1
2
3
4
5
6
7
8
9
10
11
12
13
14#include "wifi.h"
15#include "efuse.h"
16#include "pci.h"
17#include <linux/export.h>
18
19static const u8 MAX_PGPKT_SIZE = 9;
20static const u8 PGPKT_DATA_SIZE = 8;
21static const int EFUSE_MAX_SIZE = 512;
22
23#define START_ADDRESS 0x1000
24#define REG_MCUFWDL 0x0080
25
26static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
27 {0, 0, 0, 2},
28 {0, 1, 0, 2},
29 {0, 2, 0, 2},
30 {1, 0, 0, 1},
31 {1, 0, 1, 1},
32 {1, 1, 0, 1},
33 {1, 1, 1, 3},
34 {1, 3, 0, 17},
35 {3, 3, 1, 48},
36 {10, 0, 0, 6},
37 {10, 3, 0, 1},
38 {10, 3, 1, 1},
39 {11, 0, 0, 28}
40};
41
42static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
43 u8 *value);
44static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
45 u16 *value);
46static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
47 u32 *value);
48static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
49 u8 value);
50static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
51 u16 value);
52static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
53 u32 value);
54static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
55 u8 data);
56static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
57static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
58 u8 *data);
59static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
60 u8 word_en, u8 *data);
61static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
62 u8 *targetdata);
63static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
64 u16 efuse_addr, u8 word_en, u8 *data);
65static u16 efuse_get_current_size(struct ieee80211_hw *hw);
66static u8 efuse_calculate_word_cnts(u8 word_en);
67
68void efuse_initialize(struct ieee80211_hw *hw)
69{
70 struct rtl_priv *rtlpriv = rtl_priv(hw);
71 u8 bytetemp;
72 u8 temp;
73
74 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
75 temp = bytetemp | 0x20;
76 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
77
78 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
79 temp = bytetemp & 0xFE;
80 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
81
82 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
83 temp = bytetemp | 0x80;
84 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
85
86 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
87
88 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
89}
90
91u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
92{
93 struct rtl_priv *rtlpriv = rtl_priv(hw);
94 u8 data;
95 u8 bytetemp;
96 u8 temp;
97 u32 k = 0;
98 const u32 efuse_len =
99 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
100
101 if (address < efuse_len) {
102 temp = address & 0xFF;
103 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
104 temp);
105 bytetemp = rtl_read_byte(rtlpriv,
106 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
107 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
108 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
109 temp);
110
111 bytetemp = rtl_read_byte(rtlpriv,
112 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
113 temp = bytetemp & 0x7F;
114 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
115 temp);
116
117 bytetemp = rtl_read_byte(rtlpriv,
118 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
119 while (!(bytetemp & 0x80)) {
120 bytetemp =
121 rtl_read_byte(rtlpriv,
122 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
123 k++;
124 if (k == 1000) {
125 k = 0;
126 break;
127 }
128 }
129 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
130 return data;
131 }
132 return 0xFF;
133}
134
135void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
136{
137 struct rtl_priv *rtlpriv = rtl_priv(hw);
138 u8 bytetemp;
139 u8 temp;
140 u32 k = 0;
141 const u32 efuse_len =
142 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
143
144 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
145 address, value);
146
147 if (address < efuse_len) {
148 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
149
150 temp = address & 0xFF;
151 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
152 temp);
153 bytetemp = rtl_read_byte(rtlpriv,
154 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
155
156 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
157 rtl_write_byte(rtlpriv,
158 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
159
160 bytetemp = rtl_read_byte(rtlpriv,
161 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
162 temp = bytetemp | 0x80;
163 rtl_write_byte(rtlpriv,
164 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
165
166 bytetemp = rtl_read_byte(rtlpriv,
167 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
168
169 while (bytetemp & 0x80) {
170 bytetemp =
171 rtl_read_byte(rtlpriv,
172 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173 k++;
