linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/aer.h>
   8#include <linux/async.h>
   9#include <linux/blkdev.h>
  10#include <linux/blk-mq.h>
  11#include <linux/blk-mq-pci.h>
  12#include <linux/dmi.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <linux/once.h>
  20#include <linux/pci.h>
  21#include <linux/t10-pi.h>
  22#include <linux/types.h>
  23#include <linux/io-64-nonatomic-lo-hi.h>
  24#include <linux/sed-opal.h>
  25#include <linux/pci-p2pdma.h>
  26
  27#include "trace.h"
  28#include "nvme.h"
  29
  30#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  31#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  32
  33#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  34
  35/*
  36 * These can be higher, but we need to ensure that any command doesn't
  37 * require an sg allocation that needs more than a page of data.
  38 */
  39#define NVME_MAX_KB_SZ  4096
  40#define NVME_MAX_SEGS   127
  41
  42static int use_threaded_interrupts;
  43module_param(use_threaded_interrupts, int, 0);
  44
  45static bool use_cmb_sqes = true;
  46module_param(use_cmb_sqes, bool, 0444);
  47MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  48
  49static unsigned int max_host_mem_size_mb = 128;
  50module_param(max_host_mem_size_mb, uint, 0444);
  51MODULE_PARM_DESC(max_host_mem_size_mb,
  52        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  53
  54static unsigned int sgl_threshold = SZ_32K;
  55module_param(sgl_threshold, uint, 0644);
  56MODULE_PARM_DESC(sgl_threshold,
  57                "Use SGLs when average request segment size is larger or equal to "
  58                "this size. Use 0 to disable SGLs.");
  59
  60static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  61static const struct kernel_param_ops io_queue_depth_ops = {
  62        .set = io_queue_depth_set,
  63        .get = param_get_int,
  64};
  65
  66static int io_queue_depth = 1024;
  67module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  68MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  69
  70static int queue_count_set(const char *val, const struct kernel_param *kp);
  71static const struct kernel_param_ops queue_count_ops = {
  72        .set = queue_count_set,
  73        .get = param_get_int,
  74};
  75
  76static int write_queues;
  77module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
  78MODULE_PARM_DESC(write_queues,
  79        "Number of queues to use for writes. If not set, reads and writes "
  80        "will share a queue set.");
  81
  82static int poll_queues = 0;
  83module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
  84MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  85
  86struct nvme_dev;
  87struct nvme_queue;
  88
  89static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  90static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
  91
  92/*
  93 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  94 */
  95struct nvme_dev {
  96        struct nvme_queue *queues;
  97        struct blk_mq_tag_set tagset;
  98        struct blk_mq_tag_set admin_tagset;
  99        u32 __iomem *dbs;
 100        struct device *dev;
 101        struct dma_pool *prp_page_pool;
 102        struct dma_pool *prp_small_pool;
 103        unsigned online_queues;
 104        unsigned max_qid;
 105        unsigned io_queues[HCTX_MAX_TYPES];
 106        unsigned int num_vecs;
 107        int q_depth;
 108        u32 db_stride;
 109        void __iomem *bar;
 110        unsigned long bar_mapped_size;
 111        struct work_struct remove_work;
 112        struct mutex shutdown_lock;
 113        bool subsystem;
 114        u64 cmb_size;
 115        bool cmb_use_sqes;
 116        u32 cmbsz;
 117        u32 cmbloc;
 118        struct nvme_ctrl ctrl;
 119
 120        mempool_t *iod_mempool;
 121
 122        /* shadow doorbell buffer support: */
 123        u32 *dbbuf_dbs;
 124        dma_addr_t dbbuf_dbs_dma_addr;
 125        u32 *dbbuf_eis;
 126        dma_addr_t dbbuf_eis_dma_addr;
 127
 128        /* host memory buffer support: */
 129        u64 host_mem_size;
 130        u32 nr_host_mem_descs;
 131        dma_addr_t host_mem_descs_dma;
 132        struct nvme_host_mem_buf_desc *host_mem_descs;
 133        void **host_mem_desc_bufs;
 134};
 135
 136static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 137{
 138        int n = 0, ret;
 139
 140        ret = kstrtoint(val, 10, &n);
 141        if (ret != 0 || n < 2)
 142                return -EINVAL;
 143
 144        return param_set_int(val, kp);
 145}
 146
 147static int queue_count_set(const char *val, const struct kernel_param *kp)
 148{
 149        int n = 0, ret;
 150
 151        ret = kstrtoint(val, 10, &n);
 152        if (ret)
 153                return ret;
 154        if (n > num_possible_cpus())
 155                n = num_possible_cpus();
 156
 157        return param_set_int(val, kp);
 158}
 159
 160static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 161{
 162        return qid * 2 * stride;
 163}
 164
 165static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 166{
 167        return (qid * 2 + 1) * stride;
 168}
 169
 170static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 171{
 172        return container_of(ctrl, struct nvme_dev, ctrl);
 173}
 174
 175/*
 176 * An NVM Express queue.  Each device has at least two (one for admin
 177 * commands and one for I/O commands).
 178 */
 179struct nvme_queue {
 180        struct device *q_dmadev;
 181        struct nvme_dev *dev;
 182        spinlock_t sq_lock;
 183        struct nvme_command *sq_cmds;
 184         /* only used for poll queues: */
 185        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 186        volatile struct nvme_completion *cqes;
 187        struct blk_mq_tags **tags;
 188        dma_addr_t sq_dma_addr;
 189        dma_addr_t cq_dma_addr;
 190        u32 __iomem *q_db;
 191        u16 q_depth;
 192        s16 cq_vector;
 193        u16 sq_tail;
 194        u16 last_sq_tail;
 195        u16 cq_head;
 196        u16 last_cq_head;
 197        u16 qid;
 198        u8 cq_phase;
 199        unsigned long flags;
 200#define NVMEQ_ENABLED           0
 201#define NVMEQ_SQ_CMB            1
 202#define NVMEQ_DELETE_ERROR      2
 203        u32 *dbbuf_sq_db;
 204        u32 *dbbuf_cq_db;
 205        u32 *dbbuf_sq_ei;
 206        u32 *dbbuf_cq_ei;
 207        struct completion delete_done;
 208};
 209
 210/*
 211 * The nvme_iod describes the data in an I/O, including the list of PRP
 212 * entries.  You can't see it in this data structure because C doesn't let
 213 * me express that.  Use nvme_init_iod to ensure there's enough space
 214 * allocated to store the PRP list.
 215 */
 216struct nvme_iod {
 217        struct nvme_request req;
 218        struct nvme_queue *nvmeq;
 219        bool use_sgl;
 220        int aborted;
 221        int npages;             /* In the PRP list. 0 means small pool in use */
 222        int nents;              /* Used in scatterlist */
 223        int length;             /* Of data, in bytes */
 224        dma_addr_t first_dma;
 225        struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 226        struct scatterlist *sg;
 227        struct scatterlist inline_sg[0];
 228};
 229
 230/*
 231 * Check we didin't inadvertently grow the command struct
 232 */
 233static inline void _nvme_check_size(void)
 234{
 235        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 236        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 237        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 238        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 239        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 240        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 241        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 242        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 243        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
 244        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
 245        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 246        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 247        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
 248}
 249
 250static unsigned int max_io_queues(void)
 251{
 252        return num_possible_cpus() + write_queues + poll_queues;
 253}
 254
 255static unsigned int max_queue_count(void)
 256{
 257        /* IO queues + admin queue */
 258        return 1 + max_io_queues();
 259}
 260
 261static inline unsigned int nvme_dbbuf_size(u32 stride)
 262{
 263        return (max_queue_count() * 8 * stride);
 264}
 265
 266static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 267{
 268        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 269
 270        if (dev->dbbuf_dbs)
 271                return 0;
 272
 273        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 274                                            &dev->dbbuf_dbs_dma_addr,
 275                                            GFP_KERNEL);
 276        if (!dev->dbbuf_dbs)
 277                return -ENOMEM;
 278        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 279                                            &dev->dbbuf_eis_dma_addr,
 280                                            GFP_KERNEL);
 281        if (!dev->dbbuf_eis) {
 282                dma_free_coherent(dev->dev, mem_size,
 283                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 284                dev->dbbuf_dbs = NULL;
 285                return -ENOMEM;
 286        }
 287
 288        return 0;
 289}
 290
 291static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 292{
 293        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 294
 295        if (dev->dbbuf_dbs) {
 296                dma_free_coherent(dev->dev, mem_size,
 297                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 298                dev->dbbuf_dbs = NULL;
 299        }
 300        if (dev->dbbuf_eis) {
 301                dma_free_coherent(dev->dev, mem_size,
 302                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 303                dev->dbbuf_eis = NULL;
 304        }
 305}
 306
 307static void nvme_dbbuf_init(struct nvme_dev *dev,
 308                            struct nvme_queue *nvmeq, int qid)
 309{
 310        if (!dev->dbbuf_dbs || !qid)
 311                return;
 312
 313        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 314        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 315        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 316        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 317}
 318
 319static void nvme_dbbuf_set(struct nvme_dev *dev)
 320{
 321        struct nvme_command c;
 322
 323        if (!dev->dbbuf_dbs)
 324                return;
 325
 326        memset(&c, 0, sizeof(c));
 327        c.dbbuf.opcode = nvme_admin_dbbuf;
 328        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 329        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 330
 331        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 332                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 333                /* Free memory and continue on */
 334                nvme_dbbuf_dma_free(dev);
 335        }
 336}
 337
 338static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 339{
 340        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 341}
 342
 343/* Update dbbuf and return true if an MMIO is required */
 344static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 345                                              volatile u32 *dbbuf_ei)
 346{
 347        if (dbbuf_db) {
 348                u16 old_value;
 349
 350                /*
 351                 * Ensure that the queue is written before updating
 352                 * the doorbell in memory
 353                 */
 354                wmb();
 355
 356                old_value = *dbbuf_db;
 357                *dbbuf_db = value;
 358
 359                /*
 360                 * Ensure that the doorbell is updated before reading the event
 361                 * index from memory.  The controller needs to provide similar
 362                 * ordering to ensure the envent index is updated before reading
 363                 * the doorbell.
 364                 */
 365                mb();
 366
 367                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 368                        return false;
 369        }
 370
 371        return true;
 372}
 373
 374/*
 375 * Max size of iod being embedded in the request payload
 376 */
 377#define NVME_INT_PAGES          2
 378#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
 379
 380/*
 381 * Will slightly overestimate the number of pages needed.  This is OK
 382 * as it only leads to a small amount of wasted memory for the lifetime of
 383 * the I/O.
