linux/drivers/spi/spi-fsl-espi.c
<<
>>
Prefs
   1/*
   2 * Freescale eSPI controller driver.
   3 *
   4 * Copyright 2010 Freescale Semiconductor, Inc.
   5 *
   6 * This program is free software; you can redistribute  it and/or modify it
   7 * under  the terms of  the GNU General  Public License as published by the
   8 * Free Software Foundation;  either version 2 of the  License, or (at your
   9 * option) any later version.
  10 */
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/fsl_devices.h>
  14#include <linux/interrupt.h>
  15#include <linux/module.h>
  16#include <linux/mm.h>
  17#include <linux/of.h>
  18#include <linux/of_address.h>
  19#include <linux/of_irq.h>
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <linux/spi/spi.h>
  23#include <linux/pm_runtime.h>
  24#include <sysdev/fsl_soc.h>
  25
  26/* eSPI Controller registers */
  27#define ESPI_SPMODE     0x00    /* eSPI mode register */
  28#define ESPI_SPIE       0x04    /* eSPI event register */
  29#define ESPI_SPIM       0x08    /* eSPI mask register */
  30#define ESPI_SPCOM      0x0c    /* eSPI command register */
  31#define ESPI_SPITF      0x10    /* eSPI transmit FIFO access register*/
  32#define ESPI_SPIRF      0x14    /* eSPI receive FIFO access register*/
  33#define ESPI_SPMODE0    0x20    /* eSPI cs0 mode register */
  34
  35#define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
  36
  37/* eSPI Controller mode register definitions */
  38#define SPMODE_ENABLE           BIT(31)
  39#define SPMODE_LOOP             BIT(30)
  40#define SPMODE_TXTHR(x)         ((x) << 8)
  41#define SPMODE_RXTHR(x)         ((x) << 0)
  42
  43/* eSPI Controller CS mode register definitions */
  44#define CSMODE_CI_INACTIVEHIGH  BIT(31)
  45#define CSMODE_CP_BEGIN_EDGECLK BIT(30)
  46#define CSMODE_REV              BIT(29)
  47#define CSMODE_DIV16            BIT(28)
  48#define CSMODE_PM(x)            ((x) << 24)
  49#define CSMODE_POL_1            BIT(20)
  50#define CSMODE_LEN(x)           ((x) << 16)
  51#define CSMODE_BEF(x)           ((x) << 12)
  52#define CSMODE_AFT(x)           ((x) << 8)
  53#define CSMODE_CG(x)            ((x) << 3)
  54
  55#define FSL_ESPI_FIFO_SIZE      32
  56#define FSL_ESPI_RXTHR          15
  57
  58/* Default mode/csmode for eSPI controller */
  59#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
  60#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  61                | CSMODE_AFT(0) | CSMODE_CG(1))
  62
  63/* SPIE register values */
  64#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
  65#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
  66#define SPIE_TXE                BIT(15) /* TX FIFO empty */
  67#define SPIE_DON                BIT(14) /* TX done */
  68#define SPIE_RXT                BIT(13) /* RX FIFO threshold */
  69#define SPIE_RXF                BIT(12) /* RX FIFO full */
  70#define SPIE_TXT                BIT(11) /* TX FIFO threshold*/
  71#define SPIE_RNE                BIT(9)  /* RX FIFO not empty */
  72#define SPIE_TNF                BIT(8)  /* TX FIFO not full */
  73
  74/* SPIM register values */
  75#define SPIM_TXE                BIT(15) /* TX FIFO empty */
  76#define SPIM_DON                BIT(14) /* TX done */
  77#define SPIM_RXT                BIT(13) /* RX FIFO threshold */
  78#define SPIM_RXF                BIT(12) /* RX FIFO full */
  79#define SPIM_TXT                BIT(11) /* TX FIFO threshold*/
  80#define SPIM_RNE                BIT(9)  /* RX FIFO not empty */
  81#define SPIM_TNF                BIT(8)  /* TX FIFO not full */
  82
  83/* SPCOM register values */
  84#define SPCOM_CS(x)             ((x) << 30)
  85#define SPCOM_DO                BIT(28) /* Dual output */
  86#define SPCOM_TO                BIT(27) /* TX only */
