linux/drivers/nvme/target/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/slab.h>
   8#include <linux/blk-mq.h>
   9#include <linux/parser.h>
  10#include <linux/random.h>
  11#include <uapi/scsi/fc/fc_fs.h>
  12#include <uapi/scsi/fc/fc_els.h>
  13
  14#include "nvmet.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17
  18
  19/* *************************** Data Structures/Defines ****************** */
  20
  21
  22#define NVMET_LS_CTX_COUNT              256
  23
  24/* for this implementation, assume small single frame rqst/rsp */
  25#define NVME_FC_MAX_LS_BUFFER_SIZE              2048
  26
  27struct nvmet_fc_tgtport;
  28struct nvmet_fc_tgt_assoc;
  29
  30struct nvmet_fc_ls_iod {
  31        struct nvmefc_tgt_ls_req        *lsreq;
  32        struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
  33
  34        struct list_head                ls_list;        /* tgtport->ls_list */
  35
  36        struct nvmet_fc_tgtport         *tgtport;
  37        struct nvmet_fc_tgt_assoc       *assoc;
  38
  39        u8                              *rqstbuf;
  40        u8                              *rspbuf;
  41        u16                             rqstdatalen;
  42        dma_addr_t                      rspdma;
  43
  44        struct scatterlist              sg[2];
  45
  46        struct work_struct              work;
  47} __aligned(sizeof(unsigned long long));
  48
  49/* desired maximum for a single sequence - if sg list allows it */
  50#define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
  51
  52enum nvmet_fcp_datadir {
  53        NVMET_FCP_NODATA,
  54        NVMET_FCP_WRITE,
  55        NVMET_FCP_READ,
  56        NVMET_FCP_ABORTED,
  57};
  58
  59struct nvmet_fc_fcp_iod {
  60        struct nvmefc_tgt_fcp_req       *fcpreq;
  61
  62        struct nvme_fc_cmd_iu           cmdiubuf;
  63        struct nvme_fc_ersp_iu          rspiubuf;
  64        dma_addr_t                      rspdma;
  65        struct scatterlist              *next_sg;
  66        struct scatterlist              *data_sg;
  67        int                             data_sg_cnt;
  68        u32                             offset;
  69        enum nvmet_fcp_datadir          io_dir;
  70        bool                            active;
  71        bool                            abort;
  72        bool                            aborted;
  73        bool                            writedataactive;
  74        spinlock_t                      flock;
  75
  76        struct nvmet_req                req;
  77        struct work_struct              defer_work;
  78
  79        struct nvmet_fc_tgtport         *tgtport;
  80        struct nvmet_fc_tgt_queue       *queue;
  81
  82        struct list_head                fcp_list;       /* tgtport->fcp_list */
  83};
  84
  85struct nvmet_fc_tgtport {
  86
  87        struct nvmet_fc_target_port     fc_target_port;
  88
  89        struct list_head                tgt_list; /* nvmet_fc_target_list */
  90        struct device                   *dev;   /* dev for dma mapping */
  91        struct nvmet_fc_target_template *ops;
  92
  93        struct nvmet_fc_ls_iod          *iod;
  94        spinlock_t                      lock;
  95        struct list_head                ls_list;
  96        struct list_head                ls_busylist;
  97        struct list_head                assoc_list;
  98        struct ida                      assoc_cnt;
  99        struct nvmet_fc_port_entry      *pe;
 100        struct kref                     ref;
 101        u32                             max_sg_cnt;
 102};
 103
 104struct nvmet_fc_port_entry {
 105        struct nvmet_fc_tgtport         *tgtport;
 106        struct nvmet_port               *port;
 107        u64                             node_name;
 108        u64                             port_name;
 109        struct list_head                pe_list;
 110};
 111
 112struct nvmet_fc_defer_fcp_req {
 113        struct list_head                req_list;
 114        struct nvmefc_tgt_fcp_req       *fcp_req;
 115};
 116
 117struct nvmet_fc_tgt_queue {
 118        bool                            ninetypercent;
 119        u16                             qid;
 120        u16                             sqsize;
 121        u16                             ersp_ratio;
 122        __le16                          sqhd;
 123        atomic_t                        connected;
 124        atomic_t                        sqtail;
 125        atomic_t                        zrspcnt;
 126        atomic_t                        rsn;
 127        spinlock_t                      qlock;
 128        struct nvmet_cq                 nvme_cq;
 129        struct nvmet_sq                 nvme_sq;
 130        struct nvmet_fc_tgt_assoc       *assoc;
 131        struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
 132        struct list_head                fod_list;
 133        struct list_head                pending_cmd_list;
 134        struct list_head                avail_defer_list;
 135        struct workqueue_struct         *work_q;
 136        struct kref                     ref;
 137} __aligned(sizeof(unsigned long long));
 138
 139struct nvmet_fc_tgt_assoc {
 140        u64                             association_id;
 141        u32                             a_id;
 142        struct nvmet_fc_tgtport         *tgtport;
 143        struct list_head                a_list;
 144        struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
 145        struct kref                     ref;
 146        struct work_struct              del_work;
 147};
 148
 149
 150static inline int
 151nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
 152{
 153        return (iodptr - iodptr->tgtport->iod);
 154}
 155
 156static inline int
 157nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
 158{
 159        return (fodptr - fodptr->queue->fod);
 160}
 161
 162
 163/*
 164 * Association and Connection IDs:
 165 *
 166 * Association ID will have random number in upper 6 bytes and zero
 167 *   in lower 2 bytes
 168 *
 169 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
 170 *
 171 * note: Association ID = Connection ID for queue 0
 172 */
 173#define BYTES_FOR_QID                   sizeof(u16)
 174#define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
 175#define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
 176
 177static inline u64
 178nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
 179{
 180        return (assoc->association_id | qid);
 181}
 182
 183static inline u64
 184nvmet_fc_getassociationid(u64 connectionid)
 185{
 186        return connectionid & ~NVMET_FC_QUEUEID_MASK;
 187}
 188
 189static inline u16
 190nvmet_fc_getqueueid(u64 connectionid)
 191{
 192        return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
 193}
 194
 195static inline struct nvmet_fc_tgtport *
 196targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
 197{
 198        return container_of(targetport, struct nvmet_fc_tgtport,
 199                                 fc_target_port);
 200}
 201
 202static inline struct nvmet_fc_fcp_iod *
 203nvmet_req_to_fod(struct nvmet_req *nvme_req)
 204{
 205        return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
 206}
 207
 208
 209/* *************************** Globals **************************** */
 210
 211
 212static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
 213
 214static LIST_HEAD(nvmet_fc_target_list);
 215static DEFINE_IDA(nvmet_fc_tgtport_cnt);
 216static LIST_HEAD(nvmet_fc_portentry_list);
 217
 218
 219static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
 220static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
 221static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
 222static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
 223static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
 224static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
 225static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
 226static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
 227static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
 228                                        struct nvmet_fc_fcp_iod *fod);
 229static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
 230
 231
 232/* *********************** FC-NVME DMA Handling **************************** */
 233
 234/*
 235 * The fcloop device passes in a NULL device pointer. Real LLD's will
 236 * pass in a valid device pointer. If NULL is passed to the dma mapping
 237 * routines, depending on the platform, it may or may not succeed, and
 238 * may crash.
 239 *
 240 * As such:
 241 * Wrapper all the dma routines and check the dev pointer.
 242 *
 243 * If simple mappings (return just a dma address, we'll noop them,
 244 * returning a dma address of 0.
 245 *
 246 * On more complex mappings (dma_map_sg), a pseudo routine fills
 247 * in the scatter list, setting all dma addresses to 0.
