linux/drivers/tty/serial/sh-sci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64        SCIx_ERI_IRQ,
  65        SCIx_RXI_IRQ,
  66        SCIx_TXI_IRQ,
  67        SCIx_BRI_IRQ,
  68        SCIx_DRI_IRQ,
  69        SCIx_TEI_IRQ,
  70        SCIx_NR_IRQS,
  71
  72        SCIx_MUX_IRQ = SCIx_NR_IRQS,    /* special case */
  73};
  74
  75#define SCIx_IRQ_IS_MUXED(port)                 \
  76        ((port)->irqs[SCIx_ERI_IRQ] ==  \
  77         (port)->irqs[SCIx_RXI_IRQ]) || \
  78        ((port)->irqs[SCIx_ERI_IRQ] &&  \
  79         ((port)->irqs[SCIx_RXI_IRQ] < 0))
  80
  81enum SCI_CLKS {
  82        SCI_FCK,                /* Functional Clock */
  83        SCI_SCK,                /* Optional External Clock */
  84        SCI_BRG_INT,            /* Optional BRG Internal Clock Source */
  85        SCI_SCIF_CLK,           /* Optional BRG External Clock Source */
  86        SCI_NUM_CLKS
  87};
  88
  89/* Bit x set means sampling rate x + 1 is supported */
  90#define SCI_SR(x)               BIT((x) - 1)
  91#define SCI_SR_RANGE(x, y)      GENMASK((y) - 1, (x) - 1)
  92
  93#define SCI_SR_SCIFAB           SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  94                                SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  95                                SCI_SR(19) | SCI_SR(27)
  96
  97#define min_sr(_port)           ffs((_port)->sampling_rate_mask)
  98#define max_sr(_port)           fls((_port)->sampling_rate_mask)
  99
 100/* Iterate over all supported sampling rates, from high to low */
 101#define for_each_sr(_sr, _port)                                         \
 102        for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)    \
 103                if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 104
 105struct plat_sci_reg {
 106        u8 offset, size;
 107};
 108
 109struct sci_port_params {
 110        const struct plat_sci_reg regs[SCIx_NR_REGS];
 111        unsigned int fifosize;
 112        unsigned int overrun_reg;
 113        unsigned int overrun_mask;
 114        unsigned int sampling_rate_mask;
 115        unsigned int error_mask;
 116        unsigned int error_clear;
 117};
 118
 119struct sci_port {
 120        struct uart_port        port;
 121
 122        /* Platform configuration */
 123        const struct sci_port_params *params;
 124        const struct plat_sci_port *cfg;
 125        unsigned int            sampling_rate_mask;
 126        resource_size_t         reg_size;
 127        struct mctrl_gpios      *gpios;
 128
 129        /* Clocks */
 130        struct clk              *clks[SCI_NUM_CLKS];
 131        unsigned long           clk_rates[SCI_NUM_CLKS];
 132
 133        int                     irqs[SCIx_NR_IRQS];
 134        char                    *irqstr[SCIx_NR_IRQS];
 135
 136        struct dma_chan                 *chan_tx;
 137        struct dma_chan                 *chan_rx;
 138
 139#ifdef CONFIG_SERIAL_SH_SCI_DMA
 140        struct dma_chan                 *chan_tx_saved;
 141        struct dma_chan                 *chan_rx_saved;
 142        dma_cookie_t                    cookie_tx;
 143        dma_cookie_t                    cookie_rx[2];
 144        dma_cookie_t                    active_rx;
 145        dma_addr_t                      tx_dma_addr;
 146        unsigned int                    tx_dma_len;
 147        struct scatterlist              sg_rx[2];
 148        void                            *rx_buf[2];
 149        size_t                          buf_len_rx;
 150        struct work_struct              work_tx;
 151        struct hrtimer                  rx_timer;
 152        unsigned int                    rx_timeout;     /* microseconds */
 153#endif
 154        unsigned int                    rx_frame;
 155        int                             rx_trigger;
 156        struct timer_list               rx_fifo_timer;
 157        int                             rx_fifo_timeout;
 158        u16                             hscif_tot;
 159
 160        bool has_rtscts;
 161        bool autorts;
 162};
 163
 164#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 165
 166static struct sci_port sci_ports[SCI_NPORTS];
 167static unsigned long sci_ports_in_use;
 168static struct uart_driver sci_uart_driver;
 169
 170static inline struct sci_port *
 171to_sci_port(struct uart_port *uart)
 172{
 173        return container_of(uart, struct sci_port, port);
 174}
 175
 176static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 177        /*
 178         * Common SCI definitions, dependent on the port's regshift
 179         * value.
 180         */
 181        [SCIx_SCI_REGTYPE] = {
 182                .regs = {
 183                        [SCSMR]         = { 0x00,  8 },
 184                        [SCBRR]         = { 0x01,  8 },
 185                        [SCSCR]         = { 0x02,  8 },
 186                        [SCxTDR]        = { 0x03,  8 },
 187                        [SCxSR]         = { 0x04,  8 },
 188                        [SCxRDR]        = { 0x05,  8 },
 189                },
 190                .fifosize = 1,
 191                .overrun_reg = SCxSR,
 192                .overrun_mask = SCI_ORER,
 193                .sampling_rate_mask = SCI_SR(32),
 194                .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 195                .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 196        },
 197
 198        /*
 199         * Common definitions for legacy IrDA ports.
 200         */
 201        [SCIx_IRDA_REGTYPE] = {
 202                .regs = {
 203                        [SCSMR]         = { 0x00,  8 },
 204                        [SCBRR]         = { 0x02,  8 },
 205                        [SCSCR]         = { 0x04,  8 },
 206                        [SCxTDR]        = { 0x06,  8 },
 207                        [SCxSR]         = { 0x08, 16 },
 208                        [SCxRDR]        = { 0x0a,  8 },
 209                        [SCFCR]         = { 0x0c,  8 },
 210                        [SCFDR]         = { 0x0e, 16 },
 211                },
 212                .fifosize = 1,
 213                .overrun_reg = SCxSR,
 214                .overrun_mask = SCI_ORER,
 215                .sampling_rate_mask = SCI_SR(32),
 216                .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 217                .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 218        },
 219
 220        /*
 221         * Common SCIFA definitions.
 222         */
 223        [SCIx_SCIFA_REGTYPE] = {
 224                .regs = {
 225                        [SCSMR]         = { 0x00, 16 },
 226                        [SCBRR]         = { 0x04,  8 },
 227                        [SCSCR]         = { 0x08, 16 },
 228                        [SCxTDR]        = { 0x20,  8 },
 229                        [SCxSR]         = { 0x14, 16 },
 230                        [SCxRDR]        = { 0x24,  8 },
 231                        [SCFCR]         = { 0x18, 16 },
 232                        [SCFDR]         = { 0x1c, 16 },
 233                        [SCPCR]         = { 0x30, 16 },
 234                        [SCPDR]         = { 0x34, 16 },
 235                },
 236                .fifosize = 64,
 237                .overrun_reg = SCxSR,
 238                .overrun_mask = SCIFA_ORER,
 239                .sampling_rate_mask = SCI_SR_SCIFAB,
 240                .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 241                .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 242        },
 243
 244        /*
 245         * Common SCIFB definitions.
 246         */
 247        [SCIx_SCIFB_REGTYPE] = {
 248                .regs = {
 249                        [SCSMR]         = { 0x00, 16 },
 250                        [SCBRR]         = { 0x04,  8 },
 251                        [SCSCR]         = { 0x08, 16 },
 252                        [SCxTDR]        = { 0x40,  8 },
 253                        [SCxSR]         = { 0x14, 16 },
 254                        [SCxRDR]        = { 0x60,  8 },
 255                        [SCFCR]         = { 0x18, 16 },
 256                        [SCTFDR]        = { 0x38, 16 },
 257                        [SCRFDR]        = { 0x3c, 16 },
 258                        [SCPCR]         = { 0x30, 16 },
 259                        [SCPDR]         = { 0x34, 16 },
 260                },
 261                .fifosize = 256,
 262                .overrun_reg = SCxSR,
 263                .overrun_mask = SCIFA_ORER,
 264                .sampling_rate_mask = SCI_SR_SCIFAB,
 265                .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 266                .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 267        },
 268
 269        /*
 270         * Common SH-2(A) SCIF definitions for ports with FIFO data
 271         * count registers.
 272         */
 273        [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 274                .regs = {
 275                        [SCSMR]         = { 0x00, 16 },
 276                        [SCBRR]         = { 0x04,  8 },
 277                        [SCSCR]         = { 0x08, 16 },
 278                        [SCxTDR]        = { 0x0c,  8 },
 279                        [SCxSR]         = { 0x10, 16 },
 280                        [SCxRDR]        = { 0x14,  8 },
 281                        [SCFCR]         = { 0x18, 16 },
 282                        [SCFDR]         = { 0x1c, 16 },
 283                        [SCSPTR]        = { 0x20, 16 },
 284                        [SCLSR]         = { 0x24, 16 },
 285                },
 286                .fifosize = 16,
 287                .overrun_reg = SCLSR,
 288                .overrun_mask = SCLSR_ORER,
 289                .sampling_rate_mask = SCI_SR(32),
 290                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 291                .error_clear = SCIF_ERROR_CLEAR,
 292        },
 293
 294        /*
 295         * The "SCIFA" that is in RZ/T and RZ/A2.
 296         * It looks like a normal SCIF with FIFO data, but with a
 297         * compressed address space. Also, the break out of interrupts
 298         * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 299         */
 300        [SCIx_RZ_SCIFA_REGTYPE] = {
 301                .regs = {
 302                        [SCSMR]         = { 0x00, 16 },
 303                        [SCBRR]         = { 0x02,  8 },
 304                        [SCSCR]         = { 0x04, 16 },
 305                        [SCxTDR]        = { 0x06,  8 },
 306                        [SCxSR]         = { 0x08, 16 },
 307                        [SCxRDR]        = { 0x0A,  8 },
 308                        [SCFCR]         = { 0x0C, 16 },
 309                        [SCFDR]         = { 0x0E, 16 },
 310                        [SCSPTR]        = { 0x10, 16 },
 311                        [SCLSR]         = { 0x12, 16 },
 312                },
 313                .fifosize = 16,
 314                .overrun_reg = SCLSR,
 315                .overrun_mask = SCLSR_ORER,
 316                .sampling_rate_mask = SCI_SR(32),
 317                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 318                .error_clear = SCIF_ERROR_CLEAR,
 319        },
 320
 321        /*
 322         * Common SH-3 SCIF definitions.
 323         */
 324        [SCIx_SH3_SCIF_REGTYPE] = {
 325                .regs = {
 326                        [SCSMR]         = { 0x00,  8 },
 327                        [SCBRR]         = { 0x02,  8 },
 328                        [SCSCR]         = { 0x04,  8 },
 329                        [SCxTDR]        = { 0x06,  8 },
 330                        [SCxSR]         = { 0x08, 16 },
 331                        [SCxRDR]        = { 0x0a,  8 },
 332                        [SCFCR]         = { 0x0c,  8 },
 333                        [SCFDR]         = { 0x0e, 16 },
 334                },
 335                .fifosize = 16,
 336                .overrun_reg = SCLSR,
 337                .overrun_mask = SCLSR_ORER,
 338                .sampling_rate_mask = SCI_SR(32),
 339                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 340                .error_clear = SCIF_ERROR_CLEAR,
 341        },
 342
 343        /*
 344         * Common SH-4(A) SCIF(B) definitions.
 345         */
 346        [SCIx_SH4_SCIF_REGTYPE] = {
 347                .regs = {
 348                        [SCSMR]         = { 0x00, 16 },
 349                        [SCBRR]         = { 0x04,  8 },
 350                        [SCSCR]         = { 0x08, 16 },
 351                        [SCxTDR]        = { 0x0c,  8 },
 352                        [SCxSR]         = { 0x10, 16 },
 353                        [SCxRDR]        = { 0x14,  8 },
 354                        [SCFCR]         = { 0x18, 16 },
 355                        [SCFDR]         = { 0x1c, 16 },
 356                        [SCSPTR]        = { 0x20, 16 },
 357                        [SCLSR]         = { 0x24, 16 },
 358                },
 359                .fifosize = 16,
 360                .overrun_reg = SCLSR,
 361                .overrun_mask = SCLSR_ORER,
 362                .sampling_rate_mask = SCI_SR(32),
 363                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 364                .error_clear = SCIF_ERROR_CLEAR,
 365        },
 366
 367        /*
 368         * Common SCIF definitions for ports with a Baud Rate Generator for
 369         * External Clock (BRG).
 370         */
 371        [SCIx_SH4_SCIF_BRG_REGTYPE] = {
 372                .regs = {
 373                        [SCSMR]         = { 0x00, 16 },
 374                        [SCBRR]         = { 0x04,  8 },
 375                        [SCSCR]         = { 0x08, 16 },
 376                        [SCxTDR]        = { 0x0c,  8 },
 377                        [SCxSR]         = { 0x10, 16 },
 378                        [SCxRDR]        = { 0x14,  8 },
 379                        [SCFCR]         = { 0x18, 16 },
 380                        [SCFDR]         = { 0x1c, 16 },
 381                        [SCSPTR]        = { 0x20, 16 },
 382                        [SCLSR]         = { 0x24, 16 },
 383                        [SCDL]          = { 0x30, 16 },
 384                        [SCCKS]         = { 0x34, 16 },
 385                },
 386                .fifosize = 16,
 387                .overrun_reg = SCLSR,
 388                .overrun_mask = SCLSR_ORER,
 389                .sampling_rate_mask = SCI_SR(32),
 390                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 391                .error_clear = SCIF_ERROR_CLEAR,
 392        },
 393
 394        /*
 395         * Common HSCIF definitions.