  87#define SPCOM_RXSKIP(x)         ((x) << 16)
  88#define SPCOM_TRANLEN(x)        ((x) << 0)
  89
  90#define SPCOM_TRANLEN_MAX       0x10000 /* Max transaction length */
  91
  92#define AUTOSUSPEND_TIMEOUT 2000
  93
  94struct fsl_espi {
  95        struct device *dev;
  96        void __iomem *reg_base;
  97
  98        struct list_head *m_transfers;
  99        struct spi_transfer *tx_t;
 100        unsigned int tx_pos;
 101        bool tx_done;
 102        struct spi_transfer *rx_t;
 103        unsigned int rx_pos;
 104        bool rx_done;
 105
 106        bool swab;
 107        unsigned int rxskip;
 108
 109        spinlock_t lock;
 110
 111        u32 spibrg;             /* SPIBRG input clock */
 112
 113        struct completion done;
 114};
 115
 116struct fsl_espi_cs {
 117        u32 hw_mode;
 118};
 119
 120static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
 121{
 122        return ioread32be(espi->reg_base + offset);
 123}
 124
 125static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
 126{
 127        return ioread16be(espi->reg_base + offset);
 128}
 129
 130static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
 131{
 132        return ioread8(espi->reg_base + offset);
 133}
 134
 135static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
 136                                      u32 val)
 137{
 138        iowrite32be(val, espi->reg_base + offset);
 139}
 140
 141static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
 142                                        u16 val)
 143{
 144        iowrite16be(val, espi->reg_base + offset);
 145}
 146
 147static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
 148                                       u8 val)
 149{
 150        iowrite8(val, espi->reg_base + offset);
 151}
 152
 153static int fsl_espi_check_message(struct spi_message *m)
 154{
 155        struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
 156        struct spi_transfer *t, *first;
 157
 158        if (m->frame_length > SPCOM_TRANLEN_MAX) {
 159                dev_err(espi->dev, "message too long, size is %u bytes\n",
 160                        m->frame_length);
 161                return -EMSGSIZE;
 162        }
 163
 164        first = list_first_entry(&m->transfers, struct spi_transfer,
 165                                 transfer_list);
 166
 167        list_for_each_entry(t, &m->transfers, transfer_list) {
 168                if (first->bits_per_word != t->bits_per_word ||
 169                    first->speed_hz != t->speed_hz) {
 170                        dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
 171                        return -EINVAL;
 172                }
 173        }
 174
 175        /* ESPI supports MSB-first transfers for word size 8 / 16 only */
 176        if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
 177            first->bits_per_word != 16) {
 178                dev_err(espi->dev,
 179                        "MSB-first transfer not supported for wordsize %u\n",
 180                        first->bits_per_word);
 181                return -EINVAL;
 182        }
 183
 184        return 0;
 185}
 186
 187static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
 188{
 189        struct spi_transfer *t;
 190        unsigned int i = 0, rxskip = 0;
 191
 192        /*
 193         * prerequisites for ESPI rxskip mode:
 194         * - message has two transfers
 195         * - first transfer is a write and second is a read
 196         *
 197         * In addition the current low-level transfer mechanism requires
 198         * that the rxskip bytes fit into the TX FIFO. Else the transfer
 199         * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
 200         * the TX FIFO isn't re-filled.
