linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/buffer_head.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/writeback.h>
  18#include <linux/compat.h>
  19#include <linux/xattr.h>
  20#include <linux/posix_acl.h>
  21#include <linux/falloc.h>
  22#include <linux/slab.h>
  23#include <linux/ratelimit.h>
  24#include <linux/btrfs.h>
  25#include <linux/blkdev.h>
  26#include <linux/posix_acl_xattr.h>
  27#include <linux/uio.h>
  28#include <linux/magic.h>
  29#include <linux/iversion.h>
  30#include <linux/swap.h>
  31#include <asm/unaligned.h>
  32#include "ctree.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "btrfs_inode.h"
  36#include "print-tree.h"
  37#include "ordered-data.h"
  38#include "xattr.h"
  39#include "tree-log.h"
  40#include "volumes.h"
  41#include "compression.h"
  42#include "locking.h"
  43#include "free-space-cache.h"
  44#include "inode-map.h"
  45#include "backref.h"
  46#include "props.h"
  47#include "qgroup.h"
  48#include "dedupe.h"
  49
  50struct btrfs_iget_args {
  51        struct btrfs_key *location;
  52        struct btrfs_root *root;
  53};
  54
  55struct btrfs_dio_data {
  56        u64 reserve;
  57        u64 unsubmitted_oe_range_start;
  58        u64 unsubmitted_oe_range_end;
  59        int overwrite;
  60};
  61
  62static const struct inode_operations btrfs_dir_inode_operations;
  63static const struct inode_operations btrfs_symlink_inode_operations;
  64static const struct inode_operations btrfs_dir_ro_inode_operations;
  65static const struct inode_operations btrfs_special_inode_operations;
  66static const struct inode_operations btrfs_file_inode_operations;
  67static const struct address_space_operations btrfs_aops;
  68static const struct file_operations btrfs_dir_file_operations;
  69static const struct extent_io_ops btrfs_extent_io_ops;
  70
  71static struct kmem_cache *btrfs_inode_cachep;
  72struct kmem_cache *btrfs_trans_handle_cachep;
  73struct kmem_cache *btrfs_path_cachep;
  74struct kmem_cache *btrfs_free_space_cachep;
  75
  76#define S_SHIFT 12
  77static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  78        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  79        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  80        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  81        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  82        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  83        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  84        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  85};
  86
  87static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  88static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  89static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  90static noinline int cow_file_range(struct inode *inode,
  91                                   struct page *locked_page,
  92                                   u64 start, u64 end, u64 delalloc_end,
  93                                   int *page_started, unsigned long *nr_written,
  94                                   int unlock, struct btrfs_dedupe_hash *hash);
  95static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
  96                                       u64 orig_start, u64 block_start,
  97                                       u64 block_len, u64 orig_block_len,
  98                                       u64 ram_bytes, int compress_type,
  99                                       int type);
 100
 101static void __endio_write_update_ordered(struct inode *inode,
 102                                         const u64 offset, const u64 bytes,
 103                                         const bool uptodate);
 104
 105/*
 106 * Cleanup all submitted ordered extents in specified range to handle errors
 107 * from the btrfs_run_delalloc_range() callback.
 108 *
 109 * NOTE: caller must ensure that when an error happens, it can not call
 110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 112 * to be released, which we want to happen only when finishing the ordered
 113 * extent (btrfs_finish_ordered_io()).
 114 */
 115static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
 116                                                 struct page *locked_page,
 117                                                 u64 offset, u64 bytes)
 118{
 119        unsigned long index = offset >> PAGE_SHIFT;
 120        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 121        u64 page_start = page_offset(locked_page);
 122        u64 page_end = page_start + PAGE_SIZE - 1;
 123
 124        struct page *page;
 125
 126        while (index <= end_index) {
 127                page = find_get_page(inode->i_mapping, index);
 128                index++;
 129                if (!page)
 130                        continue;
 131                ClearPagePrivate2(page);
 132                put_page(page);
 133        }
 134
 135        /*
 136         * In case this page belongs to the delalloc range being instantiated
 137         * then skip it, since the first page of a range is going to be
 138         * properly cleaned up by the caller of run_delalloc_range
 139         */
 140        if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 141                offset += PAGE_SIZE;
 142                bytes -= PAGE_SIZE;
 143        }
 144
 145        return __endio_write_update_ordered(inode, offset, bytes, false);
 146}
 147
 148static int btrfs_dirty_inode(struct inode *inode);
 149
 150#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 151void btrfs_test_inode_set_ops(struct inode *inode)
 152{
 153        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
 154}
 155#endif
 156
 157static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 158                                     struct inode *inode,  struct inode *dir,
 159                                     const struct qstr *qstr)
 160{
 161        int err;
 162
 163        err = btrfs_init_acl(trans, inode, dir);
 164        if (!err)
 165                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 166        return err;
 167}
 168
 169/*
 170 * this does all the hard work for inserting an inline extent into
 171 * the btree.  The caller should have done a btrfs_drop_extents so that
 172 * no overlapping inline items exist in the btree
 173 */
 174static int insert_inline_extent(struct btrfs_trans_handle *trans,
 175                                struct btrfs_path *path, int extent_inserted,
 176                                struct btrfs_root *root, struct inode *inode,
 177                                u64 start, size_t size, size_t compressed_size,
 178                                int compress_type,
 179                                struct page **compressed_pages)
 180{
 181        struct extent_buffer *leaf;
 182        struct page *page = NULL;
 183        char *kaddr;
 184        unsigned long ptr;
 185        struct btrfs_file_extent_item *ei;
 186        int ret;
 187        size_t cur_size = size;
 188        unsigned long offset;
 189
 190        if (compressed_size && compressed_pages)
 191                cur_size = compressed_size;
 192
 193        inode_add_bytes(inode, size);
 194
 195        if (!extent_inserted) {
 196                struct btrfs_key key;
 197                size_t datasize;
 198
 199                key.objectid = btrfs_ino(BTRFS_I(inode));
 200                key.offset = start;
 201                key.type = BTRFS_EXTENT_DATA_KEY;
 202
 203                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 204                path->leave_spinning = 1;
 205                ret = btrfs_insert_empty_item(trans, root, path, &key,
 206                                              datasize);
 207                if (ret)
 208                        goto fail;
 209        }
 210        leaf = path->nodes[0];
 211        ei = btrfs_item_ptr(leaf, path->slots[0],
 212                            struct btrfs_file_extent_item);
 213        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 214        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 215        btrfs_set_file_extent_encryption(leaf, ei, 0);
 216        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 217        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 218        ptr = btrfs_file_extent_inline_start(ei);
 219
 220        if (compress_type != BTRFS_COMPRESS_NONE) {
 221                struct page *cpage;
 222                int i = 0;
 223                while (compressed_size > 0) {
 224                        cpage = compressed_pages[i];
 225                        cur_size = min_t(unsigned long, compressed_size,
 226                                       PAGE_SIZE);
 227
 228                        kaddr = kmap_atomic(cpage);
 229                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 230                        kunmap_atomic(kaddr);
 231
 232                        i++;
 233                        ptr += cur_size;
 234                        compressed_size -= cur_size;
 235                }
 236                btrfs_set_file_extent_compression(leaf, ei,
 237                                                  compress_type);
 238        } else {
 239                page = find_get_page(inode->i_mapping,
 240                                     start >> PAGE_SHIFT);
 241                btrfs_set_file_extent_compression(leaf, ei, 0);
 242                kaddr = kmap_atomic(page);
 243                offset = offset_in_page(start);
 244                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 245                kunmap_atomic(kaddr);
 246                put_page(page);
 247        }
 248        btrfs_mark_buffer_dirty(leaf);
 249        btrfs_release_path(path);
 250
 251        /*
 252         * we're an inline extent, so nobody can
 253         * extend the file past i_size without locking
 254         * a page we already have locked.
 255         *
 256         * We must do any isize and inode updates
 257         * before we unlock the pages.  Otherwise we
 258         * could end up racing with unlink.
 259         */
 260        BTRFS_I(inode)->disk_i_size = inode->i_size;
 261        ret = btrfs_update_inode(trans, root, inode);
 262
 263fail:
 264        return ret;
 265}
 266
 267
 268/*
 269 * conditionally insert an inline extent into the file.  This
 270 * does the checks required to make sure the data is small enough
 271 * to fit as an inline extent.