174 if (k == 100) {
175 k = 0;
176 break;
177 }
178 }
179 }
180}
181
182void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
183{
184 struct rtl_priv *rtlpriv = rtl_priv(hw);
185 u32 value32;
186 u8 readbyte;
187 u16 retry;
188
189 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
190 (_offset & 0xff));
191 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
192 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
193 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
194
195 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
196 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
197 (readbyte & 0x7f));
198
199 retry = 0;
200 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
201 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
202 value32 = rtl_read_dword(rtlpriv,
203 rtlpriv->cfg->maps[EFUSE_CTRL]);
204 retry++;
205 }
206
207 udelay(50);
208 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
209
210 *pbuf = (u8)(value32 & 0xff);
211}
212
213void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
214{
215 struct rtl_priv *rtlpriv = rtl_priv(hw);
216 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
217 u8 *efuse_tbl;
218 u8 rtemp8[1];
219 u16 efuse_addr = 0;
220 u8 offset, wren;
221 u8 u1temp = 0;
222 u16 i;
223 u16 j;
224 const u16 efuse_max_section =
225 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
226 const u32 efuse_len =
227 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
228 u16 **efuse_word;
229 u16 efuse_utilized = 0;
230 u8 efuse_usage;
231
232 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
233 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
234 "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
235 __func__, _offset, _size_byte);
236 return;
237 }
238
239
240 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
241 GFP_ATOMIC);
242 if (!efuse_tbl)
243 return;
244 efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
245 if (!efuse_word)
246 goto out;
247 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
248 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
249 GFP_ATOMIC);
250 if (!efuse_word[i])
251 goto done;
252 }
253
254 for (i = 0; i < efuse_max_section; i++)
255 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
256 efuse_word[j][i] = 0xFFFF;
257
258 read_efuse_byte(hw, efuse_addr, rtemp8);
259 if (*rtemp8 != 0xFF) {
260 efuse_utilized++;
261 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
262 "Addr=%d\n", efuse_addr);
263 efuse_addr++;
264 }
265
266 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
267
268 if ((*rtemp8 & 0x1F) == 0x0F) {
269 u1temp = ((*rtemp8 & 0xE0) >> 5);
270 read_efuse_byte(hw, efuse_addr, rtemp8);
271
272 if ((*rtemp8 & 0x0F) == 0x0F) {
273 efuse_addr++;
274 read_efuse_byte(hw, efuse_addr, rtemp8);
275
276 if (*rtemp8 != 0xFF &&
277 (efuse_addr < efuse_len)) {
278 efuse_addr++;
279 }
280 continue;
281 } else {
282 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
283 wren = (*rtemp8 & 0x0F);
284 efuse_addr++;
285 }
286 } else {
287 offset = ((*rtemp8 >> 4) & 0x0f);
288 wren = (*rtemp8 & 0x0f);
289 }
290
291 if (offset < efuse_max_section) {
292 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293 "offset-%d Worden=%x\n", offset, wren);
294
295 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296 if (!(wren & 0x01)) {
297 RTPRINT(rtlpriv, FEEPROM,
298 EFUSE_READ_ALL,
299 "Addr=%d\n", efuse_addr);
300
301 read_efuse_byte(hw, efuse_addr, rtemp8);
302 efuse_addr++;
303 efuse_utilized++;
304 efuse_word[i][offset] =
305 (*rtemp8 & 0xff);
306
307 if (efuse_addr >= efuse_len)
308 break;
309
310 RTPRINT(rtlpriv, FEEPROM,
311 EFUSE_READ_ALL,
312 "Addr=%d\n", efuse_addr);
313
314 read_efuse_byte(hw, efuse_addr, rtemp8);
315 efuse_addr++;
316 efuse_utilized++;
317 efuse_word[i][offset] |=
318 (((u16)*rtemp8 << 8) & 0xff00);
319
320 if (efuse_addr >= efuse_len)
321 break;
322 }
323
324 wren >>= 1;
325 }
326 }
327
328 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329 "Addr=%d\n", efuse_addr);
330 read_efuse_byte(hw, efuse_addr, rtemp8);
331 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332 efuse_utilized++;
333 efuse_addr++;
334 }
335 }
336
337 for (i = 0; i < efuse_max_section; i++) {
338 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339 efuse_tbl[(i * 8) + (j * 2)] =
340 (efuse_word[j][i] & 0xff);
341 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342 ((efuse_word[j][i] >> 8) & 0xff);
343 }
344 }
345
346 for (i = 0; i < _size_byte; i++)
347 pbuf[i] = efuse_tbl[_offset + i];
348
349 rtlefuse->efuse_usedbytes = efuse_utilized;
350 efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
351 rtlefuse->efuse_usedpercentage = efuse_usage;