 396         */
 397        [SCIx_HSCIF_REGTYPE] = {
 398                .regs = {
 399                        [SCSMR]         = { 0x00, 16 },
 400                        [SCBRR]         = { 0x04,  8 },
 401                        [SCSCR]         = { 0x08, 16 },
 402                        [SCxTDR]        = { 0x0c,  8 },
 403                        [SCxSR]         = { 0x10, 16 },
 404                        [SCxRDR]        = { 0x14,  8 },
 405                        [SCFCR]         = { 0x18, 16 },
 406                        [SCFDR]         = { 0x1c, 16 },
 407                        [SCSPTR]        = { 0x20, 16 },
 408                        [SCLSR]         = { 0x24, 16 },
 409                        [HSSRR]         = { 0x40, 16 },
 410                        [SCDL]          = { 0x30, 16 },
 411                        [SCCKS]         = { 0x34, 16 },
 412                        [HSRTRGR]       = { 0x54, 16 },
 413                        [HSTTRGR]       = { 0x58, 16 },
 414                },
 415                .fifosize = 128,
 416                .overrun_reg = SCLSR,
 417                .overrun_mask = SCLSR_ORER,
 418                .sampling_rate_mask = SCI_SR_RANGE(8, 32),
 419                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 420                .error_clear = SCIF_ERROR_CLEAR,
 421        },
 422
 423        /*
 424         * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 425         * register.
 426         */
 427        [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 428                .regs = {
 429                        [SCSMR]         = { 0x00, 16 },
 430                        [SCBRR]         = { 0x04,  8 },
 431                        [SCSCR]         = { 0x08, 16 },
 432                        [SCxTDR]        = { 0x0c,  8 },
 433                        [SCxSR]         = { 0x10, 16 },
 434                        [SCxRDR]        = { 0x14,  8 },
 435                        [SCFCR]         = { 0x18, 16 },
 436                        [SCFDR]         = { 0x1c, 16 },
 437                        [SCLSR]         = { 0x24, 16 },
 438                },
 439                .fifosize = 16,
 440                .overrun_reg = SCLSR,
 441                .overrun_mask = SCLSR_ORER,
 442                .sampling_rate_mask = SCI_SR(32),
 443                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 444                .error_clear = SCIF_ERROR_CLEAR,
 445        },
 446
 447        /*
 448         * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 449         * count registers.
 450         */
 451        [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 452                .regs = {
 453                        [SCSMR]         = { 0x00, 16 },
 454                        [SCBRR]         = { 0x04,  8 },
 455                        [SCSCR]         = { 0x08, 16 },
 456                        [SCxTDR]        = { 0x0c,  8 },
 457                        [SCxSR]         = { 0x10, 16 },
 458                        [SCxRDR]        = { 0x14,  8 },
 459                        [SCFCR]         = { 0x18, 16 },
 460                        [SCFDR]         = { 0x1c, 16 },
 461                        [SCTFDR]        = { 0x1c, 16 }, /* aliased to SCFDR */
 462                        [SCRFDR]        = { 0x20, 16 },
 463                        [SCSPTR]        = { 0x24, 16 },
 464                        [SCLSR]         = { 0x28, 16 },
 465                },
 466                .fifosize = 16,
 467                .overrun_reg = SCLSR,
 468                .overrun_mask = SCLSR_ORER,
 469                .sampling_rate_mask = SCI_SR(32),
 470                .error_mask = SCIF_DEFAULT_ERROR_MASK,
 471                .error_clear = SCIF_ERROR_CLEAR,
 472        },
 473
 474        /*
 475         * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 476         * registers.
 477         */
 478        [SCIx_SH7705_SCIF_REGTYPE] = {
 479                .regs = {
 480                        [SCSMR]         = { 0x00, 16 },
 481                        [SCBRR]         = { 0x04,  8 },
 482                        [SCSCR]         = { 0x08, 16 },
 483                        [SCxTDR]        = { 0x20,  8 },
 484                        [SCxSR]         = { 0x14, 16 },
 485                        [SCxRDR]        = { 0x24,  8 },
 486                        [SCFCR]         = { 0x18, 16 },
 487                        [SCFDR]         = { 0x1c, 16 },
 488                },
 489                .fifosize = 64,
 490                .overrun_reg = SCxSR,
 491                .overrun_mask = SCIFA_ORER,
 492                .sampling_rate_mask = SCI_SR(16),
 493                .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 494                .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 495        },
 496};
 497
 498#define sci_getreg(up, offset)          (&to_sci_port(up)->params->regs[offset])
 499
 500/*
 501 * The "offset" here is rather misleading, in that it refers to an enum
 502 * value relative to the port mapping rather than the fixed offset
 503 * itself, which needs to be manually retrieved from the platform's
 504 * register map for the given port.
 505 */
 506static unsigned int sci_serial_in(struct uart_port *p, int offset)
 507{
 508        const struct plat_sci_reg *reg = sci_getreg(p, offset);
 509
 510        if (reg->size == 8)
 511                return ioread8(p->membase + (reg->offset << p->regshift));
 512        else if (reg->size == 16)
 513                return ioread16(p->membase + (reg->offset << p->regshift));
 514        else
 515                WARN(1, "Invalid register access\n");
 516
 517        return 0;
 518}
 519
 520static void sci_serial_out(struct uart_port *p, int offset, int value)
 521{
 522        const struct plat_sci_reg *reg = sci_getreg(p, offset);
 523
 524        if (reg->size == 8)
 525                iowrite8(value, p->membase + (reg->offset << p->regshift));
 526        else if (reg->size == 16)
 527                iowrite16(value, p->membase + (reg->offset << p->regshift));
 528        else
 529                WARN(1, "Invalid register access\n");
 530}
 531
 532static void sci_port_enable(struct sci_port *sci_port)
 533{
 534        unsigned int i;
 535
 536        if (!sci_port->port.dev)
 537                return;
 538
 539        pm_runtime_get_sync(sci_port->port.dev);
 540
 541        for (i = 0; i < SCI_NUM_CLKS; i++) {
 542                clk_prepare_enable(sci_port->clks[i]);
 543                sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 544        }
 545        sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 546}
 547
 548static void sci_port_disable(struct sci_port *sci_port)
 549{
 550        unsigned int i;
 551
 552        if (!sci_port->port.dev)
 553                return;
 554
 555        for (i = SCI_NUM_CLKS; i-- > 0; )
 556                clk_disable_unprepare(sci_port->clks[i]);
 557
 558        pm_runtime_put_sync(sci_port->port.dev);
 559}
 560
 561static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 562{
 563        /*
 564         * Not all ports (such as SCIFA) will support REIE. Rather than
 565         * special-casing the port type, we check the port initialization
 566         * IRQ enable mask to see whether the IRQ is desired at all. If
 567         * it's unset, it's logically inferred that there's no point in
 568         * testing for it.
 569         */
 570        return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 571}
 572
 573static void sci_start_tx(struct uart_port *port)
 574{
 575        struct sci_port *s = to_sci_port(port);
 576        unsigned short ctrl;
 577
 578#ifdef CONFIG_SERIAL_SH_SCI_DMA
 579        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 580                u16 new, scr = serial_port_in(port, SCSCR);
 581                if (s->chan_tx)
 582                        new = scr | SCSCR_TDRQE;
 583                else
 584                        new = scr & ~SCSCR_TDRQE;
 585                if (new != scr)
 586                        serial_port_out(port, SCSCR, new);
 587        }
 588
 589        if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 590            dma_submit_error(s->cookie_tx)) {
 591                s->cookie_tx = 0;
 592                schedule_work(&s->work_tx);
 593        }
 594#endif
 595
 596        if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 597                /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 598                ctrl = serial_port_in(port, SCSCR);
 599                serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 600        }
 601}
 602
 603static void sci_stop_tx(struct uart_port *port)
 604{
 605        unsigned short ctrl;
 606
 607        /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 608        ctrl = serial_port_in(port, SCSCR);
 609
 610        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 611                ctrl &= ~SCSCR_TDRQE;
 612
 613        ctrl &= ~SCSCR_TIE;
 614
 615        serial_port_out(port, SCSCR, ctrl);
 616}
 617
 618static void sci_start_rx(struct uart_port *port)
 619{
 620        unsigned short ctrl;
 621
 622        ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 623
 624        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 625                ctrl &= ~SCSCR_RDRQE;
 626
 627        serial_port_out(port, SCSCR, ctrl);
 628}
 629
 630static void sci_stop_rx(struct uart_port *port)
 631{
 632        unsigned short ctrl;
 633
 634        ctrl = serial_port_in(port, SCSCR);
 635
 636        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 637                ctrl &= ~SCSCR_RDRQE;
 638
 639        ctrl &= ~port_rx_irq_mask(port);
 640
 641        serial_port_out(port, SCSCR, ctrl);
 642}
 643
 644static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 645{
 646        if (port->type == PORT_SCI) {
 647                /* Just store the mask */
 648                serial_port_out(port, SCxSR, mask);
 649        } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 650                /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 651                /* Only clear the status bits we want to clear */
 652                serial_port_out(port, SCxSR,
 653                                serial_port_in(port, SCxSR) & mask);
 654        } else {
 655                /* Store the mask, clear parity/framing errors */
 656                serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 657        }
 658}
 659
 660#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 661    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 662
 663#ifdef CONFIG_CONSOLE_POLL
 664static int sci_poll_get_char(struct uart_port *port)
 665{
 666        unsigned short status;
 667        int c;
 668
 669        do {
 670                status = serial_port_in(port, SCxSR);
 671                if (status & SCxSR_ERRORS(port)) {
 672                        sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 673                        continue;
 674                }
 675                break;
 676        } while (1);
 677
 678        if (!(status & SCxSR_RDxF(port)))
 679                return NO_POLL_CHAR;
 680
 681        c = serial_port_in(port, SCxRDR);
 682
 683        /* Dummy read */
 684        serial_port_in(port, SCxSR);
 685        sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 686
 687        return c;
 688}
 689#endif
 690
 691static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 692{
 693        unsigned short status;
 694
 695        do {
 696                status = serial_port_in(port, SCxSR);
 697        } while (!(status & SCxSR_TDxE(port)));
 698
 699        serial_port_out(port, SCxTDR, c);
 700        sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 701}
 702#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 703          CONFIG_SERIAL_SH_SCI_EARLYCON */
 704
 705static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 706{
 707        struct sci_port *s = to_sci_port(port);
 708
 709        /*
 710         * Use port-specific handler if provided.