 248 */
 249
 250static inline dma_addr_t
 251fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 252                enum dma_data_direction dir)
 253{
 254        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 255}
 256
 257static inline int
 258fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 259{
 260        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 261}
 262
 263static inline void
 264fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 265        enum dma_data_direction dir)
 266{
 267        if (dev)
 268                dma_unmap_single(dev, addr, size, dir);
 269}
 270
 271static inline void
 272fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 273                enum dma_data_direction dir)
 274{
 275        if (dev)
 276                dma_sync_single_for_cpu(dev, addr, size, dir);
 277}
 278
 279static inline void
 280fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 281                enum dma_data_direction dir)
 282{
 283        if (dev)
 284                dma_sync_single_for_device(dev, addr, size, dir);
 285}
 286
 287/* pseudo dma_map_sg call */
 288static int
 289fc_map_sg(struct scatterlist *sg, int nents)
 290{
 291        struct scatterlist *s;
 292        int i;
 293
 294        WARN_ON(nents == 0 || sg[0].length == 0);
 295
 296        for_each_sg(sg, s, nents, i) {
 297                s->dma_address = 0L;
 298#ifdef CONFIG_NEED_SG_DMA_LENGTH
 299                s->dma_length = s->length;
 300#endif
 301        }
 302        return nents;
 303}
 304
 305static inline int
 306fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 307                enum dma_data_direction dir)
 308{
 309        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 310}
 311
 312static inline void
 313fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 314                enum dma_data_direction dir)
 315{
 316        if (dev)
 317                dma_unmap_sg(dev, sg, nents, dir);
 318}
 319
 320
 321/* *********************** FC-NVME Port Management ************************ */
 322
 323
 324static int
 325nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 326{
 327        struct nvmet_fc_ls_iod *iod;
 328        int i;
 329
 330        iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
 331                        GFP_KERNEL);
 332        if (!iod)
 333                return -ENOMEM;
 334
 335        tgtport->iod = iod;
 336
 337        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 338                INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
 339                iod->tgtport = tgtport;
 340                list_add_tail(&iod->ls_list, &tgtport->ls_list);
 341
 342                iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
 343                        GFP_KERNEL);
 344                if (!iod->rqstbuf)
 345                        goto out_fail;
 346
 347                iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
 348
 349                iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
 350                                                NVME_FC_MAX_LS_BUFFER_SIZE,
 351                                                DMA_TO_DEVICE);
 352                if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
 353                        goto out_fail;
 354        }
 355
 356        return 0;
 357
 358out_fail:
 359        kfree(iod->rqstbuf);
 360        list_del(&iod->ls_list);
 361        for (iod--, i--; i >= 0; iod--, i--) {
 362                fc_dma_unmap_single(tgtport->dev, iod->rspdma,
 363                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
 364                kfree(iod->rqstbuf);
 365                list_del(&iod->ls_list);
 366        }
 367
 368        kfree(iod);
 369
 370        return -EFAULT;
 371}
 372
 373static void
 374nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 375{
 376        struct nvmet_fc_ls_iod *iod = tgtport->iod;
 377        int i;
 378
 379        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 380                fc_dma_unmap_single(tgtport->dev,
 381                                iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
 382                                DMA_TO_DEVICE);
 383                kfree(iod->rqstbuf);
 384                list_del(&iod->ls_list);
 385        }
 386        kfree(tgtport->iod);
 387}
 388
 389static struct nvmet_fc_ls_iod *
 390nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
 391{
 392        struct nvmet_fc_ls_iod *iod;
 393        unsigned long flags;
 394
 395        spin_lock_irqsave(&tgtport->lock, flags);
 396        iod = list_first_entry_or_null(&tgtport->ls_list,
 397                                        struct nvmet_fc_ls_iod, ls_list);
 398        if (iod)
 399                list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
 400        spin_unlock_irqrestore(&tgtport->lock, flags);
 401        return iod;
 402}
 403
 404
 405static void
 406nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
 407                        struct nvmet_fc_ls_iod *iod)
 408{
 409        unsigned long flags;
 410
 411        spin_lock_irqsave(&tgtport->lock, flags);
 412        list_move(&iod->ls_list, &tgtport->ls_list);
 413        spin_unlock_irqrestore(&tgtport->lock, flags);
 414}
 415
 416static void
 417nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 418                                struct nvmet_fc_tgt_queue *queue)
 419{
 420        struct nvmet_fc_fcp_iod *fod = queue->fod;
 421        int i;
 422
 423        for (i = 0; i < queue->sqsize; fod++, i++) {
 424                INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
 425                fod->tgtport = tgtport;
 426                fod->queue = queue;
 427                fod->active = false;
 428                fod->abort = false;
 429                fod->aborted = false;
 430                fod->fcpreq = NULL;
 431                list_add_tail(&fod->fcp_list, &queue->fod_list);
 432                spin_lock_init(&fod->flock);
 433
 434                fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
 435                                        sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 436                if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
 437                        list_del(&fod->fcp_list);
 438                        for (fod--, i--; i >= 0; fod--, i--) {
 439                                fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 440                                                sizeof(fod->rspiubuf),
 441                                                DMA_TO_DEVICE);
 442                                fod->rspdma = 0L;
 443                                list_del(&fod->fcp_list);
 444                        }
 445
 446                        return;
 447                }
 448        }
 449}
 450
 451static void
 452nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 453                                struct nvmet_fc_tgt_queue *queue)
 454{
 455        struct nvmet_fc_fcp_iod *fod = queue->fod;
 456        int i;
 457
 458        for (i = 0; i < queue->sqsize; fod++, i++) {
 459                if (fod->rspdma)
 460                        fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 461                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 462        }
 463}
 464
 465static struct nvmet_fc_fcp_iod *
 466nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
 467{
 468        struct nvmet_fc_fcp_iod *fod;
 469
 470        lockdep_assert_held(&queue->qlock);
 471
 472        fod = list_first_entry_or_null(&queue->fod_list,
 473                                        struct nvmet_fc_fcp_iod, fcp_list);
 474        if (fod) {
 475                list_del(&fod->fcp_list);
 476                fod->active = true;
 477                /*
 478                 * no queue reference is taken, as it was taken by the
 479                 * queue lookup just prior to the allocation. The iod
 480                 * will "inherit" that reference.
 481                 */
 482        }
 483        return fod;
 484}
 485
 486
 487static void
 488nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
 489                       struct nvmet_fc_tgt_queue *queue,
 490                       struct nvmefc_tgt_fcp_req *fcpreq)
 491{
 492        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
 493
 494        /*
 495         * put all admin cmds on hw queue id 0. All io commands go to
 496         * the respective hw queue based on a modulo basis
 497         */
 498        fcpreq->hwqid = queue->qid ?
 499                        ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
 500
 501        nvmet_fc_handle_fcp_rqst(tgtport, fod);
 502}
 503
 504static void
 505nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
 506{
 507        struct nvmet_fc_fcp_iod *fod =
 508                container_of(work, struct nvmet_fc_fcp_iod, defer_work);
 509
 510        /* Submit deferred IO for processing */
 511        nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
 512
 513}
 514
 515static void
 516nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
 517                        struct nvmet_fc_fcp_iod *fod)
 518{
 519        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
 520        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
 521        struct nvmet_fc_defer_fcp_req *deferfcp;
 522        unsigned long flags;
 523
 524        fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
 525                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 526
 527        fcpreq->nvmet_fc_private = NULL;
 528
 529        fod->active = false;
 530        fod->abort = false;
 531        fod->aborted = false;
 532        fod->writedataactive = false;
 533        fod->fcpreq = NULL;
 534
 535        tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
 536
 537        /* release the queue lookup reference on the completed IO */
 538        nvmet_fc_tgt_q_put(queue);
 539
 540        spin_lock_irqsave(&queue->qlock, flags);
 541        deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 542                                struct nvmet_fc_defer_fcp_req, req_list);
 543        if (!deferfcp) {
 544                list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
 545                spin_unlock_irqrestore(&queue->qlock, flags);
 546                return;
 547        }
 548
 549        /* Re-use the fod for the next pending cmd that was deferred */
 550        list_del(&deferfcp->req_list);
 551
 552        fcpreq = deferfcp->fcp_req;
 553
 554        /* deferfcp can be reused for another IO at a later date */
 555        list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
 556
 557        spin_unlock_irqrestore(&queue->qlock, flags);
 558
 559        /* Save NVME CMD IO in fod */
 560        memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
 561
 562        /* Setup new fcpreq to be processed */
 563        fcpreq->rspaddr = NULL;
 564        fcpreq->rsplen  = 0;
 565        fcpreq->nvmet_fc_private = fod;
 566        fod->fcpreq = fcpreq;
 567        fod->active = true;
 568
 569        /* inform LLDD IO is now being processed */
 570        tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
 571
 572        /*
 573         * Leave the queue lookup get reference taken when
 574         * fod was originally allocated.
 575         */
 576
 577        queue_work(queue->work_q, &fod->defer_work);
 578}
 579
 580static struct nvmet_fc_tgt_queue *
 581nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
 582                        u16 qid, u16 sqsize)
 583{
 584        struct nvmet_fc_tgt_queue *queue;
 585        unsigned long flags;
 586        int ret;
 587
 588        if (qid > NVMET_NR_QUEUES)
 589                return NULL;
 590
 591        queue = kzalloc((sizeof(*queue) +
 592                                (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
 593                                GFP_KERNEL);
 594        if (!queue)
 595                return NULL;
 596
 597        if (!nvmet_fc_tgt_a_get(assoc))
 598                goto out_free_queue;
 599
 600        queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
 601                                assoc->tgtport->fc_target_port.port_num,
 602                                assoc->a_id, qid);
 603        if (!queue->work_q)
 604                goto out_a_put;
 605
 606        queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
 607        queue->qid = qid;
 608        queue->sqsize = sqsize;
 609        queue->assoc = assoc;
 610        INIT_LIST_HEAD(&queue->fod_list);
 611        INIT_LIST_HEAD(&queue->avail_defer_list);
 612        INIT_LIST_HEAD(&queue->pending_cmd_list);
 613        atomic_set(&queue->connected, 0);
 614        atomic_set(&queue->sqtail, 0);
 615        atomic_set(&queue->rsn, 1);
 616        atomic_set(&queue->zrspcnt, 0);
 617        spin_lock_init(&queue->qlock);
 618        kref_init(&queue->ref);
 619
 620        nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
 621
 622        ret = nvmet_sq_init(&queue->nvme_sq);
 623        if (ret)
 624                goto out_fail_iodlist;
 625
 626        WARN_ON(assoc->queues[qid]);
 627        spin_lock_irqsave(&assoc->tgtport->lock, flags);
 628        assoc->queues[qid] = queue;
 629        spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
 630
 631        return queue;
 632
 633out_fail_iodlist:
 634        nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
 635        destroy_workqueue(queue->work_q);
 636out_a_put:
 637        nvmet_fc_tgt_a_put(assoc);
 638out_free_queue:
 639        kfree(queue);
 640        return NULL;
 641}
 642
 643
 644static void
 645nvmet_fc_tgt_queue_free(struct kref *ref)
 646{
 647        struct nvmet_fc_tgt_queue *queue =
 648                container_of(ref, struct nvmet_fc_tgt_queue, ref);
 649        unsigned long flags;
 650
 651        spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
 652        queue->assoc->queues[queue->qid] = NULL;
 653        spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
 654
 655        nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
 656
 657        nvmet_fc_tgt_a_put(queue->assoc);
 658
 659        destroy_workqueue(queue->work_q);
 660
 661        kfree(queue);
 662}
 663
 664static void
 665nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
 666{
 667        kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
 668}
 669
 670static int
 671nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
 672{
 673        return kref_get_unless_zero(&queue->ref);
 674}
 675
 676
 677static void
 678nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
 679{
 680        struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
 681        struct nvmet_fc_fcp_iod *fod = queue->fod;
 682        struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
 683        unsigned long flags;
 684        int i, writedataactive;
 685        bool disconnect;
 686
 687        disconnect = atomic_xchg(&queue->connected, 0);
 688
 689        spin_lock_irqsave(&queue->qlock, flags);
 690        /* about outstanding io's */
 691        for (i = 0; i < queue->sqsize; fod++, i++) {
 692                if (fod->active) {
 693                        spin_lock(&fod->flock);
 694                        fod->abort = true;
 695                        writedataactive = fod->writedataactive;
 696                        spin_unlock(&fod->flock);
 697                        /*
 698                         * only call lldd abort routine if waiting for
 699                         * writedata. other outstanding ops should finish
 700                         * on their own.