 201         */
 202        list_for_each_entry(t, &m->transfers, transfer_list) {
 203                if (i == 0) {
 204                        if (!t->tx_buf || t->rx_buf ||
 205                            t->len > FSL_ESPI_FIFO_SIZE)
 206                                return 0;
 207                        rxskip = t->len;
 208                } else if (i == 1) {
 209                        if (t->tx_buf || !t->rx_buf)
 210                                return 0;
 211                }
 212                i++;
 213        }
 214
 215        return i == 2 ? rxskip : 0;
 216}
 217
 218static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
 219{
 220        u32 tx_fifo_avail;
 221        unsigned int tx_left;
 222        const void *tx_buf;
 223
 224        /* if events is zero transfer has not started and tx fifo is empty */
 225        tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
 226start:
 227        tx_left = espi->tx_t->len - espi->tx_pos;
 228        tx_buf = espi->tx_t->tx_buf;
 229        while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
 230                if (tx_left >= 4) {
 231                        if (!tx_buf)
 232                                fsl_espi_write_reg(espi, ESPI_SPITF, 0);
 233                        else if (espi->swab)
 234                                fsl_espi_write_reg(espi, ESPI_SPITF,
 235                                        swahb32p(tx_buf + espi->tx_pos));
 236                        else
 237                                fsl_espi_write_reg(espi, ESPI_SPITF,
 238                                        *(u32 *)(tx_buf + espi->tx_pos));
 239                        espi->tx_pos += 4;
 240                        tx_left -= 4;
 241                        tx_fifo_avail -= 4;
 242                } else if (tx_left >= 2 && tx_buf && espi->swab) {
 243                        fsl_espi_write_reg16(espi, ESPI_SPITF,
 244                                        swab16p(tx_buf + espi->tx_pos));
 245                        espi->tx_pos += 2;
 246                        tx_left -= 2;
 247                        tx_fifo_avail -= 2;
 248                } else {
 249                        if (!tx_buf)
 250                                fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
 251                        else
 252                                fsl_espi_write_reg8(espi, ESPI_SPITF,
 253                                        *(u8 *)(tx_buf + espi->tx_pos));
 254                        espi->tx_pos += 1;
 255                        tx_left -= 1;
 256                        tx_fifo_avail -= 1;
 257                }
 258        }
 259
 260        if (!tx_left) {
 261                /* Last transfer finished, in rxskip mode only one is needed */
 262                if (list_is_last(&espi->tx_t->transfer_list,
 263                    espi->m_transfers) || espi->rxskip) {
 264                        espi->tx_done = true;
 265                        return;
 266                }
 267                espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
 268                espi->tx_pos = 0;
 269                /* continue with next transfer if tx fifo is not full */
 270                if (tx_fifo_avail)
 271                        goto start;
 272        }
 273}
 274
 275static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
 276{
 277        u32 rx_fifo_avail = SPIE_RXCNT(events);
 278        unsigned int rx_left;
 279        void *rx_buf;
 280
 281start:
 282        rx_left = espi->rx_t->len - espi->rx_pos;
 283        rx_buf = espi->rx_t->rx_buf;
 284        while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
 285                if (rx_left >= 4) {
 286                        u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
 287
 288                        if (rx_buf && espi->swab)
 289                                *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
 290                        else if (rx_buf)
 291                                *(u32 *)(rx_buf + espi->rx_pos) = val;
 292                        espi->rx_pos += 4;
 293                        rx_left -= 4;
 294                        rx_fifo_avail -= 4;
 295                } else if (rx_left >= 2 && rx_buf && espi->swab) {
 296                        u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
 297
 298                        *(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
 299                        espi->rx_pos += 2;
 300                        rx_left -= 2;
 301                        rx_fifo_avail -= 2;
 302                } else {
 303                        u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
 304
 305                        if (rx_buf)