352 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353 (u8 *)&efuse_utilized);
354 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355 &efuse_usage);
356done:
357 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358 kfree(efuse_word[i]);
359 kfree(efuse_word);
360out:
361 kfree(efuse_tbl);
362}
363
364bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
365{
366 struct rtl_priv *rtlpriv = rtl_priv(hw);
367 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
368 u8 section_idx, i, base;
369 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
370 bool wordchanged, result = true;
371
372 for (section_idx = 0; section_idx < 16; section_idx++) {
373 base = section_idx * 8;
374 wordchanged = false;
375
376 for (i = 0; i < 8; i = i + 2) {
377 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
378 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
379 (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
380 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
381 1])) {
382 words_need++;
383 wordchanged = true;
384 }
385 }
386
387 if (wordchanged)
388 hdr_num++;
389 }
390
391 totalbytes = hdr_num + words_need * 2;
392 efuse_used = rtlefuse->efuse_usedbytes;
393
394 if ((totalbytes + efuse_used) >=
395 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
396 result = false;
397
398 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
399 "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
400 __func__, totalbytes, hdr_num, words_need, efuse_used);
401
402 return result;
403}
404
405void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
406 u16 offset, u32 *value)
407{
408 if (type == 1)
409 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
410 else if (type == 2)
411 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
412 else if (type == 4)
413 efuse_shadow_read_4byte(hw, offset, value);
414}
415
416void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
417 u32 value)
418{
419 if (type == 1)
420 efuse_shadow_write_1byte(hw, offset, (u8)value);
421 else if (type == 2)
422 efuse_shadow_write_2byte(hw, offset, (u16)value);
423 else if (type == 4)
424 efuse_shadow_write_4byte(hw, offset, value);
425}
426
427bool efuse_shadow_update(struct ieee80211_hw *hw)
428{
429 struct rtl_priv *rtlpriv = rtl_priv(hw);
430 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
431 u16 i, offset, base;
432 u8 word_en = 0x0F;
433 u8 first_pg = false;
434
435 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
436
437 if (!efuse_shadow_update_chk(hw)) {
438 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
439 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
440 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
441 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
442
443 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
444 "efuse out of capacity!!\n");
445 return false;
446 }
447 efuse_power_switch(hw, true, true);
448
449 for (offset = 0; offset < 16; offset++) {
450 word_en = 0x0F;
451 base = offset * 8;
452
453 for (i = 0; i < 8; i++) {
454 if (first_pg) {
455 word_en &= ~(BIT(i / 2));
456
457 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
458 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
459 } else {
460 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
461 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
462 word_en &= ~(BIT(i / 2));
463
464 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
465 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
466 }
467 }
468 }
469 if (word_en != 0x0F) {
470 u8 tmpdata[8];
471
472 memcpy(tmpdata,
473 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
474 8);
475 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
476 "U-efuse\n", tmpdata, 8);
477
478 if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
479 tmpdata)) {
480 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
481 "PG section(%#x) fail!!\n", offset);
482 break;
483 }
484 }
485 }
486
487 efuse_power_switch(hw, true, false);
488 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
489
490 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
491 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
492 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
493
494 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
495 return true;
496}
497
498void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
499{
500 struct rtl_priv *rtlpriv = rtl_priv(hw);
501 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
502
503 if (rtlefuse->autoload_failflag)
504 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
505 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
506 else
507 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
508
509 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