 384 */
 385static int nvme_npages(unsigned size, struct nvme_dev *dev)
 386{
 387        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 388                                      dev->ctrl.page_size);
 389        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 390}
 391
 392/*
 393 * Calculates the number of pages needed for the SGL segments. For example a 4k
 394 * page can accommodate 256 SGL descriptors.
 395 */
 396static int nvme_pci_npages_sgl(unsigned int num_seg)
 397{
 398        return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 399}
 400
 401static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 402                unsigned int size, unsigned int nseg, bool use_sgl)
 403{
 404        size_t alloc_size;
 405
 406        if (use_sgl)
 407                alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 408        else
 409                alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 410
 411        return alloc_size + sizeof(struct scatterlist) * nseg;
 412}
 413
 414static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
 415{
 416        unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
 417                                    NVME_INT_BYTES(dev), NVME_INT_PAGES,
 418                                    use_sgl);
 419
 420        return sizeof(struct nvme_iod) + alloc_size;
 421}
 422
 423static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 424                                unsigned int hctx_idx)
 425{
 426        struct nvme_dev *dev = data;
 427        struct nvme_queue *nvmeq = &dev->queues[0];
 428
 429        WARN_ON(hctx_idx != 0);
 430        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 431        WARN_ON(nvmeq->tags);
 432
 433        hctx->driver_data = nvmeq;
 434        nvmeq->tags = &dev->admin_tagset.tags[0];
 435        return 0;
 436}
 437
 438static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 439{
 440        struct nvme_queue *nvmeq = hctx->driver_data;
 441
 442        nvmeq->tags = NULL;
 443}
 444
 445static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 446                          unsigned int hctx_idx)
 447{
 448        struct nvme_dev *dev = data;
 449        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 450
 451        if (!nvmeq->tags)
 452                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 453
 454        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 455        hctx->driver_data = nvmeq;
 456        return 0;
 457}
 458
 459static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 460                unsigned int hctx_idx, unsigned int numa_node)
 461{
 462        struct nvme_dev *dev = set->driver_data;
 463        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 464        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 465        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 466
 467        BUG_ON(!nvmeq);
 468        iod->nvmeq = nvmeq;
 469
 470        nvme_req(req)->ctrl = &dev->ctrl;
 471        return 0;
 472}
 473
 474static int queue_irq_offset(struct nvme_dev *dev)
 475{
 476        /* if we have more than 1 vec, admin queue offsets us by 1 */
 477        if (dev->num_vecs > 1)
 478                return 1;
 479
 480        return 0;
 481}
 482
 483static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 484{
 485        struct nvme_dev *dev = set->driver_data;
 486        int i, qoff, offset;
 487
 488        offset = queue_irq_offset(dev);
 489        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 490                struct blk_mq_queue_map *map = &set->map[i];
 491
 492                map->nr_queues = dev->io_queues[i];
 493                if (!map->nr_queues) {
 494                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 495                        continue;
 496                }
 497
 498                /*
 499                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 500                 * affinity), so use the regular blk-mq cpu mapping
 501                 */
 502                map->queue_offset = qoff;
 503                if (i != HCTX_TYPE_POLL)
 504                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 505                else
 506                        blk_mq_map_queues(map);
 507                qoff += map->nr_queues;
 508                offset += map->nr_queues;
 509        }
 510
 511        return 0;
 512}
 513
 514/*
 515 * Write sq tail if we are asked to, or if the next command would wrap.
 516 */
 517static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 518{
 519        if (!write_sq) {
 520                u16 next_tail = nvmeq->sq_tail + 1;
 521
 522                if (next_tail == nvmeq->q_depth)
 523                        next_tail = 0;
 524                if (next_tail != nvmeq->last_sq_tail)
 525                        return;
 526        }
 527
 528        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 529                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 530                writel(nvmeq->sq_tail, nvmeq->q_db);
 531        nvmeq->last_sq_tail = nvmeq->sq_tail;
 532}
 533
 534/**
 535 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 536 * @nvmeq: The queue to use
 537 * @cmd: The command to send
 538 * @write_sq: whether to write to the SQ doorbell
 539 */
 540static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 541                            bool write_sq)
 542{
 543        spin_lock(&nvmeq->sq_lock);
 544        memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
 545        if (++nvmeq->sq_tail == nvmeq->q_depth)
 546                nvmeq->sq_tail = 0;
 547        nvme_write_sq_db(nvmeq, write_sq);
 548        spin_unlock(&nvmeq->sq_lock);
 549}
 550
 551static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 552{
 553        struct nvme_queue *nvmeq = hctx->driver_data;
 554
 555        spin_lock(&nvmeq->sq_lock);
 556        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 557                nvme_write_sq_db(nvmeq, true);
 558        spin_unlock(&nvmeq->sq_lock);
 559}
 560
 561static void **nvme_pci_iod_list(struct request *req)
 562{
 563        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 564        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 565}
 566
 567static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 568{
 569        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 570        int nseg = blk_rq_nr_phys_segments(req);
 571        unsigned int avg_seg_size;
 572
 573        if (nseg == 0)
 574                return false;
 575
 576        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 577
 578        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 579                return false;
 580        if (!iod->nvmeq->qid)
 581                return false;
 582        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 583                return false;
 584        return true;
 585}
 586
 587static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
 588{
 589        struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 590        int nseg = blk_rq_nr_phys_segments(rq);
 591        unsigned int size = blk_rq_payload_bytes(rq);
 592
 593        iod->use_sgl = nvme_pci_use_sgls(dev, rq);
 594
 595        if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 596                iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 597                if (!iod->sg)
 598                        return BLK_STS_RESOURCE;
 599        } else {
 600                iod->sg = iod->inline_sg;
 601        }
 602
 603        iod->aborted = 0;
 604        iod->npages = -1;
 605        iod->nents = 0;
 606        iod->length = size;
 607
 608        return BLK_STS_OK;
 609}
 610
 611static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 612{
 613        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 614        const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 615        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 616
 617        int i;
 618
 619        if (iod->npages == 0)
 620                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 621                        dma_addr);
 622
 623        for (i = 0; i < iod->npages; i++) {
 624                void *addr = nvme_pci_iod_list(req)[i];
 625
 626                if (iod->use_sgl) {
 627                        struct nvme_sgl_desc *sg_list = addr;
 628
 629                        next_dma_addr =
 630                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 631                } else {
 632                        __le64 *prp_list = addr;
 633
 634                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 635                }
 636
 637                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 638                dma_addr = next_dma_addr;
 639        }
 640
 641        if (iod->sg != iod->inline_sg)
 642                mempool_free(iod->sg, dev->iod_mempool);
 643}
 644
 645static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 646{
 647        int i;
 648        struct scatterlist *sg;
 649
 650        for_each_sg(sgl, sg, nents, i) {
 651                dma_addr_t phys = sg_phys(sg);
 652                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 653                        "dma_address:%pad dma_length:%d\n",
 654                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 655                        sg_dma_len(sg));
 656        }
 657}
 658
 659static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 660                struct request *req, struct nvme_rw_command *cmnd)
 661{
 662        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 663        struct dma_pool *pool;
 664        int length = blk_rq_payload_bytes(req);
 665        struct scatterlist *sg = iod->sg;
 666        int dma_len = sg_dma_len(sg);
 667        u64 dma_addr = sg_dma_address(sg);
 668        u32 page_size = dev->ctrl.page_size;
 669        int offset = dma_addr & (page_size - 1);
 670        __le64 *prp_list;
 671        void **list = nvme_pci_iod_list(req);
 672        dma_addr_t prp_dma;
 673        int nprps, i;
 674
 675        length -= (page_size - offset);
 676        if (length <= 0) {
 677                iod->first_dma = 0;
 678                goto done;
 679        }
 680
 681        dma_len -= (page_size - offset);
 682        if (dma_len) {
 683                dma_addr += (page_size - offset);
 684        } else {
 685                sg = sg_next(sg);
 686                dma_addr = sg_dma_address(sg);
 687                dma_len = sg_dma_len(sg);
 688        }
 689
 690        if (length <= page_size) {
 691                iod->first_dma = dma_addr;
 692                goto done;
 693        }
 694
 695        nprps = DIV_ROUND_UP(length, page_size);
 696        if (nprps <= (256 / 8)) {
 697                pool = dev->prp_small_pool;
 698                iod->npages = 0;
 699        } else {
 700                pool = dev->prp_page_pool;
 701                iod->npages = 1;
 702        }
 703
 704        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 705        if (!prp_list) {
 706                iod->first_dma = dma_addr;
 707                iod->npages = -1;
 708                return BLK_STS_RESOURCE;
 709        }
 710        list[0] = prp_list;
 711        iod->first_dma = prp_dma;
 712        i = 0;
 713        for (;;) {
 714                if (i == page_size >> 3) {
 715                        __le64 *old_prp_list = prp_list;
 716                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 717                        if (!prp_list)
 718                                return BLK_STS_RESOURCE;
 719                        list[iod->npages++] = prp_list;
 720                        prp_list[0] = old_prp_list[i - 1];
 721                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 722                        i = 1;
 723                }
 724                prp_list[i++] = cpu_to_le64(dma_addr);
 725                dma_len -= page_size;
 726                dma_addr += page_size;
 727                length -= page_size;
 728                if (length <= 0)
 729                        break;
 730                if (dma_len > 0)
 731                        continue;
 732                if (unlikely(dma_len < 0))
 733                        goto bad_sgl;
 734                sg = sg_next(sg);
 735                dma_addr = sg_dma_address(sg);
 736                dma_len = sg_dma_len(sg);
 737        }
 738
 739done:
 740        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 741        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 742
 743        return BLK_STS_OK;
 744
 745 bad_sgl:
 746        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 747                        "Invalid SGL for payload:%d nents:%d\n",
 748                        blk_rq_payload_bytes(req), iod->nents);
 749        return BLK_STS_IOERR;
 750}
 751
 752static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 753                struct scatterlist *sg)
 754{
 755        sge->addr = cpu_to_le64(sg_dma_address(sg));
 756        sge->length = cpu_to_le32(sg_dma_len(sg));
 757        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 758}
 759
 760static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 761                dma_addr_t dma_addr, int entries)
 762{
 763        sge->addr = cpu_to_le64(dma_addr);
 764        if (entries < SGES_PER_PAGE) {
 765                sge->length = cpu_to_le32(entries * sizeof(*sge));
 766                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 767        } else {
 768                sge->length = cpu_to_le32(PAGE_SIZE);