 701                         */
 702                        if (writedataactive) {
 703                                spin_lock(&fod->flock);
 704                                fod->aborted = true;
 705                                spin_unlock(&fod->flock);
 706                                tgtport->ops->fcp_abort(
 707                                        &tgtport->fc_target_port, fod->fcpreq);
 708                        }
 709                }
 710        }
 711
 712        /* Cleanup defer'ed IOs in queue */
 713        list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
 714                                req_list) {
 715                list_del(&deferfcp->req_list);
 716                kfree(deferfcp);
 717        }
 718
 719        for (;;) {
 720                deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 721                                struct nvmet_fc_defer_fcp_req, req_list);
 722                if (!deferfcp)
 723                        break;
 724
 725                list_del(&deferfcp->req_list);
 726                spin_unlock_irqrestore(&queue->qlock, flags);
 727
 728                tgtport->ops->defer_rcv(&tgtport->fc_target_port,
 729                                deferfcp->fcp_req);
 730
 731                tgtport->ops->fcp_abort(&tgtport->fc_target_port,
 732                                deferfcp->fcp_req);
 733
 734                tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
 735                                deferfcp->fcp_req);
 736
 737                /* release the queue lookup reference */
 738                nvmet_fc_tgt_q_put(queue);
 739
 740                kfree(deferfcp);
 741
 742                spin_lock_irqsave(&queue->qlock, flags);
 743        }
 744        spin_unlock_irqrestore(&queue->qlock, flags);
 745
 746        flush_workqueue(queue->work_q);
 747
 748        if (disconnect)
 749                nvmet_sq_destroy(&queue->nvme_sq);
 750
 751        nvmet_fc_tgt_q_put(queue);
 752}
 753
 754static struct nvmet_fc_tgt_queue *
 755nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
 756                                u64 connection_id)
 757{
 758        struct nvmet_fc_tgt_assoc *assoc;
 759        struct nvmet_fc_tgt_queue *queue;
 760        u64 association_id = nvmet_fc_getassociationid(connection_id);
 761        u16 qid = nvmet_fc_getqueueid(connection_id);
 762        unsigned long flags;
 763
 764        if (qid > NVMET_NR_QUEUES)
 765                return NULL;
 766
 767        spin_lock_irqsave(&tgtport->lock, flags);
 768        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 769                if (association_id == assoc->association_id) {
 770                        queue = assoc->queues[qid];
 771                        if (queue &&
 772                            (!atomic_read(&queue->connected) ||
 773                             !nvmet_fc_tgt_q_get(queue)))
 774                                queue = NULL;
 775                        spin_unlock_irqrestore(&tgtport->lock, flags);
 776                        return queue;
 777                }
 778        }
 779        spin_unlock_irqrestore(&tgtport->lock, flags);
 780        return NULL;
 781}
 782
 783static void
 784nvmet_fc_delete_assoc(struct work_struct *work)
 785{
 786        struct nvmet_fc_tgt_assoc *assoc =
 787                container_of(work, struct nvmet_fc_tgt_assoc, del_work);
 788
 789        nvmet_fc_delete_target_assoc(assoc);
 790        nvmet_fc_tgt_a_put(assoc);
 791}
 792
 793static struct nvmet_fc_tgt_assoc *
 794nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
 795{
 796        struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
 797        unsigned long flags;
 798        u64 ran;
 799        int idx;
 800        bool needrandom = true;
 801
 802        assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
 803        if (!assoc)
 804                return NULL;
 805
 806        idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
 807        if (idx < 0)
 808                goto out_free_assoc;
 809
 810        if (!nvmet_fc_tgtport_get(tgtport))
 811                goto out_ida_put;
 812
 813        assoc->tgtport = tgtport;
 814        assoc->a_id = idx;
 815        INIT_LIST_HEAD(&assoc->a_list);
 816        kref_init(&assoc->ref);
 817        INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
 818
 819        while (needrandom) {
 820                get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
 821                ran = ran << BYTES_FOR_QID_SHIFT;
 822
 823                spin_lock_irqsave(&tgtport->lock, flags);
 824                needrandom = false;
 825                list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
 826                        if (ran == tmpassoc->association_id) {
 827                                needrandom = true;
 828                                break;
 829                        }
 830                if (!needrandom) {
 831                        assoc->association_id = ran;
 832                        list_add_tail(&assoc->a_list, &tgtport->assoc_list);
 833                }
 834                spin_unlock_irqrestore(&tgtport->lock, flags);
 835        }
 836
 837        return assoc;
 838
 839out_ida_put:
 840        ida_simple_remove(&tgtport->assoc_cnt, idx);
 841out_free_assoc:
 842        kfree(assoc);
 843        return NULL;
 844}
 845
 846static void
 847nvmet_fc_target_assoc_free(struct kref *ref)
 848{
 849        struct nvmet_fc_tgt_assoc *assoc =
 850                container_of(ref, struct nvmet_fc_tgt_assoc, ref);
 851        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 852        unsigned long flags;
 853
 854        spin_lock_irqsave(&tgtport->lock, flags);
 855        list_del(&assoc->a_list);
 856        spin_unlock_irqrestore(&tgtport->lock, flags);
 857        ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
 858        kfree(assoc);
 859        nvmet_fc_tgtport_put(tgtport);
 860}
 861
 862static void
 863nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
 864{
 865        kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
 866}
 867
 868static int
 869nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
 870{
 871        return kref_get_unless_zero(&assoc->ref);
 872}
 873
 874static void
 875nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
 876{
 877        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 878        struct nvmet_fc_tgt_queue *queue;
 879        unsigned long flags;
 880        int i;
 881
 882        spin_lock_irqsave(&tgtport->lock, flags);
 883        for (i = NVMET_NR_QUEUES; i >= 0; i--) {
 884                queue = assoc->queues[i];
 885                if (queue) {
 886                        if (!nvmet_fc_tgt_q_get(queue))
 887                                continue;
 888                        spin_unlock_irqrestore(&tgtport->lock, flags);
 889                        nvmet_fc_delete_target_queue(queue);
 890                        nvmet_fc_tgt_q_put(queue);
 891                        spin_lock_irqsave(&tgtport->lock, flags);
 892                }
 893        }
 894        spin_unlock_irqrestore(&tgtport->lock, flags);
 895
 896        nvmet_fc_tgt_a_put(assoc);
 897}
 898
 899static struct nvmet_fc_tgt_assoc *
 900nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
 901                                u64 association_id)
 902{
 903        struct nvmet_fc_tgt_assoc *assoc;
 904        struct nvmet_fc_tgt_assoc *ret = NULL;
 905        unsigned long flags;
 906
 907        spin_lock_irqsave(&tgtport->lock, flags);
 908        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 909                if (association_id == assoc->association_id) {
 910                        ret = assoc;
 911                        nvmet_fc_tgt_a_get(assoc);
 912                        break;
 913                }
 914        }
 915        spin_unlock_irqrestore(&tgtport->lock, flags);
 916
 917        return ret;
 918}
 919
 920static void
 921nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
 922                        struct nvmet_fc_port_entry *pe,
 923                        struct nvmet_port *port)
 924{
 925        lockdep_assert_held(&nvmet_fc_tgtlock);
 926
 927        pe->tgtport = tgtport;
 928        tgtport->pe = pe;
 929
 930        pe->port = port;
 931        port->priv = pe;
 932
 933        pe->node_name = tgtport->fc_target_port.node_name;
 934        pe->port_name = tgtport->fc_target_port.port_name;
 935        INIT_LIST_HEAD(&pe->pe_list);
 936
 937        list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
 938}
 939
 940static void
 941nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
 942{
 943        unsigned long flags;
 944
 945        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 946        if (pe->tgtport)
 947                pe->tgtport->pe = NULL;
 948        list_del(&pe->pe_list);
 949        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 950}
 951
 952/*
 953 * called when a targetport deregisters. Breaks the relationship
 954 * with the nvmet port, but leaves the port_entry in place so that
 955 * re-registration can resume operation.
 956 */
 957static void
 958nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
 959{
 960        struct nvmet_fc_port_entry *pe;
 961        unsigned long flags;
 962
 963        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 964        pe = tgtport->pe;
 965        if (pe)
 966                pe->tgtport = NULL;
 967        tgtport->pe = NULL;
 968        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 969}
 970
 971/*
 972 * called when a new targetport is registered. Looks in the
 973 * existing nvmet port_entries to see if the nvmet layer is
 974 * configured for the targetport's wwn's. (the targetport existed,
 975 * nvmet configured, the lldd unregistered the tgtport, and is now
 976 * reregistering the same targetport).  If so, set the nvmet port
 977 * port entry on the targetport.
 978 */
 979static void
 980nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
 981{
 982        struct nvmet_fc_port_entry *pe;
 983        unsigned long flags;
 984
 985        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 986        list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
 987                if (tgtport->fc_target_port.node_name == pe->node_name &&
 988                    tgtport->fc_target_port.port_name == pe->port_name) {
 989                        WARN_ON(pe->tgtport);
 990                        tgtport->pe = pe;
 991                        pe->tgtport = tgtport;
 992                        break;
 993                }
 994        }
 995        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 996}
 997
 998/**
 999 * nvme_fc_register_targetport - transport entry point called by an
1000 *                              LLDD to register the existence of a local
1001 *                              NVME subystem FC port.