510 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
511 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
512}
513
514void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
515{
516 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
517
518 efuse_power_switch(hw, true, true);
519
520 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
521
522 efuse_power_switch(hw, true, false);
523}
524
525void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
526{
527}
528
529static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
530 u16 offset, u8 *value)
531{
532 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
533 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
534}
535
536static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
537 u16 offset, u16 *value)
538{
539 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
540
541 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
543}
544
545static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
546 u16 offset, u32 *value)
547{
548 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549
550 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
551 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
552 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
553 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
554}
555
556static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
557 u16 offset, u8 value)
558{
559 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
560
561 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
562}
563
564static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
565 u16 offset, u16 value)
566{
567 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
568
569 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
570 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
571}
572
573static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
574 u16 offset, u32 value)
575{
576 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
577
578 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
579 (u8)(value & 0x000000FF);
580 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
581 (u8)((value >> 8) & 0x0000FF);
582 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
583 (u8)((value >> 16) & 0x00FF);
584 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
585 (u8)((value >> 24) & 0xFF);
586}
587
588int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
589{
590 struct rtl_priv *rtlpriv = rtl_priv(hw);
591 u8 tmpidx = 0;
592 int result;
593
594 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
595 (u8)(addr & 0xff));
596 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
597 ((u8)((addr >> 8) & 0x03)) |
598 (rtl_read_byte(rtlpriv,
599 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
600 0xFC));
601
602 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
603
604 while (!(0x80 & rtl_read_byte(rtlpriv,
605 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
606 (tmpidx < 100)) {
607 tmpidx++;
608 }
609
610 if (tmpidx < 100) {
611 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
612 result = true;
613 } else {
614 *data = 0xff;
615 result = false;
616 }
617 return result;
618}
619
620static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
621{
622 struct rtl_priv *rtlpriv = rtl_priv(hw);
623 u8 tmpidx = 0;
624
625 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
626 "Addr = %x Data=%x\n", addr, data);
627
628 rtl_write_byte(rtlpriv,
629 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
630 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
631 (rtl_read_byte(rtlpriv,
632 rtlpriv->cfg->maps[EFUSE_CTRL] +
633 2) & 0xFC) | (u8)((addr >> 8) & 0x03));
634
635 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
636 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
637
638 while ((0x80 &
639 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
640 (tmpidx < 100)) {
641 tmpidx++;
642 }
643
644 if (tmpidx < 100)
645 return true;
646 return false;
647}
648
649static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
650{
651 struct rtl_priv *rtlpriv = rtl_priv(hw);
652
653 efuse_power_switch(hw, false, true);
654 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
655 efuse_power_switch(hw, false, false);
656}
657
658static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
659 u8 efuse_data, u8 offset, u8 *tmpdata,
660 u8 *readstate)
661{
662 bool dataempty = true;
663 u8 hoffset;
664 u8 tmpidx;
665 u8 hworden;
666 u8 word_cnts;
667
668 hoffset = (efuse_data >> 4) & 0x0F;
669 hworden = efuse_data & 0x0F;
670 word_cnts = efuse_calculate_word_cnts(hworden);
671
672 if (hoffset == offset) {
673 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
674 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