 711         */
 712        if (s->cfg->ops && s->cfg->ops->init_pins) {
 713                s->cfg->ops->init_pins(port, cflag);
 714                return;
 715        }
 716
 717        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 718                u16 data = serial_port_in(port, SCPDR);
 719                u16 ctrl = serial_port_in(port, SCPCR);
 720
 721                /* Enable RXD and TXD pin functions */
 722                ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 723                if (to_sci_port(port)->has_rtscts) {
 724                        /* RTS# is output, active low, unless autorts */
 725                        if (!(port->mctrl & TIOCM_RTS)) {
 726                                ctrl |= SCPCR_RTSC;
 727                                data |= SCPDR_RTSD;
 728                        } else if (!s->autorts) {
 729                                ctrl |= SCPCR_RTSC;
 730                                data &= ~SCPDR_RTSD;
 731                        } else {
 732                                /* Enable RTS# pin function */
 733                                ctrl &= ~SCPCR_RTSC;
 734                        }
 735                        /* Enable CTS# pin function */
 736                        ctrl &= ~SCPCR_CTSC;
 737                }
 738                serial_port_out(port, SCPDR, data);
 739                serial_port_out(port, SCPCR, ctrl);
 740        } else if (sci_getreg(port, SCSPTR)->size) {
 741                u16 status = serial_port_in(port, SCSPTR);
 742
 743                /* RTS# is always output; and active low, unless autorts */
 744                status |= SCSPTR_RTSIO;
 745                if (!(port->mctrl & TIOCM_RTS))
 746                        status |= SCSPTR_RTSDT;
 747                else if (!s->autorts)
 748                        status &= ~SCSPTR_RTSDT;
 749                /* CTS# and SCK are inputs */
 750                status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 751                serial_port_out(port, SCSPTR, status);
 752        }
 753}
 754
 755static int sci_txfill(struct uart_port *port)
 756{
 757        struct sci_port *s = to_sci_port(port);
 758        unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 759        const struct plat_sci_reg *reg;
 760
 761        reg = sci_getreg(port, SCTFDR);
 762        if (reg->size)
 763                return serial_port_in(port, SCTFDR) & fifo_mask;
 764
 765        reg = sci_getreg(port, SCFDR);
 766        if (reg->size)
 767                return serial_port_in(port, SCFDR) >> 8;
 768
 769        return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 770}
 771
 772static int sci_txroom(struct uart_port *port)
 773{
 774        return port->fifosize - sci_txfill(port);
 775}
 776
 777static int sci_rxfill(struct uart_port *port)
 778{
 779        struct sci_port *s = to_sci_port(port);
 780        unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 781        const struct plat_sci_reg *reg;
 782
 783        reg = sci_getreg(port, SCRFDR);
 784        if (reg->size)
 785                return serial_port_in(port, SCRFDR) & fifo_mask;
 786
 787        reg = sci_getreg(port, SCFDR);
 788        if (reg->size)
 789                return serial_port_in(port, SCFDR) & fifo_mask;
 790
 791        return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 792}
 793
 794/* ********************************************************************** *
 795 *                   the interrupt related routines                       *
 796 * ********************************************************************** */
 797
 798static void sci_transmit_chars(struct uart_port *port)
 799{
 800        struct circ_buf *xmit = &port->state->xmit;
 801        unsigned int stopped = uart_tx_stopped(port);
 802        unsigned short status;
 803        unsigned short ctrl;
 804        int count;
 805
 806        status = serial_port_in(port, SCxSR);
 807        if (!(status & SCxSR_TDxE(port))) {
 808                ctrl = serial_port_in(port, SCSCR);
 809                if (uart_circ_empty(xmit))
 810                        ctrl &= ~SCSCR_TIE;
 811                else
 812                        ctrl |= SCSCR_TIE;
 813                serial_port_out(port, SCSCR, ctrl);
 814                return;
 815        }
 816
 817        count = sci_txroom(port);
 818
 819        do {
 820                unsigned char c;
 821
 822                if (port->x_char) {
 823                        c = port->x_char;
 824                        port->x_char = 0;
 825                } else if (!uart_circ_empty(xmit) && !stopped) {
 826                        c = xmit->buf[xmit->tail];
 827                        xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 828                } else {
 829                        break;
 830                }
 831
 832                serial_port_out(port, SCxTDR, c);
 833
 834                port->icount.tx++;
 835        } while (--count > 0);
 836
 837        sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 838
 839        if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 840                uart_write_wakeup(port);
 841        if (uart_circ_empty(xmit))
 842                sci_stop_tx(port);
 843
 844}
 845
 846/* On SH3, SCIF may read end-of-break as a space->mark char */
 847#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 848
 849static void sci_receive_chars(struct uart_port *port)
 850{
 851        struct tty_port *tport = &port->state->port;
 852        int i, count, copied = 0;
 853        unsigned short status;
 854        unsigned char flag;
 855
 856        status = serial_port_in(port, SCxSR);
 857        if (!(status & SCxSR_RDxF(port)))
 858                return;
 859
 860        while (1) {
 861                /* Don't copy more bytes than there is room for in the buffer */
 862                count = tty_buffer_request_room(tport, sci_rxfill(port));
 863
 864                /* If for any reason we can't copy more data, we're done! */
 865                if (count == 0)
 866                        break;
 867
 868                if (port->type == PORT_SCI) {
 869                        char c = serial_port_in(port, SCxRDR);
 870                        if (uart_handle_sysrq_char(port, c))
 871                                count = 0;
 872                        else
 873                                tty_insert_flip_char(tport, c, TTY_NORMAL);
 874                } else {
 875                        for (i = 0; i < count; i++) {
 876                                char c = serial_port_in(port, SCxRDR);
 877
 878                                status = serial_port_in(port, SCxSR);
 879                                if (uart_handle_sysrq_char(port, c)) {
 880                                        count--; i--;
 881                                        continue;
 882                                }
 883
 884                                /* Store data and status */
 885                                if (status & SCxSR_FER(port)) {
 886                                        flag = TTY_FRAME;
 887                                        port->icount.frame++;
 888                                        dev_notice(port->dev, "frame error\n");
 889                                } else if (status & SCxSR_PER(port)) {
 890                                        flag = TTY_PARITY;
 891                                        port->icount.parity++;
 892                                        dev_notice(port->dev, "parity error\n");
 893                                } else
 894                                        flag = TTY_NORMAL;
 895
 896                                tty_insert_flip_char(tport, c, flag);
 897                        }
 898                }
 899
 900                serial_port_in(port, SCxSR); /* dummy read */
 901                sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 902
 903                copied += count;
 904                port->icount.rx += count;
 905        }
 906
 907        if (copied) {
 908                /* Tell the rest of the system the news. New characters! */
 909                tty_flip_buffer_push(tport);
 910        } else {
 911                /* TTY buffers full; read from RX reg to prevent lockup */
 912                serial_port_in(port, SCxRDR);
 913                serial_port_in(port, SCxSR); /* dummy read */
 914                sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 915        }
 916}
 917
 918static int sci_handle_errors(struct uart_port *port)
 919{
 920        int copied = 0;
 921        unsigned short status = serial_port_in(port, SCxSR);
 922        struct tty_port *tport = &port->state->port;
 923        struct sci_port *s = to_sci_port(port);
 924
 925        /* Handle overruns */
 926        if (status & s->params->overrun_mask) {
 927                port->icount.overrun++;
 928
 929                /* overrun error */
 930                if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 931                        copied++;
 932
 933                dev_notice(port->dev, "overrun error\n");
 934        }
 935
 936        if (status & SCxSR_FER(port)) {
 937                /* frame error */
 938                port->icount.frame++;
 939
 940                if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 941                        copied++;
 942
 943                dev_notice(port->dev, "frame error\n");
 944        }
 945
 946        if (status & SCxSR_PER(port)) {
 947                /* parity error */
 948                port->icount.parity++;
 949
 950                if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 951                        copied++;
 952
 953                dev_notice(port->dev, "parity error\n");
 954        }
 955
 956        if (copied)
 957                tty_flip_buffer_push(tport);
 958
 959        return copied;
 960}
 961
 962static int sci_handle_fifo_overrun(struct uart_port *port)
 963{
 964        struct tty_port *tport = &port->state->port;
 965        struct sci_port *s = to_sci_port(port);
 966        const struct plat_sci_reg *reg;
 967        int copied = 0;
 968        u16 status;
 969
 970        reg = sci_getreg(port, s->params->overrun_reg);
 971        if (!reg->size)
 972                return 0;
 973
 974        status = serial_port_in(port, s->params->overrun_reg);
 975        if (status & s->params->overrun_mask) {
 976                status &= ~s->params->overrun_mask;
 977                serial_port_out(port, s->params->overrun_reg, status);
 978
 979                port->icount.overrun++;
 980
 981                tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 982                tty_flip_buffer_push(tport);
 983
 984                dev_dbg(port->dev, "overrun error\n");
 985                copied++;
 986        }
 987
 988        return copied;
 989}
 990
 991static int sci_handle_breaks(struct uart_port *port)
 992{
 993        int copied = 0;
 994        unsigned short status = serial_port_in(port, SCxSR);
 995        struct tty_port *tport = &port->state->port;
 996
 997        if (uart_handle_break(port))
 998                return 0;
 999
1000        if (status & SCxSR_BRK(port)) {
1001                port->icount.brk++;
1002
1003                /* Notify of BREAK */
1004                if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1005                        copied++;
1006
1007                dev_dbg(port->dev, "BREAK detected\n");
1008        }
1009
1010        if (copied)
1011                tty_flip_buffer_push(tport);
1012
1013        copied += sci_handle_fifo_overrun(port);
1014
1015        return copied;
1016}
1017
1018static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1019{
1020        unsigned int bits;
1021
1022        if (rx_trig < 1)
1023                rx_trig = 1;
1024        if (rx_trig >= port->fifosize)
1025                rx_trig = port->fifosize;
1026
1027        /* HSCIF can be set to an arbitrary level. */
1028        if (sci_getreg(port, HSRTRGR)->size) {
1029                serial_port_out(port, HSRTRGR, rx_trig);
1030                return rx_trig;
1031        }
1032
1033        switch (port->type) {
1034        case PORT_SCIF:
1035                if (rx_trig < 4) {
1036                        bits = 0;
1037                        rx_trig = 1;
1038                } else if (rx_trig < 8) {
1039                        bits = SCFCR_RTRG0;
1040                        rx_trig = 4;
1041                } else if (rx_trig < 14) {
1042                        bits = SCFCR_RTRG1;
1043                        rx_trig = 8;
1044                } else {
1045                        bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1046                        rx_trig = 14;
1047                }
1048                break;
1049        case PORT_SCIFA:
1050        case PORT_SCIFB:
1051                if (rx_trig < 16) {
1052                        bits = 0;
1053                        rx_trig = 1;
1054                } else if (rx_trig < 32) {
1055                        bits = SCFCR_RTRG0;
1056                        rx_trig = 16;
1057                } else if (rx_trig < 48) {
1058                        bits = SCFCR_RTRG1;
1059                        rx_trig = 32;
1060                } else {
1061                        bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1062                        rx_trig = 48;
1063                }
1064                break;
1065        default:
1066                WARN(1, "unknown FIFO configuration");
1067                return 1;
1068        }
1069
1070        serial_port_out(port, SCFCR,
1071                (serial_port_in(port, SCFCR) &
1072                ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1073
1074        return rx_trig;
1075}
1076
1077static int scif_rtrg_enabled(struct uart_port *port)
1078{
1079        if (sci_getreg(port, HSRTRGR)->size)
1080                return serial_port_in(port, HSRTRGR) != 0;
1081        else
1082                return (serial_port_in(port, SCFCR) &
1083                        (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1084}
1085
1086static void rx_fifo_timer_fn(struct timer_list *t)
1087{
1088        struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1089        struct uart_port *port = &s->port;
1090
1091        dev_dbg(port->dev, "Rx timed out\n");
1092        scif_set_rtrg(port, 1);
1093}
1094
1095static ssize_t rx_trigger_show(struct device *dev,
1096                               struct device_attribute *attr,
1097                               char *buf)
1098{
1099        struct uart_port *port = dev_get_drvdata(dev);
1100        struct sci_port *sci = to_sci_port(port);
1101
1102        return sprintf(buf, "%d\n", sci->rx_trigger);
1103}
1104
1105static ssize_t rx_trigger_store(struct device *dev,
1106                                struct device_attribute *attr,
1107                                const char *buf,
1108                                size_t count)
1109{
1110        struct uart_port *port = dev_get_drvdata(dev);
1111        struct sci_port *sci = to_sci_port(port);
1112        int ret;
1113        long r;
1114
1115        ret = kstrtol(buf, 0, &r);
1116        if (ret)
1117                return ret;
1118
1119        sci->rx_trigger = scif_set_rtrg(port, r);
1120        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1121                scif_set_rtrg(port, 1);
1122
1123        return count;
1124}
1125
1126static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1127
1128static ssize_t rx_fifo_timeout_show(struct device *dev,
1129                               struct device_attribute *attr,
1130                               char *buf)
1131{
1132        struct uart_port *port = dev_get_drvdata(dev);
1133        struct sci_port *sci = to_sci_port(port);
1134        int v;
1135
1136        if (port->type == PORT_HSCIF)
1137                v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1138        else
1139                v = sci->rx_fifo_timeout;
1140
1141        return sprintf(buf, "%d\n", v);
1142}
1143
1144static ssize_t rx_fifo_timeout_store(struct device *dev,
1145                                struct device_attribute *attr,
1146                                const char *buf,
1147                                size_t count)
1148{
1149        struct uart_port *port = dev_get_drvdata(dev);
1150        struct sci_port *sci = to_sci_port(port);
1151        int ret;
1152        long r;
1153
1154        ret = kstrtol(buf, 0, &r);
1155        if (ret)
1156                return ret;
1157
1158        if (port->type == PORT_HSCIF) {
1159                if (r < 0 || r > 3)
1160                        return -EINVAL;
1161                sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1162        } else {
1163                sci->rx_fifo_timeout = r;
1164                scif_set_rtrg(port, 1);
1165                if (r > 0)
1166                        timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1167        }
1168
1169        return count;
1170}
1171
1172static DEVICE_ATTR_RW(rx_fifo_timeout);
1173
1174
1175#ifdef CONFIG_SERIAL_SH_SCI_DMA
1176static void sci_dma_tx_complete(void *arg)
1177{
1178        struct sci_port *s = arg;
1179        struct uart_port *port = &s->port;
1180        struct circ_buf *xmit = &port->state->xmit;
1181        unsigned long flags;
1182
1183        dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1184
1185        spin_lock_irqsave(&port->lock, flags);
1186
1187        xmit->tail += s->tx_dma_len;
1188        xmit->tail &= UART_XMIT_SIZE - 1;
1189
1190        port->icount.tx += s->tx_dma_len;
1191
1192        if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1193                uart_write_wakeup(port);
1194
1195        if (!uart_circ_empty(xmit)) {
1196                s->cookie_tx = 0;
1197                schedule_work(&s->work_tx);
1198        } else {
1199                s->cookie_tx = -EINVAL;
1200                if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1201                        u16 ctrl = serial_port_in(port, SCSCR);
1202                        serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1203                }
1204        }
1205
1206        spin_unlock_irqrestore(&port->lock, flags);
1207}
1208
1209/* Locking: called with port lock held */
1210static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1211{
1212        struct uart_port *port = &s->port;
1213        struct tty_port *tport = &port->state->port;