1002 * @pinfo:     pointer to information about the port to be registered
1003 * @template:  LLDD entrypoints and operational parameters for the port
1004 * @dev:       physical hardware device node port corresponds to. Will be
1005 *             used for DMA mappings
1006 * @portptr:   pointer to a local port pointer. Upon success, the routine
1007 *             will allocate a nvme_fc_local_port structure and place its
1008 *             address in the local port pointer. Upon failure, local port
1009 *             pointer will be set to NULL.
1010 *
1011 * Returns:
1012 * a completion status. Must be 0 upon success; a negative errno
1013 * (ex: -ENXIO) upon failure.
1014 */
1015int
1016nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1017                        struct nvmet_fc_target_template *template,
1018                        struct device *dev,
1019                        struct nvmet_fc_target_port **portptr)
1020{
1021        struct nvmet_fc_tgtport *newrec;
1022        unsigned long flags;
1023        int ret, idx;
1024
1025        if (!template->xmt_ls_rsp || !template->fcp_op ||
1026            !template->fcp_abort ||
1027            !template->fcp_req_release || !template->targetport_delete ||
1028            !template->max_hw_queues || !template->max_sgl_segments ||
1029            !template->max_dif_sgl_segments || !template->dma_boundary) {
1030                ret = -EINVAL;
1031                goto out_regtgt_failed;
1032        }
1033
1034        newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1035                         GFP_KERNEL);
1036        if (!newrec) {
1037                ret = -ENOMEM;
1038                goto out_regtgt_failed;
1039        }
1040
1041        idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1042        if (idx < 0) {
1043                ret = -ENOSPC;
1044                goto out_fail_kfree;
1045        }
1046
1047        if (!get_device(dev) && dev) {
1048                ret = -ENODEV;
1049                goto out_ida_put;
1050        }
1051
1052        newrec->fc_target_port.node_name = pinfo->node_name;
1053        newrec->fc_target_port.port_name = pinfo->port_name;
1054        newrec->fc_target_port.private = &newrec[1];
1055        newrec->fc_target_port.port_id = pinfo->port_id;
1056        newrec->fc_target_port.port_num = idx;
1057        INIT_LIST_HEAD(&newrec->tgt_list);
1058        newrec->dev = dev;
1059        newrec->ops = template;
1060        spin_lock_init(&newrec->lock);
1061        INIT_LIST_HEAD(&newrec->ls_list);
1062        INIT_LIST_HEAD(&newrec->ls_busylist);
1063        INIT_LIST_HEAD(&newrec->assoc_list);
1064        kref_init(&newrec->ref);
1065        ida_init(&newrec->assoc_cnt);
1066        newrec->max_sg_cnt = template->max_sgl_segments;
1067
1068        ret = nvmet_fc_alloc_ls_iodlist(newrec);
1069        if (ret) {
1070                ret = -ENOMEM;
1071                goto out_free_newrec;
1072        }
1073
1074        nvmet_fc_portentry_rebind_tgt(newrec);
1075
1076        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1077        list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1078        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1079
1080        *portptr = &newrec->fc_target_port;
1081        return 0;
1082
1083out_free_newrec:
1084        put_device(dev);
1085out_ida_put:
1086        ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1087out_fail_kfree:
1088        kfree(newrec);
1089out_regtgt_failed:
1090        *portptr = NULL;
1091        return ret;
1092}
1093EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1094
1095
1096static void
1097nvmet_fc_free_tgtport(struct kref *ref)
1098{
1099        struct nvmet_fc_tgtport *tgtport =
1100                container_of(ref, struct nvmet_fc_tgtport, ref);
1101        struct device *dev = tgtport->dev;
1102        unsigned long flags;
1103
1104        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1105        list_del(&tgtport->tgt_list);
1106        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1107
1108        nvmet_fc_free_ls_iodlist(tgtport);
1109
1110        /* let the LLDD know we've finished tearing it down */
1111        tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1112
1113        ida_simple_remove(&nvmet_fc_tgtport_cnt,
1114                        tgtport->fc_target_port.port_num);
1115
1116        ida_destroy(&tgtport->assoc_cnt);
1117
1118        kfree(tgtport);
1119
1120        put_device(dev);
1121}
1122
1123static void
1124nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1125{
1126        kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1127}
1128
1129static int
1130nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1131{
1132        return kref_get_unless_zero(&tgtport->ref);
1133}
1134
1135static void
1136__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1137{
1138        struct nvmet_fc_tgt_assoc *assoc, *next;
1139        unsigned long flags;
1140
1141        spin_lock_irqsave(&tgtport->lock, flags);
1142        list_for_each_entry_safe(assoc, next,
1143                                &tgtport->assoc_list, a_list) {
1144                if (!nvmet_fc_tgt_a_get(assoc))
1145                        continue;
1146                if (!schedule_work(&assoc->del_work))
1147                        nvmet_fc_tgt_a_put(assoc);
1148        }
1149        spin_unlock_irqrestore(&tgtport->lock, flags);
1150}
1151
1152/*
1153 * nvmet layer has called to terminate an association
1154 */
1155static void
1156nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1157{
1158        struct nvmet_fc_tgtport *tgtport, *next;
1159        struct nvmet_fc_tgt_assoc *assoc;
1160        struct nvmet_fc_tgt_queue *queue;
1161        unsigned long flags;
1162        bool found_ctrl = false;
1163
1164        /* this is a bit ugly, but don't want to make locks layered */
1165        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1166        list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1167                        tgt_list) {
1168                if (!nvmet_fc_tgtport_get(tgtport))
1169                        continue;
1170                spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1171
1172                spin_lock_irqsave(&tgtport->lock, flags);
1173                list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1174                        queue = assoc->queues[0];
1175                        if (queue && queue->nvme_sq.ctrl == ctrl) {
1176                                if (nvmet_fc_tgt_a_get(assoc))
1177                                        found_ctrl = true;
1178                                break;
1179                        }
1180                }
1181                spin_unlock_irqrestore(&tgtport->lock, flags);
1182
1183                nvmet_fc_tgtport_put(tgtport);
1184
1185                if (found_ctrl) {
1186                        if (!schedule_work(&assoc->del_work))
1187                                nvmet_fc_tgt_a_put(assoc);
1188                        return;
1189                }
1190
1191                spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1192        }
1193        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1194}
1195
1196/**
1197 * nvme_fc_unregister_targetport - transport entry point called by an
1198 *                              LLDD to deregister/remove a previously
1199 *                              registered a local NVME subsystem FC port.
1200 * @target_port: pointer to the (registered) target port that is to be
1201 *               deregistered.
1202 *
1203 * Returns:
1204 * a completion status. Must be 0 upon success; a negative errno
1205 * (ex: -ENXIO) upon failure.
1206 */
1207int
1208nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1209{
1210        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1211
1212        nvmet_fc_portentry_unbind_tgt(tgtport);
1213
1214        /* terminate any outstanding associations */
1215        __nvmet_fc_free_assocs(tgtport);
1216
1217        nvmet_fc_tgtport_put(tgtport);
1218
1219        return 0;
1220}
1221EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1222
1223
1224/* *********************** FC-NVME LS Handling **************************** */
1225
1226
1227static void
1228nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1229{
1230        struct fcnvme_ls_acc_hdr *acc = buf;
1231
1232        acc->w0.ls_cmd = ls_cmd;
1233        acc->desc_list_len = desc_len;
1234        acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1235        acc->rqst.desc_len =
1236                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1237        acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1238}
1239
1240static int
1241nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1242                        u8 reason, u8 explanation, u8 vendor)
1243{
1244        struct fcnvme_ls_rjt *rjt = buf;
1245
1246        nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1247                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1248                        ls_cmd);
1249        rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1250        rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1251        rjt->rjt.reason_code = reason;
1252        rjt->rjt.reason_explanation = explanation;
1253        rjt->rjt.vendor = vendor;
1254
1255        return sizeof(struct fcnvme_ls_rjt);
1256}
1257
1258/* Validation Error indexes into the string table below */
1259enum {
1260        VERR_NO_ERROR           = 0,
1261        VERR_CR_ASSOC_LEN       = 1,
1262        VERR_CR_ASSOC_RQST_LEN  = 2,
1263        VERR_CR_ASSOC_CMD       = 3,
1264        VERR_CR_ASSOC_CMD_LEN   = 4,
1265        VERR_ERSP_RATIO         = 5,
1266        VERR_ASSOC_ALLOC_FAIL   = 6,
1267        VERR_QUEUE_ALLOC_FAIL   = 7,
1268        VERR_CR_CONN_LEN        = 8,
1269        VERR_CR_CONN_RQST_LEN   = 9,
1270        VERR_ASSOC_ID           = 10,
1271        VERR_ASSOC_ID_LEN       = 11,
1272        VERR_NO_ASSOC           = 12,
1273        VERR_CONN_ID            = 13,
1274        VERR_CONN_ID_LEN        = 14,
1275        VERR_NO_CONN            = 15,
1276        VERR_CR_CONN_CMD        = 16,
1277        VERR_CR_CONN_CMD_LEN    = 17,
1278        VERR_DISCONN_LEN        = 18,
1279        VERR_DISCONN_RQST_LEN   = 19,
1280        VERR_DISCONN_CMD        = 20,
1281        VERR_DISCONN_CMD_LEN    = 21,
1282        VERR_DISCONN_SCOPE      = 22,
1283        VERR_RS_LEN             = 23,
1284        VERR_RS_RQST_LEN        = 24,
1285        VERR_RS_CMD             = 25,
1286        VERR_RS_CMD_LEN         = 26,
1287        VERR_RS_RCTL            = 27,
1288        VERR_RS_RO              = 28,
1289};
1290
1291static char *validation_errors[] = {
1292        "OK",
1293        "Bad CR_ASSOC Length",
1294        "Bad CR_ASSOC Rqst Length",
1295        "Not CR_ASSOC Cmd",
1296        "Bad CR_ASSOC Cmd Length",
1297        "Bad Ersp Ratio",
1298        "Association Allocation Failed",
1299        "Queue Allocation Failed",
1300        "Bad CR_CONN Length",
1301        "Bad CR_CONN Rqst Length",
1302        "Not Association ID",
1303        "Bad Association ID Length",
1304        "No Association",
1305        "Not Connection ID",
1306        "Bad Connection ID Length",
1307        "No Connection",
1308        "Not CR_CONN Cmd",
1309        "Bad CR_CONN Cmd Length",
1310        "Bad DISCONN Length",
1311        "Bad DISCONN Rqst Length",
1312        "Not DISCONN Cmd",
1313        "Bad DISCONN Cmd Length",
1314        "Bad Disconnect Scope",
1315        "Bad RS Length",
1316        "Bad RS Rqst Length",
1317        "Not RS Cmd",
1318        "Bad RS Cmd Length",
1319        "Bad RS R_CTL",
1320        "Bad RS Relative Offset",
1321};
1322
1323static void
1324nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1325                        struct nvmet_fc_ls_iod *iod)
1326{
1327        struct fcnvme_ls_cr_assoc_rqst *rqst =
1328                                (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1329        struct fcnvme_ls_cr_assoc_acc *acc =
1330                                (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1331        struct nvmet_fc_tgt_queue *queue;
1332        int ret = 0;
1333
1334        memset(acc, 0, sizeof(*acc));
1335
1336        /*
1337         * FC-NVME spec changes. There are initiators sending different
1338         * lengths as padding sizes for Create Association Cmd descriptor
1339         * was incorrect.