 272 */
 273static noinline int cow_file_range_inline(struct inode *inode, u64 start,
 274                                          u64 end, size_t compressed_size,
 275                                          int compress_type,
 276                                          struct page **compressed_pages)
 277{
 278        struct btrfs_root *root = BTRFS_I(inode)->root;
 279        struct btrfs_fs_info *fs_info = root->fs_info;
 280        struct btrfs_trans_handle *trans;
 281        u64 isize = i_size_read(inode);
 282        u64 actual_end = min(end + 1, isize);
 283        u64 inline_len = actual_end - start;
 284        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 285        u64 data_len = inline_len;
 286        int ret;
 287        struct btrfs_path *path;
 288        int extent_inserted = 0;
 289        u32 extent_item_size;
 290
 291        if (compressed_size)
 292                data_len = compressed_size;
 293
 294        if (start > 0 ||
 295            actual_end > fs_info->sectorsize ||
 296            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 297            (!compressed_size &&
 298            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 299            end + 1 < isize ||
 300            data_len > fs_info->max_inline) {
 301                return 1;
 302        }
 303
 304        path = btrfs_alloc_path();
 305        if (!path)
 306                return -ENOMEM;
 307
 308        trans = btrfs_join_transaction(root);
 309        if (IS_ERR(trans)) {
 310                btrfs_free_path(path);
 311                return PTR_ERR(trans);
 312        }
 313        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
 314
 315        if (compressed_size && compressed_pages)
 316                extent_item_size = btrfs_file_extent_calc_inline_size(
 317                   compressed_size);
 318        else
 319                extent_item_size = btrfs_file_extent_calc_inline_size(
 320                    inline_len);
 321
 322        ret = __btrfs_drop_extents(trans, root, inode, path,
 323                                   start, aligned_end, NULL,
 324                                   1, 1, extent_item_size, &extent_inserted);
 325        if (ret) {
 326                btrfs_abort_transaction(trans, ret);
 327                goto out;
 328        }
 329
 330        if (isize > actual_end)
 331                inline_len = min_t(u64, isize, actual_end);
 332        ret = insert_inline_extent(trans, path, extent_inserted,
 333                                   root, inode, start,
 334                                   inline_len, compressed_size,
 335                                   compress_type, compressed_pages);
 336        if (ret && ret != -ENOSPC) {
 337                btrfs_abort_transaction(trans, ret);
 338                goto out;
 339        } else if (ret == -ENOSPC) {
 340                ret = 1;
 341                goto out;
 342        }
 343
 344        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 345        btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
 346out:
 347        /*
 348         * Don't forget to free the reserved space, as for inlined extent
 349         * it won't count as data extent, free them directly here.
 350         * And at reserve time, it's always aligned to page size, so
 351         * just free one page here.
 352         */
 353        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 354        btrfs_free_path(path);
 355        btrfs_end_transaction(trans);
 356        return ret;
 357}
 358
 359struct async_extent {
 360        u64 start;
 361        u64 ram_size;
 362        u64 compressed_size;
 363        struct page **pages;
 364        unsigned long nr_pages;
 365        int compress_type;
 366        struct list_head list;
 367};
 368
 369struct async_cow {
 370        struct inode *inode;
 371        struct btrfs_fs_info *fs_info;
 372        struct page *locked_page;
 373        u64 start;
 374        u64 end;
 375        unsigned int write_flags;
 376        struct list_head extents;
 377        struct btrfs_work work;
 378};
 379
 380static noinline int add_async_extent(struct async_cow *cow,
 381                                     u64 start, u64 ram_size,
 382                                     u64 compressed_size,
 383                                     struct page **pages,
 384                                     unsigned long nr_pages,
 385                                     int compress_type)
 386{
 387        struct async_extent *async_extent;
 388
 389        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 390        BUG_ON(!async_extent); /* -ENOMEM */
 391        async_extent->start = start;
 392        async_extent->ram_size = ram_size;
 393        async_extent->compressed_size = compressed_size;
 394        async_extent->pages = pages;
 395        async_extent->nr_pages = nr_pages;
 396        async_extent->compress_type = compress_type;
 397        list_add_tail(&async_extent->list, &cow->extents);
 398        return 0;
 399}
 400
 401static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
 402{
 403        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 404
 405        /* force compress */
 406        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 407                return 1;
 408        /* defrag ioctl */
 409        if (BTRFS_I(inode)->defrag_compress)
 410                return 1;
 411        /* bad compression ratios */
 412        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
 413                return 0;
 414        if (btrfs_test_opt(fs_info, COMPRESS) ||
 415            BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
 416            BTRFS_I(inode)->prop_compress)
 417                return btrfs_compress_heuristic(inode, start, end);
 418        return 0;
 419}
 420
 421static inline void inode_should_defrag(struct btrfs_inode *inode,
 422                u64 start, u64 end, u64 num_bytes, u64 small_write)
 423{
 424        /* If this is a small write inside eof, kick off a defrag */
 425        if (num_bytes < small_write &&
 426            (start > 0 || end + 1 < inode->disk_i_size))
 427                btrfs_add_inode_defrag(NULL, inode);
 428}
 429
 430/*
 431 * we create compressed extents in two phases.  The first
 432 * phase compresses a range of pages that have already been
 433 * locked (both pages and state bits are locked).
 434 *
 435 * This is done inside an ordered work queue, and the compression
 436 * is spread across many cpus.  The actual IO submission is step
 437 * two, and the ordered work queue takes care of making sure that
 438 * happens in the same order things were put onto the queue by
 439 * writepages and friends.
 440 *
 441 * If this code finds it can't get good compression, it puts an
 442 * entry onto the work queue to write the uncompressed bytes.  This
 443 * makes sure that both compressed inodes and uncompressed inodes
 444 * are written in the same order that the flusher thread sent them
 445 * down.
 446 */
 447static noinline void compress_file_range(struct inode *inode,
 448                                        struct page *locked_page,
 449                                        u64 start, u64 end,
 450                                        struct async_cow *async_cow,
 451                                        int *num_added)
 452{
 453        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 454        u64 blocksize = fs_info->sectorsize;
 455        u64 actual_end;
 456        int ret = 0;
 457        struct page **pages = NULL;
 458        unsigned long nr_pages;
 459        unsigned long total_compressed = 0;
 460        unsigned long total_in = 0;
 461        int i;
 462        int will_compress;
 463        int compress_type = fs_info->compress_type;
 464        int redirty = 0;
 465
 466        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 467                        SZ_16K);
 468
 469        actual_end = min_t(u64, i_size_read(inode), end + 1);
 470again:
 471        will_compress = 0;
 472        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 473        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 474        nr_pages = min_t(unsigned long, nr_pages,
 475                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 476
 477        /*
 478         * we don't want to send crud past the end of i_size through
 479         * compression, that's just a waste of CPU time.  So, if the
 480         * end of the file is before the start of our current
 481         * requested range of bytes, we bail out to the uncompressed
 482         * cleanup code that can deal with all of this.
 483         *
 484         * It isn't really the fastest way to fix things, but this is a
 485         * very uncommon corner.
 486         */
 487        if (actual_end <= start)
 488                goto cleanup_and_bail_uncompressed;
 489
 490        total_compressed = actual_end - start;
 491
 492        /*
 493         * skip compression for a small file range(<=blocksize) that
 494         * isn't an inline extent, since it doesn't save disk space at all.
 495         */
 496        if (total_compressed <= blocksize &&
 497           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 498                goto cleanup_and_bail_uncompressed;
 499
 500        total_compressed = min_t(unsigned long, total_compressed,
 501                        BTRFS_MAX_UNCOMPRESSED);
 502        total_in = 0;
 503        ret = 0;
 504
 505        /*
 506         * we do compression for mount -o compress and when the
 507         * inode has not been flagged as nocompress.  This flag can
 508         * change at any time if we discover bad compression ratios.
 509         */
 510        if (inode_need_compress(inode, start, end)) {
 511                WARN_ON(pages);
 512                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 513                if (!pages) {
 514                        /* just bail out to the uncompressed code */
 515                        nr_pages = 0;
 516                        goto cont;
 517                }
 518
 519                if (BTRFS_I(inode)->defrag_compress)
 520                        compress_type = BTRFS_I(inode)->defrag_compress;
 521                else if (BTRFS_I(inode)->prop_compress)
 522                        compress_type = BTRFS_I(inode)->prop_compress;
 523
 524                /*
 525                 * we need to call clear_page_dirty_for_io on each
 526                 * page in the range.  Otherwise applications with the file
 527                 * mmap'd can wander in and change the page contents while
 528                 * we are compressing them.
 529                 *
 530                 * If the compression fails for any reason, we set the pages
 531                 * dirty again later on.
 532                 *
 533                 * Note that the remaining part is redirtied, the start pointer
 534                 * has moved, the end is the original one.
 535                 */
 536                if (!redirty) {
 537                        extent_range_clear_dirty_for_io(inode, start, end);
 538                        redirty = 1;
 539                }
 540
 541                /* Compression level is applied here and only here */
 542                ret = btrfs_compress_pages(
 543                        compress_type | (fs_info->compress_level << 4),
 544                                           inode->i_mapping, start,
 545                                           pages,
 546                                           &nr_pages,
 547                                           &total_in,
 548                                           &total_compressed);
 549
 550                if (!ret) {
 551                        unsigned long offset = offset_in_page(total_compressed);
 552                        struct page *page = pages[nr_pages - 1];
 553                        char *kaddr;
 554
 555                        /* zero the tail end of the last page, we might be
 556                         * sending it down to disk
 557                         */
 558                        if (offset) {
 559                                kaddr = kmap_atomic(page);
 560                                memset(kaddr + offset, 0,
 561                                       PAGE_SIZE - offset);
 562                                kunmap_atomic(kaddr);
 563                        }
 564                        will_compress = 1;
 565                }
 566        }
 567cont:
 568        if (start == 0) {
 569                /* lets try to make an inline extent */
 570                if (ret || total_in < actual_end) {
 571                        /* we didn't compress the entire range, try
 572                         * to make an uncompressed inline extent.
 573                         */
 574                        ret = cow_file_range_inline(inode, start, end, 0,
 575                                                    BTRFS_COMPRESS_NONE, NULL);
 576                } else {
 577                        /* try making a compressed inline extent */
 578                        ret = cow_file_range_inline(inode, start, end,
 579                                                    total_compressed,
 580                                                    compress_type, pages);
 581                }
 582                if (ret <= 0) {
 583                        unsigned long clear_flags = EXTENT_DELALLOC |
 584                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 585                                EXTENT_DO_ACCOUNTING;
 586                        unsigned long page_error_op;
 587
 588                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 589
 590                        /*
 591                         * inline extent creation worked or returned error,
 592                         * we don't need to create any more async work items.