 769                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 770        }
 771}
 772
 773static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 774                struct request *req, struct nvme_rw_command *cmd, int entries)
 775{
 776        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 777        struct dma_pool *pool;
 778        struct nvme_sgl_desc *sg_list;
 779        struct scatterlist *sg = iod->sg;
 780        dma_addr_t sgl_dma;
 781        int i = 0;
 782
 783        /* setting the transfer type as SGL */
 784        cmd->flags = NVME_CMD_SGL_METABUF;
 785
 786        if (entries == 1) {
 787                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 788                return BLK_STS_OK;
 789        }
 790
 791        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 792                pool = dev->prp_small_pool;
 793                iod->npages = 0;
 794        } else {
 795                pool = dev->prp_page_pool;
 796                iod->npages = 1;
 797        }
 798
 799        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 800        if (!sg_list) {
 801                iod->npages = -1;
 802                return BLK_STS_RESOURCE;
 803        }
 804
 805        nvme_pci_iod_list(req)[0] = sg_list;
 806        iod->first_dma = sgl_dma;
 807
 808        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 809
 810        do {
 811                if (i == SGES_PER_PAGE) {
 812                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 813                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 814
 815                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 816                        if (!sg_list)
 817                                return BLK_STS_RESOURCE;
 818
 819                        i = 0;
 820                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 821                        sg_list[i++] = *link;
 822                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 823                }
 824
 825                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 826                sg = sg_next(sg);
 827        } while (--entries > 0);
 828
 829        return BLK_STS_OK;
 830}
 831
 832static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 833                struct nvme_command *cmnd)
 834{
 835        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 836        struct request_queue *q = req->q;
 837        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 838                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 839        blk_status_t ret = BLK_STS_IOERR;
 840        int nr_mapped;
 841
 842        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 843        iod->nents = blk_rq_map_sg(q, req, iod->sg);
 844        if (!iod->nents)
 845                goto out;
 846
 847        ret = BLK_STS_RESOURCE;
 848
 849        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 850                nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
 851                                          dma_dir);
 852        else
 853                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 854                                             dma_dir,  DMA_ATTR_NO_WARN);
 855        if (!nr_mapped)
 856                goto out;
 857
 858        if (iod->use_sgl)
 859                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 860        else
 861                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 862
 863        if (ret != BLK_STS_OK)
 864                goto out_unmap;
 865
 866        ret = BLK_STS_IOERR;
 867        if (blk_integrity_rq(req)) {
 868                if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 869                        goto out_unmap;
 870
 871                sg_init_table(&iod->meta_sg, 1);
 872                if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 873                        goto out_unmap;
 874
 875                if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 876                        goto out_unmap;
 877
 878                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 879        }
 880
 881        return BLK_STS_OK;
 882
 883out_unmap:
 884        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 885out:
 886        return ret;
 887}
 888
 889static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 890{
 891        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 892        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 893                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 894
 895        if (iod->nents) {
 896                /* P2PDMA requests do not need to be unmapped */
 897                if (!is_pci_p2pdma_page(sg_page(iod->sg)))
 898                        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 899
 900                if (blk_integrity_rq(req))
 901                        dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 902        }
 903
 904        nvme_cleanup_cmd(req);
 905        nvme_free_iod(dev, req);
 906}
 907
 908/*
 909 * NOTE: ns is NULL when called on the admin queue.
 910 */
 911static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 912                         const struct blk_mq_queue_data *bd)
 913{
 914        struct nvme_ns *ns = hctx->queue->queuedata;
 915        struct nvme_queue *nvmeq = hctx->driver_data;
 916        struct nvme_dev *dev = nvmeq->dev;
 917        struct request *req = bd->rq;
 918        struct nvme_command cmnd;
 919        blk_status_t ret;
 920
 921        /*
 922         * We should not need to do this, but we're still using this to
 923         * ensure we can drain requests on a dying queue.
 924         */
 925        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 926                return BLK_STS_IOERR;
 927
 928        ret = nvme_setup_cmd(ns, req, &cmnd);
 929        if (ret)
 930                return ret;
 931
 932        ret = nvme_init_iod(req, dev);
 933        if (ret)
 934                goto out_free_cmd;
 935
 936        if (blk_rq_nr_phys_segments(req)) {
 937                ret = nvme_map_data(dev, req, &cmnd);
 938                if (ret)
 939                        goto out_cleanup_iod;
 940        }
 941
 942        blk_mq_start_request(req);
 943        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 944        return BLK_STS_OK;
 945out_cleanup_iod:
 946        nvme_free_iod(dev, req);
 947out_free_cmd:
 948        nvme_cleanup_cmd(req);
 949        return ret;
 950}
 951
 952static void nvme_pci_complete_rq(struct request *req)
 953{
 954        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 955
 956        nvme_unmap_data(iod->nvmeq->dev, req);
 957        nvme_complete_rq(req);
 958}
 959
 960/* We read the CQE phase first to check if the rest of the entry is valid */
 961static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 962{
 963        return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
 964                        nvmeq->cq_phase;
 965}
 966
 967static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 968{
 969        u16 head = nvmeq->cq_head;
 970
 971        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 972                                              nvmeq->dbbuf_cq_ei))
 973                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 974}
 975
 976static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 977{
 978        volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
 979        struct request *req;
 980
 981        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 982                dev_warn(nvmeq->dev->ctrl.device,
 983                        "invalid id %d completed on queue %d\n",
 984                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 985                return;
 986        }
 987
 988        /*
 989         * AEN requests are special as they don't time out and can
 990         * survive any kind of queue freeze and often don't respond to
 991         * aborts.  We don't even bother to allocate a struct request
 992         * for them but rather special case them here.
 993         */
 994        if (unlikely(nvmeq->qid == 0 &&
 995                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
 996                nvme_complete_async_event(&nvmeq->dev->ctrl,
 997                                cqe->status, &cqe->result);
 998                return;
 999        }
1000
1001        req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1002        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1003        nvme_end_request(req, cqe->status, cqe->result);
1004}
1005
1006static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1007{
1008        while (start != end) {
1009                nvme_handle_cqe(nvmeq, start);
1010                if (++start == nvmeq->q_depth)
1011                        start = 0;
1012        }
1013}
1014
1015static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1016{
1017        if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1018                nvmeq->cq_head = 0;
1019                nvmeq->cq_phase = !nvmeq->cq_phase;
1020        } else {
1021                nvmeq->cq_head++;
1022        }
1023}
1024
1025static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1026                                  u16 *end, unsigned int tag)
1027{
1028        int found = 0;
1029
1030        *start = nvmeq->cq_head;
1031        while (nvme_cqe_pending(nvmeq)) {
1032                if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1033                        found++;
1034                nvme_update_cq_head(nvmeq);
1035        }
1036        *end = nvmeq->cq_head;
1037
1038        if (*start != *end)
1039                nvme_ring_cq_doorbell(nvmeq);
1040        return found;
1041}
1042
1043static irqreturn_t nvme_irq(int irq, void *data)
1044{
1045        struct nvme_queue *nvmeq = data;
1046        irqreturn_t ret = IRQ_NONE;
1047        u16 start, end;
1048
1049        /*
1050         * The rmb/wmb pair ensures we see all updates from a previous run of
1051         * the irq handler, even if that was on another CPU.
1052         */
1053        rmb();
1054        if (nvmeq->cq_head != nvmeq->last_cq_head)
1055                ret = IRQ_HANDLED;
1056        nvme_process_cq(nvmeq, &start, &end, -1);
1057        nvmeq->last_cq_head = nvmeq->cq_head;
1058        wmb();
1059
1060        if (start != end) {
1061                nvme_complete_cqes(nvmeq, start, end);
1062                return IRQ_HANDLED;
1063        }
1064
1065        return ret;
1066}
1067
1068static irqreturn_t nvme_irq_check(int irq, void *data)
1069{
1070        struct nvme_queue *nvmeq = data;
1071        if (nvme_cqe_pending(nvmeq))
1072                return IRQ_WAKE_THREAD;
1073        return IRQ_NONE;
1074}
1075
1076/*
1077 * Poll for completions any queue, including those not dedicated to polling.
1078 * Can be called from any context.
1079 */
1080static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1081{
1082        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1083        u16 start, end;
1084        int found;
1085
1086        /*
1087         * For a poll queue we need to protect against the polling thread
1088         * using the CQ lock.  For normal interrupt driven threads we have
1089         * to disable the interrupt to avoid racing with it.
1090         */
1091        if (nvmeq->cq_vector == -1) {
1092                spin_lock(&nvmeq->cq_poll_lock);
1093                found = nvme_process_cq(nvmeq, &start, &end, tag);
1094                spin_unlock(&nvmeq->cq_poll_lock);
1095        } else {
1096                disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097                found = nvme_process_cq(nvmeq, &start, &end, tag);
1098                enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1099        }
1100
1101        nvme_complete_cqes(nvmeq, start, end);
1102        return found;
1103}
1104
1105static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1106{
1107        struct nvme_queue *nvmeq = hctx->driver_data;
1108        u16 start, end;
1109        bool found;
1110
1111        if (!nvme_cqe_pending(nvmeq))
1112                return 0;
1113
1114        spin_lock(&nvmeq->cq_poll_lock);
1115        found = nvme_process_cq(nvmeq, &start, &end, -1);
1116        spin_unlock(&nvmeq->cq_poll_lock);
1117
1118        nvme_complete_cqes(nvmeq, start, end);
1119        return found;
1120}
1121
1122static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1123{
1124        struct nvme_dev *dev = to_nvme_dev(ctrl);
1125        struct nvme_queue *nvmeq = &dev->queues[0];
1126        struct nvme_command c;
1127
1128        memset(&c, 0, sizeof(c));
1129        c.common.opcode = nvme_admin_async_event;
1130        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1131        nvme_submit_cmd(nvmeq, &c, true);
1132}
1133
1134static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1135{
1136        struct nvme_command c;
1137
1138        memset(&c, 0, sizeof(c));
1139        c.delete_queue.opcode = opcode;
1140        c.delete_queue.qid = cpu_to_le16(id);
1141
1142        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1143}
1144
1145static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1146                struct nvme_queue *nvmeq, s16 vector)
1147{
1148        struct nvme_command c;
1149        int flags = NVME_QUEUE_PHYS_CONTIG;
1150
1151        if (vector != -1)
1152                flags |= NVME_CQ_IRQ_ENABLED;
1153
1154        /*
1155         * Note: we (ab)use the fact that the prp fields survive if no data
1156         * is attached to the request.