1340         * Accept anything of "minimum" length. Assume format per 1.15
1341         * spec (with HOSTID reduced to 16 bytes), ignore how long the
1342         * trailing pad length is.
1343         */
1344        if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1345                ret = VERR_CR_ASSOC_LEN;
1346        else if (be32_to_cpu(rqst->desc_list_len) <
1347                        FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1348                ret = VERR_CR_ASSOC_RQST_LEN;
1349        else if (rqst->assoc_cmd.desc_tag !=
1350                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1351                ret = VERR_CR_ASSOC_CMD;
1352        else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1353                        FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1354                ret = VERR_CR_ASSOC_CMD_LEN;
1355        else if (!rqst->assoc_cmd.ersp_ratio ||
1356                 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1357                                be16_to_cpu(rqst->assoc_cmd.sqsize)))
1358                ret = VERR_ERSP_RATIO;
1359
1360        else {
1361                /* new association w/ admin queue */
1362                iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1363                if (!iod->assoc)
1364                        ret = VERR_ASSOC_ALLOC_FAIL;
1365                else {
1366                        queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1367                                        be16_to_cpu(rqst->assoc_cmd.sqsize));
1368                        if (!queue)
1369                                ret = VERR_QUEUE_ALLOC_FAIL;
1370                }
1371        }
1372
1373        if (ret) {
1374                dev_err(tgtport->dev,
1375                        "Create Association LS failed: %s\n",
1376                        validation_errors[ret]);
1377                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1378                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1379                                FCNVME_RJT_RC_LOGIC,
1380                                FCNVME_RJT_EXP_NONE, 0);
1381                return;
1382        }
1383
1384        queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1385        atomic_set(&queue->connected, 1);
1386        queue->sqhd = 0;        /* best place to init value */
1387
1388        /* format a response */
1389
1390        iod->lsreq->rsplen = sizeof(*acc);
1391
1392        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1393                        fcnvme_lsdesc_len(
1394                                sizeof(struct fcnvme_ls_cr_assoc_acc)),
1395                        FCNVME_LS_CREATE_ASSOCIATION);
1396        acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1397        acc->associd.desc_len =
1398                        fcnvme_lsdesc_len(
1399                                sizeof(struct fcnvme_lsdesc_assoc_id));
1400        acc->associd.association_id =
1401                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1402        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1403        acc->connectid.desc_len =
1404                        fcnvme_lsdesc_len(
1405                                sizeof(struct fcnvme_lsdesc_conn_id));
1406        acc->connectid.connection_id = acc->associd.association_id;
1407}
1408
1409static void
1410nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1411                        struct nvmet_fc_ls_iod *iod)
1412{
1413        struct fcnvme_ls_cr_conn_rqst *rqst =
1414                                (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1415        struct fcnvme_ls_cr_conn_acc *acc =
1416                                (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1417        struct nvmet_fc_tgt_queue *queue;
1418        int ret = 0;
1419
1420        memset(acc, 0, sizeof(*acc));
1421
1422        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1423                ret = VERR_CR_CONN_LEN;
1424        else if (rqst->desc_list_len !=
1425                        fcnvme_lsdesc_len(
1426                                sizeof(struct fcnvme_ls_cr_conn_rqst)))
1427                ret = VERR_CR_CONN_RQST_LEN;
1428        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1429                ret = VERR_ASSOC_ID;
1430        else if (rqst->associd.desc_len !=
1431                        fcnvme_lsdesc_len(
1432                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1433                ret = VERR_ASSOC_ID_LEN;
1434        else if (rqst->connect_cmd.desc_tag !=
1435                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1436                ret = VERR_CR_CONN_CMD;
1437        else if (rqst->connect_cmd.desc_len !=
1438                        fcnvme_lsdesc_len(
1439                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1440                ret = VERR_CR_CONN_CMD_LEN;
1441        else if (!rqst->connect_cmd.ersp_ratio ||
1442                 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1443                                be16_to_cpu(rqst->connect_cmd.sqsize)))
1444                ret = VERR_ERSP_RATIO;
1445
1446        else {
1447                /* new io queue */
1448                iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1449                                be64_to_cpu(rqst->associd.association_id));
1450                if (!iod->assoc)
1451                        ret = VERR_NO_ASSOC;
1452                else {
1453                        queue = nvmet_fc_alloc_target_queue(iod->assoc,
1454                                        be16_to_cpu(rqst->connect_cmd.qid),
1455                                        be16_to_cpu(rqst->connect_cmd.sqsize));
1456                        if (!queue)
1457                                ret = VERR_QUEUE_ALLOC_FAIL;
1458
1459                        /* release get taken in nvmet_fc_find_target_assoc */
1460                        nvmet_fc_tgt_a_put(iod->assoc);
1461                }
1462        }
1463
1464        if (ret) {
1465                dev_err(tgtport->dev,
1466                        "Create Connection LS failed: %s\n",
1467                        validation_errors[ret]);
1468                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1469                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1470                                (ret == VERR_NO_ASSOC) ?
1471                                        FCNVME_RJT_RC_INV_ASSOC :
1472                                        FCNVME_RJT_RC_LOGIC,
1473                                FCNVME_RJT_EXP_NONE, 0);
1474                return;
1475        }
1476
1477        queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1478        atomic_set(&queue->connected, 1);
1479        queue->sqhd = 0;        /* best place to init value */
1480
1481        /* format a response */
1482
1483        iod->lsreq->rsplen = sizeof(*acc);
1484
1485        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1486                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1487                        FCNVME_LS_CREATE_CONNECTION);
1488        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1489        acc->connectid.desc_len =
1490                        fcnvme_lsdesc_len(
1491                                sizeof(struct fcnvme_lsdesc_conn_id));
1492        acc->connectid.connection_id =
1493                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1494                                be16_to_cpu(rqst->connect_cmd.qid)));
1495}
1496
1497static void
1498nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1499                        struct nvmet_fc_ls_iod *iod)
1500{
1501        struct fcnvme_ls_disconnect_rqst *rqst =
1502                        (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1503        struct fcnvme_ls_disconnect_acc *acc =
1504                        (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1505        struct nvmet_fc_tgt_assoc *assoc;
1506        int ret = 0;
1507
1508        memset(acc, 0, sizeof(*acc));
1509
1510        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1511                ret = VERR_DISCONN_LEN;
1512        else if (rqst->desc_list_len !=
1513                        fcnvme_lsdesc_len(
1514                                sizeof(struct fcnvme_ls_disconnect_rqst)))
1515                ret = VERR_DISCONN_RQST_LEN;
1516        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1517                ret = VERR_ASSOC_ID;
1518        else if (rqst->associd.desc_len !=
1519                        fcnvme_lsdesc_len(
1520                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1521                ret = VERR_ASSOC_ID_LEN;
1522        else if (rqst->discon_cmd.desc_tag !=
1523                        cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1524                ret = VERR_DISCONN_CMD;
1525        else if (rqst->discon_cmd.desc_len !=
1526                        fcnvme_lsdesc_len(
1527                                sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1528                ret = VERR_DISCONN_CMD_LEN;
1529        else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1530                        (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1531                ret = VERR_DISCONN_SCOPE;
1532        else {
1533                /* match an active association */
1534                assoc = nvmet_fc_find_target_assoc(tgtport,
1535                                be64_to_cpu(rqst->associd.association_id));
1536                iod->assoc = assoc;
1537                if (!assoc)
1538                        ret = VERR_NO_ASSOC;
1539        }
1540
1541        if (ret) {
1542                dev_err(tgtport->dev,
1543                        "Disconnect LS failed: %s\n",
1544                        validation_errors[ret]);
1545                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1546                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1547                                (ret == VERR_NO_ASSOC) ?
1548                                        FCNVME_RJT_RC_INV_ASSOC :
1549                                        (ret == VERR_NO_CONN) ?