 306                                *(u8 *)(rx_buf + espi->rx_pos) = val;
 307                        espi->rx_pos += 1;
 308                        rx_left -= 1;
 309                        rx_fifo_avail -= 1;
 310                }
 311        }
 312
 313        if (!rx_left) {
 314                if (list_is_last(&espi->rx_t->transfer_list,
 315                    espi->m_transfers)) {
 316                        espi->rx_done = true;
 317                        return;
 318                }
 319                espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
 320                espi->rx_pos = 0;
 321                /* continue with next transfer if rx fifo is not empty */
 322                if (rx_fifo_avail)
 323                        goto start;
 324        }
 325}
 326
 327static void fsl_espi_setup_transfer(struct spi_device *spi,
 328                                        struct spi_transfer *t)
 329{
 330        struct fsl_espi *espi = spi_master_get_devdata(spi->master);
 331        int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
 332        u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
 333        struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 334        u32 hw_mode_old = cs->hw_mode;
 335
 336        /* mask out bits we are going to set */
 337        cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
 338
 339        cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
 340
 341        pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
 342
 343        if (pm > 15) {
 344                cs->hw_mode |= CSMODE_DIV16;
 345                pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
 346        }
 347
 348        cs->hw_mode |= CSMODE_PM(pm);
 349
 350        /* don't write the mode register if the mode doesn't change */
 351        if (cs->hw_mode != hw_mode_old)
 352                fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
 353                                   cs->hw_mode);
 354}
 355
 356static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
 357{
 358        struct fsl_espi *espi = spi_master_get_devdata(spi->master);
 359        unsigned int rx_len = t->len;
 360        u32 mask, spcom;
 361        int ret;
 362
 363        reinit_completion(&espi->done);
 364
 365        /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
 366        spcom = SPCOM_CS(spi->chip_select);
 367        spcom |= SPCOM_TRANLEN(t->len - 1);
 368
 369        /* configure RXSKIP mode */
 370        if (espi->rxskip) {
 371                spcom |= SPCOM_RXSKIP(espi->rxskip);
 372                rx_len = t->len - espi->rxskip;
 373                if (t->rx_nbits == SPI_NBITS_DUAL)
 374                        spcom |= SPCOM_DO;
 375        }
 376
 377        fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
 378
 379        /* enable interrupts */
 380        mask = SPIM_DON;
 381        if (rx_len > FSL_ESPI_FIFO_SIZE)
 382                mask |= SPIM_RXT;
 383        fsl_espi_write_reg(espi, ESPI_SPIM, mask);
 384
 385        /* Prevent filling the fifo from getting interrupted */
 386        spin_lock_irq(&espi->lock);
 387        fsl_espi_fill_tx_fifo(espi, 0);
 388        spin_unlock_irq(&espi->lock);
 389
 390        /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
 391        ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
 392        if (ret == 0)
 393                dev_err(espi->dev, "Transfer timed out!\n");
 394
 395        /* disable rx ints */
 396        fsl_espi_write_reg(espi, ESPI_SPIM, 0);
 397
 398        return ret == 0 ? -ETIMEDOUT : 0;
 399}
 400
 401static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
 402{
 403        struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
 404        struct spi_device *spi = m->spi;
 405        int ret;
 406
 407        /* In case of LSB-first and bits_per_word > 8 byte-swap all words */
 408        espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
 409
 410        espi->m_transfers = &m->transfers;
 411        espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
 412                                      transfer_list);
 413        espi->tx_pos = 0;
 414        espi->tx_done = false;
 415        espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
 416                                      transfer_list);
 417        espi->rx_pos = 0;
 418        espi->rx_done = false;
 419
 420        espi->rxskip = fsl_espi_check_rxskip_mode(m);
 421        if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
 422                dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
 423                return -EINVAL;
 424        }
 425