1157         */
1158        memset(&c, 0, sizeof(c));
1159        c.create_cq.opcode = nvme_admin_create_cq;
1160        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1161        c.create_cq.cqid = cpu_to_le16(qid);
1162        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1163        c.create_cq.cq_flags = cpu_to_le16(flags);
1164        if (vector != -1)
1165                c.create_cq.irq_vector = cpu_to_le16(vector);
1166        else
1167                c.create_cq.irq_vector = 0;
1168
1169        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1170}
1171
1172static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1173                                                struct nvme_queue *nvmeq)
1174{
1175        struct nvme_ctrl *ctrl = &dev->ctrl;
1176        struct nvme_command c;
1177        int flags = NVME_QUEUE_PHYS_CONTIG;
1178
1179        /*
1180         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1181         * set. Since URGENT priority is zeroes, it makes all queues
1182         * URGENT.
1183         */
1184        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1185                flags |= NVME_SQ_PRIO_MEDIUM;
1186
1187        /*
1188         * Note: we (ab)use the fact that the prp fields survive if no data
1189         * is attached to the request.
1190         */
1191        memset(&c, 0, sizeof(c));
1192        c.create_sq.opcode = nvme_admin_create_sq;
1193        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1194        c.create_sq.sqid = cpu_to_le16(qid);
1195        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1196        c.create_sq.sq_flags = cpu_to_le16(flags);
1197        c.create_sq.cqid = cpu_to_le16(qid);
1198
1199        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1200}
1201
1202static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1203{
1204        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1205}
1206
1207static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1208{
1209        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1210}
1211
1212static void abort_endio(struct request *req, blk_status_t error)
1213{
1214        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1215        struct nvme_queue *nvmeq = iod->nvmeq;
1216
1217        dev_warn(nvmeq->dev->ctrl.device,
1218                 "Abort status: 0x%x", nvme_req(req)->status);
1219        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1220        blk_mq_free_request(req);
1221}
1222
1223static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1224{
1225
1226        /* If true, indicates loss of adapter communication, possibly by a
1227         * NVMe Subsystem reset.
1228         */
1229        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1230
1231        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1232        switch (dev->ctrl.state) {
1233        case NVME_CTRL_RESETTING:
1234        case NVME_CTRL_CONNECTING:
1235                return false;
1236        default:
1237                break;
1238        }
1239
1240        /* We shouldn't reset unless the controller is on fatal error state
1241         * _or_ if we lost the communication with it.
1242         */
1243        if (!(csts & NVME_CSTS_CFS) && !nssro)
1244                return false;
1245
1246        return true;
1247}
1248
1249static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1250{
1251        /* Read a config register to help see what died. */
1252        u16 pci_status;
1253        int result;
1254
1255        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1256                                      &pci_status);
1257        if (result == PCIBIOS_SUCCESSFUL)
1258                dev_warn(dev->ctrl.device,
1259                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1260                         csts, pci_status);
1261        else
1262                dev_warn(dev->ctrl.device,
1263                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1264                         csts, result);
1265}
1266
1267static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1268{
1269        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1270        struct nvme_queue *nvmeq = iod->nvmeq;
1271        struct nvme_dev *dev = nvmeq->dev;
1272        struct request *abort_req;
1273        struct nvme_command cmd;
1274        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1275
1276        /* If PCI error recovery process is happening, we cannot reset or
1277         * the recovery mechanism will surely fail.
1278         */
1279        mb();
1280        if (pci_channel_offline(to_pci_dev(dev->dev)))
1281                return BLK_EH_RESET_TIMER;
1282
1283        /*
1284         * Reset immediately if the controller is failed
1285         */
1286        if (nvme_should_reset(dev, csts)) {
1287                nvme_warn_reset(dev, csts);
1288                nvme_dev_disable(dev, false);
1289                nvme_reset_ctrl(&dev->ctrl);
1290                return BLK_EH_DONE;
1291        }
1292
1293        /*
1294         * Did we miss an interrupt?
1295         */
1296        if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1297                dev_warn(dev->ctrl.device,
1298                         "I/O %d QID %d timeout, completion polled\n",
1299                         req->tag, nvmeq->qid);
1300                return BLK_EH_DONE;
1301        }
1302
1303        /*
1304         * Shutdown immediately if controller times out while starting. The
1305         * reset work will see the pci device disabled when it gets the forced
1306         * cancellation error. All outstanding requests are completed on
1307         * shutdown, so we return BLK_EH_DONE.
1308         */
1309        switch (dev->ctrl.state) {
1310        case NVME_CTRL_CONNECTING:
1311        case NVME_CTRL_RESETTING:
1312                dev_warn_ratelimited(dev->ctrl.device,
1313                         "I/O %d QID %d timeout, disable controller\n",
1314                         req->tag, nvmeq->qid);
1315                nvme_dev_disable(dev, false);
1316                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1317                return BLK_EH_DONE;
1318        default:
1319                break;
1320        }
1321
1322        /*
1323         * Shutdown the controller immediately and schedule a reset if the
1324         * command was already aborted once before and still hasn't been
1325         * returned to the driver, or if this is the admin queue.
1326         */
1327        if (!nvmeq->qid || iod->aborted) {
1328                dev_warn(dev->ctrl.device,
1329                         "I/O %d QID %d timeout, reset controller\n",
1330                         req->tag, nvmeq->qid);
1331                nvme_dev_disable(dev, false);
1332                nvme_reset_ctrl(&dev->ctrl);
1333
1334                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335                return BLK_EH_DONE;
1336        }
1337
1338        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1339                atomic_inc(&dev->ctrl.abort_limit);
1340                return BLK_EH_RESET_TIMER;
1341        }
1342        iod->aborted = 1;
1343
1344        memset(&cmd, 0, sizeof(cmd));
1345        cmd.abort.opcode = nvme_admin_abort_cmd;
1346        cmd.abort.cid = req->tag;
1347        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1348
1349        dev_warn(nvmeq->dev->ctrl.device,
1350                "I/O %d QID %d timeout, aborting\n",
1351                 req->tag, nvmeq->qid);
1352
1353        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1354                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1355        if (IS_ERR(abort_req)) {
1356                atomic_inc(&dev->ctrl.abort_limit);
1357                return BLK_EH_RESET_TIMER;
1358        }
1359
1360        abort_req->timeout = ADMIN_TIMEOUT;
1361        abort_req->end_io_data = NULL;
1362        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1363
1364        /*
1365         * The aborted req will be completed on receiving the abort req.
1366         * We enable the timer again. If hit twice, it'll cause a device reset,
1367         * as the device then is in a faulty state.
1368         */
1369        return BLK_EH_RESET_TIMER;
1370}
1371
1372static void nvme_free_queue(struct nvme_queue *nvmeq)
1373{
1374        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1375                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1376        if (!nvmeq->sq_cmds)
1377                return;
1378
1379        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1380                pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1381                                nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1382        } else {
1383                dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1384                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1385        }
1386}
1387
1388static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1389{
1390        int i;
1391
1392        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1393                dev->ctrl.queue_count--;
1394                nvme_free_queue(&dev->queues[i]);
1395        }
1396}
1397
1398/**
1399 * nvme_suspend_queue - put queue into suspended state
1400 * @nvmeq: queue to suspend
1401 */
1402static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1403{
1404        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1405                return 1;
1406
1407        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1408        mb();
1409
1410        nvmeq->dev->online_queues--;
1411        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1412                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1413        if (nvmeq->cq_vector == -1)
1414                return 0;
1415        pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1416        nvmeq->cq_vector = -1;
1417        return 0;
1418}
1419
1420static void nvme_suspend_io_queues(struct nvme_dev *dev)
1421{
1422        int i;
1423
1424        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1425                nvme_suspend_queue(&dev->queues[i]);
1426}
1427
1428static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1429{
1430        struct nvme_queue *nvmeq = &dev->queues[0];
1431
1432        if (shutdown)
1433                nvme_shutdown_ctrl(&dev->ctrl);
1434        else
1435                nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1436
1437        nvme_poll_irqdisable(nvmeq, -1);
1438}
1439
1440static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1441                                int entry_size)
1442{
1443        int q_depth = dev->q_depth;
1444        unsigned q_size_aligned = roundup(q_depth * entry_size,
1445                                          dev->ctrl.page_size);
1446
1447        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1448                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1449                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1450                q_depth = div_u64(mem_per_q, entry_size);
1451
1452                /*
1453                 * Ensure the reduced q_depth is above some threshold where it
1454                 * would be better to map queues in system memory with the
1455                 * original depth
1456                 */
1457                if (q_depth < 64)
1458                        return -ENOMEM;
1459        }
1460
1461        return q_depth;
1462}
1463
1464static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1465                                int qid, int depth)
1466{
1467        struct pci_dev *pdev = to_pci_dev(dev->dev);
1468
1469        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1470                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1471                nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1472                                                nvmeq->sq_cmds);
1473                if (nvmeq->sq_dma_addr) {
1474                        set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1475                        return 0; 
1476                }
1477        }
1478
1479        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1480                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1481        if (!nvmeq->sq_cmds)
1482                return -ENOMEM;
1483        return 0;
1484}
1485
1486static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1487{
1488        struct nvme_queue *nvmeq = &dev->queues[qid];
1489
1490        if (dev->ctrl.queue_count > qid)
1491                return 0;
1492
1493        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1494                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1495        if (!nvmeq->cqes)
1496                goto free_nvmeq;
1497
1498        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1499                goto free_cqdma;
1500
1501        nvmeq->q_dmadev = dev->dev;
1502        nvmeq->dev = dev;
1503        spin_lock_init(&nvmeq->sq_lock);
1504        spin_lock_init(&nvmeq->cq_poll_lock);
1505        nvmeq->cq_head = 0;
1506        nvmeq->cq_phase = 1;
1507        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508        nvmeq->q_depth = depth;
1509        nvmeq->qid = qid;
1510        nvmeq->cq_vector = -1;
1511        dev->ctrl.queue_count++;
1512
1513        return 0;
1514
1515 free_cqdma:
1516        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1517                                                        nvmeq->cq_dma_addr);
1518 free_nvmeq:
1519        return -ENOMEM;
1520}
1521
1522static int queue_request_irq(struct nvme_queue *nvmeq)
1523{
1524        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1525        int nr = nvmeq->dev->ctrl.instance;
1526
1527        if (use_threaded_interrupts) {
1528                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1529                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1530        } else {
1531                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1532                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1533        }
1534}
1535
1536static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1537{
1538        struct nvme_dev *dev = nvmeq->dev;
1539
1540        nvmeq->sq_tail = 0;
1541        nvmeq->last_sq_tail = 0;
1542        nvmeq->cq_head = 0;
1543        nvmeq->cq_phase = 1;
1544        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1545        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1546        nvme_dbbuf_init(dev, nvmeq, qid);
1547        dev->online_queues++;
1548        wmb(); /* ensure the first interrupt sees the initialization */
1549}
1550
1551static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1552{
1553        struct nvme_dev *dev = nvmeq->dev;
1554        int result;
1555        s16 vector;
1556
1557        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1558
1559        /*
1560         * A queue's vector matches the queue identifier unless the controller
1561         * has only one vector available.