1550                                                FCNVME_RJT_RC_INV_CONN :
1551                                                FCNVME_RJT_RC_LOGIC,
1552                                FCNVME_RJT_EXP_NONE, 0);
1553                return;
1554        }
1555
1556        /* format a response */
1557
1558        iod->lsreq->rsplen = sizeof(*acc);
1559
1560        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1561                        fcnvme_lsdesc_len(
1562                                sizeof(struct fcnvme_ls_disconnect_acc)),
1563                        FCNVME_LS_DISCONNECT);
1564
1565        /* release get taken in nvmet_fc_find_target_assoc */
1566        nvmet_fc_tgt_a_put(iod->assoc);
1567
1568        nvmet_fc_delete_target_assoc(iod->assoc);
1569}
1570
1571
1572/* *********************** NVME Ctrl Routines **************************** */
1573
1574
1575static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1576
1577static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1578
1579static void
1580nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1581{
1582        struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1583        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1584
1585        fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1586                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1587        nvmet_fc_free_ls_iod(tgtport, iod);
1588        nvmet_fc_tgtport_put(tgtport);
1589}
1590
1591static void
1592nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1593                                struct nvmet_fc_ls_iod *iod)
1594{
1595        int ret;
1596
1597        fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1598                                  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1599
1600        ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1601        if (ret)
1602                nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1603}
1604
1605/*
1606 * Actual processing routine for received FC-NVME LS Requests from the LLD
1607 */
1608static void
1609nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1610                        struct nvmet_fc_ls_iod *iod)
1611{
1612        struct fcnvme_ls_rqst_w0 *w0 =
1613                        (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1614
1615        iod->lsreq->nvmet_fc_private = iod;
1616        iod->lsreq->rspbuf = iod->rspbuf;
1617        iod->lsreq->rspdma = iod->rspdma;
1618        iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1619        /* Be preventative. handlers will later set to valid length */
1620        iod->lsreq->rsplen = 0;
1621
1622        iod->assoc = NULL;
1623
1624        /*
1625         * handlers:
1626         *   parse request input, execute the request, and format the
1627         *   LS response
1628         */
1629        switch (w0->ls_cmd) {
1630        case FCNVME_LS_CREATE_ASSOCIATION:
1631                /* Creates Association and initial Admin Queue/Connection */
1632                nvmet_fc_ls_create_association(tgtport, iod);
1633                break;
1634        case FCNVME_LS_CREATE_CONNECTION:
1635                /* Creates an IO Queue/Connection */
1636                nvmet_fc_ls_create_connection(tgtport, iod);
1637                break;
1638        case FCNVME_LS_DISCONNECT:
1639                /* Terminate a Queue/Connection or the Association */
1640                nvmet_fc_ls_disconnect(tgtport, iod);
1641                break;
1642        default:
1643                iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1644                                NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1645                                FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1646        }
1647
1648        nvmet_fc_xmt_ls_rsp(tgtport, iod);
1649}
1650
1651/*
1652 * Actual processing routine for received FC-NVME LS Requests from the LLD
1653 */
1654static void
1655nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1656{
1657        struct nvmet_fc_ls_iod *iod =
1658                container_of(work, struct nvmet_fc_ls_iod, work);
1659        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1660
1661        nvmet_fc_handle_ls_rqst(tgtport, iod);
1662}
1663
1664
1665/**
1666 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1667 *                       upon the reception of a NVME LS request.
1668 *
1669 * The nvmet-fc layer will copy payload to an internal structure for
1670 * processing.  As such, upon completion of the routine, the LLDD may
1671 * immediately free/reuse the LS request buffer passed in the call.
1672 *
1673 * If this routine returns error, the LLDD should abort the exchange.
1674 *
1675 * @target_port: pointer to the (registered) target port the LS was
1676 *              received on.
1677 * @lsreq:      pointer to a lsreq request structure to be used to reference
1678 *              the exchange corresponding to the LS.
1679 * @lsreqbuf:   pointer to the buffer containing the LS Request
1680 * @lsreqbuf_len: length, in bytes, of the received LS request
1681 */
1682int
1683nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1684                        struct nvmefc_tgt_ls_req *lsreq,
1685                        void *lsreqbuf, u32 lsreqbuf_len)
1686{
1687        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1688        struct nvmet_fc_ls_iod *iod;
1689
1690        if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1691                return -E2BIG;
1692
1693        if (!nvmet_fc_tgtport_get(tgtport))
1694                return -ESHUTDOWN;
1695
1696        iod = nvmet_fc_alloc_ls_iod(tgtport);
1697        if (!iod) {
1698                nvmet_fc_tgtport_put(tgtport);
1699                return -ENOENT;
1700        }
1701
1702        iod->lsreq = lsreq;
1703        iod->fcpreq = NULL;
1704        memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1705        iod->rqstdatalen = lsreqbuf_len;
1706
1707        schedule_work(&iod->work);
1708
1709        return 0;
1710}
1711EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1712
1713
1714/*
1715 * **********************
1716 * Start of FCP handling
1717 * **********************
1718 */
1719
1720static int
1721nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1722{
1723        struct scatterlist *sg;
1724        unsigned int nent;
1725
1726        sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1727        if (!sg)
1728                goto out;
1729
1730        fod->data_sg = sg;
1731        fod->data_sg_cnt = nent;
1732        fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1733                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1734                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1735                                /* note: write from initiator perspective */
1736        fod->next_sg = fod->data_sg;
1737
1738        return 0;
1739
1740out:
1741        return NVME_SC_INTERNAL;
1742}
1743
1744static void
1745nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1746{
1747        if (!fod->data_sg || !fod->data_sg_cnt)
1748                return;
1749
1750        fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1751                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1752                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1753        sgl_free(fod->data_sg);
1754        fod->data_sg = NULL;
1755        fod->data_sg_cnt = 0;
1756}
1757
1758
1759static bool
1760queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1761{
1762        u32 sqtail, used;
1763
1764        /* egad, this is ugly. And sqtail is just a best guess */
1765        sqtail = atomic_read(&q->sqtail) % q->sqsize;
1766
1767        used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1768        return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1769}
1770
1771/*
1772 * Prep RSP payload.
1773 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1774 */
1775static void
1776nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1777                                struct nvmet_fc_fcp_iod *fod)
1778{
1779        struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1780        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1781        struct nvme_completion *cqe = &ersp->cqe;
1782        u32 *cqewd = (u32 *)cqe;
1783        bool send_ersp = false;
1784        u32 rsn, rspcnt, xfr_length;
1785
1786        if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1787                xfr_length = fod->req.transfer_len;
1788        else
1789                xfr_length = fod->offset;
1790
1791        /*
1792         * check to see if we can send a 0's rsp.
1793         *   Note: to send a 0's response, the NVME-FC host transport will
1794         *   recreate the CQE. The host transport knows: sq id, SQHD (last
1795         *   seen in an ersp), and command_id. Thus it will create a
1796         *   zero-filled CQE with those known fields filled in. Transport
1797         *   must send an ersp for any condition where the cqe won't match
1798         *   this.
1799         *
1800         * Here are the FC-NVME mandated cases where we must send an ersp:
1801         *  every N responses, where N=ersp_ratio
1802         *  force fabric commands to send ersp's (not in FC-NVME but good
1803         *    practice)
1804         *  normal cmds: any time status is non-zero, or status is zero
1805         *     but words 0 or 1 are non-zero.
1806         *  the SQ is 90% or more full
1807         *  the cmd is a fused command
1808         *  transferred data length not equal to cmd iu length
1809         */
1810        rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1811        if (!(rspcnt % fod->queue->ersp_ratio) ||
1812            sqe->opcode == nvme_fabrics_command ||
1813            xfr_length != fod->req.transfer_len ||
1814            (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1815            (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1816            queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1817                send_ersp = true;
1818
1819        /* re-set the fields */
1820        fod->fcpreq->rspaddr = ersp;
1821        fod->fcpreq->rspdma = fod->rspdma;
1822
1823        if (!send_ersp) {
1824                memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1825                fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1826        } else {
1827                ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1828                rsn = atomic_inc_return(&fod->queue->rsn);
1829                ersp->rsn = cpu_to_be32(rsn);
1830                ersp->xfrd_len = cpu_to_be32(xfr_length);
1831                fod->fcpreq->rsplen = sizeof(*ersp);
1832        }
1833
1834        fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1835                                  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1836}
1837
1838static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1839
1840static void
1841nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1842                                struct nvmet_fc_fcp_iod *fod)
1843{
1844        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1845
1846        /* data no longer needed */
1847        nvmet_fc_free_tgt_pgs(fod);
1848
1849        /*
1850         * if an ABTS was received or we issued the fcp_abort early
1851         * don't call abort routine again.
1852         */
1853        /* no need to take lock - lock was taken earlier to get here */
1854        if (!fod->aborted)
1855                tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1856
1857        nvmet_fc_free_fcp_iod(fod->queue, fod);
1858}
1859
1860static void
1861nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1862                                struct nvmet_fc_fcp_iod *fod)
1863{
1864        int ret;
1865
1866        fod->fcpreq->op = NVMET_FCOP_RSP;
1867        fod->fcpreq->timeout = 0;
1868
1869        nvmet_fc_prep_fcp_rsp(tgtport, fod);
1870
1871        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1872        if (ret)
1873                nvmet_fc_abort_op(tgtport, fod);
1874}
1875
1876static void
1877nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1878                                struct nvmet_fc_fcp_iod *fod, u8 op)
1879{
1880        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1881        struct scatterlist *sg = fod->next_sg;
1882        unsigned long flags;
1883        u32 remaininglen = fod->req.transfer_len - fod->offset;
1884        u32 tlen = 0;
1885        int ret;
1886
1887        fcpreq->op = op;
1888        fcpreq->offset = fod->offset;
1889        fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1890
1891        /*
1892         * for next sequence:
1893         *  break at a sg element boundary
1894         *  attempt to keep sequence length capped at
1895         *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1896         *    be longer if a single sg element is larger
1897         *    than that amount. This is done to avoid creating
1898         *    a new sg list to use for the tgtport api.
1899         */
1900        fcpreq->sg = sg;
1901        fcpreq->sg_cnt = 0;
1902        while (tlen < remaininglen &&
1903               fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1904               tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1905                fcpreq->sg_cnt++;
1906                tlen += sg_dma_len(sg);
1907                sg = sg_next(sg);
1908        }
1909        if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1910                fcpreq->sg_cnt++;
1911                tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1912                sg = sg_next(sg);
1913        }
1914        if (tlen < remaininglen)
1915                fod->next_sg = sg;
1916        else
1917                fod->next_sg = NULL;
1918
1919        fcpreq->transfer_length = tlen;
1920        fcpreq->transferred_length = 0;
1921        fcpreq->fcp_error = 0;
1922        fcpreq->rsplen = 0;
1923
1924        /*
1925         * If the last READDATA request: check if LLDD supports
1926         * combined xfr with response.