675 &efuse_data)) {
676 tmpdata[tmpidx] = efuse_data;
677 if (efuse_data != 0xff)
678 dataempty = false;
679 }
680 }
681
682 if (!dataempty) {
683 *readstate = PG_STATE_DATA;
684 } else {
685 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
686 *readstate = PG_STATE_HEADER;
687 }
688
689 } else {
690 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
691 *readstate = PG_STATE_HEADER;
692 }
693}
694
695static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
696{
697 u8 readstate = PG_STATE_HEADER;
698
699 bool continual = true;
700
701 u8 efuse_data, word_cnts = 0;
702 u16 efuse_addr = 0;
703 u8 tmpdata[8];
704
705 if (!data)
706 return false;
707 if (offset > 15)
708 return false;
709
710 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
711 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
712
713 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
714 if (readstate & PG_STATE_HEADER) {
715 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
716 (efuse_data != 0xFF))
717 efuse_read_data_case1(hw, &efuse_addr,
718 efuse_data, offset,
719 tmpdata, &readstate);
720 else
721 continual = false;
722 } else if (readstate & PG_STATE_DATA) {
723 efuse_word_enable_data_read(0, tmpdata, data);
724 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
725 readstate = PG_STATE_HEADER;
726 }
727 }
728
729 if ((data[0] == 0xff) && (data[1] == 0xff) &&
730 (data[2] == 0xff) && (data[3] == 0xff) &&
731 (data[4] == 0xff) && (data[5] == 0xff) &&
732 (data[6] == 0xff) && (data[7] == 0xff))
733 return false;
734 return true;
735}
736
737static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
738 u8 efuse_data, u8 offset,
739 int *continual, u8 *write_state,
740 struct pgpkt_struct *target_pkt,
741 int *repeat_times, int *result, u8 word_en)
742{
743 struct rtl_priv *rtlpriv = rtl_priv(hw);
744 struct pgpkt_struct tmp_pkt;
745 int dataempty = true;
746 u8 originaldata[8 * sizeof(u8)];
747 u8 badworden = 0x0F;
748 u8 match_word_en, tmp_word_en;
749 u8 tmpindex;
750 u8 tmp_header = efuse_data;
751 u8 tmp_word_cnts;
752
753 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
754 tmp_pkt.word_en = tmp_header & 0x0F;
755 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
756
757 if (tmp_pkt.offset != target_pkt->offset) {
758 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
759 *write_state = PG_STATE_HEADER;
760 } else {
761 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
762 if (efuse_one_byte_read(hw,
763 (*efuse_addr + 1 + tmpindex),
764 &efuse_data) &&
765 (efuse_data != 0xFF))
766 dataempty = false;
767 }
768
769 if (!dataempty) {
770 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771 *write_state = PG_STATE_HEADER;
772 } else {
773 match_word_en = 0x0F;
774 if (!((target_pkt->word_en & BIT(0)) |
775 (tmp_pkt.word_en & BIT(0))))
776 match_word_en &= (~BIT(0));
777
778 if (!((target_pkt->word_en & BIT(1)) |
779 (tmp_pkt.word_en & BIT(1))))
780 match_word_en &= (~BIT(1));
781
782 if (!((target_pkt->word_en & BIT(2)) |
783 (tmp_pkt.word_en & BIT(2))))
784 match_word_en &= (~BIT(2));
785
786 if (!((target_pkt->word_en & BIT(3)) |
787 (tmp_pkt.word_en & BIT(3))))
788 match_word_en &= (~BIT(3));
789
790 if ((match_word_en & 0x0F) != 0x0F) {
791 badworden =
792 enable_efuse_data_write(hw,
793 *efuse_addr + 1,
794 tmp_pkt.word_en,
795 target_pkt->data);
796
797 if (0x0F != (badworden & 0x0F)) {
798 u8 reorg_offset = offset;
799 u8 reorg_worden = badworden;
800
801 efuse_pg_packet_write(hw, reorg_offset,
802 reorg_worden,
803 originaldata);
804 }
805
806 tmp_word_en = 0x0F;
807 if ((target_pkt->word_en & BIT(0)) ^
808 (match_word_en & BIT(0)))
809 tmp_word_en &= (~BIT(0));
810
811 if ((target_pkt->word_en & BIT(1)) ^
812 (match_word_en & BIT(1)))
813 tmp_word_en &= (~BIT(1));
814
815 if ((target_pkt->word_en & BIT(2)) ^
816 (match_word_en & BIT(2)))
817 tmp_word_en &= (~BIT(2));
818
819 if ((target_pkt->word_en & BIT(3)) ^
820 (match_word_en & BIT(3)))
821 tmp_word_en &= (~BIT(3));
822
823 if ((tmp_word_en & 0x0F) != 0x0F) {
824 *efuse_addr =
825 efuse_get_current_size(hw);
826 target_pkt->offset = offset;
827 target_pkt->word_en = tmp_word_en;
828 } else {
829 *continual = false;
830 }
831 *write_state = PG_STATE_HEADER;
832 *repeat_times += 1;
833 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
834 *continual = false;
835 *result = false;
836 }
837 } else {
838 *efuse_addr += (2 * tmp_word_cnts) + 1;
839 target_pkt->offset = offset;
840 target_pkt->word_en = word_en;
841 *write_state = PG_STATE_HEADER;
842 }
843 }
844 }
845 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
846}
847
848static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
849 int *continual, u8 *write_state,
850 struct pgpkt_struct target_pkt,