1562         */
1563        if (!polled)
1564                vector = dev->num_vecs == 1 ? 0 : qid;
1565        else
1566                vector = -1;
1567
1568        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1569        if (result)
1570                return result;
1571
1572        result = adapter_alloc_sq(dev, qid, nvmeq);
1573        if (result < 0)
1574                return result;
1575        else if (result)
1576                goto release_cq;
1577
1578        nvmeq->cq_vector = vector;
1579        nvme_init_queue(nvmeq, qid);
1580
1581        if (vector != -1) {
1582                result = queue_request_irq(nvmeq);
1583                if (result < 0)
1584                        goto release_sq;
1585        }
1586
1587        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1588        return result;
1589
1590release_sq:
1591        nvmeq->cq_vector = -1;
1592        dev->online_queues--;
1593        adapter_delete_sq(dev, qid);
1594release_cq:
1595        adapter_delete_cq(dev, qid);
1596        return result;
1597}
1598
1599static const struct blk_mq_ops nvme_mq_admin_ops = {
1600        .queue_rq       = nvme_queue_rq,
1601        .complete       = nvme_pci_complete_rq,
1602        .init_hctx      = nvme_admin_init_hctx,
1603        .exit_hctx      = nvme_admin_exit_hctx,
1604        .init_request   = nvme_init_request,
1605        .timeout        = nvme_timeout,
1606};
1607
1608static const struct blk_mq_ops nvme_mq_ops = {
1609        .queue_rq       = nvme_queue_rq,
1610        .complete       = nvme_pci_complete_rq,
1611        .commit_rqs     = nvme_commit_rqs,
1612        .init_hctx      = nvme_init_hctx,
1613        .init_request   = nvme_init_request,
1614        .map_queues     = nvme_pci_map_queues,
1615        .timeout        = nvme_timeout,
1616        .poll           = nvme_poll,
1617};
1618
1619static void nvme_dev_remove_admin(struct nvme_dev *dev)
1620{
1621        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1622                /*
1623                 * If the controller was reset during removal, it's possible
1624                 * user requests may be waiting on a stopped queue. Start the
1625                 * queue to flush these to completion.
1626                 */
1627                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1628                blk_cleanup_queue(dev->ctrl.admin_q);
1629                blk_mq_free_tag_set(&dev->admin_tagset);
1630        }
1631}
1632
1633static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1634{
1635        if (!dev->ctrl.admin_q) {
1636                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1637                dev->admin_tagset.nr_hw_queues = 1;
1638
1639                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1640                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1641                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1642                dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1643                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1644                dev->admin_tagset.driver_data = dev;
1645
1646                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1647                        return -ENOMEM;
1648                dev->ctrl.admin_tagset = &dev->admin_tagset;
1649
1650                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1651                if (IS_ERR(dev->ctrl.admin_q)) {
1652                        blk_mq_free_tag_set(&dev->admin_tagset);
1653                        return -ENOMEM;
1654                }
1655                if (!blk_get_queue(dev->ctrl.admin_q)) {
1656                        nvme_dev_remove_admin(dev);
1657                        dev->ctrl.admin_q = NULL;
1658                        return -ENODEV;
1659                }
1660        } else
1661                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1662
1663        return 0;
1664}
1665
1666static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1667{
1668        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1669}
1670
1671static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1672{
1673        struct pci_dev *pdev = to_pci_dev(dev->dev);
1674
1675        if (size <= dev->bar_mapped_size)
1676                return 0;
1677        if (size > pci_resource_len(pdev, 0))
1678                return -ENOMEM;
1679        if (dev->bar)
1680                iounmap(dev->bar);
1681        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1682        if (!dev->bar) {
1683                dev->bar_mapped_size = 0;
1684                return -ENOMEM;
1685        }
1686        dev->bar_mapped_size = size;
1687        dev->dbs = dev->bar + NVME_REG_DBS;
1688
1689        return 0;
1690}
1691
1692static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1693{
1694        int result;
1695        u32 aqa;
1696        struct nvme_queue *nvmeq;
1697
1698        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1699        if (result < 0)
1700                return result;
1701
1702        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1703                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1704
1705        if (dev->subsystem &&
1706            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1707                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1708
1709        result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1710        if (result < 0)
1711                return result;
1712
1713        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1714        if (result)
1715                return result;
1716
1717        nvmeq = &dev->queues[0];
1718        aqa = nvmeq->q_depth - 1;
1719        aqa |= aqa << 16;
1720
1721        writel(aqa, dev->bar + NVME_REG_AQA);
1722        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1723        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1724
1725        result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1726        if (result)
1727                return result;
1728
1729        nvmeq->cq_vector = 0;
1730        nvme_init_queue(nvmeq, 0);
1731        result = queue_request_irq(nvmeq);
1732        if (result) {
1733                nvmeq->cq_vector = -1;
1734                return result;
1735        }
1736
1737        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1738        return result;
1739}
1740
1741static int nvme_create_io_queues(struct nvme_dev *dev)
1742{
1743        unsigned i, max, rw_queues;
1744        int ret = 0;
1745
1746        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1747                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1748                        ret = -ENOMEM;
1749                        break;
1750                }
1751        }
1752
1753        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1754        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1755                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1756                                dev->io_queues[HCTX_TYPE_READ];
1757        } else {
1758                rw_queues = max;
1759        }
1760
1761        for (i = dev->online_queues; i <= max; i++) {
1762                bool polled = i > rw_queues;
1763
1764                ret = nvme_create_queue(&dev->queues[i], i, polled);
1765                if (ret)
1766                        break;
1767        }
1768
1769        /*
1770         * Ignore failing Create SQ/CQ commands, we can continue with less
1771         * than the desired amount of queues, and even a controller without
1772         * I/O queues can still be used to issue admin commands.  This might
1773         * be useful to upgrade a buggy firmware for example.
1774         */
1775        return ret >= 0 ? 0 : ret;
1776}
1777
1778static ssize_t nvme_cmb_show(struct device *dev,
1779                             struct device_attribute *attr,
1780                             char *buf)
1781{
1782        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1783
1784        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1785                       ndev->cmbloc, ndev->cmbsz);
1786}
1787static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1788
1789static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1790{
1791        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1792
1793        return 1ULL << (12 + 4 * szu);
1794}
1795
1796static u32 nvme_cmb_size(struct nvme_dev *dev)
1797{
1798        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1799}
1800
1801static void nvme_map_cmb(struct nvme_dev *dev)
1802{
1803        u64 size, offset;
1804        resource_size_t bar_size;
1805        struct pci_dev *pdev = to_pci_dev(dev->dev);
1806        int bar;
1807
1808        if (dev->cmb_size)
1809                return;
1810
1811        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1812        if (!dev->cmbsz)
1813                return;
1814        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1815
1816        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1817        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1818        bar = NVME_CMB_BIR(dev->cmbloc);
1819        bar_size = pci_resource_len(pdev, bar);
1820
1821        if (offset > bar_size)
1822                return;
1823
1824        /*
1825         * Controllers may support a CMB size larger than their BAR,
1826         * for example, due to being behind a bridge. Reduce the CMB to
1827         * the reported size of the BAR
1828         */
1829        if (size > bar_size - offset)
1830                size = bar_size - offset;
1831
1832        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1833                dev_warn(dev->ctrl.device,
1834                         "failed to register the CMB\n");
1835                return;
1836        }
1837
1838        dev->cmb_size = size;
1839        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1840
1841        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1842                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1843                pci_p2pmem_publish(pdev, true);
1844
1845        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1846                                    &dev_attr_cmb.attr, NULL))
1847                dev_warn(dev->ctrl.device,
1848                         "failed to add sysfs attribute for CMB\n");
1849}
1850
1851static inline void nvme_release_cmb(struct nvme_dev *dev)
1852{
1853        if (dev->cmb_size) {
1854                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1855                                             &dev_attr_cmb.attr, NULL);
1856                dev->cmb_size = 0;
1857        }
1858}
1859
1860static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1861{
1862        u64 dma_addr = dev->host_mem_descs_dma;
1863        struct nvme_command c;
1864        int ret;
1865
1866        memset(&c, 0, sizeof(c));
1867        c.features.opcode       = nvme_admin_set_features;
1868        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1869        c.features.dword11      = cpu_to_le32(bits);
1870        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1871                                              ilog2(dev->ctrl.page_size));
1872        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1873        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1874        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1875
1876        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1877        if (ret) {
1878                dev_warn(dev->ctrl.device,
1879                         "failed to set host mem (err %d, flags %#x).\n",
1880                         ret, bits);
1881        }
1882        return ret;
1883}
1884
1885static void nvme_free_host_mem(struct nvme_dev *dev)
1886{
1887        int i;
1888
1889        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1890                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1891                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1892
1893                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1894                               le64_to_cpu(desc->addr),
1895                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1896        }
1897
1898        kfree(dev->host_mem_desc_bufs);
1899        dev->host_mem_desc_bufs = NULL;
1900        dma_free_coherent(dev->dev,
1901                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1902                        dev->host_mem_descs, dev->host_mem_descs_dma);
1903        dev->host_mem_descs = NULL;
1904        dev->nr_host_mem_descs = 0;
1905}
1906
1907static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1908                u32 chunk_size)
1909{
1910        struct nvme_host_mem_buf_desc *descs;
1911        u32 max_entries, len;
1912        dma_addr_t descs_dma;
1913        int i = 0;
1914        void **bufs;
1915        u64 size, tmp;
1916
1917        tmp = (preferred + chunk_size - 1);
1918        do_div(tmp, chunk_size);
1919        max_entries = tmp;
1920
1921        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1922                max_entries = dev->ctrl.hmmaxd;
1923
1924        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1925                                   &descs_dma, GFP_KERNEL);
1926        if (!descs)
1927                goto out;
1928
1929        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1930        if (!bufs)
1931                goto out_free_descs;
1932
1933        for (size = 0; size < preferred && i < max_entries; size += len) {
1934                dma_addr_t dma_addr;
1935
1936                len = min_t(u64, chunk_size, preferred - size);
1937                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1938                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1939                if (!bufs[i])
1940                        break;
1941
1942                descs[i].addr = cpu_to_le64(dma_addr);
1943                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1944                i++;
1945        }
1946
1947        if (!size)
1948                goto out_free_bufs;
1949
1950        dev->nr_host_mem_descs = i;
1951        dev->host_mem_size = size;
1952        dev->host_mem_descs = descs;
1953        dev->host_mem_descs_dma = descs_dma;
1954        dev->host_mem_desc_bufs = bufs;
1955        return 0;
1956
1957out_free_bufs:
1958        while (--i >= 0) {
1959                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1960
1961                dma_free_attrs(dev->dev, size, bufs[i],
1962                               le64_to_cpu(descs[i].addr),
1963                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1964        }
1965
1966        kfree(bufs);
1967out_free_descs:
1968        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1969                        descs_dma);
1970out:
1971        dev->host_mem_descs = NULL;
1972        return -ENOMEM;
1973}
1974
1975static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1976{
1977        u32 chunk_size;
1978
1979        /* start big and work our way down */
1980        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1981             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1982             chunk_size /= 2) {
1983                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1984                        if (!min || dev->host_mem_size >= min)
1985                                return 0;
1986                        nvme_free_host_mem(dev);
1987                }
1988        }
1989
1990        return -ENOMEM;
1991}
1992
1993static int nvme_setup_host_mem(struct nvme_dev *dev)
1994{
1995        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1996        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1997        u64 min = (u64)dev->ctrl.hmmin * 4096;
1998        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1999        int ret;
2000
2001        preferred = min(preferred, max);
2002        if (min > max) {
2003                dev_warn(dev->ctrl.device,
2004                        "min host memory (%lld MiB) above limit (%d MiB).\n",
2005                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
2006                nvme_free_host_mem(dev);
2007                return 0;
2008        }
2009
2010        /*
2011         * If we already have a buffer allocated check if we can reuse it.