 593                         * Unlock and free up our temp pages.
 594                         *
 595                         * We use DO_ACCOUNTING here because we need the
 596                         * delalloc_release_metadata to be done _after_ we drop
 597                         * our outstanding extent for clearing delalloc for this
 598                         * range.
 599                         */
 600                        extent_clear_unlock_delalloc(inode, start, end, end,
 601                                                     NULL, clear_flags,
 602                                                     PAGE_UNLOCK |
 603                                                     PAGE_CLEAR_DIRTY |
 604                                                     PAGE_SET_WRITEBACK |
 605                                                     page_error_op |
 606                                                     PAGE_END_WRITEBACK);
 607                        goto free_pages_out;
 608                }
 609        }
 610
 611        if (will_compress) {
 612                /*
 613                 * we aren't doing an inline extent round the compressed size
 614                 * up to a block size boundary so the allocator does sane
 615                 * things
 616                 */
 617                total_compressed = ALIGN(total_compressed, blocksize);
 618
 619                /*
 620                 * one last check to make sure the compression is really a
 621                 * win, compare the page count read with the blocks on disk,
 622                 * compression must free at least one sector size
 623                 */
 624                total_in = ALIGN(total_in, PAGE_SIZE);
 625                if (total_compressed + blocksize <= total_in) {
 626                        *num_added += 1;
 627
 628                        /*
 629                         * The async work queues will take care of doing actual
 630                         * allocation on disk for these compressed pages, and
 631                         * will submit them to the elevator.
 632                         */
 633                        add_async_extent(async_cow, start, total_in,
 634                                        total_compressed, pages, nr_pages,
 635                                        compress_type);
 636
 637                        if (start + total_in < end) {
 638                                start += total_in;
 639                                pages = NULL;
 640                                cond_resched();
 641                                goto again;
 642                        }
 643                        return;
 644                }
 645        }
 646        if (pages) {
 647                /*
 648                 * the compression code ran but failed to make things smaller,
 649                 * free any pages it allocated and our page pointer array
 650                 */
 651                for (i = 0; i < nr_pages; i++) {
 652                        WARN_ON(pages[i]->mapping);
 653                        put_page(pages[i]);
 654                }
 655                kfree(pages);
 656                pages = NULL;
 657                total_compressed = 0;
 658                nr_pages = 0;
 659
 660                /* flag the file so we don't compress in the future */
 661                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 662                    !(BTRFS_I(inode)->prop_compress)) {
 663                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 664                }
 665        }
 666cleanup_and_bail_uncompressed:
 667        /*
 668         * No compression, but we still need to write the pages in the file
 669         * we've been given so far.  redirty the locked page if it corresponds
 670         * to our extent and set things up for the async work queue to run
 671         * cow_file_range to do the normal delalloc dance.
 672         */
 673        if (page_offset(locked_page) >= start &&
 674            page_offset(locked_page) <= end)
 675                __set_page_dirty_nobuffers(locked_page);
 676                /* unlocked later on in the async handlers */
 677
 678        if (redirty)
 679                extent_range_redirty_for_io(inode, start, end);
 680        add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
 681                         BTRFS_COMPRESS_NONE);
 682        *num_added += 1;
 683
 684        return;
 685
 686free_pages_out:
 687        for (i = 0; i < nr_pages; i++) {
 688                WARN_ON(pages[i]->mapping);
 689                put_page(pages[i]);
 690        }
 691        kfree(pages);
 692}
 693
 694static void free_async_extent_pages(struct async_extent *async_extent)
 695{
 696        int i;
 697
 698        if (!async_extent->pages)
 699                return;
 700
 701        for (i = 0; i < async_extent->nr_pages; i++) {
 702                WARN_ON(async_extent->pages[i]->mapping);
 703                put_page(async_extent->pages[i]);
 704        }
 705        kfree(async_extent->pages);
 706        async_extent->nr_pages = 0;
 707        async_extent->pages = NULL;
 708}
 709
 710/*
 711 * phase two of compressed writeback.  This is the ordered portion
 712 * of the code, which only gets called in the order the work was
 713 * queued.  We walk all the async extents created by compress_file_range
 714 * and send them down to the disk.
 715 */
 716static noinline void submit_compressed_extents(struct async_cow *async_cow)
 717{
 718        struct inode *inode = async_cow->inode;
 719        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 720        struct async_extent *async_extent;
 721        u64 alloc_hint = 0;
 722        struct btrfs_key ins;
 723        struct extent_map *em;
 724        struct btrfs_root *root = BTRFS_I(inode)->root;
 725        struct extent_io_tree *io_tree;
 726        int ret = 0;
 727
 728again:
 729        while (!list_empty(&async_cow->extents)) {
 730                async_extent = list_entry(async_cow->extents.next,
 731                                          struct async_extent, list);
 732                list_del(&async_extent->list);
 733
 734                io_tree = &BTRFS_I(inode)->io_tree;
 735
 736retry:
 737                /* did the compression code fall back to uncompressed IO? */
 738                if (!async_extent->pages) {
 739                        int page_started = 0;
 740                        unsigned long nr_written = 0;
 741
 742                        lock_extent(io_tree, async_extent->start,
 743                                         async_extent->start +
 744                                         async_extent->ram_size - 1);
 745
 746                        /* allocate blocks */
 747                        ret = cow_file_range(inode, async_cow->locked_page,
 748                                             async_extent->start,
 749                                             async_extent->start +
 750                                             async_extent->ram_size - 1,
 751                                             async_extent->start +
 752                                             async_extent->ram_size - 1,
 753                                             &page_started, &nr_written, 0,
 754                                             NULL);
 755
 756                        /* JDM XXX */
 757
 758                        /*
 759                         * if page_started, cow_file_range inserted an
 760                         * inline extent and took care of all the unlocking
 761                         * and IO for us.  Otherwise, we need to submit
 762                         * all those pages down to the drive.
 763                         */
 764                        if (!page_started && !ret)
 765                                extent_write_locked_range(inode,
 766                                                  async_extent->start,
 767                                                  async_extent->start +
 768                                                  async_extent->ram_size - 1,
 769                                                  WB_SYNC_ALL);
 770                        else if (ret)
 771                                unlock_page(async_cow->locked_page);
 772                        kfree(async_extent);
 773                        cond_resched();
 774                        continue;
 775                }
 776
 777                lock_extent(io_tree, async_extent->start,
 778                            async_extent->start + async_extent->ram_size - 1);
 779
 780                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 781                                           async_extent->compressed_size,
 782                                           async_extent->compressed_size,
 783                                           0, alloc_hint, &ins, 1, 1);
 784                if (ret) {
 785                        free_async_extent_pages(async_extent);
 786
 787                        if (ret == -ENOSPC) {
 788                                unlock_extent(io_tree, async_extent->start,
 789                                              async_extent->start +
 790                                              async_extent->ram_size - 1);
 791
 792                                /*
 793                                 * we need to redirty the pages if we decide to
 794                                 * fallback to uncompressed IO, otherwise we
 795                                 * will not submit these pages down to lower
 796                                 * layers.
 797                                 */
 798                                extent_range_redirty_for_io(inode,
 799                                                async_extent->start,
 800                                                async_extent->start +
 801                                                async_extent->ram_size - 1);
 802
 803                                goto retry;
 804                        }
 805                        goto out_free;
 806                }
 807                /*
 808                 * here we're doing allocation and writeback of the
 809                 * compressed pages
 810                 */
 811                em = create_io_em(inode, async_extent->start,
 812                                  async_extent->ram_size, /* len */
 813                                  async_extent->start, /* orig_start */
 814                                  ins.objectid, /* block_start */
 815                                  ins.offset, /* block_len */
 816                                  ins.offset, /* orig_block_len */
 817                                  async_extent->ram_size, /* ram_bytes */
 818                                  async_extent->compress_type,
 819                                  BTRFS_ORDERED_COMPRESSED);
 820                if (IS_ERR(em))
 821                        /* ret value is not necessary due to void function */
 822                        goto out_free_reserve;
 823                free_extent_map(em);
 824
 825                ret = btrfs_add_ordered_extent_compress(inode,
 826                                                async_extent->start,
 827                                                ins.objectid,
 828                                                async_extent->ram_size,
 829                                                ins.offset,
 830                                                BTRFS_ORDERED_COMPRESSED,
 831                                                async_extent->compress_type);
 832                if (ret) {
 833                        btrfs_drop_extent_cache(BTRFS_I(inode),
 834                                                async_extent->start,
 835                                                async_extent->start +
 836                                                async_extent->ram_size - 1, 0);
 837                        goto out_free_reserve;
 838                }
 839                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 840
 841                /*
 842                 * clear dirty, set writeback and unlock the pages.