851 int *repeat_times, int *result)
852{
853 struct rtl_priv *rtlpriv = rtl_priv(hw);
854 struct pgpkt_struct tmp_pkt;
855 u8 pg_header;
856 u8 tmp_header;
857 u8 originaldata[8 * sizeof(u8)];
858 u8 tmp_word_cnts;
859 u8 badworden = 0x0F;
860
861 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
862 efuse_one_byte_write(hw, *efuse_addr, pg_header);
863 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
864
865 if (tmp_header == pg_header) {
866 *write_state = PG_STATE_DATA;
867 } else if (tmp_header == 0xFF) {
868 *write_state = PG_STATE_HEADER;
869 *repeat_times += 1;
870 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
871 *continual = false;
872 *result = false;
873 }
874 } else {
875 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
876 tmp_pkt.word_en = tmp_header & 0x0F;
877
878 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
879
880 memset(originaldata, 0xff, 8 * sizeof(u8));
881
882 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
883 badworden = enable_efuse_data_write(hw,
884 *efuse_addr + 1,
885 tmp_pkt.word_en,
886 originaldata);
887
888 if (0x0F != (badworden & 0x0F)) {
889 u8 reorg_offset = tmp_pkt.offset;
890 u8 reorg_worden = badworden;
891
892 efuse_pg_packet_write(hw, reorg_offset,
893 reorg_worden,
894 originaldata);
895 *efuse_addr = efuse_get_current_size(hw);
896 } else {
897 *efuse_addr = *efuse_addr +
898 (tmp_word_cnts * 2) + 1;
899 }
900 } else {
901 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
902 }
903
904 *write_state = PG_STATE_HEADER;
905 *repeat_times += 1;
906 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
907 *continual = false;
908 *result = false;
909 }
910
911 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
912 "efuse PG_STATE_HEADER-2\n");
913 }
914}
915
916static int efuse_pg_packet_write(struct ieee80211_hw *hw,
917 u8 offset, u8 word_en, u8 *data)
918{
919 struct rtl_priv *rtlpriv = rtl_priv(hw);
920 struct pgpkt_struct target_pkt;
921 u8 write_state = PG_STATE_HEADER;
922 int continual = true, result = true;
923 u16 efuse_addr = 0;
924 u8 efuse_data;
925 u8 target_word_cnts = 0;
926 u8 badworden = 0x0F;
927 static int repeat_times;
928
929 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
930 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
931 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
932 "%s error\n", __func__);
933 return false;
934 }
935
936 target_pkt.offset = offset;
937 target_pkt.word_en = word_en;
938
939 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
940
941 efuse_word_enable_data_read(word_en, data, target_pkt.data);
942 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
943
944 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
945
946 while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
947 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
948 if (write_state == PG_STATE_HEADER) {
949 badworden = 0x0F;
950 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
951 "efuse PG_STATE_HEADER\n");
952
953 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
954 (efuse_data != 0xFF))
955 efuse_write_data_case1(hw, &efuse_addr,
956 efuse_data, offset,
957 &continual,
958 &write_state,
959 &target_pkt,
960 &repeat_times, &result,
961 word_en);
962 else
963 efuse_write_data_case2(hw, &efuse_addr,
964 &continual,
965 &write_state,
966 target_pkt,
967 &repeat_times,
968 &result);
969
970 } else if (write_state == PG_STATE_DATA) {
971 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
972 "efuse PG_STATE_DATA\n");
973 badworden = 0x0f;
974 badworden =
975 enable_efuse_data_write(hw, efuse_addr + 1,
976 target_pkt.word_en,
977 target_pkt.data);
978
979 if ((badworden & 0x0F) == 0x0F) {
980 continual = false;
981 } else {
982 efuse_addr =
983 efuse_addr + (2 * target_word_cnts) + 1;
984
985 target_pkt.offset = offset;
986 target_pkt.word_en = badworden;
987 target_word_cnts =
988 efuse_calculate_word_cnts(target_pkt.word_en);
989 write_state = PG_STATE_HEADER;
990 repeat_times++;
991 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
992 continual = false;
993 result = false;
994 }
995 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
996 "efuse PG_STATE_HEADER-3\n");
997 }
998 }
999 }
1000
1001 if (efuse_addr >= (EFUSE_MAX_SIZE -
1002 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1003 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1004 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1005 }
1006
1007 return true;
1008}
1009
1010static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1011 u8 *targetdata)
1012{
1013 if (!(word_en & BIT(0))) {
1014 targetdata[0] = sourdata[0];
1015 targetdata[1] = sourdata[1];
1016 }
1017
1018 if (!(word_en & BIT(1))) {
1019 targetdata[2] = sourdata[2];
1020 targetdata[3] = sourdata[3];