2012         */
2013        if (dev->host_mem_descs) {
2014                if (dev->host_mem_size >= min)
2015                        enable_bits |= NVME_HOST_MEM_RETURN;
2016                else
2017                        nvme_free_host_mem(dev);
2018        }
2019
2020        if (!dev->host_mem_descs) {
2021                if (nvme_alloc_host_mem(dev, min, preferred)) {
2022                        dev_warn(dev->ctrl.device,
2023                                "failed to allocate host memory buffer.\n");
2024                        return 0; /* controller must work without HMB */
2025                }
2026
2027                dev_info(dev->ctrl.device,
2028                        "allocated %lld MiB host memory buffer.\n",
2029                        dev->host_mem_size >> ilog2(SZ_1M));
2030        }
2031
2032        ret = nvme_set_host_mem(dev, enable_bits);
2033        if (ret)
2034                nvme_free_host_mem(dev);
2035        return ret;
2036}
2037
2038/*
2039 * nirqs is the number of interrupts available for write and read
2040 * queues. The core already reserved an interrupt for the admin queue.
2041 */
2042static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2043{
2044        struct nvme_dev *dev = affd->priv;
2045        unsigned int nr_read_queues;
2046
2047        /*
2048         * If there is no interupt available for queues, ensure that
2049         * the default queue is set to 1. The affinity set size is
2050         * also set to one, but the irq core ignores it for this case.
2051         *
2052         * If only one interrupt is available or 'write_queue' == 0, combine
2053         * write and read queues.
2054         *
2055         * If 'write_queues' > 0, ensure it leaves room for at least one read
2056         * queue.
2057         */
2058        if (!nrirqs) {
2059                nrirqs = 1;
2060                nr_read_queues = 0;
2061        } else if (nrirqs == 1 || !write_queues) {
2062                nr_read_queues = 0;
2063        } else if (write_queues >= nrirqs) {
2064                nr_read_queues = 1;
2065        } else {
2066                nr_read_queues = nrirqs - write_queues;
2067        }
2068
2069        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2070        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2071        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2072        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2073        affd->nr_sets = nr_read_queues ? 2 : 1;
2074}
2075
2076static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2077{
2078        struct pci_dev *pdev = to_pci_dev(dev->dev);
2079        struct irq_affinity affd = {
2080                .pre_vectors    = 1,
2081                .calc_sets      = nvme_calc_irq_sets,
2082                .priv           = dev,
2083        };
2084        unsigned int irq_queues, this_p_queues;
2085
2086        /*
2087         * Poll queues don't need interrupts, but we need at least one IO
2088         * queue left over for non-polled IO.
2089         */
2090        this_p_queues = poll_queues;
2091        if (this_p_queues >= nr_io_queues) {
2092                this_p_queues = nr_io_queues - 1;
2093                irq_queues = 1;
2094        } else {
2095                irq_queues = nr_io_queues - this_p_queues + 1;
2096        }
2097        dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2098
2099        /* Initialize for the single interrupt case */
2100        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2101        dev->io_queues[HCTX_TYPE_READ] = 0;
2102
2103        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2104                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2105}
2106
2107static void nvme_disable_io_queues(struct nvme_dev *dev)
2108{
2109        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2110                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2111}
2112
2113static int nvme_setup_io_queues(struct nvme_dev *dev)
2114{
2115        struct nvme_queue *adminq = &dev->queues[0];
2116        struct pci_dev *pdev = to_pci_dev(dev->dev);
2117        int result, nr_io_queues;
2118        unsigned long size;
2119
2120        nr_io_queues = max_io_queues();
2121        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2122        if (result < 0)
2123                return result;
2124
2125        if (nr_io_queues == 0)
2126                return 0;
2127        
2128        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2129
2130        if (dev->cmb_use_sqes) {
2131                result = nvme_cmb_qdepth(dev, nr_io_queues,
2132                                sizeof(struct nvme_command));
2133                if (result > 0)
2134                        dev->q_depth = result;
2135                else
2136                        dev->cmb_use_sqes = false;
2137        }
2138
2139        do {
2140                size = db_bar_size(dev, nr_io_queues);
2141                result = nvme_remap_bar(dev, size);
2142                if (!result)
2143                        break;
2144                if (!--nr_io_queues)
2145                        return -ENOMEM;
2146        } while (1);
2147        adminq->q_db = dev->dbs;
2148
2149 retry:
2150        /* Deregister the admin queue's interrupt */
2151        pci_free_irq(pdev, 0, adminq);
2152
2153        /*
2154         * If we enable msix early due to not intx, disable it again before
2155         * setting up the full range we need.
2156         */
2157        pci_free_irq_vectors(pdev);
2158
2159        result = nvme_setup_irqs(dev, nr_io_queues);
2160        if (result <= 0)
2161                return -EIO;
2162
2163        dev->num_vecs = result;
2164        result = max(result - 1, 1);
2165        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2166
2167        /*
2168         * Should investigate if there's a performance win from allocating
2169         * more queues than interrupt vectors; it might allow the submission
2170         * path to scale better, even if the receive path is limited by the
2171         * number of interrupts.
2172         */
2173        result = queue_request_irq(adminq);
2174        if (result) {
2175                adminq->cq_vector = -1;
2176                return result;
2177        }
2178        set_bit(NVMEQ_ENABLED, &adminq->flags);
2179
2180        result = nvme_create_io_queues(dev);
2181        if (result || dev->online_queues < 2)
2182                return result;
2183
2184        if (dev->online_queues - 1 < dev->max_qid) {
2185                nr_io_queues = dev->online_queues - 1;
2186                nvme_disable_io_queues(dev);
2187                nvme_suspend_io_queues(dev);
2188                goto retry;
2189        }
2190        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2191                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2192                                        dev->io_queues[HCTX_TYPE_READ],
2193                                        dev->io_queues[HCTX_TYPE_POLL]);
2194        return 0;
2195}
2196
2197static void nvme_del_queue_end(struct request *req, blk_status_t error)
2198{
2199        struct nvme_queue *nvmeq = req->end_io_data;
2200
2201        blk_mq_free_request(req);
2202        complete(&nvmeq->delete_done);
2203}
2204
2205static void nvme_del_cq_end(struct request *req, blk_status_t error)
2206{
2207        struct nvme_queue *nvmeq = req->end_io_data;
2208
2209        if (error)
2210                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2211
2212        nvme_del_queue_end(req, error);
2213}
2214
2215static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2216{
2217        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2218        struct request *req;
2219        struct nvme_command cmd;
2220
2221        memset(&cmd, 0, sizeof(cmd));
2222        cmd.delete_queue.opcode = opcode;
2223        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2224
2225        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2226        if (IS_ERR(req))
2227                return PTR_ERR(req);
2228
2229        req->timeout = ADMIN_TIMEOUT;
2230        req->end_io_data = nvmeq;
2231
2232        init_completion(&nvmeq->delete_done);
2233        blk_execute_rq_nowait(q, NULL, req, false,
2234                        opcode == nvme_admin_delete_cq ?