1927         */
1928        if ((op == NVMET_FCOP_READDATA) &&
1929            ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1930            (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1931                fcpreq->op = NVMET_FCOP_READDATA_RSP;
1932                nvmet_fc_prep_fcp_rsp(tgtport, fod);
1933        }
1934
1935        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1936        if (ret) {
1937                /*
1938                 * should be ok to set w/o lock as its in the thread of
1939                 * execution (not an async timer routine) and doesn't
1940                 * contend with any clearing action
1941                 */
1942                fod->abort = true;
1943
1944                if (op == NVMET_FCOP_WRITEDATA) {
1945                        spin_lock_irqsave(&fod->flock, flags);
1946                        fod->writedataactive = false;
1947                        spin_unlock_irqrestore(&fod->flock, flags);
1948                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1949                } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1950                        fcpreq->fcp_error = ret;
1951                        fcpreq->transferred_length = 0;
1952                        nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1953                }
1954        }
1955}
1956
1957static inline bool
1958__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1959{
1960        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1961        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1962
1963        /* if in the middle of an io and we need to tear down */
1964        if (abort) {
1965                if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1966                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1967                        return true;
1968                }
1969
1970                nvmet_fc_abort_op(tgtport, fod);
1971                return true;
1972        }
1973
1974        return false;
1975}
1976
1977/*
1978 * actual done handler for FCP operations when completed by the lldd
1979 */
1980static void
1981nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1982{
1983        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1984        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1985        unsigned long flags;
1986        bool abort;
1987
1988        spin_lock_irqsave(&fod->flock, flags);
1989        abort = fod->abort;
1990        fod->writedataactive = false;
1991        spin_unlock_irqrestore(&fod->flock, flags);
1992
1993        switch (fcpreq->op) {
1994
1995        case NVMET_FCOP_WRITEDATA:
1996                if (__nvmet_fc_fod_op_abort(fod, abort))
1997                        return;
1998                if (fcpreq->fcp_error ||
1999                    fcpreq->transferred_length != fcpreq->transfer_length) {
2000                        spin_lock(&fod->flock);
2001                        fod->abort = true;
2002                        spin_unlock(&fod->flock);
2003
2004                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2005                        return;
2006                }
2007
2008                fod->offset += fcpreq->transferred_length;
2009                if (fod->offset != fod->req.transfer_len) {
2010                        spin_lock_irqsave(&fod->flock, flags);
2011                        fod->writedataactive = true;
2012                        spin_unlock_irqrestore(&fod->flock, flags);
2013
2014                        /* transfer the next chunk */
2015                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2016                                                NVMET_FCOP_WRITEDATA);
2017                        return;
2018                }
2019
2020                /* data transfer complete, resume with nvmet layer */
2021                nvmet_req_execute(&fod->req);
2022                break;
2023
2024        case NVMET_FCOP_READDATA:
2025        case NVMET_FCOP_READDATA_RSP:
2026                if (__nvmet_fc_fod_op_abort(fod, abort))
2027                        return;
2028                if (fcpreq->fcp_error ||
2029                    fcpreq->transferred_length != fcpreq->transfer_length) {
2030                        nvmet_fc_abort_op(tgtport, fod);
2031                        return;
2032                }
2033
2034                /* success */
2035
2036                if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2037                        /* data no longer needed */
2038                        nvmet_fc_free_tgt_pgs(fod);
2039                        nvmet_fc_free_fcp_iod(fod->queue, fod);
2040                        return;
2041                }
2042
2043                fod->offset += fcpreq->transferred_length;
2044                if (fod->offset != fod->req.transfer_len) {
2045                        /* transfer the next chunk */
2046                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2047                                                NVMET_FCOP_READDATA);
2048                        return;
2049                }
2050
2051                /* data transfer complete, send response */
2052
2053                /* data no longer needed */
2054                nvmet_fc_free_tgt_pgs(fod);
2055
2056                nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2057
2058                break;
2059
2060        case NVMET_FCOP_RSP:
2061                if (__nvmet_fc_fod_op_abort(fod, abort))
2062                        return;
2063                nvmet_fc_free_fcp_iod(fod->queue, fod);
2064                break;
2065
2066        default:
2067                break;
2068        }
2069}
2070
2071static void
2072nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2073{
2074        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2075
2076        nvmet_fc_fod_op_done(fod);
2077}
2078
2079/*
2080 * actual completion handler after execution by the nvmet layer
2081 */
2082static void
2083__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2084                        struct nvmet_fc_fcp_iod *fod, int status)
2085{
2086        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2087        struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2088        unsigned long flags;
2089        bool abort;
2090
2091        spin_lock_irqsave(&fod->flock, flags);
2092        abort = fod->abort;
2093        spin_unlock_irqrestore(&fod->flock, flags);
2094
2095        /* if we have a CQE, snoop the last sq_head value */
2096        if (!status)
2097                fod->queue->sqhd = cqe->sq_head;
2098
2099        if (abort) {
2100                nvmet_fc_abort_op(tgtport, fod);
2101                return;
2102        }
2103
2104        /* if an error handling the cmd post initial parsing */
2105        if (status) {
2106                /* fudge up a failed CQE status for our transport error */
2107                memset(cqe, 0, sizeof(*cqe));
2108                cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2109                cqe->sq_id = cpu_to_le16(fod->queue->qid);
2110                cqe->command_id = sqe->command_id;
2111                cqe->status = cpu_to_le16(status);
2112        } else {
2113
2114                /*
2115                 * try to push the data even if the SQE status is non-zero.
2116                 * There may be a status where data still was intended to
2117                 * be moved
2118                 */
2119                if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2120                        /* push the data over before sending rsp */
2121                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2122                                                NVMET_FCOP_READDATA);
2123                        return;
2124                }
2125
2126                /* writes & no data - fall thru */
2127        }
2128
2129        /* data no longer needed */
2130        nvmet_fc_free_tgt_pgs(fod);
2131
2132        nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2133}
2134
2135
2136static void
2137nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2138{
2139        struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2140        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2141
2142        __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2143}
2144
2145
2146/*
2147 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2148 */
2149static void
2150nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2151                        struct nvmet_fc_fcp_iod *fod)
2152{
2153        struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2154        u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2155        int ret;
2156
2157        /*
2158         * if there is no nvmet mapping to the targetport there
2159         * shouldn't be requests. just terminate them.
2160         */
2161        if (!tgtport->pe)
2162                goto transport_error;
2163
2164        /*
2165         * Fused commands are currently not supported in the linux
2166         * implementation.
2167         *
2168         * As such, the implementation of the FC transport does not
2169         * look at the fused commands and order delivery to the upper
2170         * layer until we have both based on csn.
2171         */
2172
2173        fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2174
2175        if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2176                fod->io_dir = NVMET_FCP_WRITE;
2177                if (!nvme_is_write(&cmdiu->sqe))
2178                        goto transport_error;
2179        } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2180                fod->io_dir = NVMET_FCP_READ;
2181                if (nvme_is_write(&cmdiu->sqe))
2182                        goto transport_error;
2183        } else {
2184                fod->io_dir = NVMET_FCP_NODATA;
2185                if (xfrlen)
2186                        goto transport_error;
2187        }
2188
2189        fod->req.cmd = &fod->cmdiubuf.sqe;
2190        fod->req.rsp = &fod->rspiubuf.cqe;
2191        fod->req.port = tgtport->pe->port;
2192
2193        /* clear any response payload */
2194        memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2195
2196        fod->data_sg = NULL;
2197        fod->data_sg_cnt = 0;
2198
2199        ret = nvmet_req_init(&fod->req,
2200                                &fod->queue->nvme_cq,
2201                                &fod->queue->nvme_sq,
2202                                &nvmet_fc_tgt_fcp_ops);
2203        if (!ret) {
2204                /* bad SQE content or invalid ctrl state */
2205                /* nvmet layer has already called op done to send rsp. */
2206                return;
2207        }
2208
2209        fod->req.transfer_len = xfrlen;
2210
2211        /* keep a running counter of tail position */
2212        atomic_inc(&fod->queue->sqtail);
2213
2214        if (fod->req.transfer_len) {
2215                ret = nvmet_fc_alloc_tgt_pgs(fod);
2216                if (ret) {
2217                        nvmet_req_complete(&fod->req, ret);
2218                        return;
2219                }
2220        }
2221        fod->req.sg = fod->data_sg;
2222        fod->req.sg_cnt = fod->data_sg_cnt;
2223        fod->offset = 0;
2224
2225        if (fod->io_dir == NVMET_FCP_WRITE) {
2226                /* pull the data over before invoking nvmet layer */
2227                nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2228                return;
2229        }
2230
2231        /*
2232         * Reads or no data:
2233         *
2234         * can invoke the nvmet_layer now. If read data, cmd completion will
2235         * push the data
2236         */
2237        nvmet_req_execute(&fod->req);
2238        return;
2239
2240transport_error:
2241        nvmet_fc_abort_op(tgtport, fod);
2242}
2243
2244/**
2245 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2246 *                       upon the reception of a NVME FCP CMD IU.
2247 *
2248 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2249 * layer for processing.
2250 *
2251 * The nvmet_fc layer allocates a local job structure (struct
2252 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2253 * CMD IU buffer to the job structure. As such, on a successful
2254 * completion (returns 0), the LLDD may immediately free/reuse
2255 * the CMD IU buffer passed in the call.
2256 *
2257 * However, in some circumstances, due to the packetized nature of FC
2258 * and the api of the FC LLDD which may issue a hw command to send the
2259 * response, but the LLDD may not get the hw completion for that command
2260 * and upcall the nvmet_fc layer before a new command may be
2261 * asynchronously received - its possible for a command to be received
2262 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2263 * the appearance of more commands received than fits in the sq.
