                return -ENOENT;
2577        spec = &table->spec[filter_idx];
2578
2579        spin_lock_bh(&efx->filter_lock);
2580
2581        if (test_bit(filter_idx, table->used_bitmap) &&
2582            spec->priority == priority) {
2583                ef4_farch_filter_to_gen_spec(spec_buf, spec);
2584                rc = 0;
2585        } else {
2586                rc = -ENOENT;
2587        }
2588
2589        spin_unlock_bh(&efx->filter_lock);
2590
2591        return rc;
2592}
2593
2594static void
2595ef4_farch_filter_table_clear(struct ef4_nic *efx,
2596                             enum ef4_farch_filter_table_id table_id,
2597                             enum ef4_filter_priority priority)
2598{
2599        struct ef4_farch_filter_state *state = efx->filter_state;
2600        struct ef4_farch_filter_table *table = &state->table[table_id];
2601        unsigned int filter_idx;
2602
2603        spin_lock_bh(&efx->filter_lock);
2604        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2605                if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2606                        ef4_farch_filter_remove(efx, table,
2607                                                filter_idx, priority);
2608        }
2609        spin_unlock_bh(&efx->filter_lock);
2610}
2611
2612int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2613                               enum ef4_filter_priority priority)
2614{
2615        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2616                                     priority);
2617        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2618                                     priority);
2619        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2620                                     priority);
2621        return 0;
2622}
2623
2624u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2625                                   enum ef4_filter_priority priority)
2626{
2627        struct ef4_farch_filter_state *state = efx->filter_state;
2628        enum ef4_farch_filter_table_id table_id;
2629        struct ef4_farch_filter_table *table;
2630        unsigned int filter_idx;
2631        u32 count = 0;
2632
2633        spin_lock_bh(&efx->filter_lock);
2634
2635        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2636             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2637             table_id++) {
2638                table = &state->table[table_id];
2639                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2640                        if (test_bit(filter_idx, table->used_bitmap) &&
2641                            table->spec[filter_idx].priority == priority)
2642                                ++count;
2643                }
2644        }
2645
2646        spin_unlock_bh(&efx->filter_lock);
2647
2648        return count;
2649}
2650
2651s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2652                                enum ef4_filter_priority priority,
2653                                u32 *buf, u32 size)
2654{
2655        struct ef4_farch_filter_state *state = efx->filter_state;
2656        enum ef4_farch_filter_table_id table_id;
2657        struct ef4_farch_filter_table *table;
2658        unsigned int filter_idx;
2659        s32 count = 0;
2660
2661        spin_lock_bh(&efx->filter_lock);
2662
2663        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2664             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2665             table_id++) {
2666                table = &state->table[table_id];
2667                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2668                        if (test_bit(filter_idx, table->used_bitmap) &&
2669                            table->spec[filter_idx].priority == priority) {
2670                                if (count == size) {
2671                                        count = -EMSGSIZE;
2672                                        goto out;
2673                                }
2674                                buf[count++] = ef4_farch_filter_make_id(
2675                                        &table->spec[filter_idx], filter_idx);
2676                        }
2677                }
2678        }
2679out:
2680        spin_unlock_bh(&efx->filter_lock);
2681
2682        return count;
2683}
2684
2685/* Restore filter stater after reset */
2686void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2687{
2688        struct ef4_farch_filter_state *state = efx->filter_state;
2689        enum ef4_farch_filter_table_id table_id;
2690        struct ef4_farch_filter_table *table;
2691        ef4_oword_t filter;
2692        unsigned int filter_idx;
2693
2694        spin_lock_bh(&efx->filter_lock);
2695
2696        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2697                table = &state->table[table_id];
2698
2699                /* Check whether this is a regular register table */
2700                if (table->step == 0)
2701                        continue;
2702
2703                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2704                        if (!test_bit(filter_idx, table->used_bitmap))
2705                                continue;
2706                        ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2707                        ef4_writeo(efx, &filter,
2708                                   table->offset + table->step * filter_idx);
2709                }
2710        }
2711
2712        ef4_farch_filter_push_rx_config(efx);
2713        ef4_farch_filter_push_tx_limits(efx);
2714
2715        spin_unlock_bh(&efx->filter_lock);
2716}
2717
2718void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2719{
2720        struct ef4_farch_filter_state *state = efx->filter_state;
2721        enum ef4_farch_filter_table_id table_id;
2722
2723        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2724                kfree(state->table[table_id].used_bitmap);
2725                vfree(state->table[table_id].spec);
2726        }
2727        kfree(state);
2728}
2729
2730int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2731{
2732        struct ef4_farch_filter_state *state;
2733        struct ef4_farch_filter_table *table;
2734        unsigned table_id;
2735
2736        state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2737        if (!state)
2738                return -ENOMEM;