 843                 */
 844                extent_clear_unlock_delalloc(inode, async_extent->start,
 845                                async_extent->start +
 846                                async_extent->ram_size - 1,
 847                                async_extent->start +
 848                                async_extent->ram_size - 1,
 849                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 850                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 851                                PAGE_SET_WRITEBACK);
 852                if (btrfs_submit_compressed_write(inode,
 853                                    async_extent->start,
 854                                    async_extent->ram_size,
 855                                    ins.objectid,
 856                                    ins.offset, async_extent->pages,
 857                                    async_extent->nr_pages,
 858                                    async_cow->write_flags)) {
 859                        struct page *p = async_extent->pages[0];
 860                        const u64 start = async_extent->start;
 861                        const u64 end = start + async_extent->ram_size - 1;
 862
 863                        p->mapping = inode->i_mapping;
 864                        btrfs_writepage_endio_finish_ordered(p, start, end, 0);
 865
 866                        p->mapping = NULL;
 867                        extent_clear_unlock_delalloc(inode, start, end, end,
 868                                                     NULL, 0,
 869                                                     PAGE_END_WRITEBACK |
 870                                                     PAGE_SET_ERROR);
 871                        free_async_extent_pages(async_extent);
 872                }
 873                alloc_hint = ins.objectid + ins.offset;
 874                kfree(async_extent);
 875                cond_resched();
 876        }
 877        return;
 878out_free_reserve:
 879        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 880        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 881out_free:
 882        extent_clear_unlock_delalloc(inode, async_extent->start,
 883                                     async_extent->start +
 884                                     async_extent->ram_size - 1,
 885                                     async_extent->start +
 886                                     async_extent->ram_size - 1,
 887                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 888                                     EXTENT_DELALLOC_NEW |
 889                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 890                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 891                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
 892                                     PAGE_SET_ERROR);
 893        free_async_extent_pages(async_extent);
 894        kfree(async_extent);
 895        goto again;
 896}
 897
 898static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 899                                      u64 num_bytes)
 900{
 901        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 902        struct extent_map *em;
 903        u64 alloc_hint = 0;
 904
 905        read_lock(&em_tree->lock);
 906        em = search_extent_mapping(em_tree, start, num_bytes);
 907        if (em) {
 908                /*
 909                 * if block start isn't an actual block number then find the
 910                 * first block in this inode and use that as a hint.  If that
 911                 * block is also bogus then just don't worry about it.
 912                 */
 913                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 914                        free_extent_map(em);
 915                        em = search_extent_mapping(em_tree, 0, 0);
 916                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 917                                alloc_hint = em->block_start;
 918                        if (em)
 919                                free_extent_map(em);
 920                } else {
 921                        alloc_hint = em->block_start;
 922                        free_extent_map(em);
 923                }
 924        }
 925        read_unlock(&em_tree->lock);
 926
 927        return alloc_hint;
 928}
 929
 930/*
 931 * when extent_io.c finds a delayed allocation range in the file,
 932 * the call backs end up in this code.  The basic idea is to
 933 * allocate extents on disk for the range, and create ordered data structs
 934 * in ram to track those extents.
 935 *
 936 * locked_page is the page that writepage had locked already.  We use
 937 * it to make sure we don't do extra locks or unlocks.
 938 *
 939 * *page_started is set to one if we unlock locked_page and do everything
 940 * required to start IO on it.  It may be clean and already done with
 941 * IO when we return.
 942 */
 943static noinline int cow_file_range(struct inode *inode,
 944                                   struct page *locked_page,
 945                                   u64 start, u64 end, u64 delalloc_end,
 946                                   int *page_started, unsigned long *nr_written,
 947                                   int unlock, struct btrfs_dedupe_hash *hash)
 948{
 949        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 950        struct btrfs_root *root = BTRFS_I(inode)->root;
 951        u64 alloc_hint = 0;
 952        u64 num_bytes;
 953        unsigned long ram_size;
 954        u64 cur_alloc_size = 0;
 955        u64 blocksize = fs_info->sectorsize;
 956        struct btrfs_key ins;
 957        struct extent_map *em;
 958        unsigned clear_bits;
 959        unsigned long page_ops;
 960        bool extent_reserved = false;
 961        int ret = 0;
 962
 963        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 964                WARN_ON_ONCE(1);
 965                ret = -EINVAL;
 966                goto out_unlock;
 967        }
 968
 969        num_bytes = ALIGN(end - start + 1, blocksize);
 970        num_bytes = max(blocksize,  num_bytes);
 971        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
 972
 973        inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
 974
 975        if (start == 0) {
 976                /* lets try to make an inline extent */
 977                ret = cow_file_range_inline(inode, start, end, 0,
 978                                            BTRFS_COMPRESS_NONE, NULL);
 979                if (ret == 0) {
 980                        /*
 981                         * We use DO_ACCOUNTING here because we need the
 982                         * delalloc_release_metadata to be run _after_ we drop
 983                         * our outstanding extent for clearing delalloc for this
 984                         * range.
 985                         */
 986                        extent_clear_unlock_delalloc(inode, start, end,
 987                                     delalloc_end, NULL,
 988                                     EXTENT_LOCKED | EXTENT_DELALLOC |
 989                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 990                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
 991                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
 992                                     PAGE_END_WRITEBACK);
 993                        *nr_written = *nr_written +
 994                             (end - start + PAGE_SIZE) / PAGE_SIZE;
 995                        *page_started = 1;
 996                        goto out;
 997                } else if (ret < 0) {
 998                        goto out_unlock;
 999                }
1000        }
1001
1002        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1003        btrfs_drop_extent_cache(BTRFS_I(inode), start,
1004                        start + num_bytes - 1, 0);
1005
1006        while (num_bytes > 0) {
1007                cur_alloc_size = num_bytes;
1008                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1009                                           fs_info->sectorsize, 0, alloc_hint,
1010                                           &ins, 1, 1);
1011                if (ret < 0)
1012                        goto out_unlock;
1013                cur_alloc_size = ins.offset;
1014                extent_reserved = true;
1015
1016                ram_size = ins.offset;
1017                em = create_io_em(inode, start, ins.offset, /* len */
1018                                  start, /* orig_start */
1019                                  ins.objectid, /* block_start */
1020                                  ins.offset, /* block_len */
1021                                  ins.offset, /* orig_block_len */
1022                                  ram_size, /* ram_bytes */
1023                                  BTRFS_COMPRESS_NONE, /* compress_type */
1024                                  BTRFS_ORDERED_REGULAR /* type */);
1025                if (IS_ERR(em)) {
1026                        ret = PTR_ERR(em);
1027                        goto out_reserve;
1028                }
1029                free_extent_map(em);
1030
1031                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1032                                               ram_size, cur_alloc_size, 0);
1033                if (ret)
1034                        goto out_drop_extent_cache;
1035
1036                if (root->root_key.objectid ==
1037                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1038                        ret = btrfs_reloc_clone_csums(inode, start,
1039                                                      cur_alloc_size);
1040                        /*
1041                         * Only drop cache here, and process as normal.
1042                         *
1043                         * We must not allow extent_clear_unlock_delalloc()
1044                         * at out_unlock label to free meta of this ordered
1045                         * extent, as its meta should be freed by
1046                         * btrfs_finish_ordered_io().
1047                         *
1048                         * So we must continue until @start is increased to
1049                         * skip current ordered extent.
1050                         */
1051                        if (ret)
1052                                btrfs_drop_extent_cache(BTRFS_I(inode), start,
1053                                                start + ram_size - 1, 0);
1054                }
1055
1056                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1057
1058                /* we're not doing compressed IO, don't unlock the first
1059                 * page (which the caller expects to stay locked), don't
1060                 * clear any dirty bits and don't set any writeback bits
1061                 *
1062                 * Do set the Private2 bit so we know this page was properly
1063                 * setup for writepage
1064                 */
1065                page_ops = unlock ? PAGE_UNLOCK : 0;
1066                page_ops |= PAGE_SET_PRIVATE2;
1067
1068                extent_clear_unlock_delalloc(inode, start,
1069                                             start + ram_size - 1,
1070                                             delalloc_end, locked_page,
1071                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1072                                             page_ops);
1073                if (num_bytes < cur_alloc_size)
1074                        num_bytes = 0;
1075                else
1076                        num_bytes -= cur_alloc_size;
1077                alloc_hint = ins.objectid + ins.offset;
1078                start += cur_alloc_size;
1079                extent_reserved = false;
1080
1081                /*
1082                 * btrfs_reloc_clone_csums() error, since start is increased
1083                 * extent_clear_unlock_delalloc() at out_unlock label won't
1084                 * free metadata of current ordered extent, we're OK to exit.
1085                 */
1086                if (ret)
1087                        goto out_unlock;
1088        }
1089out:
1090        return ret;
1091
1092out_drop_extent_cache:
1093        btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1094out_reserve:
1095        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1096        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1097out_unlock:
1098        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1099                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1100        page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1101                PAGE_END_WRITEBACK;
1102        /*
1103         * If we reserved an extent for our delalloc range (or a subrange) and
1104         * failed to create the respective ordered extent, then it means that
1105         * when we reserved the extent we decremented the extent's size from
1106         * the data space_info's bytes_may_use counter and incremented the
1107         * space_info's bytes_reserved counter by the same amount. We must make
1108         * sure extent_clear_unlock_delalloc() does not try to decrement again
1109         * the data space_info's bytes_may_use counter, therefore we do not pass
1110         * it the flag EXTENT_CLEAR_DATA_RESV.