1021 }
1022
1023 if (!(word_en & BIT(2))) {
1024 targetdata[4] = sourdata[4];
1025 targetdata[5] = sourdata[5];
1026 }
1027
1028 if (!(word_en & BIT(3))) {
1029 targetdata[6] = sourdata[6];
1030 targetdata[7] = sourdata[7];
1031 }
1032}
1033
1034static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1035 u16 efuse_addr, u8 word_en, u8 *data)
1036{
1037 struct rtl_priv *rtlpriv = rtl_priv(hw);
1038 u16 tmpaddr;
1039 u16 start_addr = efuse_addr;
1040 u8 badworden = 0x0F;
1041 u8 tmpdata[8];
1042
1043 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1044 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1045 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1046
1047 if (!(word_en & BIT(0))) {
1048 tmpaddr = start_addr;
1049 efuse_one_byte_write(hw, start_addr++, data[0]);
1050 efuse_one_byte_write(hw, start_addr++, data[1]);
1051
1052 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1053 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1054 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1055 badworden &= (~BIT(0));
1056 }
1057
1058 if (!(word_en & BIT(1))) {
1059 tmpaddr = start_addr;
1060 efuse_one_byte_write(hw, start_addr++, data[2]);
1061 efuse_one_byte_write(hw, start_addr++, data[3]);
1062
1063 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1064 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1065 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1066 badworden &= (~BIT(1));
1067 }
1068
1069 if (!(word_en & BIT(2))) {
1070 tmpaddr = start_addr;
1071 efuse_one_byte_write(hw, start_addr++, data[4]);
1072 efuse_one_byte_write(hw, start_addr++, data[5]);
1073
1074 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1075 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1076 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1077 badworden &= (~BIT(2));
1078 }
1079
1080 if (!(word_en & BIT(3))) {
1081 tmpaddr = start_addr;
1082 efuse_one_byte_write(hw, start_addr++, data[6]);
1083 efuse_one_byte_write(hw, start_addr++, data[7]);
1084
1085 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1086 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1087 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1088 badworden &= (~BIT(3));
1089 }
1090
1091 return badworden;
1092}
1093
1094void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1095{
1096 struct rtl_priv *rtlpriv = rtl_priv(hw);
1097 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1098 u8 tempval;
1099 u16 tmpv16;
1100
1101 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1102 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1103 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1104 rtl_write_byte(rtlpriv,
1105 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1106 } else {
1107 tmpv16 =
1108 rtl_read_word(rtlpriv,
1109 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1110 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1111 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1112 rtl_write_word(rtlpriv,
1113 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1114 tmpv16);
1115 }
1116 }
1117 tmpv16 = rtl_read_word(rtlpriv,
1118 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1119 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1120 tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1121 rtl_write_word(rtlpriv,
1122 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1123 }
1124
1125 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1126 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1127 (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1128 tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1129 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1130 rtl_write_word(rtlpriv,
1131 rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1132 }
1133 }
1134
1135 if (pwrstate) {
1136 if (write) {
1137 tempval = rtl_read_byte(rtlpriv,
1138 rtlpriv->cfg->maps[EFUSE_TEST] +
1139 3);
1140
1141 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1142 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1143 tempval |= (VOLTAGE_V25 << 3);
1144 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1145 tempval &= 0x0F;
1146 tempval |= (VOLTAGE_V25 << 4);
1147 }
1148
1149 rtl_write_byte(rtlpriv,
1150 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1151 (tempval | 0x80));
1152 }
1153
1154 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1155 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1156 0x03);
1157 }
1158 } else {
1159 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1160 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1161 rtl_write_byte(rtlpriv,
1162 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1163
1164 if (write) {
1165 tempval = rtl_read_byte(rtlpriv,