1214        int copied;
1215
1216        copied = tty_insert_flip_string(tport, buf, count);
1217        if (copied < count)
1218                port->icount.buf_overrun++;
1219
1220        port->icount.rx += copied;
1221
1222        return copied;
1223}
1224
1225static int sci_dma_rx_find_active(struct sci_port *s)
1226{
1227        unsigned int i;
1228
1229        for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1230                if (s->active_rx == s->cookie_rx[i])
1231                        return i;
1232
1233        return -1;
1234}
1235
1236static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1237{
1238        unsigned int i;
1239
1240        s->chan_rx = NULL;
1241        for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1242                s->cookie_rx[i] = -EINVAL;
1243        s->active_rx = 0;
1244}
1245
1246static void sci_dma_rx_release(struct sci_port *s)
1247{
1248        struct dma_chan *chan = s->chan_rx_saved;
1249
1250        s->chan_rx_saved = NULL;
1251        sci_dma_rx_chan_invalidate(s);
1252        dmaengine_terminate_sync(chan);
1253        dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1254                          sg_dma_address(&s->sg_rx[0]));
1255        dma_release_channel(chan);
1256}
1257
1258static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1259{
1260        long sec = usec / 1000000;
1261        long nsec = (usec % 1000000) * 1000;
1262        ktime_t t = ktime_set(sec, nsec);
1263
1264        hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1265}
1266
1267static void sci_dma_rx_reenable_irq(struct sci_port *s)
1268{
1269        struct uart_port *port = &s->port;
1270        u16 scr;
1271
1272        /* Direct new serial port interrupts back to CPU */
1273        scr = serial_port_in(port, SCSCR);
1274        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1275                scr &= ~SCSCR_RDRQE;
1276                enable_irq(s->irqs[SCIx_RXI_IRQ]);
1277        }
1278        serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1279}
1280
1281static void sci_dma_rx_complete(void *arg)
1282{
1283        struct sci_port *s = arg;
1284        struct dma_chan *chan = s->chan_rx;
1285        struct uart_port *port = &s->port;
1286        struct dma_async_tx_descriptor *desc;
1287        unsigned long flags;
1288        int active, count = 0;
1289
1290        dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1291                s->active_rx);
1292
1293        spin_lock_irqsave(&port->lock, flags);
1294
1295        active = sci_dma_rx_find_active(s);
1296        if (active >= 0)
1297                count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1298
1299        start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1300
1301        if (count)
1302                tty_flip_buffer_push(&port->state->port);
1303
1304        desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1305                                       DMA_DEV_TO_MEM,
1306                                       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1307        if (!desc)
1308                goto fail;
1309
1310        desc->callback = sci_dma_rx_complete;
1311        desc->callback_param = s;
1312        s->cookie_rx[active] = dmaengine_submit(desc);
1313        if (dma_submit_error(s->cookie_rx[active]))
1314                goto fail;
1315
1316        s->active_rx = s->cookie_rx[!active];
1317
1318        dma_async_issue_pending(chan);
1319
1320        spin_unlock_irqrestore(&port->lock, flags);
1321        dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1322                __func__, s->cookie_rx[active], active, s->active_rx);
1323        return;
1324
1325fail:
1326        spin_unlock_irqrestore(&port->lock, flags);
1327        dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1328        /* Switch to PIO */
1329        spin_lock_irqsave(&port->lock, flags);
1330        dmaengine_terminate_async(chan);
1331        sci_dma_rx_chan_invalidate(s);
1332        sci_dma_rx_reenable_irq(s);
1333        spin_unlock_irqrestore(&port->lock, flags);
1334}
1335
1336static void sci_dma_tx_release(struct sci_port *s)
1337{
1338        struct dma_chan *chan = s->chan_tx_saved;
1339
1340        cancel_work_sync(&s->work_tx);
1341        s->chan_tx_saved = s->chan_tx = NULL;
1342        s->cookie_tx = -EINVAL;
1343        dmaengine_terminate_sync(chan);
1344        dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1345                         DMA_TO_DEVICE);
1346        dma_release_channel(chan);
1347}
1348
1349static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1350{
1351        struct dma_chan *chan = s->chan_rx;
1352        struct uart_port *port = &s->port;
1353        unsigned long flags;
1354        int i;
1355
1356        for (i = 0; i < 2; i++) {
1357                struct scatterlist *sg = &s->sg_rx[i];
1358                struct dma_async_tx_descriptor *desc;
1359
1360                desc = dmaengine_prep_slave_sg(chan,
1361                        sg, 1, DMA_DEV_TO_MEM,
1362                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1363                if (!desc)
1364                        goto fail;
1365
1366                desc->callback = sci_dma_rx_complete;
1367                desc->callback_param = s;
1368                s->cookie_rx[i] = dmaengine_submit(desc);
1369                if (dma_submit_error(s->cookie_rx[i]))
1370                        goto fail;
1371
1372        }
1373
1374        s->active_rx = s->cookie_rx[0];
1375
1376        dma_async_issue_pending(chan);
1377        return 0;
1378
1379fail:
1380        /* Switch to PIO */
1381        if (!port_lock_held)
1382                spin_lock_irqsave(&port->lock, flags);
1383        if (i)
1384                dmaengine_terminate_async(chan);
1385        sci_dma_rx_chan_invalidate(s);
1386        sci_start_rx(port);
1387        if (!port_lock_held)
1388                spin_unlock_irqrestore(&port->lock, flags);
1389        return -EAGAIN;
1390}
1391
1392static void sci_dma_tx_work_fn(struct work_struct *work)
1393{
1394        struct sci_port *s = container_of(work, struct sci_port, work_tx);
1395        struct dma_async_tx_descriptor *desc;
1396        struct dma_chan *chan = s->chan_tx;
1397        struct uart_port *port = &s->port;
1398        struct circ_buf *xmit = &port->state->xmit;
1399        unsigned long flags;
1400        dma_addr_t buf;
1401
1402        /*
1403         * DMA is idle now.
1404         * Port xmit buffer is already mapped, and it is one page... Just adjust
1405         * offsets and lengths. Since it is a circular buffer, we have to
1406         * transmit till the end, and then the rest. Take the port lock to get a
1407         * consistent xmit buffer state.
1408         */
1409        spin_lock_irq(&port->lock);
1410        buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1411        s->tx_dma_len = min_t(unsigned int,
1412                CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1413                CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1414        spin_unlock_irq(&port->lock);
1415
1416        desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1417                                           DMA_MEM_TO_DEV,
1418                                           DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1419        if (!desc) {
1420                dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1421                goto switch_to_pio;
1422        }
1423
1424        dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1425                                   DMA_TO_DEVICE);
1426
1427        spin_lock_irq(&port->lock);
1428        desc->callback = sci_dma_tx_complete;
1429        desc->callback_param = s;
1430        spin_unlock_irq(&port->lock);
1431        s->cookie_tx = dmaengine_submit(desc);
1432        if (dma_submit_error(s->cookie_tx)) {
1433                dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1434                goto switch_to_pio;
1435        }
1436
1437        dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1438                __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1439
1440        dma_async_issue_pending(chan);
1441        return;
1442
1443switch_to_pio:
1444        spin_lock_irqsave(&port->lock, flags);
1445        s->chan_tx = NULL;
1446        sci_start_tx(port);
1447        spin_unlock_irqrestore(&port->lock, flags);
1448        return;
1449}
1450
1451static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1452{
1453        struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1454        struct dma_chan *chan = s->chan_rx;
1455        struct uart_port *port = &s->port;
1456        struct dma_tx_state state;
1457        enum dma_status status;
1458        unsigned long flags;
1459        unsigned int read;
1460        int active, count;
1461
1462        dev_dbg(port->dev, "DMA Rx timed out\n");
1463
1464        spin_lock_irqsave(&port->lock, flags);
1465
1466        active = sci_dma_rx_find_active(s);
1467        if (active < 0) {
1468                spin_unlock_irqrestore(&port->lock, flags);
1469                return HRTIMER_NORESTART;
1470        }
1471
1472        status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1473        if (status == DMA_COMPLETE) {
1474                spin_unlock_irqrestore(&port->lock, flags);
1475                dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1476                        s->active_rx, active);
1477
1478                /* Let packet complete handler take care of the packet */
1479                return HRTIMER_NORESTART;
1480        }
1481
1482        dmaengine_pause(chan);
1483
1484        /*
1485         * sometimes DMA transfer doesn't stop even if it is stopped and
1486         * data keeps on coming until transaction is complete so check
1487         * for DMA_COMPLETE again
1488         * Let packet complete handler take care of the packet
1489         */
1490        status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1491        if (status == DMA_COMPLETE) {
1492                spin_unlock_irqrestore(&port->lock, flags);
1493                dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1494                return HRTIMER_NORESTART;
1495        }
1496
1497        /* Handle incomplete DMA receive */
1498        dmaengine_terminate_async(s->chan_rx);
1499        read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1500
1501        if (read) {
1502                count = sci_dma_rx_push(s, s->rx_buf[active], read);
1503                if (count)
1504                        tty_flip_buffer_push(&port->state->port);
1505        }
1506
1507        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1508                sci_dma_rx_submit(s, true);
1509
1510        sci_dma_rx_reenable_irq(s);
1511
1512        spin_unlock_irqrestore(&port->lock, flags);
1513
1514        return HRTIMER_NORESTART;
1515}
1516
1517static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1518                                             enum dma_transfer_direction dir)
1519{
1520        struct dma_chan *chan;
1521        struct dma_slave_config cfg;
1522        int ret;
1523
1524        chan = dma_request_slave_channel(port->dev,
1525                                         dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1526        if (!chan) {
1527                dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1528                return NULL;
1529        }
1530
1531        memset(&cfg, 0, sizeof(cfg));
1532        cfg.direction = dir;
1533        if (dir == DMA_MEM_TO_DEV) {
1534                cfg.dst_addr = port->mapbase +
1535                        (sci_getreg(port, SCxTDR)->offset << port->regshift);
1536                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1537        } else {
1538                cfg.src_addr = port->mapbase +
1539                        (sci_getreg(port, SCxRDR)->offset << port->regshift);
1540                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1541        }
1542
1543        ret = dmaengine_slave_config(chan, &cfg);
1544        if (ret) {
1545                dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1546                dma_release_channel(chan);
1547                return NULL;
1548        }
1549
1550        return chan;
1551}
1552
1553static void sci_request_dma(struct uart_port *port)
1554{
1555        struct sci_port *s = to_sci_port(port);
1556        struct dma_chan *chan;
1557
1558        dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1559
1560        if (!port->dev->of_node)
1561                return;
1562
1563        s->cookie_tx = -EINVAL;
1564
1565        /*
1566         * Don't request a dma channel if no channel was specified
1567         * in the device tree.
1568         */
1569        if (!of_find_property(port->dev->of_node, "dmas", NULL))
1570                return;
1571
1572        chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1573        dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1574        if (chan) {
1575                /* UART circular tx buffer is an aligned page. */
1576                s->tx_dma_addr = dma_map_single(chan->device->dev,
1577                                                port->state->xmit.buf,
1578                                                UART_XMIT_SIZE,
1579                                                DMA_TO_DEVICE);
1580                if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1581                        dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1582                        dma_release_channel(chan);
1583                } else {
1584                        dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1585                                __func__, UART_XMIT_SIZE,
1586                                port->state->xmit.buf, &s->tx_dma_addr);
1587
1588                        INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1589                        s->chan_tx_saved = s->chan_tx = chan;
1590                }
1591        }
1592
1593        chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1594        dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1595        if (chan) {
1596                unsigned int i;
1597                dma_addr_t dma;
1598                void *buf;
1599
1600                s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1601                buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1602                                         &dma, GFP_KERNEL);
1603                if (!buf) {
1604                        dev_warn(port->dev,
1605                                 "Failed to allocate Rx dma buffer, using PIO\n");
1606                        dma_release_channel(chan);
1607                        return;
1608                }
1609
1610                for (i = 0; i < 2; i++) {
1611                        struct scatterlist *sg = &s->sg_rx[i];
1612
1613                        sg_init_table(sg, 1);
1614                        s->rx_buf[i] = buf;
1615                        sg_dma_address(sg) = dma;
1616                        sg_dma_len(sg) = s->buf_len_rx;
1617
1618                        buf += s->buf_len_rx;
1619                        dma += s->buf_len_rx;
1620                }
1621
1622                hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1623                s->rx_timer.function = sci_dma_rx_timer_fn;
1624
1625                s->chan_rx_saved = s->chan_rx = chan;
1626
1627                if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1628                        sci_dma_rx_submit(s, false);
1629        }
1630}
1631
1632static void sci_free_dma(struct uart_port *port)
1633{
1634        struct sci_port *s = to_sci_port(port);
1635
1636        if (s->chan_tx_saved)
1637                sci_dma_tx_release(s);
1638        if (s->chan_rx_saved)
1639                sci_dma_rx_release(s);
1640}
1641
1642static void sci_flush_buffer(struct uart_port *port)
1643{
1644        /*
1645         * In uart_flush_buffer(), the xmit circular buffer has just been
1646         * cleared, so we have to reset tx_dma_len accordingly.
1647         */
1648        to_sci_port(port)->tx_dma_len = 0;
1649}
1650#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1651static inline void sci_request_dma(struct uart_port *port)
1652{
1653}
1654
1655static inline void sci_free_dma(struct uart_port *port)
1656{
1657}
1658
1659#define sci_flush_buffer        NULL
1660#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1661
1662static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1663{
1664        struct uart_port *port = ptr;
1665        struct sci_port *s = to_sci_port(port);
1666
1667#ifdef CONFIG_SERIAL_SH_SCI_DMA
1668        if (s->chan_rx) {
1669                u16 scr = serial_port_in(port, SCSCR);
1670                u16 ssr = serial_port_in(port, SCxSR);
1671
1672                /* Disable future Rx interrupts */
1673                if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1674                        disable_irq_nosync(irq);
1675                        scr |= SCSCR_RDRQE;
1676                } else {
1677                        if (sci_dma_rx_submit(s, false) < 0)
1678                                goto handle_pio;
1679
1680                        scr &= ~SCSCR_RIE;
1681                }
1682                serial_port_out(port, SCSCR, scr);
1683                /* Clear current interrupt */
1684                serial_port_out(port, SCxSR,
1685                                ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1686                dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1687                        jiffies, s->rx_timeout);
1688                start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1689
1690                return IRQ_HANDLED;
1691        }
1692
1693handle_pio:
1694#endif
1695
1696        if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1697                if (!scif_rtrg_enabled(port))
1698                        scif_set_rtrg(port, s->rx_trigger);
1699
1700                mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1701                          s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1702        }
1703
1704        /* I think sci_receive_chars has to be called irrespective
1705         * of whether the I_IXOFF is set, otherwise, how is the interrupt
1706         * to be disabled?