2739        efx->filter_state = state;
2740
2741        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2742                table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2743                table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2744                table->offset = FR_BZ_RX_FILTER_TBL0;
2745                table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2746                table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2747        }
2748
2749        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2750                table = &state->table[table_id];
2751                if (table->size == 0)
2752                        continue;
2753                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2754                                             sizeof(unsigned long),
2755                                             GFP_KERNEL);
2756                if (!table->used_bitmap)
2757                        goto fail;
2758                table->spec = vzalloc(array_size(sizeof(*table->spec),
2759                                                 table->size));
2760                if (!table->spec)
2761                        goto fail;
2762        }
2763
2764        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2765        if (table->size) {
2766                /* RX default filters must always exist */
2767                struct ef4_farch_filter_spec *spec;
2768                unsigned i;
2769
2770                for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2771                        spec = &table->spec[i];
2772                        spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2773                        ef4_farch_filter_init_rx_auto(efx, spec);
2774                        __set_bit(i, table->used_bitmap);
2775                }
2776        }
2777
2778        ef4_farch_filter_push_rx_config(efx);
2779
2780        return 0;
2781
2782fail:
2783        ef4_farch_filter_table_remove(efx);
2784        return -ENOMEM;
2785}
2786
2787/* Update scatter enable flags for filters pointing to our own RX queues */
2788void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2789{
2790        struct ef4_farch_filter_state *state = efx->filter_state;
2791        enum ef4_farch_filter_table_id table_id;
2792        struct ef4_farch_filter_table *table;
2793        ef4_oword_t filter;
2794        unsigned int filter_idx;
2795
2796        spin_lock_bh(&efx->filter_lock);
2797
2798        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2799             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2800             table_id++) {
2801                table = &state->table[table_id];
2802
2803                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2804                        if (!test_bit(filter_idx, table->used_bitmap) ||
2805                            table->spec[filter_idx].dmaq_id >=
2806                            efx->n_rx_channels)
2807                                continue;
2808
2809                        if (efx->rx_scatter)
2810                                table->spec[filter_idx].flags |=
2811                                        EF4_FILTER_FLAG_RX_SCATTER;
2812                        else
2813                                table->spec[filter_idx].flags &=
2814                                        ~EF4_FILTER_FLAG_RX_SCATTER;
2815
2816                        if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2817                                /* Pushed by ef4_farch_filter_push_rx_config() */
2818                                continue;
2819
2820                        ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2821                        ef4_writeo(efx, &filter,
2822                                   table->offset + table->step * filter_idx);
2823                }
2824        }
2825
2826        ef4_farch_filter_push_rx_config(efx);
2827
2828        spin_unlock_bh(&efx->filter_lock);
2829}
2830
2831#ifdef CONFIG_RFS_ACCEL
2832
2833s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2834                                struct ef4_filter_spec *gen_spec)
2835{
2836        return ef4_farch_filter_insert(efx, gen_spec, true);
2837}
2838
2839bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2840                                     unsigned int index)
2841{
2842        struct ef4_farch_filter_state *state = efx->filter_state;
2843        struct ef4_farch_filter_table *table =
2844                &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2845
2846        if (test_bit(index, table->used_bitmap) &&
2847            table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2848            rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2849                                flow_id, index)) {
2850                ef4_farch_filter_table_clear_entry(efx, table, index);
2851                return true;
2852        }
2853
2854        return false;
2855}
2856
2857#endif /* CONFIG_RFS_ACCEL */
2858
2859void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2860{
2861        struct net_device *net_dev = efx->net_dev;
2862        struct netdev_hw_addr *ha;
2863        union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2864        u32 crc;
2865        int bit;
2866
2867        if (!ef4_dev_registered(efx))
2868                return;
2869
2870        netif_addr_lock_bh(net_dev);
2871
2872        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2873
2874        /* Build multicast hash table */
2875        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2876                memset(mc_hash, 0xff, sizeof(*mc_hash));
2877        } else {
2878                memset(mc_hash, 0x00, sizeof(*mc_hash));
2879                netdev_for_each_mc_addr(ha, net_dev) {
2880                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2881                        bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2882                        __set_bit_le(bit, mc_hash);
2883                }
2884
2885                /* Broadcast packets go through the multicast hash filter.
2886                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2887                 * so we always add bit 0xff to the mask.
2888                 */
2889                __set_bit_le(0xff, mc_hash);
2890        }
2891
2892        netif_addr_unlock_bh(net_dev);
2893}
2894