2235                                nvme_del_cq_end : nvme_del_queue_end);
2236        return 0;
2237}
2238
2239static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2240{
2241        int nr_queues = dev->online_queues - 1, sent = 0;
2242        unsigned long timeout;
2243
2244 retry:
2245        timeout = ADMIN_TIMEOUT;
2246        while (nr_queues > 0) {
2247                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2248                        break;
2249                nr_queues--;
2250                sent++;
2251        }
2252        while (sent) {
2253                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2254
2255                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2256                                timeout);
2257                if (timeout == 0)
2258                        return false;
2259
2260                /* handle any remaining CQEs */
2261                if (opcode == nvme_admin_delete_cq &&
2262                    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2263                        nvme_poll_irqdisable(nvmeq, -1);
2264
2265                sent--;
2266                if (nr_queues)
2267                        goto retry;
2268        }
2269        return true;
2270}
2271
2272/*
2273 * return error value only when tagset allocation failed
2274 */
2275static int nvme_dev_add(struct nvme_dev *dev)
2276{
2277        int ret;
2278
2279        if (!dev->ctrl.tagset) {
2280                dev->tagset.ops = &nvme_mq_ops;
2281                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2282                dev->tagset.nr_maps = 2; /* default + read */
2283                if (dev->io_queues[HCTX_TYPE_POLL])
2284                        dev->tagset.nr_maps++;
2285                dev->tagset.timeout = NVME_IO_TIMEOUT;
2286                dev->tagset.numa_node = dev_to_node(dev->dev);
2287                dev->tagset.queue_depth =
2288                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2289                dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2290                if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2291                        dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2292                                        nvme_pci_cmd_size(dev, true));
2293                }
2294                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2295                dev->tagset.driver_data = dev;
2296
2297                ret = blk_mq_alloc_tag_set(&dev->tagset);
2298                if (ret) {
2299                        dev_warn(dev->ctrl.device,
2300                                "IO queues tagset allocation failed %d\n", ret);
2301                        return ret;
2302                }
2303                dev->ctrl.tagset = &dev->tagset;
2304
2305                nvme_dbbuf_set(dev);
2306        } else {
2307                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2308
2309                /* Free previously allocated queues that are no longer usable */
2310                nvme_free_queues(dev, dev->online_queues);
2311        }
2312
2313        return 0;
2314}
2315
2316static int nvme_pci_enable(struct nvme_dev *dev)
2317{
2318        int result = -ENOMEM;
2319        struct pci_dev *pdev = to_pci_dev(dev->dev);
2320
2321        if (pci_enable_device_mem(pdev))
2322                return result;
2323
2324        pci_set_master(pdev);
2325
2326        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2327            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2328                goto disable;
2329
2330        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2331                result = -ENODEV;
2332                goto disable;
2333        }
2334
2335        /*
2336         * Some devices and/or platforms don't advertise or work with INTx
2337         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2338         * adjust this later.
2339         */
2340        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2341        if (result < 0)
2342                return result;
2343
2344        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2345
2346        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2347                                io_queue_depth);
2348        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2349        dev->dbs = dev->bar + 4096;
2350
2351        /*
2352         * Temporary fix for the Apple controller found in the MacBook8,1 and
2353         * some MacBook7,1 to avoid controller resets and data loss.
2354         */
2355        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2356                dev->q_depth = 2;
2357                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2358                        "set queue depth=%u to work around controller resets\n",
2359                        dev->q_depth);
2360        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2361                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2362                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2363                dev->q_depth = 64;
2364                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2365                        "set queue depth=%u\n", dev->q_depth);
2366        }
2367
2368        nvme_map_cmb(dev);
2369
2370        pci_enable_pcie_error_reporting(pdev);
2371        pci_save_state(pdev);
2372        return 0;
2373
2374 disable:
2375        pci_disable_device(pdev);
2376        return result;
2377}
2378
2379static void nvme_dev_unmap(struct nvme_dev *dev)
2380{
2381        if (dev->bar)
2382                iounmap(dev->bar);
2383        pci_release_mem_regions(to_pci_dev(dev->dev));
2384}
2385
2386static void nvme_pci_disable(struct nvme_dev *dev)
2387{
2388        struct pci_dev *pdev = to_pci_dev(dev->dev);
2389
2390        pci_free_irq_vectors(pdev);
2391
2392        if (pci_is_enabled(pdev)) {
2393                pci_disable_pcie_error_reporting(pdev);
2394                pci_disable_device(pdev);
2395        }
2396}
2397
2398static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2399{
2400        bool dead = true;
2401        struct pci_dev *pdev = to_pci_dev(dev->dev);
2402
2403        mutex_lock(&dev->shutdown_lock);
2404        if (pci_is_enabled(pdev)) {
2405                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2406
2407                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2408                    dev->ctrl.state == NVME_CTRL_RESETTING)
2409                        nvme_start_freeze(&dev->ctrl);
2410                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2411                        pdev->error_state  != pci_channel_io_normal);
2412        }
2413
2414        /*
2415         * Give the controller a chance to complete all entered requests if
2416         * doing a safe shutdown.
2417         */
2418        if (!dead) {
2419                if (shutdown)
2420                        nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2421        }
2422
2423        nvme_stop_queues(&dev->ctrl);
2424
2425        if (!dead && dev->ctrl.queue_count > 0) {
2426                nvme_disable_io_queues(dev);
2427                nvme_disable_admin_queue(dev, shutdown);
2428        }
2429        nvme_suspend_io_queues(dev);
2430        nvme_suspend_queue(&dev->queues[0]);
2431        nvme_pci_disable(dev);
2432
2433        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2434        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2435
2436        /*
2437         * The driver will not be starting up queues again if shutting down so
2438         * must flush all entered requests to their failed completion to avoid
2439         * deadlocking blk-mq hot-cpu notifier.
2440         */
2441        if (shutdown)
2442                nvme_start_queues(&dev->ctrl);
2443        mutex_unlock(&dev->shutdown_lock);
2444}
2445
2446static int nvme_setup_prp_pools(struct nvme_dev *dev)
2447{
2448        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2449                                                PAGE_SIZE, PAGE_SIZE, 0);
2450        if (!dev->prp_page_pool)
2451                return -ENOMEM;
2452
2453        /* Optimisation for I/Os between 4k and 128k */
2454        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2455                                                256, 256, 0);
2456        if (!dev->prp_small_pool) {
2457                dma_pool_destroy(dev->prp_page_pool);
2458                return -ENOMEM;
2459        }
2460        return 0;
2461}
2462
2463static void nvme_release_prp_pools(struct nvme_dev *dev)
2464{
2465        dma_pool_destroy(dev->prp_page_pool);
2466        dma_pool_destroy(dev->prp_small_pool);
2467}
2468
2469static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2470{
2471        struct nvme_dev *dev = to_nvme_dev(ctrl);
2472
2473        nvme_dbbuf_dma_free(dev);
2474        put_device(dev->dev);
2475        if (dev->tagset.tags)
2476                blk_mq_free_tag_set(&dev->tagset);
2477        if (dev->ctrl.admin_q)
2478                blk_put_queue(dev->ctrl.admin_q);
2479        kfree(dev->queues);
2480        free_opal_dev(dev->ctrl.opal_dev);
2481        mempool_destroy(dev->iod_mempool);
2482        kfree(dev);
2483}
2484
2485static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2486{
2487        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2488
2489        nvme_get_ctrl(&dev->ctrl);
2490        nvme_dev_disable(dev, false);
2491        nvme_kill_queues(&dev->ctrl);
2492        if (!queue_work(nvme_wq, &dev->remove_work))
2493                nvme_put_ctrl(&dev->ctrl);
2494}
2495
2496static void nvme_reset_work(struct work_struct *work)
2497{
2498        struct nvme_dev *dev =
2499                container_of(work, struct nvme_dev, ctrl.reset_work);
2500        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2501        int result = -ENODEV;
2502        enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2503
2504        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2505                goto out;
2506
2507        /*
2508         * If we're called to reset a live controller first shut it down before
2509         * moving on.
2510         */
2511        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2512                nvme_dev_disable(dev, false);
2513
2514        mutex_lock(&dev->shutdown_lock);
2515        result = nvme_pci_enable(dev);
2516        if (result)
2517                goto out_unlock;
2518
2519        result = nvme_pci_configure_admin_queue(dev);
2520        if (result)
2521                goto out_unlock;
2522
2523        result = nvme_alloc_admin_tags(dev);
2524        if (result)
2525                goto out_unlock;
2526
2527        /*
2528         * Limit the max command size to prevent iod->sg allocations going
2529         * over a single page.
2530         */
2531        dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2532        dev->ctrl.max_segments = NVME_MAX_SEGS;
2533        mutex_unlock(&dev->shutdown_lock);
2534
2535        /*
2536         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2537         * initializing procedure here.
2538         */
2539        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2540                dev_warn(dev->ctrl.device,
2541                        "failed to mark controller CONNECTING\n");
2542                goto out;
2543        }
2544
2545        result = nvme_init_identify(&dev->ctrl);
2546        if (result)
2547                goto out;
2548
2549        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2550                if (!dev->ctrl.opal_dev)
2551                        dev->ctrl.opal_dev =
2552                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2553                else if (was_suspend)
2554                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2555        } else {
2556                free_opal_dev(dev->ctrl.opal_dev);
2557                dev->ctrl.opal_dev = NULL;
2558        }
2559
2560        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2561                result = nvme_dbbuf_dma_alloc(dev);
2562                if (result)
2563                        dev_warn(dev->dev,
2564                                 "unable to allocate dma for dbbuf\n");
2565        }
2566
2567        if (dev->ctrl.hmpre) {
2568                result = nvme_setup_host_mem(dev);
2569                if (result < 0)
2570                        goto out;
2571        }
2572
2573        result = nvme_setup_io_queues(dev);
2574        if (result)
2575                goto out;
2576
2577        /*
2578         * Keep the controller around but remove all namespaces if we don't have
2579         * any working I/O queue.
2580         */
2581        if (dev->online_queues < 2) {
2582                dev_warn(dev->ctrl.device, "IO queues not created\n");
2583                nvme_kill_queues(&dev->ctrl);
2584                nvme_remove_namespaces(&dev->ctrl);
2585                new_state = NVME_CTRL_ADMIN_ONLY;
2586        } else {
2587                nvme_start_queues(&dev->ctrl);
2588                nvme_wait_freeze(&dev->ctrl);
2589                /* hit this only when allocate tagset fails */
2590                if (nvme_dev_add(dev))
2591                        new_state = NVME_CTRL_ADMIN_ONLY;
2592                nvme_unfreeze(&dev->ctrl);
2593        }
2594
2595        /*
2596         * If only admin queue live, keep it to do further investigation or
2597         * recovery.