1707         */
1708        sci_receive_chars(port);
1709
1710        return IRQ_HANDLED;
1711}
1712
1713static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1714{
1715        struct uart_port *port = ptr;
1716        unsigned long flags;
1717
1718        spin_lock_irqsave(&port->lock, flags);
1719        sci_transmit_chars(port);
1720        spin_unlock_irqrestore(&port->lock, flags);
1721
1722        return IRQ_HANDLED;
1723}
1724
1725static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1726{
1727        struct uart_port *port = ptr;
1728
1729        /* Handle BREAKs */
1730        sci_handle_breaks(port);
1731        sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1732
1733        return IRQ_HANDLED;
1734}
1735
1736static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1737{
1738        struct uart_port *port = ptr;
1739        struct sci_port *s = to_sci_port(port);
1740
1741        if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1742                /* Break and Error interrupts are muxed */
1743                unsigned short ssr_status = serial_port_in(port, SCxSR);
1744
1745                /* Break Interrupt */
1746                if (ssr_status & SCxSR_BRK(port))
1747                        sci_br_interrupt(irq, ptr);
1748
1749                /* Break only? */
1750                if (!(ssr_status & SCxSR_ERRORS(port)))
1751                        return IRQ_HANDLED;
1752        }
1753
1754        /* Handle errors */
1755        if (port->type == PORT_SCI) {
1756                if (sci_handle_errors(port)) {
1757                        /* discard character in rx buffer */
1758                        serial_port_in(port, SCxSR);
1759                        sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1760                }
1761        } else {
1762                sci_handle_fifo_overrun(port);
1763                if (!s->chan_rx)
1764                        sci_receive_chars(port);
1765        }
1766
1767        sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1768
1769        /* Kick the transmission */
1770        if (!s->chan_tx)
1771                sci_tx_interrupt(irq, ptr);
1772
1773        return IRQ_HANDLED;
1774}
1775
1776static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1777{
1778        unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1779        struct uart_port *port = ptr;
1780        struct sci_port *s = to_sci_port(port);
1781        irqreturn_t ret = IRQ_NONE;
1782
1783        ssr_status = serial_port_in(port, SCxSR);
1784        scr_status = serial_port_in(port, SCSCR);
1785        if (s->params->overrun_reg == SCxSR)
1786                orer_status = ssr_status;
1787        else if (sci_getreg(port, s->params->overrun_reg)->size)
1788                orer_status = serial_port_in(port, s->params->overrun_reg);
1789
1790        err_enabled = scr_status & port_rx_irq_mask(port);
1791
1792        /* Tx Interrupt */
1793        if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1794            !s->chan_tx)
1795                ret = sci_tx_interrupt(irq, ptr);
1796
1797        /*
1798         * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1799         * DR flags
1800         */
1801        if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1802            (scr_status & SCSCR_RIE))
1803                ret = sci_rx_interrupt(irq, ptr);
1804
1805        /* Error Interrupt */
1806        if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1807                ret = sci_er_interrupt(irq, ptr);
1808
1809        /* Break Interrupt */
1810        if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1811                ret = sci_br_interrupt(irq, ptr);
1812
1813        /* Overrun Interrupt */
1814        if (orer_status & s->params->overrun_mask) {
1815                sci_handle_fifo_overrun(port);
1816                ret = IRQ_HANDLED;
1817        }
1818
1819        return ret;
1820}
1821
1822static const struct sci_irq_desc {
1823        const char      *desc;
1824        irq_handler_t   handler;
1825} sci_irq_desc[] = {
1826        /*
1827         * Split out handlers, the default case.
1828         */
1829        [SCIx_ERI_IRQ] = {
1830                .desc = "rx err",
1831                .handler = sci_er_interrupt,
1832        },
1833
1834        [SCIx_RXI_IRQ] = {
1835                .desc = "rx full",
1836                .handler = sci_rx_interrupt,
1837        },
1838
1839        [SCIx_TXI_IRQ] = {
1840                .desc = "tx empty",
1841                .handler = sci_tx_interrupt,
1842        },
1843
1844        [SCIx_BRI_IRQ] = {
1845                .desc = "break",
1846                .handler = sci_br_interrupt,
1847        },
1848
1849        [SCIx_DRI_IRQ] = {
1850                .desc = "rx ready",
1851                .handler = sci_rx_interrupt,
1852        },
1853
1854        [SCIx_TEI_IRQ] = {
1855                .desc = "tx end",
1856                .handler = sci_tx_interrupt,
1857        },
1858
1859        /*
1860         * Special muxed handler.
1861         */
1862        [SCIx_MUX_IRQ] = {
1863                .desc = "mux",
1864                .handler = sci_mpxed_interrupt,
1865        },
1866};
1867
1868static int sci_request_irq(struct sci_port *port)
1869{
1870        struct uart_port *up = &port->port;
1871        int i, j, w, ret = 0;
1872
1873        for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1874                const struct sci_irq_desc *desc;
1875                int irq;
1876
1877                /* Check if already registered (muxed) */
1878                for (w = 0; w < i; w++)
1879                        if (port->irqs[w] == port->irqs[i])
1880                                w = i + 1;
1881                if (w > i)
1882                        continue;
1883
1884                if (SCIx_IRQ_IS_MUXED(port)) {
1885                        i = SCIx_MUX_IRQ;
1886                        irq = up->irq;
1887                } else {
1888                        irq = port->irqs[i];
1889
1890                        /*
1891                         * Certain port types won't support all of the
1892                         * available interrupt sources.
1893                         */
1894                        if (unlikely(irq < 0))
1895                                continue;
1896                }
1897
1898                desc = sci_irq_desc + i;
1899                port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1900                                            dev_name(up->dev), desc->desc);
1901                if (!port->irqstr[j]) {
1902                        ret = -ENOMEM;
1903                        goto out_nomem;
1904                }
1905
1906                ret = request_irq(irq, desc->handler, up->irqflags,
1907                                  port->irqstr[j], port);
1908                if (unlikely(ret)) {
1909                        dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1910                        goto out_noirq;
1911                }
1912        }
1913
1914        return 0;
1915
1916out_noirq:
1917        while (--i >= 0)
1918                free_irq(port->irqs[i], port);
1919
1920out_nomem:
1921        while (--j >= 0)
1922                kfree(port->irqstr[j]);
1923
1924        return ret;
1925}
1926
1927static void sci_free_irq(struct sci_port *port)
1928{
1929        int i, j;
1930
1931        /*
1932         * Intentionally in reverse order so we iterate over the muxed
1933         * IRQ first.
1934         */
1935        for (i = 0; i < SCIx_NR_IRQS; i++) {
1936                int irq = port->irqs[i];
1937
1938                /*
1939                 * Certain port types won't support all of the available
1940                 * interrupt sources.
1941                 */
1942                if (unlikely(irq < 0))
1943                        continue;
1944
1945                /* Check if already freed (irq was muxed) */
1946                for (j = 0; j < i; j++)
1947                        if (port->irqs[j] == irq)
1948                                j = i + 1;
1949                if (j > i)
1950                        continue;
1951
1952                free_irq(port->irqs[i], port);
1953                kfree(port->irqstr[i]);
1954
1955                if (SCIx_IRQ_IS_MUXED(port)) {
1956                        /* If there's only one IRQ, we're done. */
1957                        return;
1958                }
1959        }
1960}
1961
1962static unsigned int sci_tx_empty(struct uart_port *port)
1963{
1964        unsigned short status = serial_port_in(port, SCxSR);
1965        unsigned short in_tx_fifo = sci_txfill(port);
1966
1967        return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1968}
1969
1970static void sci_set_rts(struct uart_port *port, bool state)
1971{
1972        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1973                u16 data = serial_port_in(port, SCPDR);
1974
1975                /* Active low */
1976                if (state)
1977                        data &= ~SCPDR_RTSD;
1978                else
1979                        data |= SCPDR_RTSD;
1980                serial_port_out(port, SCPDR, data);
1981
1982                /* RTS# is output */
1983                serial_port_out(port, SCPCR,
1984                                serial_port_in(port, SCPCR) | SCPCR_RTSC);
1985        } else if (sci_getreg(port, SCSPTR)->size) {
1986                u16 ctrl = serial_port_in(port, SCSPTR);
1987
1988                /* Active low */
1989                if (state)
1990                        ctrl &= ~SCSPTR_RTSDT;
1991                else
1992                        ctrl |= SCSPTR_RTSDT;
1993                serial_port_out(port, SCSPTR, ctrl);
1994        }
1995}
1996
1997static bool sci_get_cts(struct uart_port *port)
1998{
1999        if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2000                /* Active low */
2001                return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2002        } else if (sci_getreg(port, SCSPTR)->size) {
2003                /* Active low */
2004                return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2005        }
2006
2007        return true;
2008}
2009
2010/*
2011 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2012 * CTS/RTS is supported in hardware by at least one port and controlled
2013 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2014 * handled via the ->init_pins() op, which is a bit of a one-way street,
2015 * lacking any ability to defer pin control -- this will later be
2016 * converted over to the GPIO framework).
2017 *
2018 * Other modes (such as loopback) are supported generically on certain
2019 * port types, but not others. For these it's sufficient to test for the
2020 * existence of the support register and simply ignore the port type.
2021 */
2022static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2023{
2024        struct sci_port *s = to_sci_port(port);
2025
2026        if (mctrl & TIOCM_LOOP) {
2027                const struct plat_sci_reg *reg;
2028
2029                /*
2030                 * Standard loopback mode for SCFCR ports.
2031                 */
2032                reg = sci_getreg(port, SCFCR);
2033                if (reg->size)
2034                        serial_port_out(port, SCFCR,
2035                                        serial_port_in(port, SCFCR) |
2036                                        SCFCR_LOOP);
2037        }
2038
2039        mctrl_gpio_set(s->gpios, mctrl);
2040
2041        if (!s->has_rtscts)
2042                return;
2043
2044        if (!(mctrl & TIOCM_RTS)) {
2045                /* Disable Auto RTS */
2046                serial_port_out(port, SCFCR,
2047                                serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2048
2049                /* Clear RTS */
2050                sci_set_rts(port, 0);
2051        } else if (s->autorts) {
2052                if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2053                        /* Enable RTS# pin function */
2054                        serial_port_out(port, SCPCR,
2055                                serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2056                }
2057
2058                /* Enable Auto RTS */
2059                serial_port_out(port, SCFCR,
2060                                serial_port_in(port, SCFCR) | SCFCR_MCE);
2061        } else {
2062                /* Set RTS */
2063                sci_set_rts(port, 1);
2064        }
2065}
2066
2067static unsigned int sci_get_mctrl(struct uart_port *port)
2068{
2069        struct sci_port *s = to_sci_port(port);
2070        struct mctrl_gpios *gpios = s->gpios;
2071        unsigned int mctrl = 0;
2072
2073        mctrl_gpio_get(gpios, &mctrl);
2074
2075        /*
2076         * CTS/RTS is handled in hardware when supported, while nothing
2077         * else is wired up.
2078         */
2079        if (s->autorts) {
2080                if (sci_get_cts(port))
2081                        mctrl |= TIOCM_CTS;
2082        } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2083                mctrl |= TIOCM_CTS;
2084        }
2085        if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2086                mctrl |= TIOCM_DSR;
2087        if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2088                mctrl |= TIOCM_CAR;
2089
2090        return mctrl;
2091}
2092
2093static void sci_enable_ms(struct uart_port *port)
2094{
2095        mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2096}
2097
2098static void sci_break_ctl(struct uart_port *port, int break_state)
2099{
2100        unsigned short scscr, scsptr;
2101        unsigned long flags;
2102
2103        /* check wheter the port has SCSPTR */
2104        if (!sci_getreg(port, SCSPTR)->size) {
2105                /*
2106                 * Not supported by hardware. Most parts couple break and rx
2107                 * interrupts together, with break detection always enabled.