1111         */
1112        if (extent_reserved) {
1113                extent_clear_unlock_delalloc(inode, start,
1114                                             start + cur_alloc_size,
1115                                             start + cur_alloc_size,
1116                                             locked_page,
1117                                             clear_bits,
1118                                             page_ops);
1119                start += cur_alloc_size;
1120                if (start >= end)
1121                        goto out;
1122        }
1123        extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1124                                     locked_page,
1125                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1126                                     page_ops);
1127        goto out;
1128}
1129
1130/*
1131 * work queue call back to started compression on a file and pages
1132 */
1133static noinline void async_cow_start(struct btrfs_work *work)
1134{
1135        struct async_cow *async_cow;
1136        int num_added = 0;
1137        async_cow = container_of(work, struct async_cow, work);
1138
1139        compress_file_range(async_cow->inode, async_cow->locked_page,
1140                            async_cow->start, async_cow->end, async_cow,
1141                            &num_added);
1142        if (num_added == 0) {
1143                btrfs_add_delayed_iput(async_cow->inode);
1144                async_cow->inode = NULL;
1145        }
1146}
1147
1148/*
1149 * work queue call back to submit previously compressed pages
1150 */
1151static noinline void async_cow_submit(struct btrfs_work *work)
1152{
1153        struct btrfs_fs_info *fs_info;
1154        struct async_cow *async_cow;
1155        unsigned long nr_pages;
1156
1157        async_cow = container_of(work, struct async_cow, work);
1158
1159        fs_info = async_cow->fs_info;
1160        nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1161                PAGE_SHIFT;
1162
1163        /* atomic_sub_return implies a barrier */
1164        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1165            5 * SZ_1M)
1166                cond_wake_up_nomb(&fs_info->async_submit_wait);
1167
1168        /*
1169         * ->inode could be NULL if async_cow_start has failed to compress,
1170         * in which case we don't have anything to submit, yet we need to
1171         * always adjust ->async_delalloc_pages as its paired with the init
1172         * happening in cow_file_range_async
1173         */
1174        if (async_cow->inode)
1175                submit_compressed_extents(async_cow);
1176}
1177
1178static noinline void async_cow_free(struct btrfs_work *work)
1179{
1180        struct async_cow *async_cow;
1181        async_cow = container_of(work, struct async_cow, work);
1182        if (async_cow->inode)
1183                btrfs_add_delayed_iput(async_cow->inode);
1184        kfree(async_cow);
1185}
1186
1187static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1188                                u64 start, u64 end, int *page_started,
1189                                unsigned long *nr_written,
1190                                unsigned int write_flags)
1191{
1192        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1193        struct async_cow *async_cow;
1194        unsigned long nr_pages;
1195        u64 cur_end;
1196
1197        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1198                         1, 0, NULL);
1199        while (start < end) {
1200                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1201                BUG_ON(!async_cow); /* -ENOMEM */
1202                /*
1203                 * igrab is called higher up in the call chain, take only the
1204                 * lightweight reference for the callback lifetime
1205                 */
1206                ihold(inode);
1207                async_cow->inode = inode;
1208                async_cow->fs_info = fs_info;
1209                async_cow->locked_page = locked_page;
1210                async_cow->start = start;
1211                async_cow->write_flags = write_flags;
1212
1213                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1214                    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1215                        cur_end = end;
1216                else
1217                        cur_end = min(end, start + SZ_512K - 1);
1218
1219                async_cow->end = cur_end;
1220                INIT_LIST_HEAD(&async_cow->extents);
1221
1222                btrfs_init_work(&async_cow->work,
1223                                btrfs_delalloc_helper,
1224                                async_cow_start, async_cow_submit,
1225                                async_cow_free);
1226
1227                nr_pages = (cur_end - start + PAGE_SIZE) >>
1228                        PAGE_SHIFT;
1229                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1230
1231                btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1232
1233                *nr_written += nr_pages;
1234                start = cur_end + 1;
1235        }
1236        *page_started = 1;
1237        return 0;
1238}
1239
1240static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1241                                        u64 bytenr, u64 num_bytes)
1242{
1243        int ret;
1244        struct btrfs_ordered_sum *sums;
1245        LIST_HEAD(list);
1246
1247        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1248                                       bytenr + num_bytes - 1, &list, 0);
1249        if (ret == 0 && list_empty(&list))
1250                return 0;
1251
1252        while (!list_empty(&list)) {
1253                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1254                list_del(&sums->list);
1255                kfree(sums);
1256        }
1257        if (ret < 0)
1258                return ret;
1259        return 1;
1260}
1261
1262/*
1263 * when nowcow writeback call back.  This checks for snapshots or COW copies
1264 * of the extents that exist in the file, and COWs the file as required.
1265 *
1266 * If no cow copies or snapshots exist, we write directly to the existing
1267 * blocks on disk
1268 */
1269static noinline int run_delalloc_nocow(struct inode *inode,
1270                                       struct page *locked_page,
1271                              u64 start, u64 end, int *page_started, int force,
1272                              unsigned long *nr_written)
1273{
1274        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1275        struct btrfs_root *root = BTRFS_I(inode)->root;
1276        struct extent_buffer *leaf;
1277        struct btrfs_path *path;
1278        struct btrfs_file_extent_item *fi;
1279        struct btrfs_key found_key;
1280        struct extent_map *em;
1281        u64 cow_start;
1282        u64 cur_offset;
1283        u64 extent_end;
1284        u64 extent_offset;
1285        u64 disk_bytenr;
1286        u64 num_bytes;
1287        u64 disk_num_bytes;
1288        u64 ram_bytes;
1289        int extent_type;
1290        int ret;
1291        int type;
1292        int nocow;
1293        int check_prev = 1;
1294        bool nolock;
1295        u64 ino = btrfs_ino(BTRFS_I(inode));
1296
1297        path = btrfs_alloc_path();
1298        if (!path) {
1299                extent_clear_unlock_delalloc(inode, start, end, end,
1300                                             locked_page,
1301                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1302                                             EXTENT_DO_ACCOUNTING |
1303                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1304                                             PAGE_CLEAR_DIRTY |
1305                                             PAGE_SET_WRITEBACK |
1306                                             PAGE_END_WRITEBACK);
1307                return -ENOMEM;
1308        }
1309
1310        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1311
1312        cow_start = (u64)-1;
1313        cur_offset = start;
1314        while (1) {
1315                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1316                                               cur_offset, 0);
1317                if (ret < 0)
1318                        goto error;
1319                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1320                        leaf = path->nodes[0];
1321                        btrfs_item_key_to_cpu(leaf, &found_key,
1322                                              path->slots[0] - 1);
1323                        if (found_key.objectid == ino &&
1324                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1325                                path->slots[0]--;
1326                }
1327                check_prev = 0;
1328next_slot:
1329                leaf = path->nodes[0];
1330                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1331                        ret = btrfs_next_leaf(root, path);
1332                        if (ret < 0) {
1333                                if (cow_start != (u64)-1)
1334                                        cur_offset = cow_start;
1335                                goto error;
1336                        }
1337                        if (ret > 0)
1338                                break;
1339                        leaf = path->nodes[0];
1340                }
1341
1342                nocow = 0;
1343                disk_bytenr = 0;
1344                num_bytes = 0;
1345                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1346
1347                if (found_key.objectid > ino)
1348                        break;
1349                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1350                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1351                        path->slots[0]++;
1352                        goto next_slot;
1353                }
1354                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1355                    found_key.offset > end)
1356                        break;
1357
1358                if (found_key.offset > cur_offset) {
1359                        extent_end = found_key.offset;
1360                        extent_type = 0;
1361                        goto out_check;
1362                }
1363
1364                fi = btrfs_item_ptr(leaf, path->slots[0],
1365                                    struct btrfs_file_extent_item);
1366                extent_type = btrfs_file_extent_type(leaf, fi);
1367
1368                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1369                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1370                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1371                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1372                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1373                        extent_end = found_key.offset +
1374                                btrfs_file_extent_num_bytes(leaf, fi);
1375                        disk_num_bytes =
1376                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1377                        if (extent_end <= start) {
1378                                path->slots[0]++;
1379                                goto next_slot;
1380                        }
1381                        if (disk_bytenr == 0)
1382                                goto out_check;
1383                        if (btrfs_file_extent_compression(leaf, fi) ||
1384                            btrfs_file_extent_encryption(leaf, fi) ||
1385                            btrfs_file_extent_other_encoding(leaf, fi))
1386                                goto out_check;
1387                        /*
1388                         * Do the same check as in btrfs_cross_ref_exist but
1389                         * without the unnecessary search.
1390                         */
1391                        if (!nolock &&
1392                            btrfs_file_extent_generation(leaf, fi) <=
1393                            btrfs_root_last_snapshot(&root->root_item))
1394                                goto out_check;
1395                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1396                                goto out_check;
1397                        if (btrfs_extent_readonly(fs_info, disk_bytenr))
1398                                goto out_check;
1399                        ret = btrfs_cross_ref_exist(root, ino,
1400                                                    found_key.offset -
1401                                                    extent_offset, disk_bytenr);
1402                        if (ret) {
1403                                /*
1404                                 * ret could be -EIO if the above fails to read
1405                                 * metadata.
1406                                 */
1407                                if (ret < 0) {
1408                                        if (cow_start != (u64)-1)
1409                                                cur_offset = cow_start;
1410                                        goto error;
1411                                }
1412
1413                                WARN_ON_ONCE(nolock);
1414                                goto out_check;
1415                        }
1416                        disk_bytenr += extent_offset;
1417                        disk_bytenr += cur_offset - found_key.offset;
1418                        num_bytes = min(end + 1, extent_end) - cur_offset;
1419                        /*
1420                         * if there are pending snapshots for this root,
1421                         * we fall into common COW way.