 426        /* In RXSKIP mode skip first transfer for reads */
 427        if (espi->rxskip)
 428                espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
 429
 430        fsl_espi_setup_transfer(spi, trans);
 431
 432        ret = fsl_espi_bufs(spi, trans);
 433
 434        if (trans->delay_usecs)
 435                udelay(trans->delay_usecs);
 436
 437        return ret;
 438}
 439
 440static int fsl_espi_do_one_msg(struct spi_master *master,
 441                               struct spi_message *m)
 442{
 443        unsigned int delay_usecs = 0, rx_nbits = 0;
 444        struct spi_transfer *t, trans = {};
 445        int ret;
 446
 447        ret = fsl_espi_check_message(m);
 448        if (ret)
 449                goto out;
 450
 451        list_for_each_entry(t, &m->transfers, transfer_list) {
 452                if (t->delay_usecs > delay_usecs)
 453                        delay_usecs = t->delay_usecs;
 454                if (t->rx_nbits > rx_nbits)
 455                        rx_nbits = t->rx_nbits;
 456        }
 457
 458        t = list_first_entry(&m->transfers, struct spi_transfer,
 459                             transfer_list);
 460
 461        trans.len = m->frame_length;
 462        trans.speed_hz = t->speed_hz;
 463        trans.bits_per_word = t->bits_per_word;
 464        trans.delay_usecs = delay_usecs;
 465        trans.rx_nbits = rx_nbits;
 466
 467        if (trans.len)
 468                ret = fsl_espi_trans(m, &trans);
 469
 470        m->actual_length = ret ? 0 : trans.len;
 471out:
 472        if (m->status == -EINPROGRESS)
 473                m->status = ret;
 474
 475        spi_finalize_current_message(master);
 476
 477        return ret;
 478}
 479
 480static int fsl_espi_setup(struct spi_device *spi)
 481{
 482        struct fsl_espi *espi;
 483        u32 loop_mode;
 484        struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 485
 486        if (!cs) {
 487                cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 488                if (!cs)
 489                        return -ENOMEM;
 490                spi_set_ctldata(spi, cs);
 491        }
 492
 493        espi = spi_master_get_devdata(spi->master);
 494
 495        pm_runtime_get_sync(espi->dev);
 496
 497        cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
 498        /* mask out bits we are going to set */
 499        cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
 500                         | CSMODE_REV);
 501
 502        if (spi->mode & SPI_CPHA)
 503                cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
 504        if (spi->mode & SPI_CPOL)
 505                cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
 506        if (!(spi->mode & SPI_LSB_FIRST))
 507                cs->hw_mode |= CSMODE_REV;
 508
 509        /* Handle the loop mode */
 510        loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
 511        loop_mode &= ~SPMODE_LOOP;
 512        if (spi->mode & SPI_LOOP)
 513                loop_mode |= SPMODE_LOOP;
 514        fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
 515
 516        fsl_espi_setup_transfer(spi, NULL);
 517
 518        pm_runtime_mark_last_busy(espi->dev);
 519        pm_runtime_put_autosuspend(espi->dev);
 520
 521        return 0;
 522}
 523
 524static void fsl_espi_cleanup(struct spi_device *spi)
 525{
 526        struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 527
 528        kfree(cs);
 529        spi_set_ctldata(spi, NULL);
 530}
 531
 532static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
 533{
 534        if (!espi->rx_done)
 535                fsl_espi_read_rx_fifo(espi, events);
 536
 537        if (!espi->tx_done)
 538                fsl_espi_fill_tx_fifo(espi, events);
 539
 540        if (!espi->tx_done || !espi->rx_done)
 541                return;
 542
 543        /* we're done, but check for errors before returning */
 544        events = fsl_espi_read_reg(espi, ESPI_SPIE);
 545
 546        if (!(events & SPIE_DON))
 547                dev_err(espi->dev,
 548                        "Transfer done but SPIE_DON isn't set!\n");
 549
 550        if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
 551                dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
 552                dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
 553                        SPIE_RXCNT(events), SPIE_TXCNT(events));
 554        }
 555
 556        complete(&espi->done);
 557}
 558
 559static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
 560{
 561        struct fsl_espi *espi = context_data;
 562        u32 events;
 563
 564        spin_lock(&espi->lock);
 565
 566        /* Get interrupt events(tx/rx) */