2108                 */
2109                return;
2110        }
2111
2112        spin_lock_irqsave(&port->lock, flags);
2113        scsptr = serial_port_in(port, SCSPTR);
2114        scscr = serial_port_in(port, SCSCR);
2115
2116        if (break_state == -1) {
2117                scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2118                scscr &= ~SCSCR_TE;
2119        } else {
2120                scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2121                scscr |= SCSCR_TE;
2122        }
2123
2124        serial_port_out(port, SCSPTR, scsptr);
2125        serial_port_out(port, SCSCR, scscr);
2126        spin_unlock_irqrestore(&port->lock, flags);
2127}
2128
2129static int sci_startup(struct uart_port *port)
2130{
2131        struct sci_port *s = to_sci_port(port);
2132        int ret;
2133
2134        dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2135
2136        sci_request_dma(port);
2137
2138        ret = sci_request_irq(s);
2139        if (unlikely(ret < 0)) {
2140                sci_free_dma(port);
2141                return ret;
2142        }
2143
2144        return 0;
2145}
2146
2147static void sci_shutdown(struct uart_port *port)
2148{
2149        struct sci_port *s = to_sci_port(port);
2150        unsigned long flags;
2151        u16 scr;
2152
2153        dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2154
2155        s->autorts = false;
2156        mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2157
2158        spin_lock_irqsave(&port->lock, flags);
2159        sci_stop_rx(port);
2160        sci_stop_tx(port);
2161        /*
2162         * Stop RX and TX, disable related interrupts, keep clock source
2163         * and HSCIF TOT bits
2164         */
2165        scr = serial_port_in(port, SCSCR);
2166        serial_port_out(port, SCSCR, scr &
2167                        (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2168        spin_unlock_irqrestore(&port->lock, flags);
2169
2170#ifdef CONFIG_SERIAL_SH_SCI_DMA
2171        if (s->chan_rx_saved) {
2172                dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2173                        port->line);
2174                hrtimer_cancel(&s->rx_timer);
2175        }
2176#endif
2177
2178        if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2179                del_timer_sync(&s->rx_fifo_timer);
2180        sci_free_irq(s);
2181        sci_free_dma(port);
2182}
2183
2184static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2185                        unsigned int *srr)
2186{
2187        unsigned long freq = s->clk_rates[SCI_SCK];
2188        int err, min_err = INT_MAX;
2189        unsigned int sr;
2190
2191        if (s->port.type != PORT_HSCIF)
2192                freq *= 2;
2193
2194        for_each_sr(sr, s) {
2195                err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2196                if (abs(err) >= abs(min_err))
2197                        continue;
2198
2199                min_err = err;
2200                *srr = sr - 1;
2201
2202                if (!err)
2203                        break;
2204        }
2205
2206        dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2207                *srr + 1);
2208        return min_err;
2209}
2210
2211static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2212                        unsigned long freq, unsigned int *dlr,
2213                        unsigned int *srr)
2214{
2215        int err, min_err = INT_MAX;
2216        unsigned int sr, dl;
2217
2218        if (s->port.type != PORT_HSCIF)
2219                freq *= 2;
2220
2221        for_each_sr(sr, s) {
2222                dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2223                dl = clamp(dl, 1U, 65535U);
2224
2225                err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2226                if (abs(err) >= abs(min_err))
2227                        continue;
2228
2229                min_err = err;
2230                *dlr = dl;
2231                *srr = sr - 1;
2232
2233                if (!err)
2234                        break;
2235        }
2236
2237        dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2238                min_err, *dlr, *srr + 1);
2239        return min_err;
2240}
2241
2242/* calculate sample rate, BRR, and clock select */
2243static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2244                          unsigned int *brr, unsigned int *srr,
2245                          unsigned int *cks)
2246{
2247        unsigned long freq = s->clk_rates[SCI_FCK];
2248        unsigned int sr, br, prediv, scrate, c;
2249        int err, min_err = INT_MAX;
2250
2251        if (s->port.type != PORT_HSCIF)
2252                freq *= 2;
2253
2254        /*
2255         * Find the combination of sample rate and clock select with the
2256         * smallest deviation from the desired baud rate.
2257         * Prefer high sample rates to maximise the receive margin.
2258         *
2259         * M: Receive margin (%)
2260         * N: Ratio of bit rate to clock (N = sampling rate)
2261         * D: Clock duty (D = 0 to 1.0)
2262         * L: Frame length (L = 9 to 12)
2263         * F: Absolute value of clock frequency deviation
2264         *
2265         *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2266         *      (|D - 0.5| / N * (1 + F))|
2267         *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2268         */
2269        for_each_sr(sr, s) {
2270                for (c = 0; c <= 3; c++) {
2271                        /* integerized formulas from HSCIF documentation */
2272                        prediv = sr * (1 << (2 * c + 1));
2273
2274                        /*
2275                         * We need to calculate:
2276                         *
2277                         *     br = freq / (prediv * bps) clamped to [1..256]
2278                         *     err = freq / (br * prediv) - bps
2279                         *
2280                         * Watch out for overflow when calculating the desired
2281                         * sampling clock rate!
2282                         */
2283                        if (bps > UINT_MAX / prediv)
2284                                break;
2285
2286                        scrate = prediv * bps;
2287                        br = DIV_ROUND_CLOSEST(freq, scrate);
2288                        br = clamp(br, 1U, 256U);
2289
2290                        err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2291                        if (abs(err) >= abs(min_err))
2292                                continue;
2293
2294                        min_err = err;
2295                        *brr = br - 1;
2296                        *srr = sr - 1;
2297                        *cks = c;
2298
2299                        if (!err)
2300                                goto found;
2301                }
2302        }
2303
2304found:
2305        dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2306                min_err, *brr, *srr + 1, *cks);
2307        return min_err;
2308}
2309
2310static void sci_reset(struct uart_port *port)
2311{
2312        const struct plat_sci_reg *reg;
2313        unsigned int status;
2314        struct sci_port *s = to_sci_port(port);
2315
2316        serial_port_out(port, SCSCR, s->hscif_tot);     /* TE=0, RE=0, CKE1=0 */
2317
2318        reg = sci_getreg(port, SCFCR);
2319        if (reg->size)
2320                serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2321
2322        sci_clear_SCxSR(port,
2323                        SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2324                        SCxSR_BREAK_CLEAR(port));
2325        if (sci_getreg(port, SCLSR)->size) {
2326                status = serial_port_in(port, SCLSR);
2327                status &= ~(SCLSR_TO | SCLSR_ORER);
2328                serial_port_out(port, SCLSR, status);
2329        }
2330
2331        if (s->rx_trigger > 1) {
2332                if (s->rx_fifo_timeout) {
2333                        scif_set_rtrg(port, 1);
2334                        timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2335                } else {
2336                        if (port->type == PORT_SCIFA ||
2337                            port->type == PORT_SCIFB)
2338                                scif_set_rtrg(port, 1);
2339                        else
2340                                scif_set_rtrg(port, s->rx_trigger);
2341                }
2342        }
2343}
2344
2345static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2346                            struct ktermios *old)
2347{
2348        unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2349        unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2350        unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2351        struct sci_port *s = to_sci_port(port);
2352        const struct plat_sci_reg *reg;
2353        int min_err = INT_MAX, err;
2354        unsigned long max_freq = 0;
2355        int best_clk = -1;
2356        unsigned long flags;
2357
2358        if ((termios->c_cflag & CSIZE) == CS7)
2359                smr_val |= SCSMR_CHR;
2360        if (termios->c_cflag & PARENB)
2361                smr_val |= SCSMR_PE;
2362        if (termios->c_cflag & PARODD)
2363                smr_val |= SCSMR_PE | SCSMR_ODD;
2364        if (termios->c_cflag & CSTOPB)
2365                smr_val |= SCSMR_STOP;
2366
2367        /*
2368         * earlyprintk comes here early on with port->uartclk set to zero.
2369         * the clock framework is not up and running at this point so here
2370         * we assume that 115200 is the maximum baud rate. please note that
2371         * the baud rate is not programmed during earlyprintk - it is assumed
2372         * that the previous boot loader has enabled required clocks and
2373         * setup the baud rate generator hardware for us already.
2374         */
2375        if (!port->uartclk) {
2376                baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2377                goto done;
2378        }
2379
2380        for (i = 0; i < SCI_NUM_CLKS; i++)
2381                max_freq = max(max_freq, s->clk_rates[i]);
2382
2383        baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2384        if (!baud)
2385                goto done;
2386
2387        /*
2388         * There can be multiple sources for the sampling clock.  Find the one
2389         * that gives us the smallest deviation from the desired baud rate.
2390         */
2391
2392        /* Optional Undivided External Clock */
2393        if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2394            port->type != PORT_SCIFB) {
2395                err = sci_sck_calc(s, baud, &srr1);
2396                if (abs(err) < abs(min_err)) {
2397                        best_clk = SCI_SCK;
2398                        scr_val = SCSCR_CKE1;
2399                        sccks = SCCKS_CKS;
2400                        min_err = err;
2401                        srr = srr1;
2402                        if (!err)
2403                                goto done;
2404                }
2405        }
2406
2407        /* Optional BRG Frequency Divided External Clock */
2408        if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2409                err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2410                                   &srr1);
2411                if (abs(err) < abs(min_err)) {
2412                        best_clk = SCI_SCIF_CLK;
2413                        scr_val = SCSCR_CKE1;
2414                        sccks = 0;
2415                        min_err = err;
2416                        dl = dl1;
2417                        srr = srr1;
2418                        if (!err)
2419                                goto done;
2420                }
2421        }
2422
2423        /* Optional BRG Frequency Divided Internal Clock */
2424        if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2425                err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2426                                   &srr1);
2427                if (abs(err) < abs(min_err)) {
2428                        best_clk = SCI_BRG_INT;
2429                        scr_val = SCSCR_CKE1;
2430                        sccks = SCCKS_XIN;
2431                        min_err = err;
2432                        dl = dl1;
2433                        srr = srr1;
2434                        if (!min_err)
2435                                goto done;
2436                }
2437        }
2438
2439        /* Divided Functional Clock using standard Bit Rate Register */
2440        err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2441        if (abs(err) < abs(min_err)) {
2442                best_clk = SCI_FCK;
2443                scr_val = 0;
2444                min_err = err;
2445                brr = brr1;
2446                srr = srr1;
2447                cks = cks1;
2448        }
2449
2450done:
2451        if (best_clk >= 0)
2452                dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2453                        s->clks[best_clk], baud, min_err);
2454
2455        sci_port_enable(s);
2456
2457        /*
2458         * Program the optional External Baud Rate Generator (BRG) first.
2459         * It controls the mux to select (H)SCK or frequency divided clock.
2460         */
2461        if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2462                serial_port_out(port, SCDL, dl);
2463                serial_port_out(port, SCCKS, sccks);
2464        }
2465
2466        spin_lock_irqsave(&port->lock, flags);
2467
2468        sci_reset(port);
2469
2470        uart_update_timeout(port, termios->c_cflag, baud);
2471
2472        /* byte size and parity */
2473        switch (termios->c_cflag & CSIZE) {
2474        case CS5:
2475                bits = 7;
2476                break;
2477        case CS6:
2478                bits = 8;
2479                break;
2480        case CS7:
2481                bits = 9;
2482                break;
2483        default:
2484                bits = 10;
2485                break;
2486        }
2487
2488        if (termios->c_cflag & CSTOPB)
2489                bits++;
2490        if (termios->c_cflag & PARENB)
2491                bits++;
2492
2493        if (best_clk >= 0) {
2494                if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2495                        switch (srr + 1) {
2496                        case 5:  smr_val |= SCSMR_SRC_5;  break;
2497                        case 7:  smr_val |= SCSMR_SRC_7;  break;
2498                        case 11: smr_val |= SCSMR_SRC_11; break;
2499                        case 13: smr_val |= SCSMR_SRC_13; break;
2500                        case 16: smr_val |= SCSMR_SRC_16; break;
2501                        case 17: smr_val |= SCSMR_SRC_17; break;
2502                        case 19: smr_val |= SCSMR_SRC_19; break;
2503                        case 27: smr_val |= SCSMR_SRC_27; break;
2504                        }
2505                smr_val |= cks;
2506                serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2507                serial_port_out(port, SCSMR, smr_val);
2508                serial_port_out(port, SCBRR, brr);
2509                if (sci_getreg(port, HSSRR)->size) {
2510                        unsigned int hssrr = srr | HSCIF_SRE;
2511                        /* Calculate deviation from intended rate at the
2512                         * center of the last stop bit in sampling clocks.
2513                         */
2514                        int last_stop = bits * 2 - 1;
2515                        int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2516                                                          (int)(srr + 1),
2517                                                          2 * (int)baud);
2518
2519                        if (abs(deviation) >= 2) {
2520                                /* At least two sampling clocks off at the
2521                                 * last stop bit; we can increase the error
2522                                 * margin by shifting the sampling point.
2523                                 */
2524                                int shift = clamp(deviation / 2, -8, 7);
2525
2526                                hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2527                                         HSCIF_SRHP_MASK;
2528                                hssrr |= HSCIF_SRDE;
2529                        }
2530                        serial_port_out(port, HSSRR, hssrr);
2531                }
2532
2533                /* Wait one bit interval */
2534                udelay((1000000 + (baud - 1)) / baud);
2535        } else {
2536                /* Don't touch the bit rate configuration */
2537                scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2538                smr_val |= serial_port_in(port, SCSMR) &
2539                           (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2540                serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2541                serial_port_out(port, SCSMR, smr_val);
2542        }
2543
2544        sci_init_pins(port, termios->c_cflag);
2545
2546        port->status &= ~UPSTAT_AUTOCTS;
2547        s->autorts = false;
2548        reg = sci_getreg(port, SCFCR);
2549        if (reg->size) {
2550                unsigned short ctrl = serial_port_in(port, SCFCR);
2551
2552                if ((port->flags & UPF_HARD_FLOW) &&
2553                    (termios->c_cflag & CRTSCTS)) {
2554                        /* There is no CTS interrupt to restart the hardware */
2555                        port->status |= UPSTAT_AUTOCTS;
2556                        /* MCE is enabled when RTS is raised */
2557                        s->autorts = true;
2558                }
2559
2560                /*
2561                 * As we've done a sci_reset() above, ensure we don't
2562                 * interfere with the FIFOs while toggling MCE. As the
2563                 * reset values could still be set, simply mask them out.
2564                 */
2565                ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2566
2567                serial_port_out(port, SCFCR, ctrl);
2568        }
2569        if (port->flags & UPF_HARD_FLOW) {
2570                /* Refresh (Auto) RTS */
2571                sci_set_mctrl(port, port->mctrl);
2572        }
2573
2574        scr_val |= SCSCR_RE | SCSCR_TE |
2575                   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2576        serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2577        if ((srr + 1 == 5) &&
2578            (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2579                /*
2580                 * In asynchronous mode, when the sampling rate is 1/5, first
2581                 * received data may become invalid on some SCIFA and SCIFB.
2582                 * To avoid this problem wait more than 1 serial data time (1
2583                 * bit time x serial data number) after setting SCSCR.RE = 1.
2584                 */
2585                udelay(DIV_ROUND_UP(10 * 1000000, baud));
2586        }
2587
2588        /*
2589         * Calculate delay for 2 DMA buffers (4 FIFO).