1422                         */
1423                        if (!nolock && atomic_read(&root->snapshot_force_cow))
1424                                goto out_check;
1425                        /*
1426                         * force cow if csum exists in the range.
1427                         * this ensure that csum for a given extent are
1428                         * either valid or do not exist.
1429                         */
1430                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1431                                                  num_bytes);
1432                        if (ret) {
1433                                /*
1434                                 * ret could be -EIO if the above fails to read
1435                                 * metadata.
1436                                 */
1437                                if (ret < 0) {
1438                                        if (cow_start != (u64)-1)
1439                                                cur_offset = cow_start;
1440                                        goto error;
1441                                }
1442                                WARN_ON_ONCE(nolock);
1443                                goto out_check;
1444                        }
1445                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1446                                goto out_check;
1447                        nocow = 1;
1448                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1449                        extent_end = found_key.offset +
1450                                btrfs_file_extent_ram_bytes(leaf, fi);
1451                        extent_end = ALIGN(extent_end,
1452                                           fs_info->sectorsize);
1453                } else {
1454                        BUG_ON(1);
1455                }
1456out_check:
1457                if (extent_end <= start) {
1458                        path->slots[0]++;
1459                        if (nocow)
1460                                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1461                        goto next_slot;
1462                }
1463                if (!nocow) {
1464                        if (cow_start == (u64)-1)
1465                                cow_start = cur_offset;
1466                        cur_offset = extent_end;
1467                        if (cur_offset > end)
1468                                break;
1469                        path->slots[0]++;
1470                        goto next_slot;
1471                }
1472
1473                btrfs_release_path(path);
1474                if (cow_start != (u64)-1) {
1475                        ret = cow_file_range(inode, locked_page,
1476                                             cow_start, found_key.offset - 1,
1477                                             end, page_started, nr_written, 1,
1478                                             NULL);
1479                        if (ret) {
1480                                if (nocow)
1481                                        btrfs_dec_nocow_writers(fs_info,
1482                                                                disk_bytenr);
1483                                goto error;
1484                        }
1485                        cow_start = (u64)-1;
1486                }
1487
1488                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1489                        u64 orig_start = found_key.offset - extent_offset;
1490
1491                        em = create_io_em(inode, cur_offset, num_bytes,
1492                                          orig_start,
1493                                          disk_bytenr, /* block_start */
1494                                          num_bytes, /* block_len */
1495                                          disk_num_bytes, /* orig_block_len */
1496                                          ram_bytes, BTRFS_COMPRESS_NONE,
1497                                          BTRFS_ORDERED_PREALLOC);
1498                        if (IS_ERR(em)) {
1499                                if (nocow)
1500                                        btrfs_dec_nocow_writers(fs_info,
1501                                                                disk_bytenr);
1502                                ret = PTR_ERR(em);
1503                                goto error;
1504                        }
1505                        free_extent_map(em);
1506                }
1507
1508                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1509                        type = BTRFS_ORDERED_PREALLOC;
1510                } else {
1511                        type = BTRFS_ORDERED_NOCOW;
1512                }
1513
1514                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1515                                               num_bytes, num_bytes, type);
1516                if (nocow)
1517                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1518                BUG_ON(ret); /* -ENOMEM */
1519
1520                if (root->root_key.objectid ==
1521                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1522                        /*
1523                         * Error handled later, as we must prevent
1524                         * extent_clear_unlock_delalloc() in error handler
1525                         * from freeing metadata of created ordered extent.
1526                         */
1527                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1528                                                      num_bytes);
1529
1530                extent_clear_unlock_delalloc(inode, cur_offset,
1531                                             cur_offset + num_bytes - 1, end,
1532                                             locked_page, EXTENT_LOCKED |
1533                                             EXTENT_DELALLOC |
1534                                             EXTENT_CLEAR_DATA_RESV,
1535                                             PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1536
1537                cur_offset = extent_end;
1538
1539                /*
1540                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1541                 * handler, as metadata for created ordered extent will only
1542                 * be freed by btrfs_finish_ordered_io().
1543                 */
1544                if (ret)
1545                        goto error;
1546                if (cur_offset > end)
1547                        break;
1548        }
1549        btrfs_release_path(path);
1550
1551        if (cur_offset <= end && cow_start == (u64)-1)
1552                cow_start = cur_offset;
1553
1554        if (cow_start != (u64)-1) {
1555                cur_offset = end;
1556                ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557                                     page_started, nr_written, 1, NULL);
1558                if (ret)
1559                        goto error;
1560        }
1561
1562error:
1563        if (ret && cur_offset < end)
1564                extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565                                             locked_page, EXTENT_LOCKED |
1566                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1567                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568                                             PAGE_CLEAR_DIRTY |
1569                                             PAGE_SET_WRITEBACK |
1570                                             PAGE_END_WRITEBACK);
1571        btrfs_free_path(path);
1572        return ret;
1573}
1574
1575static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576{
1577
1578        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579            !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580                return 0;
1581
1582        /*
1583         * @defrag_bytes is a hint value, no spinlock held here,
1584         * if is not zero, it means the file is defragging.
1585         * Force cow if given extent needs to be defragged.
1586         */
1587        if (BTRFS_I(inode)->defrag_bytes &&
1588            test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589                           EXTENT_DEFRAG, 0, NULL))
1590                return 1;
1591
1592        return 0;
1593}
1594
1595/*
1596 * Function to process delayed allocation (create CoW) for ranges which are
1597 * being touched for the first time.
1598 */
1599int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1600                u64 start, u64 end, int *page_started, unsigned long *nr_written,
1601                struct writeback_control *wbc)
1602{
1603        int ret;
1604        int force_cow = need_force_cow(inode, start, end);
1605        unsigned int write_flags = wbc_to_write_flags(wbc);
1606
1607        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1608                ret = run_delalloc_nocow(inode, locked_page, start, end,
1609                                         page_started, 1, nr_written);
1610        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1611                ret = run_delalloc_nocow(inode, locked_page, start, end,
1612                                         page_started, 0, nr_written);
1613        } else if (!inode_need_compress(inode, start, end)) {
1614                ret = cow_file_range(inode, locked_page, start, end, end,
1615                                      page_started, nr_written, 1, NULL);
1616        } else {
1617                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1618                        &BTRFS_I(inode)->runtime_flags);
1619                ret = cow_file_range_async(inode, locked_page, start, end,
1620                                           page_started, nr_written,
1621                                           write_flags);
1622        }
1623        if (ret)
1624                btrfs_cleanup_ordered_extents(inode, locked_page, start,
1625                                              end - start + 1);
1626        return ret;
1627}
1628
1629void btrfs_split_delalloc_extent(struct inode *inode,
1630                                 struct extent_state *orig, u64 split)
1631{
1632        u64 size;
1633
1634        /* not delalloc, ignore it */
1635        if (!(orig->state & EXTENT_DELALLOC))
1636                return;
1637
1638        size = orig->end - orig->start + 1;
1639        if (size > BTRFS_MAX_EXTENT_SIZE) {
1640                u32 num_extents;
1641                u64 new_size;
1642
1643                /*
1644                 * See the explanation in btrfs_merge_delalloc_extent, the same
1645                 * applies here, just in reverse.
1646                 */
1647                new_size = orig->end - split + 1;
1648                num_extents = count_max_extents(new_size);
1649                new_size = split - orig->start;
1650                num_extents += count_max_extents(new_size);
1651                if (count_max_extents(size) >= num_extents)
1652                        return;
1653        }
1654
1655        spin_lock(&BTRFS_I(inode)->lock);
1656        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1657        spin_unlock(&BTRFS_I(inode)->lock);
1658}
1659
1660/*
1661 * Handle merged delayed allocation extents so we can keep track of new extents
1662 * that are just merged onto old extents, such as when we are doing sequential
1663 * writes, so we can properly account for the metadata space we'll need.
1664 */
1665void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1666                                 struct extent_state *other)
1667{
1668        u64 new_size, old_size;
1669        u32 num_extents;
1670
1671        /* not delalloc, ignore it */
1672        if (!(other->state & EXTENT_DELALLOC))
1673                return;
1674
1675        if (new->start > other->start)
1676                new_size = new->end - other->start + 1;
1677        else
1678                new_size = other->end - new->start + 1;
1679
1680        /* we're not bigger than the max, unreserve the space and go */
1681        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1682                spin_lock(&BTRFS_I(inode)->lock);
1683                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1684                spin_unlock(&BTRFS_I(inode)->lock);
1685                return;
1686        }
1687
1688        /*
1689         * We have to add up either side to figure out how many extents were
1690         * accounted for before we merged into one big extent.  If the number of
1691         * extents we accounted for is <= the amount we need for the new range
1692         * then we can return, otherwise drop.  Think of it like this
1693         *
1694         * [ 4k][MAX_SIZE]
1695         *
1696         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1697         * need 2 outstanding extents, on one side we have 1 and the other side
1698         * we have 1 so they are == and we can return.  But in this case
1699         *
1700         * [MAX_SIZE+4k][MAX_SIZE+4k]
1701         *
1702         * Each range on their own accounts for 2 extents, but merged together
1703         * they are only 3 extents worth of accounting, so we need to drop in
1704         * this case.