1166 rtlpriv->cfg->maps[EFUSE_TEST] +
1167 3);
1168 rtl_write_byte(rtlpriv,
1169 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1170 (tempval & 0x7F));
1171 }
1172
1173 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1174 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1175 0x02);
1176 }
1177 }
1178}
1179
1180static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1181{
1182 int continual = true;
1183 u16 efuse_addr = 0;
1184 u8 hworden;
1185 u8 efuse_data, word_cnts;
1186
1187 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1188 (efuse_addr < EFUSE_MAX_SIZE)) {
1189 if (efuse_data != 0xFF) {
1190 hworden = efuse_data & 0x0F;
1191 word_cnts = efuse_calculate_word_cnts(hworden);
1192 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1193 } else {
1194 continual = false;
1195 }
1196 }
1197
1198 return efuse_addr;
1199}
1200
1201static u8 efuse_calculate_word_cnts(u8 word_en)
1202{
1203 u8 word_cnts = 0;
1204
1205 if (!(word_en & BIT(0)))
1206 word_cnts++;
1207 if (!(word_en & BIT(1)))
1208 word_cnts++;
1209 if (!(word_en & BIT(2)))
1210 word_cnts++;
1211 if (!(word_en & BIT(3)))
1212 word_cnts++;
1213 return word_cnts;
1214}
1215
1216int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1217 int max_size, u8 *hwinfo, int *params)
1218{
1219 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1220 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1221 struct device *dev = &rtlpcipriv->dev.pdev->dev;
1222 u16 eeprom_id;
1223 u16 i, usvalue;
1224
1225 switch (rtlefuse->epromtype) {
1226 case EEPROM_BOOT_EFUSE:
1227 rtl_efuse_shadow_map_update(hw);
1228 break;
1229
1230 case EEPROM_93C46:
1231 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1232 return 1;
1233
1234 default:
1235 dev_warn(dev, "no efuse data\n");
1236 return 1;
1237 }
1238
1239 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1240
1241 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1242 hwinfo, max_size);
1243
1244 eeprom_id = *((u16 *)&hwinfo[0]);
1245 if (eeprom_id != params[0]) {
1246 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1247 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1248 rtlefuse->autoload_failflag = true;
1249 } else {
1250 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1251 rtlefuse->autoload_failflag = false;
1252 }
1253
1254 if (rtlefuse->autoload_failflag)
1255 return 1;
1256
1257 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1258 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1259 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1260 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1261 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1262 "EEPROMId = 0x%4x\n", eeprom_id);
1263 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1264 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1265 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1266 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1267 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1268 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1269 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1270 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1271
1272 for (i = 0; i < 6; i += 2) {
1273 usvalue = *(u16 *)&hwinfo[params[5] + i];
1274 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1275 }
1276 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1277
1278 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1279 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1280 rtlefuse->txpwr_fromeprom = true;
1281 rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1282
1283 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1284 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1285
1286
1287 rtlefuse->channel_plan = params[9];
1288
1289 return 0;
1290}
1291
1292void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1293{
1294 struct rtl_priv *rtlpriv = rtl_priv(hw);
1295 u8 *pu4byteptr = (u8 *)buffer;
1296 u32 i;
1297
1298 for (i = 0; i < size; i++)
1299 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1300}
1301
1302void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1303 u32 size)
1304{
1305 struct rtl_priv *rtlpriv = rtl_priv(hw);
1306 u8 value8;
1307 u8 u8page = (u8)(page & 0x07);
1308
1309 value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1310
1311 rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1312 rtl_fw_block_write(hw, buffer, size);
1313}
1314
1315void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1316{
1317 u32 fwlen = *pfwlen;
1318 u8 remain = (u8)(fwlen % 4);
1319
1320 remain = (remain == 0) ? 0 : (4 - remain);
1321
1322 while (remain > 0) {
1323 pfwbuf[fwlen] = 0;
1324 fwlen++;
1325 remain--;
1326 }
1327
1328 *pfwlen = fwlen;
1329}
1330