2590         * See serial_core.c::uart_update_timeout().
2591         * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2592         * function calculates 1 jiffie for the data plus 5 jiffies for the
2593         * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2594         * buffers (4 FIFO sizes), but when performing a faster transfer, the
2595         * value obtained by this formula is too small. Therefore, if the value
2596         * is smaller than 20ms, use 20ms as the timeout value for DMA.
2597         */
2598        s->rx_frame = (10000 * bits) / (baud / 100);
2599#ifdef CONFIG_SERIAL_SH_SCI_DMA
2600        s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2601        if (s->rx_timeout < 20)
2602                s->rx_timeout = 20;
2603#endif
2604
2605        if ((termios->c_cflag & CREAD) != 0)
2606                sci_start_rx(port);
2607
2608        spin_unlock_irqrestore(&port->lock, flags);
2609
2610        sci_port_disable(s);
2611
2612        if (UART_ENABLE_MS(port, termios->c_cflag))
2613                sci_enable_ms(port);
2614}
2615
2616static void sci_pm(struct uart_port *port, unsigned int state,
2617                   unsigned int oldstate)
2618{
2619        struct sci_port *sci_port = to_sci_port(port);
2620
2621        switch (state) {
2622        case UART_PM_STATE_OFF:
2623                sci_port_disable(sci_port);
2624                break;
2625        default:
2626                sci_port_enable(sci_port);
2627                break;
2628        }
2629}
2630
2631static const char *sci_type(struct uart_port *port)
2632{
2633        switch (port->type) {
2634        case PORT_IRDA:
2635                return "irda";
2636        case PORT_SCI:
2637                return "sci";
2638        case PORT_SCIF:
2639                return "scif";
2640        case PORT_SCIFA:
2641                return "scifa";
2642        case PORT_SCIFB:
2643                return "scifb";
2644        case PORT_HSCIF:
2645                return "hscif";
2646        }
2647
2648        return NULL;
2649}
2650
2651static int sci_remap_port(struct uart_port *port)
2652{
2653        struct sci_port *sport = to_sci_port(port);
2654
2655        /*
2656         * Nothing to do if there's already an established membase.
2657         */
2658        if (port->membase)
2659                return 0;
2660
2661        if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2662                port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2663                if (unlikely(!port->membase)) {
2664                        dev_err(port->dev, "can't remap port#%d\n", port->line);
2665                        return -ENXIO;
2666                }
2667        } else {
2668                /*
2669                 * For the simple (and majority of) cases where we don't
2670                 * need to do any remapping, just cast the cookie
2671                 * directly.
2672                 */
2673                port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2674        }
2675
2676        return 0;
2677}
2678
2679static void sci_release_port(struct uart_port *port)
2680{
2681        struct sci_port *sport = to_sci_port(port);
2682
2683        if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2684                iounmap(port->membase);
2685                port->membase = NULL;
2686        }
2687
2688        release_mem_region(port->mapbase, sport->reg_size);
2689}
2690
2691static int sci_request_port(struct uart_port *port)
2692{
2693        struct resource *res;
2694        struct sci_port *sport = to_sci_port(port);
2695        int ret;
2696
2697        res = request_mem_region(port->mapbase, sport->reg_size,
2698                                 dev_name(port->dev));
2699        if (unlikely(res == NULL)) {
2700                dev_err(port->dev, "request_mem_region failed.");
2701                return -EBUSY;
2702        }
2703
2704        ret = sci_remap_port(port);
2705        if (unlikely(ret != 0)) {
2706                release_resource(res);
2707                return ret;
2708        }
2709
2710        return 0;
2711}
2712
2713static void sci_config_port(struct uart_port *port, int flags)
2714{
2715        if (flags & UART_CONFIG_TYPE) {
2716                struct sci_port *sport = to_sci_port(port);
2717
2718                port->type = sport->cfg->type;
2719                sci_request_port(port);
2720        }
2721}
2722
2723static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2724{
2725        if (ser->baud_base < 2400)
2726                /* No paper tape reader for Mitch.. */
2727                return -EINVAL;
2728
2729        return 0;
2730}
2731
2732static const struct uart_ops sci_uart_ops = {
2733        .tx_empty       = sci_tx_empty,
2734        .set_mctrl      = sci_set_mctrl,
2735        .get_mctrl      = sci_get_mctrl,
2736        .start_tx       = sci_start_tx,
2737        .stop_tx        = sci_stop_tx,
2738        .stop_rx        = sci_stop_rx,
2739        .enable_ms      = sci_enable_ms,
2740        .break_ctl      = sci_break_ctl,
2741        .startup        = sci_startup,
2742        .shutdown       = sci_shutdown,
2743        .flush_buffer   = sci_flush_buffer,
2744        .set_termios    = sci_set_termios,
2745        .pm             = sci_pm,
2746        .type           = sci_type,
2747        .release_port   = sci_release_port,
2748        .request_port   = sci_request_port,
2749        .config_port    = sci_config_port,
2750        .verify_port    = sci_verify_port,
2751#ifdef CONFIG_CONSOLE_POLL
2752        .poll_get_char  = sci_poll_get_char,
2753        .poll_put_char  = sci_poll_put_char,
2754#endif
2755};
2756
2757static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2758{
2759        const char *clk_names[] = {
2760                [SCI_FCK] = "fck",
2761                [SCI_SCK] = "sck",
2762                [SCI_BRG_INT] = "brg_int",
2763                [SCI_SCIF_CLK] = "scif_clk",
2764        };
2765        struct clk *clk;
2766        unsigned int i;
2767
2768        if (sci_port->cfg->type == PORT_HSCIF)
2769                clk_names[SCI_SCK] = "hsck";
2770
2771        for (i = 0; i < SCI_NUM_CLKS; i++) {
2772                clk = devm_clk_get(dev, clk_names[i]);
2773                if (PTR_ERR(clk) == -EPROBE_DEFER)
2774                        return -EPROBE_DEFER;
2775
2776                if (IS_ERR(clk) && i == SCI_FCK) {
2777                        /*
2778                         * "fck" used to be called "sci_ick", and we need to
2779                         * maintain DT backward compatibility.
2780                         */
2781                        clk = devm_clk_get(dev, "sci_ick");
2782                        if (PTR_ERR(clk) == -EPROBE_DEFER)
2783                                return -EPROBE_DEFER;
2784
2785                        if (!IS_ERR(clk))
2786                                goto found;
2787
2788                        /*
2789                         * Not all SH platforms declare a clock lookup entry
2790                         * for SCI devices, in which case we need to get the
2791                         * global "peripheral_clk" clock.
2792                         */
2793                        clk = devm_clk_get(dev, "peripheral_clk");
2794                        if (!IS_ERR(clk))
2795                                goto found;
2796
2797                        dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2798                                PTR_ERR(clk));
2799                        return PTR_ERR(clk);
2800                }
2801
2802found:
2803                if (IS_ERR(clk))
2804                        dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2805                                PTR_ERR(clk));
2806                else
2807                        dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2808                                clk, clk_get_rate(clk));
2809                sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2810        }
2811        return 0;
2812}
2813
2814static const struct sci_port_params *
2815sci_probe_regmap(const struct plat_sci_port *cfg)
2816{
2817        unsigned int regtype;
2818
2819        if (cfg->regtype != SCIx_PROBE_REGTYPE)
2820                return &sci_port_params[cfg->regtype];
2821
2822        switch (cfg->type) {
2823        case PORT_SCI:
2824                regtype = SCIx_SCI_REGTYPE;
2825                break;
2826        case PORT_IRDA:
2827                regtype = SCIx_IRDA_REGTYPE;
2828                break;
2829        case PORT_SCIFA:
2830                regtype = SCIx_SCIFA_REGTYPE;
2831                break;
2832        case PORT_SCIFB:
2833                regtype = SCIx_SCIFB_REGTYPE;
2834                break;
2835        case PORT_SCIF:
2836                /*
2837                 * The SH-4 is a bit of a misnomer here, although that's
2838                 * where this particular port layout originated. This
2839                 * configuration (or some slight variation thereof)
2840                 * remains the dominant model for all SCIFs.
2841                 */
2842                regtype = SCIx_SH4_SCIF_REGTYPE;
2843                break;
2844        case PORT_HSCIF:
2845                regtype = SCIx_HSCIF_REGTYPE;
2846                break;
2847        default:
2848                pr_err("Can't probe register map for given port\n");
2849                return NULL;
2850        }
2851
2852        return &sci_port_params[regtype];
2853}
2854
2855static int sci_init_single(struct platform_device *dev,
2856                           struct sci_port *sci_port, unsigned int index,
2857                           const struct plat_sci_port *p, bool early)
2858{
2859        struct uart_port *port = &sci_port->port;
2860        const struct resource *res;
2861        unsigned int i;
2862        int ret;
2863
2864        sci_port->cfg   = p;
2865
2866        port->ops       = &sci_uart_ops;
2867        port->iotype    = UPIO_MEM;
2868        port->line      = index;
2869
2870        res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2871        if (res == NULL)
2872                return -ENOMEM;
2873
2874        port->mapbase = res->start;
2875        sci_port->reg_size = resource_size(res);
2876
2877        for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2878                sci_port->irqs[i] = platform_get_irq(dev, i);
2879
2880        /* The SCI generates several interrupts. They can be muxed together or
2881         * connected to different interrupt lines. In the muxed case only one
2882         * interrupt resource is specified as there is only one interrupt ID.
2883         * In the non-muxed case, up to 6 interrupt signals might be generated
2884         * from the SCI, however those signals might have their own individual
2885         * interrupt ID numbers, or muxed together with another interrupt.
2886         */
2887        if (sci_port->irqs[0] < 0)
2888                return -ENXIO;
2889
2890        if (sci_port->irqs[1] < 0)
2891                for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2892                        sci_port->irqs[i] = sci_port->irqs[0];
2893
2894        sci_port->params = sci_probe_regmap(p);
2895        if (unlikely(sci_port->params == NULL))
2896                return -EINVAL;
2897
2898        switch (p->type) {
2899        case PORT_SCIFB:
2900                sci_port->rx_trigger = 48;
2901                break;
2902        case PORT_HSCIF:
2903                sci_port->rx_trigger = 64;
2904                break;
2905        case PORT_SCIFA:
2906                sci_port->rx_trigger = 32;
2907                break;
2908        case PORT_SCIF:
2909                if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2910                        /* RX triggering not implemented for this IP */
2911                        sci_port->rx_trigger = 1;
2912                else
2913                        sci_port->rx_trigger = 8;
2914                break;
2915        default:
2916                sci_port->rx_trigger = 1;
2917                break;
2918        }
2919
2920        sci_port->rx_fifo_timeout = 0;
2921        sci_port->hscif_tot = 0;
2922
2923        /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2924         * match the SoC datasheet, this should be investigated. Let platform
2925         * data override the sampling rate for now.
2926         */
2927        sci_port->sampling_rate_mask = p->sampling_rate
2928                                     ? SCI_SR(p->sampling_rate)
2929                                     : sci_port->params->sampling_rate_mask;
2930
2931        if (!early) {
2932                ret = sci_init_clocks(sci_port, &dev->dev);
2933                if (ret < 0)
2934                        return ret;
2935
2936                port->dev = &dev->dev;
2937
2938                pm_runtime_enable(&dev->dev);
2939        }
2940
2941        port->type              = p->type;
2942        port->flags             = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2943        port->fifosize          = sci_port->params->fifosize;
2944
2945        if (port->type == PORT_SCI) {
2946                if (sci_port->reg_size >= 0x20)
2947                        port->regshift = 2;
2948                else
2949                        port->regshift = 1;
2950        }
2951
2952        /*
2953         * The UART port needs an IRQ value, so we peg this to the RX IRQ
2954         * for the multi-IRQ ports, which is where we are primarily
2955         * concerned with the shutdown path synchronization.
2956         *
2957         * For the muxed case there's nothing more to do.
2958         */
2959        port->irq               = sci_port->irqs[SCIx_RXI_IRQ];
2960        port->irqflags          = 0;
2961
2962        port->serial_in         = sci_serial_in;
2963        port->serial_out        = sci_serial_out;
2964
2965        return 0;
2966}
2967
2968static void sci_cleanup_single(struct sci_port *port)
2969{
2970        pm_runtime_disable(port->port.dev);
2971}
2972
2973#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2974    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2975static void serial_console_putchar(struct uart_port *port, int ch)
2976{
2977        sci_poll_put_char(port, ch);
2978}
2979
2980/*
2981 *      Print a string to the serial port trying not to disturb
2982 *      any possible real use of the port...
2983 */
2984static void serial_console_write(struct console *co, const char *s,
2985                                 unsigned count)
2986{
2987        struct sci_port *sci_port = &sci_ports[co->index];
2988        struct uart_port *port = &sci_port->port;
2989        unsigned short bits, ctrl, ctrl_temp;
2990        unsigned long flags;
2991        int locked = 1;
2992
2993#if defined(SUPPORT_SYSRQ)
2994        if (port->sysrq)
2995                locked = 0;
2996        else
2997#endif
2998        if (oops_in_progress)
2999                locked = spin_trylock_irqsave(&port->lock, flags);
3000        else
3001                spin_lock_irqsave(&port->lock, flags);
3002
3003        /* first save SCSCR then disable interrupts, keep clock source */
3004        ctrl = serial_port_in(port, SCSCR);
3005        ctrl_temp = SCSCR_RE | SCSCR_TE |
3006                    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3007                    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3008        serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3009
3010        uart_console_write(port, s, count, serial_console_putchar);
3011
3012        /* wait until fifo is empty and last bit has been transmitted */
3013        bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3014        while ((serial_port_in(port, SCxSR) & bits) != bits)
3015                cpu_relax();
3016
3017        /* restore the SCSCR */
3018        serial_port_out(port, SCSCR, ctrl);
3019
3020        if (locked)
3021                spin_unlock_irqrestore(&port->lock, flags);
3022}
3023
3024static int serial_console_setup(struct console *co, char *options)
3025{
3026        struct sci_port *sci_port;
3027        struct uart_port *port;
3028        int baud = 115200;
3029        int bits = 8;
3030        int parity = 'n';
3031        int flow = 'n';
3032        int ret;
3033
3034        /*
3035         * Refuse to handle any bogus ports.