1705         */
1706        old_size = other->end - other->start + 1;
1707        num_extents = count_max_extents(old_size);
1708        old_size = new->end - new->start + 1;
1709        num_extents += count_max_extents(old_size);
1710        if (count_max_extents(new_size) >= num_extents)
1711                return;
1712
1713        spin_lock(&BTRFS_I(inode)->lock);
1714        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1715        spin_unlock(&BTRFS_I(inode)->lock);
1716}
1717
1718static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1719                                      struct inode *inode)
1720{
1721        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1722
1723        spin_lock(&root->delalloc_lock);
1724        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1725                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1726                              &root->delalloc_inodes);
1727                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1728                        &BTRFS_I(inode)->runtime_flags);
1729                root->nr_delalloc_inodes++;
1730                if (root->nr_delalloc_inodes == 1) {
1731                        spin_lock(&fs_info->delalloc_root_lock);
1732                        BUG_ON(!list_empty(&root->delalloc_root));
1733                        list_add_tail(&root->delalloc_root,
1734                                      &fs_info->delalloc_roots);
1735                        spin_unlock(&fs_info->delalloc_root_lock);
1736                }
1737        }
1738        spin_unlock(&root->delalloc_lock);
1739}
1740
1741
1742void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1743                                struct btrfs_inode *inode)
1744{
1745        struct btrfs_fs_info *fs_info = root->fs_info;
1746
1747        if (!list_empty(&inode->delalloc_inodes)) {
1748                list_del_init(&inode->delalloc_inodes);
1749                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1750                          &inode->runtime_flags);
1751                root->nr_delalloc_inodes--;
1752                if (!root->nr_delalloc_inodes) {
1753                        ASSERT(list_empty(&root->delalloc_inodes));
1754                        spin_lock(&fs_info->delalloc_root_lock);
1755                        BUG_ON(list_empty(&root->delalloc_root));
1756                        list_del_init(&root->delalloc_root);
1757                        spin_unlock(&fs_info->delalloc_root_lock);
1758                }
1759        }
1760}
1761
1762static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1763                                     struct btrfs_inode *inode)
1764{
1765        spin_lock(&root->delalloc_lock);
1766        __btrfs_del_delalloc_inode(root, inode);
1767        spin_unlock(&root->delalloc_lock);
1768}
1769
1770/*
1771 * Properly track delayed allocation bytes in the inode and to maintain the
1772 * list of inodes that have pending delalloc work to be done.
1773 */
1774void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1775                               unsigned *bits)
1776{
1777        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1778
1779        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1780                WARN_ON(1);
1781        /*
1782         * set_bit and clear bit hooks normally require _irqsave/restore
1783         * but in this case, we are only testing for the DELALLOC
1784         * bit, which is only set or cleared with irqs on
1785         */
1786        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1787                struct btrfs_root *root = BTRFS_I(inode)->root;
1788                u64 len = state->end + 1 - state->start;
1789                u32 num_extents = count_max_extents(len);
1790                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1791
1792                spin_lock(&BTRFS_I(inode)->lock);
1793                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1794                spin_unlock(&BTRFS_I(inode)->lock);
1795
1796                /* For sanity tests */
1797                if (btrfs_is_testing(fs_info))
1798                        return;
1799
1800                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1801                                         fs_info->delalloc_batch);
1802                spin_lock(&BTRFS_I(inode)->lock);
1803                BTRFS_I(inode)->delalloc_bytes += len;
1804                if (*bits & EXTENT_DEFRAG)
1805                        BTRFS_I(inode)->defrag_bytes += len;
1806                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1807                                         &BTRFS_I(inode)->runtime_flags))
1808                        btrfs_add_delalloc_inodes(root, inode);
1809                spin_unlock(&BTRFS_I(inode)->lock);
1810        }
1811
1812        if (!(state->state & EXTENT_DELALLOC_NEW) &&
1813            (*bits & EXTENT_DELALLOC_NEW)) {
1814                spin_lock(&BTRFS_I(inode)->lock);
1815                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1816                        state->start;
1817                spin_unlock(&BTRFS_I(inode)->lock);
1818        }
1819}
1820
1821/*
1822 * Once a range is no longer delalloc this function ensures that proper
1823 * accounting happens.
1824 */
1825void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1826                                 struct extent_state *state, unsigned *bits)
1827{
1828        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1829        struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1830        u64 len = state->end + 1 - state->start;
1831        u32 num_extents = count_max_extents(len);
1832
1833        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1834                spin_lock(&inode->lock);
1835                inode->defrag_bytes -= len;
1836                spin_unlock(&inode->lock);
1837        }
1838
1839        /*
1840         * set_bit and clear bit hooks normally require _irqsave/restore
1841         * but in this case, we are only testing for the DELALLOC
1842         * bit, which is only set or cleared with irqs on
1843         */
1844        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1845                struct btrfs_root *root = inode->root;
1846                bool do_list = !btrfs_is_free_space_inode(inode);
1847
1848                spin_lock(&inode->lock);
1849                btrfs_mod_outstanding_extents(inode, -num_extents);
1850                spin_unlock(&inode->lock);
1851
1852                /*
1853                 * We don't reserve metadata space for space cache inodes so we
1854                 * don't need to call delalloc_release_metadata if there is an
1855                 * error.
1856                 */
1857                if (*bits & EXTENT_CLEAR_META_RESV &&
1858                    root != fs_info->tree_root)
1859                        btrfs_delalloc_release_metadata(inode, len, false);
1860
1861                /* For sanity tests. */
1862                if (btrfs_is_testing(fs_info))
1863                        return;
1864
1865                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1866                    do_list && !(state->state & EXTENT_NORESERVE) &&
1867                    (*bits & EXTENT_CLEAR_DATA_RESV))
1868                        btrfs_free_reserved_data_space_noquota(
1869                                        &inode->vfs_inode,
1870                                        state->start, len);
1871
1872                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1873                                         fs_info->delalloc_batch);
1874                spin_lock(&inode->lock);
1875                inode->delalloc_bytes -= len;
1876                if (do_list && inode->delalloc_bytes == 0 &&
1877                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1878                                        &inode->runtime_flags))
1879                        btrfs_del_delalloc_inode(root, inode);
1880                spin_unlock(&inode->lock);
1881        }
1882
1883        if ((state->state & EXTENT_DELALLOC_NEW) &&
1884            (*bits & EXTENT_DELALLOC_NEW)) {
1885                spin_lock(&inode->lock);
1886                ASSERT(inode->new_delalloc_bytes >= len);
1887                inode->new_delalloc_bytes -= len;
1888                spin_unlock(&inode->lock);
1889        }
1890}
1891
1892/*
1893 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1894 * in a chunk's stripe. This function ensures that bios do not span a
1895 * stripe/chunk
1896 *
1897 * @page - The page we are about to add to the bio
1898 * @size - size we want to add to the bio
1899 * @bio - bio we want to ensure is smaller than a stripe
1900 * @bio_flags - flags of the bio
1901 *
1902 * return 1 if page cannot be added to the bio
1903 * return 0 if page can be added to the bio
1904 * return error otherwise
1905 */
1906int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1907                             unsigned long bio_flags)
1908{
1909        struct inode *inode = page->mapping->host;
1910        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1911        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1912        u64 length = 0;
1913        u64 map_length;
1914        int ret;
1915
1916        if (bio_flags & EXTENT_BIO_COMPRESSED)
1917                return 0;
1918
1919        length = bio->bi_iter.bi_size;
1920        map_length = length;
1921        ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1922                              NULL, 0);
1923        if (ret < 0)
1924                return ret;
1925        if (map_length < length + size)
1926                return 1;
1927        return 0;
1928}
1929
1930/*
1931 * in order to insert checksums into the metadata in large chunks,
1932 * we wait until bio submission time.   All the pages in the bio are
1933 * checksummed and sums are attached onto the ordered extent record.
1934 *
1935 * At IO completion time the cums attached on the ordered extent record
1936 * are inserted into the btree
1937 */
1938static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1939                                    u64 bio_offset)
1940{
1941        struct inode *inode = private_data;
1942        blk_status_t ret = 0;
1943
1944        ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1945        BUG_ON(ret); /* -ENOMEM */
1946        return 0;
1947}
1948
1949/*
1950 * extent_io.c submission hook. This does the right thing for csum calculation
1951 * on write, or reading the csums from the tree before a read.
1952 *
1953 * Rules about async/sync submit,
1954 * a) read:                             sync submit
1955 *
1956 * b) write without checksum:           sync submit
1957 *
1958 * c) write with checksum:
1959 *    c-1) if bio is issued by fsync:   sync submit
1960 *         (sync_writers != 0)
1961 *
1962 *    c-2) if root is reloc root:       sync submit
1963 *         (only in case of buffered IO)
1964 *
1965 *    c-3) otherwise:                   async submit
1966 */
1967static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1968                                 int mirror_num, unsigned long bio_flags,
1969                                 u64 bio_offset)
1970{
1971        struct inode *inode = private_data;
1972        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973        struct btrfs_root *root = BTRFS_I(inode)->root;
1974        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1975        blk_status_t ret = 0;
1976        int skip_sum;
1977        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1978
1979        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1980
1981        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1982                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1983
1984        if (bio_op(bio) != REQ_OP_WRITE) {
1985                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1986                if (ret)
1987                        goto out;
1988
1989                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1990                        ret = btrfs_submit_compressed_read(inode, bio,
1991                                                           mirror_num,
1992                                                           bio_flags);
1993                        goto out;
1994                } else if (!skip_sum) {
1995                        ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1996                        if (ret)
1997                                goto out;
1998                }
1999                goto mapit;
2000        } else if (async && !skip_sum) {
2001                /* csum items have already been cloned */
2002                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2003                        goto mapit;
2004                /* we're doing a write, do the async checksumming */
2005                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2006                                          bio_offset, inode,
2007                                          btrfs_submit_bio_start);
2008                goto out;
2009        } else if (!skip_sum) {
2010                ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2011                if (ret)
2012                        goto out;
2013        }
2014
2015mapit:
2016        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2017
2018out:
2019        if (ret) {
2020                bio->bi_status = ret;
2021                bio_endio(bio);
2022        }
2023        return ret;
2024}
2025
2026/*
2027 * given a list of ordered sums record them in the inode.  This happens
2028 * at IO completion time based on sums calculated at bio submission time.