2598         */
2599        if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2600                dev_warn(dev->ctrl.device,
2601                        "failed to mark controller state %d\n", new_state);
2602                goto out;
2603        }
2604
2605        nvme_start_ctrl(&dev->ctrl);
2606        return;
2607
2608 out_unlock:
2609        mutex_unlock(&dev->shutdown_lock);
2610 out:
2611        nvme_remove_dead_ctrl(dev, result);
2612}
2613
2614static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2615{
2616        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2617        struct pci_dev *pdev = to_pci_dev(dev->dev);
2618
2619        if (pci_get_drvdata(pdev))
2620                device_release_driver(&pdev->dev);
2621        nvme_put_ctrl(&dev->ctrl);
2622}
2623
2624static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2625{
2626        *val = readl(to_nvme_dev(ctrl)->bar + off);
2627        return 0;
2628}
2629
2630static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2631{
2632        writel(val, to_nvme_dev(ctrl)->bar + off);
2633        return 0;
2634}
2635
2636static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2637{
2638        *val = readq(to_nvme_dev(ctrl)->bar + off);
2639        return 0;
2640}
2641
2642static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2643{
2644        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2645
2646        return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2647}
2648
2649static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2650        .name                   = "pcie",
2651        .module                 = THIS_MODULE,
2652        .flags                  = NVME_F_METADATA_SUPPORTED |
2653                                  NVME_F_PCI_P2PDMA,
2654        .reg_read32             = nvme_pci_reg_read32,
2655        .reg_write32            = nvme_pci_reg_write32,
2656        .reg_read64             = nvme_pci_reg_read64,
2657        .free_ctrl              = nvme_pci_free_ctrl,
2658        .submit_async_event     = nvme_pci_submit_async_event,
2659        .get_address            = nvme_pci_get_address,
2660};
2661
2662static int nvme_dev_map(struct nvme_dev *dev)
2663{
2664        struct pci_dev *pdev = to_pci_dev(dev->dev);
2665
2666        if (pci_request_mem_regions(pdev, "nvme"))
2667                return -ENODEV;
2668
2669        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2670                goto release;
2671
2672        return 0;
2673  release:
2674        pci_release_mem_regions(pdev);
2675        return -ENODEV;
2676}
2677
2678static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2679{
2680        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2681                /*
2682                 * Several Samsung devices seem to drop off the PCIe bus
2683                 * randomly when APST is on and uses the deepest sleep state.
2684                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2685                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2686                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2687                 * laptops.
2688                 */
2689                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2690                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2691                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2692                        return NVME_QUIRK_NO_DEEPEST_PS;
2693        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2694                /*
2695                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2696                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2697                 * within few minutes after bootup on a Coffee Lake board -
2698                 * ASUS PRIME Z370-A
2699                 */
2700                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2701                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2702                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2703                        return NVME_QUIRK_NO_APST;
2704        }
2705
2706        return 0;
2707}
2708
2709static void nvme_async_probe(void *data, async_cookie_t cookie)
2710{
2711        struct nvme_dev *dev = data;
2712
2713        nvme_reset_ctrl_sync(&dev->ctrl);
2714        flush_work(&dev->ctrl.scan_work);
2715        nvme_put_ctrl(&dev->ctrl);
2716}
2717
2718static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2719{
2720        int node, result = -ENOMEM;
2721        struct nvme_dev *dev;
2722        unsigned long quirks = id->driver_data;
2723        size_t alloc_size;
2724
2725        node = dev_to_node(&pdev->dev);
2726        if (node == NUMA_NO_NODE)
2727                set_dev_node(&pdev->dev, first_memory_node);
2728
2729        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2730        if (!dev)
2731                return -ENOMEM;
2732
2733        dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2734                                        GFP_KERNEL, node);
2735        if (!dev->queues)
2736                goto free;
2737
2738        dev->dev = get_device(&pdev->dev);
2739        pci_set_drvdata(pdev, dev);
2740
2741        result = nvme_dev_map(dev);
2742        if (result)
2743                goto put_pci;
2744
2745        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2746        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2747        mutex_init(&dev->shutdown_lock);
2748
2749        result = nvme_setup_prp_pools(dev);
2750        if (result)
2751                goto unmap;
2752
2753        quirks |= check_vendor_combination_bug(pdev);
2754
2755        /*
2756         * Double check that our mempool alloc size will cover the biggest
2757         * command we support.
2758         */
2759        alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2760                                                NVME_MAX_SEGS, true);
2761        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2762
2763        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2764                                                mempool_kfree,
2765                                                (void *) alloc_size,
2766                                                GFP_KERNEL, node);
2767        if (!dev->iod_mempool) {
2768                result = -ENOMEM;
2769                goto release_pools;
2770        }
2771
2772        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2773                        quirks);
2774        if (result)
2775                goto release_mempool;
2776
2777        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2778
2779        nvme_get_ctrl(&dev->ctrl);
2780        async_schedule(nvme_async_probe, dev);
2781
2782        return 0;
2783
2784 release_mempool:
2785        mempool_destroy(dev->iod_mempool);
2786 release_pools:
2787        nvme_release_prp_pools(dev);
2788 unmap:
2789        nvme_dev_unmap(dev);
2790 put_pci:
2791        put_device(dev->dev);
2792 free:
2793        kfree(dev->queues);
2794        kfree(dev);
2795        return result;
2796}
2797
2798static void nvme_reset_prepare(struct pci_dev *pdev)
2799{
2800        struct nvme_dev *dev = pci_get_drvdata(pdev);
2801        nvme_dev_disable(dev, false);
2802}
2803
2804static void nvme_reset_done(struct pci_dev *pdev)
2805{
2806        struct nvme_dev *dev = pci_get_drvdata(pdev);
2807        nvme_reset_ctrl_sync(&dev->ctrl);
2808}
2809
2810static void nvme_shutdown(struct pci_dev *pdev)
2811{
2812        struct nvme_dev *dev = pci_get_drvdata(pdev);
2813        nvme_dev_disable(dev, true);
2814}
2815
2816/*
2817 * The driver's remove may be called on a device in a partially initialized
2818 * state. This function must not have any dependencies on the device state in
2819 * order to proceed.
2820 */
2821static void nvme_remove(struct pci_dev *pdev)
2822{
2823        struct nvme_dev *dev = pci_get_drvdata(pdev);
2824
2825        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2826        pci_set_drvdata(pdev, NULL);
2827
2828        if (!pci_device_is_present(pdev)) {
2829                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2830                nvme_dev_disable(dev, true);
2831                nvme_dev_remove_admin(dev);
2832        }
2833
2834        flush_work(&dev->ctrl.reset_work);
2835        nvme_stop_ctrl(&dev->ctrl);
2836        nvme_remove_namespaces(&dev->ctrl);
2837        nvme_dev_disable(dev, true);
2838        nvme_release_cmb(dev);
2839        nvme_free_host_mem(dev);
2840        nvme_dev_remove_admin(dev);
2841        nvme_free_queues(dev, 0);
2842        nvme_uninit_ctrl(&dev->ctrl);
2843        nvme_release_prp_pools(dev);
2844        nvme_dev_unmap(dev);
2845        nvme_put_ctrl(&dev->ctrl);
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int nvme_suspend(struct device *dev)
2850{
2851        struct pci_dev *pdev = to_pci_dev(dev);
2852        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2853
2854        nvme_dev_disable(ndev, true);
2855        return 0;
2856}
2857
2858static int nvme_resume(struct device *dev)
2859{
2860        struct pci_dev *pdev = to_pci_dev(dev);
2861        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2862
2863        nvme_reset_ctrl(&ndev->ctrl);
2864        return 0;
2865}
2866#endif
2867
2868static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2869
2870static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2871                                                pci_channel_state_t state)
2872{
2873        struct nvme_dev *dev = pci_get_drvdata(pdev);
2874
2875        /*
2876         * A frozen channel requires a reset. When detected, this method will
2877         * shutdown the controller to quiesce. The controller will be restarted
2878         * after the slot reset through driver's slot_reset callback.
2879         */
2880        switch (state) {
2881        case pci_channel_io_normal:
2882                return PCI_ERS_RESULT_CAN_RECOVER;
2883        case pci_channel_io_frozen:
2884                dev_warn(dev->ctrl.device,
2885                        "frozen state error detected, reset controller\n");
2886                nvme_dev_disable(dev, false);
2887                return PCI_ERS_RESULT_NEED_RESET;
2888        case pci_channel_io_perm_failure:
2889                dev_warn(dev->ctrl.device,
2890                        "failure state error detected, request disconnect\n");
2891                return PCI_ERS_RESULT_DISCONNECT;
2892        }
2893        return PCI_ERS_RESULT_NEED_RESET;
2894}
2895
2896static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2897{
2898        struct nvme_dev *dev = pci_get_drvdata(pdev);
2899
2900        dev_info(dev->ctrl.device, "restart after slot reset\n");
2901        pci_restore_state(pdev);
2902        nvme_reset_ctrl(&dev->ctrl);
2903        return PCI_ERS_RESULT_RECOVERED;
2904}
2905
2906static void nvme_error_resume(struct pci_dev *pdev)
2907{
2908        struct nvme_dev *dev = pci_get_drvdata(pdev);
2909
2910        flush_work(&dev->ctrl.reset_work);
2911}
2912
2913static const struct pci_error_handlers nvme_err_handler = {
2914        .error_detected = nvme_error_detected,
2915        .slot_reset     = nvme_slot_reset,
2916        .resume         = nvme_error_resume,
2917        .reset_prepare  = nvme_reset_prepare,
2918        .reset_done     = nvme_reset_done,
2919};
2920
2921static const struct pci_device_id nvme_id_table[] = {
2922        { PCI_VDEVICE(INTEL, 0x0953),
2923                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2924                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2925        { PCI_VDEVICE(INTEL, 0x0a53),
2926                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2927                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2928        { PCI_VDEVICE(INTEL, 0x0a54),
2929                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2930                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2931        { PCI_VDEVICE(INTEL, 0x0a55),
2932                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2933                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2934        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2935                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2936                                NVME_QUIRK_MEDIUM_PRIO_SQ },
2937        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2938                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2939        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2940                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2941                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2942        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2943                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2944        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2945                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2946        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2947                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2948        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2949                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2950        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2951                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2952        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2953                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2954        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2955                .driver_data = NVME_QUIRK_LIGHTNVM, },
2956        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2957                .driver_data = NVME_QUIRK_LIGHTNVM, },
2958        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2959                .driver_data = NVME_QUIRK_LIGHTNVM, },
2960        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2961        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2962        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2963        { 0, }
2964};
2965MODULE_DEVICE_TABLE(pci, nvme_id_table);
2966
2967static struct pci_driver nvme_driver = {
2968        .name           = "nvme",
2969        .id_table       = nvme_id_table,
2970        .probe          = nvme_probe,
2971        .remove         = nvme_remove,
2972        .shutdown       = nvme_shutdown,
2973        .driver         = {
2974                .pm     = &nvme_dev_pm_ops,
2975        },
2976        .sriov_configure = pci_sriov_configure_simple,
2977        .err_handler    = &nvme_err_handler,
2978};
2979
2980static int __init nvme_init(void)
2981{
2982        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2983        return pci_register_driver(&nvme_driver);
2984}
2985
2986static void __exit nvme_exit(void)
2987{
2988        pci_unregister_driver(&nvme_driver);
2989        flush_workqueue(nvme_wq);
2990        _nvme_check_size();
2991}
2992
2993MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2994MODULE_LICENSE("GPL");
2995MODULE_VERSION("1.0");
2996module_init(nvme_init);
2997module_exit(nvme_exit);
2998