 567        events = fsl_espi_read_reg(espi, ESPI_SPIE);
 568        if (!events) {
 569                spin_unlock(&espi->lock);
 570                return IRQ_NONE;
 571        }
 572
 573        dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
 574
 575        fsl_espi_cpu_irq(espi, events);
 576
 577        /* Clear the events */
 578        fsl_espi_write_reg(espi, ESPI_SPIE, events);
 579
 580        spin_unlock(&espi->lock);
 581
 582        return IRQ_HANDLED;
 583}
 584
 585#ifdef CONFIG_PM
 586static int fsl_espi_runtime_suspend(struct device *dev)
 587{
 588        struct spi_master *master = dev_get_drvdata(dev);
 589        struct fsl_espi *espi = spi_master_get_devdata(master);
 590        u32 regval;
 591
 592        regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
 593        regval &= ~SPMODE_ENABLE;
 594        fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
 595
 596        return 0;
 597}
 598
 599static int fsl_espi_runtime_resume(struct device *dev)
 600{
 601        struct spi_master *master = dev_get_drvdata(dev);
 602        struct fsl_espi *espi = spi_master_get_devdata(master);
 603        u32 regval;
 604
 605        regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
 606        regval |= SPMODE_ENABLE;
 607        fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
 608
 609        return 0;
 610}
 611#endif
 612
 613static size_t fsl_espi_max_message_size(struct spi_device *spi)
 614{
 615        return SPCOM_TRANLEN_MAX;
 616}
 617
 618static void fsl_espi_init_regs(struct device *dev, bool initial)
 619{
 620        struct spi_master *master = dev_get_drvdata(dev);
 621        struct fsl_espi *espi = spi_master_get_devdata(master);
 622        struct device_node *nc;
 623        u32 csmode, cs, prop;
 624        int ret;
 625
 626        /* SPI controller initializations */
 627        fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
 628        fsl_espi_write_reg(espi, ESPI_SPIM, 0);
 629        fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
 630        fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
 631
 632        /* Init eSPI CS mode register */
 633        for_each_available_child_of_node(master->dev.of_node, nc) {
 634                /* get chip select */
 635                ret = of_property_read_u32(nc, "reg", &cs);
 636                if (ret || cs >= master->num_chipselect)
 637                        continue;
 638
 639                csmode = CSMODE_INIT_VAL;
 640
 641                /* check if CSBEF is set in device tree */
 642                ret = of_property_read_u32(nc, "fsl,csbef", &prop);
 643                if (!ret) {
 644                        csmode &= ~(CSMODE_BEF(0xf));
 645                        csmode |= CSMODE_BEF(prop);
 646                }
 647
 648                /* check if CSAFT is set in device tree */
 649                ret = of_property_read_u32(nc, "fsl,csaft", &prop);
 650                if (!ret) {
 651                        csmode &= ~(CSMODE_AFT(0xf));
 652                        csmode |= CSMODE_AFT(prop);
 653                }
 654
 655                fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
 656
 657                if (initial)
 658                        dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
 659        }
 660
 661        /* Enable SPI interface */
 662        fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
 663}
 664
 665static int fsl_espi_probe(struct device *dev, struct resource *mem,
 666                          unsigned int irq, unsigned int num_cs)
 667{
 668        struct spi_master *master;
 669        struct fsl_espi *espi;
 670        int ret;
 671
 672        master = spi_alloc_master(dev, sizeof(struct fsl_espi));
 673        if (!master)
 674                return -ENOMEM;
 675
 676        dev_set_drvdata(dev, master);
 677
 678        master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
 679                            SPI_LSB_FIRST | SPI_LOOP;
 680        master->dev.of_node = dev->of_node;
 681        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 682        master->setup = fsl_espi_setup;
 683        master->cleanup = fsl_espi_cleanup;
 684        master->transfer_one_message = fsl_espi_do_one_msg;
 685        master->auto_runtime_pm = true;
 686        master->max_message_size = fsl_espi_max_message_size;
 687        master->num_chipselect = num_cs;
 688
 689        espi = spi_master_get_devdata(master);
 690        spin_lock_init(&espi->lock);
 691
 692        espi->dev = dev;
 693        espi->spibrg = fsl_get_sys_freq();
 694        if (espi->spibrg == -1) {
 695                dev_err(dev, "Can't get sys frequency!\n");