3036         */
3037        if (co->index < 0 || co->index >= SCI_NPORTS)
3038                return -ENODEV;
3039
3040        sci_port = &sci_ports[co->index];
3041        port = &sci_port->port;
3042
3043        /*
3044         * Refuse to handle uninitialized ports.
3045         */
3046        if (!port->ops)
3047                return -ENODEV;
3048
3049        ret = sci_remap_port(port);
3050        if (unlikely(ret != 0))
3051                return ret;
3052
3053        if (options)
3054                uart_parse_options(options, &baud, &parity, &bits, &flow);
3055
3056        return uart_set_options(port, co, baud, parity, bits, flow);
3057}
3058
3059static struct console serial_console = {
3060        .name           = "ttySC",
3061        .device         = uart_console_device,
3062        .write          = serial_console_write,
3063        .setup          = serial_console_setup,
3064        .flags          = CON_PRINTBUFFER,
3065        .index          = -1,
3066        .data           = &sci_uart_driver,
3067};
3068
3069static struct console early_serial_console = {
3070        .name           = "early_ttySC",
3071        .write          = serial_console_write,
3072        .flags          = CON_PRINTBUFFER,
3073        .index          = -1,
3074};
3075
3076static char early_serial_buf[32];
3077
3078static int sci_probe_earlyprintk(struct platform_device *pdev)
3079{
3080        const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3081
3082        if (early_serial_console.data)
3083                return -EEXIST;
3084
3085        early_serial_console.index = pdev->id;
3086
3087        sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3088
3089        serial_console_setup(&early_serial_console, early_serial_buf);
3090
3091        if (!strstr(early_serial_buf, "keep"))
3092                early_serial_console.flags |= CON_BOOT;
3093
3094        register_console(&early_serial_console);
3095        return 0;
3096}
3097
3098#define SCI_CONSOLE     (&serial_console)
3099
3100#else
3101static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3102{
3103        return -EINVAL;
3104}
3105
3106#define SCI_CONSOLE     NULL
3107
3108#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3109
3110static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3111
3112static DEFINE_MUTEX(sci_uart_registration_lock);
3113static struct uart_driver sci_uart_driver = {
3114        .owner          = THIS_MODULE,
3115        .driver_name    = "sci",
3116        .dev_name       = "ttySC",
3117        .major          = SCI_MAJOR,
3118        .minor          = SCI_MINOR_START,
3119        .nr             = SCI_NPORTS,
3120        .cons           = SCI_CONSOLE,
3121};
3122
3123static int sci_remove(struct platform_device *dev)
3124{
3125        struct sci_port *port = platform_get_drvdata(dev);
3126        unsigned int type = port->port.type;    /* uart_remove_... clears it */
3127
3128        sci_ports_in_use &= ~BIT(port->port.line);
3129        uart_remove_one_port(&sci_uart_driver, &port->port);
3130
3131        sci_cleanup_single(port);
3132
3133        if (port->port.fifosize > 1) {
3134                sysfs_remove_file(&dev->dev.kobj,
3135                                  &dev_attr_rx_fifo_trigger.attr);
3136        }
3137        if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF) {
3138                sysfs_remove_file(&dev->dev.kobj,
3139                                  &dev_attr_rx_fifo_timeout.attr);
3140        }
3141
3142        return 0;
3143}
3144
3145
3146#define SCI_OF_DATA(type, regtype)      (void *)((type) << 16 | (regtype))
3147#define SCI_OF_TYPE(data)               ((unsigned long)(data) >> 16)
3148#define SCI_OF_REGTYPE(data)            ((unsigned long)(data) & 0xffff)
3149
3150static const struct of_device_id of_sci_match[] = {
3151        /* SoC-specific types */
3152        {
3153                .compatible = "renesas,scif-r7s72100",
3154                .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3155        },
3156        {
3157                .compatible = "renesas,scif-r7s9210",
3158                .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3159        },
3160        /* Family-specific types */
3161        {
3162                .compatible = "renesas,rcar-gen1-scif",
3163                .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3164        }, {
3165                .compatible = "renesas,rcar-gen2-scif",
3166                .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3167        }, {
3168                .compatible = "renesas,rcar-gen3-scif",
3169                .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3170        },
3171        /* Generic types */
3172        {
3173                .compatible = "renesas,scif",
3174                .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3175        }, {
3176                .compatible = "renesas,scifa",
3177                .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3178        }, {
3179                .compatible = "renesas,scifb",
3180                .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3181        }, {
3182                .compatible = "renesas,hscif",
3183                .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3184        }, {
3185                .compatible = "renesas,sci",
3186                .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3187        }, {
3188                /* Terminator */
3189        },
3190};
3191MODULE_DEVICE_TABLE(of, of_sci_match);
3192
3193static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3194                                          unsigned int *dev_id)
3195{
3196        struct device_node *np = pdev->dev.of_node;
3197        struct plat_sci_port *p;
3198        struct sci_port *sp;
3199        const void *data;
3200        int id;
3201
3202        if (!IS_ENABLED(CONFIG_OF) || !np)
3203                return NULL;
3204
3205        data = of_device_get_match_data(&pdev->dev);
3206
3207        p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3208        if (!p)
3209                return NULL;
3210
3211        /* Get the line number from the aliases node. */
3212        id = of_alias_get_id(np, "serial");
3213        if (id < 0 && ~sci_ports_in_use)
3214                id = ffz(sci_ports_in_use);
3215        if (id < 0) {
3216                dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3217                return NULL;
3218        }
3219        if (id >= ARRAY_SIZE(sci_ports)) {
3220                dev_err(&pdev->dev, "serial%d out of range\n", id);
3221                return NULL;
3222        }
3223
3224        sp = &sci_ports[id];
3225        *dev_id = id;
3226
3227        p->type = SCI_OF_TYPE(data);
3228        p->regtype = SCI_OF_REGTYPE(data);
3229
3230        sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3231
3232        return p;
3233}
3234
3235static int sci_probe_single(struct platform_device *dev,
3236                                      unsigned int index,
3237                                      struct plat_sci_port *p,
3238                                      struct sci_port *sciport)
3239{
3240        int ret;
3241
3242        /* Sanity check */
3243        if (unlikely(index >= SCI_NPORTS)) {
3244                dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3245                           index+1, SCI_NPORTS);
3246                dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3247                return -EINVAL;
3248        }
3249        BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3250        if (sci_ports_in_use & BIT(index))
3251                return -EBUSY;
3252
3253        mutex_lock(&sci_uart_registration_lock);
3254        if (!sci_uart_driver.state) {
3255                ret = uart_register_driver(&sci_uart_driver);
3256                if (ret) {
3257                        mutex_unlock(&sci_uart_registration_lock);
3258                        return ret;
3259                }
3260        }
3261        mutex_unlock(&sci_uart_registration_lock);
3262
3263        ret = sci_init_single(dev, sciport, index, p, false);
3264        if (ret)
3265                return ret;
3266
3267        sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3268        if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3269                return PTR_ERR(sciport->gpios);
3270
3271        if (sciport->has_rtscts) {
3272                if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3273                                                        UART_GPIO_CTS)) ||
3274                    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3275                                                        UART_GPIO_RTS))) {
3276                        dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3277                        return -EINVAL;
3278                }
3279                sciport->port.flags |= UPF_HARD_FLOW;
3280        }
3281
3282        ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3283        if (ret) {
3284                sci_cleanup_single(sciport);
3285                return ret;
3286        }
3287
3288        return 0;
3289}
3290
3291static int sci_probe(struct platform_device *dev)
3292{
3293        struct plat_sci_port *p;
3294        struct sci_port *sp;
3295        unsigned int dev_id;
3296        int ret;
3297
3298        /*
3299         * If we've come here via earlyprintk initialization, head off to
3300         * the special early probe. We don't have sufficient device state
3301         * to make it beyond this yet.
3302         */
3303        if (is_early_platform_device(dev))
3304                return sci_probe_earlyprintk(dev);
3305
3306        if (dev->dev.of_node) {
3307                p = sci_parse_dt(dev, &dev_id);
3308                if (p == NULL)
3309                        return -EINVAL;
3310        } else {
3311                p = dev->dev.platform_data;
3312                if (p == NULL) {
3313                        dev_err(&dev->dev, "no platform data supplied\n");
3314                        return -EINVAL;
3315                }
3316
3317                dev_id = dev->id;
3318        }
3319
3320        sp = &sci_ports[dev_id];
3321        platform_set_drvdata(dev, sp);
3322
3323        ret = sci_probe_single(dev, dev_id, p, sp);
3324        if (ret)
3325                return ret;
3326
3327        if (sp->port.fifosize > 1) {
3328                ret = sysfs_create_file(&dev->dev.kobj,
3329                                &dev_attr_rx_fifo_trigger.attr);
3330                if (ret)
3331                        return ret;
3332        }
3333        if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3334            sp->port.type == PORT_HSCIF) {
3335                ret = sysfs_create_file(&dev->dev.kobj,
3336                                &dev_attr_rx_fifo_timeout.attr);
3337                if (ret) {
3338                        if (sp->port.fifosize > 1) {
3339                                sysfs_remove_file(&dev->dev.kobj,
3340                                        &dev_attr_rx_fifo_trigger.attr);
3341                        }
3342                        return ret;
3343                }
3344        }
3345
3346#ifdef CONFIG_SH_STANDARD_BIOS
3347        sh_bios_gdb_detach();
3348#endif
3349
3350        sci_ports_in_use |= BIT(dev_id);
3351        return 0;
3352}
3353
3354static __maybe_unused int sci_suspend(struct device *dev)
3355{
3356        struct sci_port *sport = dev_get_drvdata(dev);
3357
3358        if (sport)
3359                uart_suspend_port(&sci_uart_driver, &sport->port);
3360
3361        return 0;
3362}
3363
3364static __maybe_unused int sci_resume(struct device *dev)
3365{
3366        struct sci_port *sport = dev_get_drvdata(dev);
3367
3368        if (sport)
3369                uart_resume_port(&sci_uart_driver, &sport->port);
3370
3371        return 0;
3372}
3373
3374static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3375
3376static struct platform_driver sci_driver = {
3377        .probe          = sci_probe,
3378        .remove         = sci_remove,
3379        .driver         = {
3380                .name   = "sh-sci",
3381                .pm     = &sci_dev_pm_ops,
3382                .of_match_table = of_match_ptr(of_sci_match),
3383        },
3384};
3385
3386static int __init sci_init(void)
3387{
3388        pr_info("%s\n", banner);
3389
3390        return platform_driver_register(&sci_driver);
3391}
3392
3393static void __exit sci_exit(void)
3394{
3395        platform_driver_unregister(&sci_driver);
3396
3397        if (sci_uart_driver.state)
3398                uart_unregister_driver(&sci_uart_driver);
3399}
3400
3401#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3402early_platform_init_buffer("earlyprintk", &sci_driver,
3403                           early_serial_buf, ARRAY_SIZE(early_serial_buf));
3404#endif
3405#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3406static struct plat_sci_port port_cfg __initdata;
3407
3408static int __init early_console_setup(struct earlycon_device *device,
3409                                      int type)
3410{
3411        if (!device->port.membase)
3412                return -ENODEV;
3413
3414        device->port.serial_in = sci_serial_in;
3415        device->port.serial_out = sci_serial_out;
3416        device->port.type = type;
3417        memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3418        port_cfg.type = type;
3419        sci_ports[0].cfg = &port_cfg;
3420        sci_ports[0].params = sci_probe_regmap(&port_cfg);
3421        port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3422        sci_serial_out(&sci_ports[0].port, SCSCR,
3423                       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3424
3425        device->con->write = serial_console_write;
3426        return 0;
3427}
3428static int __init sci_early_console_setup(struct earlycon_device *device,
3429                                          const char *opt)
3430{
3431        return early_console_setup(device, PORT_SCI);
3432}
3433static int __init scif_early_console_setup(struct earlycon_device *device,
3434                                          const char *opt)
3435{
3436        return early_console_setup(device, PORT_SCIF);
3437}
3438static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3439                                          const char *opt)
3440{
3441        port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3442        return early_console_setup(device, PORT_SCIF);
3443}
3444static int __init scifa_early_console_setup(struct earlycon_device *device,
3445                                          const char *opt)
3446{
3447        return early_console_setup(device, PORT_SCIFA);
3448}
3449static int __init scifb_early_console_setup(struct earlycon_device *device,
3450                                          const char *opt)
3451{
3452        return early_console_setup(device, PORT_SCIFB);
3453}
3454static int __init hscif_early_console_setup(struct earlycon_device *device,
3455                                          const char *opt)
3456{
3457        return early_console_setup(device, PORT_HSCIF);
3458}
3459
3460OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3461OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3462OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3463OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3464OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3465OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3466#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3467
3468module_init(sci_init);
3469module_exit(sci_exit);
3470
3471MODULE_LICENSE("GPL");
3472MODULE_ALIAS("platform:sh-sci");
3473MODULE_AUTHOR("Paul Mundt");
3474MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3475