2264 * To alleviate this scenario, a temporary queue is maintained in the
2265 * transport for pending LLDD requests waiting for a queue job structure.
2266 * In these "overrun" cases, a temporary queue element is allocated
2267 * the LLDD request and CMD iu buffer information remembered, and the
2268 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2269 * structure is freed, it is immediately reallocated for anything on the
2270 * pending request list. The LLDDs defer_rcv() callback is called,
2271 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2272 * is then started normally with the transport.
2273 *
2274 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2275 * the completion as successful but must not reuse the CMD IU buffer
2276 * until the LLDD's defer_rcv() callback has been called for the
2277 * corresponding struct nvmefc_tgt_fcp_req pointer.
2278 *
2279 * If there is any other condition in which an error occurs, the
2280 * transport will return a non-zero status indicating the error.
2281 * In all cases other than -EOVERFLOW, the transport has not accepted the
2282 * request and the LLDD should abort the exchange.
2283 *
2284 * @target_port: pointer to the (registered) target port the FCP CMD IU
2285 *              was received on.
2286 * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2287 *              the exchange corresponding to the FCP Exchange.
2288 * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2289 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2290 */
2291int
2292nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2293                        struct nvmefc_tgt_fcp_req *fcpreq,
2294                        void *cmdiubuf, u32 cmdiubuf_len)
2295{
2296        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2297        struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2298        struct nvmet_fc_tgt_queue *queue;
2299        struct nvmet_fc_fcp_iod *fod;
2300        struct nvmet_fc_defer_fcp_req *deferfcp;
2301        unsigned long flags;
2302
2303        /* validate iu, so the connection id can be used to find the queue */
2304        if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2305                        (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2306                        (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2307                        (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2308                return -EIO;
2309
2310        queue = nvmet_fc_find_target_queue(tgtport,
2311                                be64_to_cpu(cmdiu->connection_id));
2312        if (!queue)
2313                return -ENOTCONN;
2314
2315        /*
2316         * note: reference taken by find_target_queue
2317         * After successful fod allocation, the fod will inherit the
2318         * ownership of that reference and will remove the reference
2319         * when the fod is freed.
2320         */
2321
2322        spin_lock_irqsave(&queue->qlock, flags);
2323
2324        fod = nvmet_fc_alloc_fcp_iod(queue);
2325        if (fod) {
2326                spin_unlock_irqrestore(&queue->qlock, flags);
2327
2328                fcpreq->nvmet_fc_private = fod;
2329                fod->fcpreq = fcpreq;
2330
2331                memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2332
2333                nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2334
2335                return 0;
2336        }
2337
2338        if (!tgtport->ops->defer_rcv) {
2339                spin_unlock_irqrestore(&queue->qlock, flags);
2340                /* release the queue lookup reference */
2341                nvmet_fc_tgt_q_put(queue);
2342                return -ENOENT;
2343        }
2344
2345        deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2346                        struct nvmet_fc_defer_fcp_req, req_list);
2347        if (deferfcp) {
2348                /* Just re-use one that was previously allocated */
2349                list_del(&deferfcp->req_list);
2350        } else {
2351                spin_unlock_irqrestore(&queue->qlock, flags);
2352
2353                /* Now we need to dynamically allocate one */
2354                deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2355                if (!deferfcp) {
2356                        /* release the queue lookup reference */
2357                        nvmet_fc_tgt_q_put(queue);
2358                        return -ENOMEM;
2359                }
2360                spin_lock_irqsave(&queue->qlock, flags);
2361        }
2362
2363        /* For now, use rspaddr / rsplen to save payload information */
2364        fcpreq->rspaddr = cmdiubuf;
2365        fcpreq->rsplen  = cmdiubuf_len;
2366        deferfcp->fcp_req = fcpreq;
2367
2368        /* defer processing till a fod becomes available */
2369        list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2370
2371        /* NOTE: the queue lookup reference is still valid */
2372
2373        spin_unlock_irqrestore(&queue->qlock, flags);
2374
2375        return -EOVERFLOW;
2376}
2377EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2378
2379/**
2380 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2381 *                       upon the reception of an ABTS for a FCP command
2382 *
2383 * Notify the transport that an ABTS has been received for a FCP command
2384 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2385 * LLDD believes the command is still being worked on
2386 * (template_ops->fcp_req_release() has not been called).
2387 *
2388 * The transport will wait for any outstanding work (an op to the LLDD,
2389 * which the lldd should complete with error due to the ABTS; or the
2390 * completion from the nvmet layer of the nvme command), then will
2391 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2392 * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2393 * to the ABTS either after return from this function (assuming any
2394 * outstanding op work has been terminated) or upon the callback being
2395 * called.
2396 *
2397 * @target_port: pointer to the (registered) target port the FCP CMD IU
2398 *              was received on.
2399 * @fcpreq:     pointer to the fcpreq request structure that corresponds
2400 *              to the exchange that received the ABTS.
2401 */
2402void
2403nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2404                        struct nvmefc_tgt_fcp_req *fcpreq)
2405{
2406        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2407        struct nvmet_fc_tgt_queue *queue;
2408        unsigned long flags;
2409
2410        if (!fod || fod->fcpreq != fcpreq)
2411                /* job appears to have already completed, ignore abort */
2412                return;
2413
2414        queue = fod->queue;
2415
2416        spin_lock_irqsave(&queue->qlock, flags);
2417        if (fod->active) {
2418                /*
2419                 * mark as abort. The abort handler, invoked upon completion
2420                 * of any work, will detect the aborted status and do the
2421                 * callback.
2422                 */
2423                spin_lock(&fod->flock);
2424                fod->abort = true;
2425                fod->aborted = true;
2426                spin_unlock(&fod->flock);
2427        }
2428        spin_unlock_irqrestore(&queue->qlock, flags);
2429}
2430EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2431
2432
2433struct nvmet_fc_traddr {
2434        u64     nn;
2435        u64     pn;
2436};
2437
2438static int
2439__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2440{
2441        u64 token64;
2442
2443        if (match_u64(sstr, &token64))
2444                return -EINVAL;
2445        *val = token64;
2446
2447        return 0;
2448}
2449
2450/*
2451 * This routine validates and extracts the WWN's from the TRADDR string.
2452 * As kernel parsers need the 0x to determine number base, universally
2453 * build string to parse with 0x prefix before parsing name strings.
2454 */
2455static int
2456nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2457{
2458        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2459        substring_t wwn = { name, &name[sizeof(name)-1] };
2460        int nnoffset, pnoffset;
2461
2462        /* validate if string is one of the 2 allowed formats */
2463        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2464                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2465                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2466                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2467                nnoffset = NVME_FC_TRADDR_OXNNLEN;
2468                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2469                                                NVME_FC_TRADDR_OXNNLEN;
2470        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2471                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2472                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2473                                "pn-", NVME_FC_TRADDR_NNLEN))) {
2474                nnoffset = NVME_FC_TRADDR_NNLEN;
2475                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2476        } else
2477                goto out_einval;
2478
2479        name[0] = '0';
2480        name[1] = 'x';
2481        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2482
2483        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2484        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2485                goto out_einval;
2486
2487        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2488        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2489                goto out_einval;
2490
2491        return 0;
2492
2493out_einval:
2494        pr_warn("%s: bad traddr string\n", __func__);
2495        return -EINVAL;
2496}
2497
2498static int
2499nvmet_fc_add_port(struct nvmet_port *port)
2500{
2501        struct nvmet_fc_tgtport *tgtport;
2502        struct nvmet_fc_port_entry *pe;
2503        struct nvmet_fc_traddr traddr = { 0L, 0L };
2504        unsigned long flags;
2505        int ret;
2506
2507        /* validate the address info */
2508        if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2509            (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2510                return -EINVAL;
2511
2512        /* map the traddr address info to a target port */
2513
2514        ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2515                        sizeof(port->disc_addr.traddr));
2516        if (ret)
2517                return ret;
2518
2519        pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2520        if (!pe)
2521                return -ENOMEM;
2522
2523        ret = -ENXIO;
2524        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2525        list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2526                if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2527                    (tgtport->fc_target_port.port_name == traddr.pn)) {
2528                        /* a FC port can only be 1 nvmet port id */
2529                        if (!tgtport->pe) {
2530                                nvmet_fc_portentry_bind(tgtport, pe, port);
2531                                ret = 0;
2532                        } else
2533                                ret = -EALREADY;
2534                        break;
2535                }
2536        }
2537        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2538
2539        if (ret)
2540                kfree(pe);
2541
2542        return ret;
2543}
2544
2545static void
2546nvmet_fc_remove_port(struct nvmet_port *port)
2547{
2548        struct nvmet_fc_port_entry *pe = port->priv;
2549
2550        nvmet_fc_portentry_unbind(pe);
2551
2552        kfree(pe);
2553}
2554
2555static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2556        .owner                  = THIS_MODULE,
2557        .type                   = NVMF_TRTYPE_FC,
2558        .msdbd                  = 1,
2559        .add_port               = nvmet_fc_add_port,
2560        .remove_port            = nvmet_fc_remove_port,
2561        .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2562        .delete_ctrl            = nvmet_fc_delete_ctrl,
2563};
2564
2565static int __init nvmet_fc_init_module(void)
2566{
2567        return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2568}
2569
2570static void __exit nvmet_fc_exit_module(void)
2571{
2572        /* sanity check - all lports should be removed */
2573        if (!list_empty(&nvmet_fc_target_list))
2574                pr_warn("%s: targetport list not empty\n", __func__);
2575
2576        nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2577
2578        ida_destroy(&nvmet_fc_tgtport_cnt);
2579}
2580
2581module_init(nvmet_fc_init_module);
2582module_exit(nvmet_fc_exit_module);
2583
2584MODULE_LICENSE("GPL v2");
2585