 696                ret = -EINVAL;
 697                goto err_probe;
 698        }
 699        /* determined by clock divider fields DIV16/PM in register SPMODEx */
 700        master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
 701        master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
 702
 703        init_completion(&espi->done);
 704
 705        espi->reg_base = devm_ioremap_resource(dev, mem);
 706        if (IS_ERR(espi->reg_base)) {
 707                ret = PTR_ERR(espi->reg_base);
 708                goto err_probe;
 709        }
 710
 711        /* Register for SPI Interrupt */
 712        ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
 713        if (ret)
 714                goto err_probe;
 715
 716        fsl_espi_init_regs(dev, true);
 717
 718        pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
 719        pm_runtime_use_autosuspend(dev);
 720        pm_runtime_set_active(dev);
 721        pm_runtime_enable(dev);
 722        pm_runtime_get_sync(dev);
 723
 724        ret = devm_spi_register_master(dev, master);
 725        if (ret < 0)
 726                goto err_pm;
 727
 728        dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
 729
 730        pm_runtime_mark_last_busy(dev);
 731        pm_runtime_put_autosuspend(dev);
 732
 733        return 0;
 734
 735err_pm:
 736        pm_runtime_put_noidle(dev);
 737        pm_runtime_disable(dev);
 738        pm_runtime_set_suspended(dev);
 739err_probe:
 740        spi_master_put(master);
 741        return ret;
 742}
 743
 744static int of_fsl_espi_get_chipselects(struct device *dev)
 745{
 746        struct device_node *np = dev->of_node;
 747        u32 num_cs;
 748        int ret;
 749
 750        ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
 751        if (ret) {
 752                dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
 753                return 0;
 754        }
 755
 756        return num_cs;
 757}
 758
 759static int of_fsl_espi_probe(struct platform_device *ofdev)
 760{
 761        struct device *dev = &ofdev->dev;
 762        struct device_node *np = ofdev->dev.of_node;
 763        struct resource mem;
 764        unsigned int irq, num_cs;
 765        int ret;
 766
 767        if (of_property_read_bool(np, "mode")) {
 768                dev_err(dev, "mode property is not supported on ESPI!\n");
 769                return -EINVAL;
 770        }
 771
 772        num_cs = of_fsl_espi_get_chipselects(dev);
 773        if (!num_cs)
 774                return -EINVAL;
 775
 776        ret = of_address_to_resource(np, 0, &mem);
 777        if (ret)
 778                return ret;
 779
 780        irq = irq_of_parse_and_map(np, 0);
 781        if (!irq)
 782                return -EINVAL;
 783
 784        return fsl_espi_probe(dev, &mem, irq, num_cs);
 785}
 786
 787static int of_fsl_espi_remove(struct platform_device *dev)
 788{
 789        pm_runtime_disable(&dev->dev);
 790
 791        return 0;
 792}
 793
 794#ifdef CONFIG_PM_SLEEP
 795static int of_fsl_espi_suspend(struct device *dev)
 796{
 797        struct spi_master *master = dev_get_drvdata(dev);
 798        int ret;
 799
 800        ret = spi_master_suspend(master);
 801        if (ret)
 802                return ret;
 803
 804        return pm_runtime_force_suspend(dev);
 805}
 806
 807static int of_fsl_espi_resume(struct device *dev)
 808{
 809        struct spi_master *master = dev_get_drvdata(dev);
 810        int ret;
 811
 812        fsl_espi_init_regs(dev, false);
 813
 814        ret = pm_runtime_force_resume(dev);
 815        if (ret < 0)
 816                return ret;
 817
 818        return spi_master_resume(master);
 819}
 820#endif /* CONFIG_PM_SLEEP */
 821
 822static const struct dev_pm_ops espi_pm = {
 823        SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
 824                           fsl_espi_runtime_resume, NULL)
 825        SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
 826};
 827
 828static const struct of_device_id of_fsl_espi_match[] = {
 829        { .compatible = "fsl,mpc8536-espi" },
 830        {}
 831};
 832MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
 833
 834static struct platform_driver fsl_espi_driver = {
 835        .driver = {
 836                .name = "fsl_espi",
 837                .of_match_table = of_fsl_espi_match,
 838                .pm = &espi_pm,
 839        },
 840        .probe          = of_fsl_espi_probe,
 841        .remove         = of_fsl_espi_remove,
 842};
 843module_platform_driver(fsl_espi_driver);
 844
 845MODULE_AUTHOR("Mingkai Hu");
 846MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
 847MODULE_LICENSE("GPL");
 848