2029 */
2030static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2031                             struct inode *inode, struct list_head *list)
2032{
2033        struct btrfs_ordered_sum *sum;
2034        int ret;
2035
2036        list_for_each_entry(sum, list, list) {
2037                trans->adding_csums = true;
2038                ret = btrfs_csum_file_blocks(trans,
2039                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2040                trans->adding_csums = false;
2041                if (ret)
2042                        return ret;
2043        }
2044        return 0;
2045}
2046
2047int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2048                              unsigned int extra_bits,
2049                              struct extent_state **cached_state, int dedupe)
2050{
2051        WARN_ON(PAGE_ALIGNED(end));
2052        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2053                                   extra_bits, cached_state);
2054}
2055
2056/* see btrfs_writepage_start_hook for details on why this is required */
2057struct btrfs_writepage_fixup {
2058        struct page *page;
2059        struct btrfs_work work;
2060};
2061
2062static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2063{
2064        struct btrfs_writepage_fixup *fixup;
2065        struct btrfs_ordered_extent *ordered;
2066        struct extent_state *cached_state = NULL;
2067        struct extent_changeset *data_reserved = NULL;
2068        struct page *page;
2069        struct inode *inode;
2070        u64 page_start;
2071        u64 page_end;
2072        int ret;
2073
2074        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2075        page = fixup->page;
2076again:
2077        lock_page(page);
2078        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2079                ClearPageChecked(page);
2080                goto out_page;
2081        }
2082
2083        inode = page->mapping->host;
2084        page_start = page_offset(page);
2085        page_end = page_offset(page) + PAGE_SIZE - 1;
2086
2087        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2088                         &cached_state);
2089
2090        /* already ordered? We're done */
2091        if (PagePrivate2(page))
2092                goto out;
2093
2094        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2095                                        PAGE_SIZE);
2096        if (ordered) {
2097                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2098                                     page_end, &cached_state);
2099                unlock_page(page);
2100                btrfs_start_ordered_extent(inode, ordered, 1);
2101                btrfs_put_ordered_extent(ordered);
2102                goto again;
2103        }
2104
2105        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2106                                           PAGE_SIZE);
2107        if (ret) {
2108                mapping_set_error(page->mapping, ret);
2109                end_extent_writepage(page, ret, page_start, page_end);
2110                ClearPageChecked(page);
2111                goto out;
2112         }
2113
2114        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2115                                        &cached_state, 0);
2116        if (ret) {
2117                mapping_set_error(page->mapping, ret);
2118                end_extent_writepage(page, ret, page_start, page_end);
2119                ClearPageChecked(page);
2120                goto out;
2121        }
2122
2123        ClearPageChecked(page);
2124        set_page_dirty(page);
2125        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2126out:
2127        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2128                             &cached_state);
2129out_page:
2130        unlock_page(page);
2131        put_page(page);
2132        kfree(fixup);
2133        extent_changeset_free(data_reserved);
2134}
2135
2136/*
2137 * There are a few paths in the higher layers of the kernel that directly
2138 * set the page dirty bit without asking the filesystem if it is a
2139 * good idea.  This causes problems because we want to make sure COW
2140 * properly happens and the data=ordered rules are followed.
2141 *
2142 * In our case any range that doesn't have the ORDERED bit set
2143 * hasn't been properly setup for IO.  We kick off an async process
2144 * to fix it up.  The async helper will wait for ordered extents, set
2145 * the delalloc bit and make it safe to write the page.
2146 */
2147int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2148{
2149        struct inode *inode = page->mapping->host;
2150        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2151        struct btrfs_writepage_fixup *fixup;
2152
2153        /* this page is properly in the ordered list */
2154        if (TestClearPagePrivate2(page))
2155                return 0;
2156
2157        if (PageChecked(page))
2158                return -EAGAIN;
2159
2160        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2161        if (!fixup)
2162                return -EAGAIN;
2163
2164        SetPageChecked(page);
2165        get_page(page);
2166        btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2167                        btrfs_writepage_fixup_worker, NULL, NULL);
2168        fixup->page = page;
2169        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2170        return -EBUSY;
2171}
2172
2173static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2174                                       struct inode *inode, u64 file_pos,
2175                                       u64 disk_bytenr, u64 disk_num_bytes,
2176                                       u64 num_bytes, u64 ram_bytes,
2177                                       u8 compression, u8 encryption,
2178                                       u16 other_encoding, int extent_type)
2179{
2180        struct btrfs_root *root = BTRFS_I(inode)->root;
2181        struct btrfs_file_extent_item *fi;
2182        struct btrfs_path *path;
2183        struct extent_buffer *leaf;
2184        struct btrfs_key ins;
2185        u64 qg_released;
2186        int extent_inserted = 0;
2187        int ret;
2188
2189        path = btrfs_alloc_path();
2190        if (!path)
2191                return -ENOMEM;
2192
2193        /*
2194         * we may be replacing one extent in the tree with another.
2195         * The new extent is pinned in the extent map, and we don't want
2196         * to drop it from the cache until it is completely in the btree.
2197         *
2198         * So, tell btrfs_drop_extents to leave this extent in the cache.
2199         * the caller is expected to unpin it and allow it to be merged
2200         * with the others.
2201         */
2202        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2203                                   file_pos + num_bytes, NULL, 0,
2204                                   1, sizeof(*fi), &extent_inserted);
2205        if (ret)
2206                goto out;
2207
2208        if (!extent_inserted) {
2209                ins.objectid = btrfs_ino(BTRFS_I(inode));
2210                ins.offset = file_pos;
2211                ins.type = BTRFS_EXTENT_DATA_KEY;
2212
2213                path->leave_spinning = 1;
2214                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2215                                              sizeof(*fi));
2216                if (ret)
2217                        goto out;
2218        }
2219        leaf = path->nodes[0];
2220        fi = btrfs_item_ptr(leaf, path->slots[0],
2221                            struct btrfs_file_extent_item);
2222        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2223        btrfs_set_file_extent_type(leaf, fi, extent_type);
2224        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2225        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2226        btrfs_set_file_extent_offset(leaf, fi, 0);
2227        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2228        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2229        btrfs_set_file_extent_compression(leaf, fi, compression);
2230        btrfs_set_file_extent_encryption(leaf, fi, encryption);
2231        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2232
2233        btrfs_mark_buffer_dirty(leaf);
2234        btrfs_release_path(path);
2235
2236        inode_add_bytes(inode, num_bytes);
2237
2238        ins.objectid = disk_bytenr;
2239        ins.offset = disk_num_bytes;
2240        ins.type = BTRFS_EXTENT_ITEM_KEY;
2241
2242        /*
2243         * Release the reserved range from inode dirty range map, as it is
2244         * already moved into delayed_ref_head
2245         */
2246        ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2247        if (ret < 0)
2248                goto out;
2249        qg_released = ret;
2250        ret = btrfs_alloc_reserved_file_extent(trans, root,
2251                                               btrfs_ino(BTRFS_I(inode)),
2252                                               file_pos, qg_released, &ins);
2253out:
2254        btrfs_free_path(path);
2255
2256        return ret;
2257}
2258
2259/* snapshot-aware defrag */
2260struct sa_defrag_extent_backref {
2261        struct rb_node node;
2262        struct old_sa_defrag_extent *old;
2263        u64 root_id;
2264        u64 inum;
2265        u64 file_pos;
2266        u64 extent_offset;
2267        u64 num_bytes;
2268        u64 generation;
2269};
2270
2271struct old_sa_defrag_extent {
2272        struct list_head list;
2273        struct new_sa_defrag_extent *new;
2274
2275        u64 extent_offset;
2276        u64 bytenr;
2277        u64 offset;
2278        u64 len;
2279        int count;
2280};
2281
2282struct new_sa_defrag_extent {
2283        struct rb_root root;
2284        struct list_head head;
2285        struct btrfs_path *path;
2286        struct inode *inode;
2287        u64 file_pos;
2288        u64 len;
2289        u64 bytenr;
2290        u64 disk_len;
2291        u8 compress_type;
2292};
2293
2294static int backref_comp(struct sa_defrag_extent_backref *b1,
2295                        struct sa_defrag_extent_backref *b2)
2296{
2297        if (b1->root_id < b2->root_id)
2298                return -1;
2299        else if (b1->root_id > b2->root_id)
2300                return 1;
2301
2302        if (b1->inum < b2->inum)
2303                return -1;
2304        else if (b1->inum > b2->inum)
2305                return 1;
2306
2307        if (b1->file_pos < b2->file_pos)
2308                return -1;
2309        else if (b1->file_pos > b2->file_pos)
2310                return 1;
2311
2312        /*
2313         * [------------------------------] ===> (a range of space)
2314         *     |<--->|   |<---->| =============> (fs/file tree A)
2315         * |<---------------------------->| ===> (fs/file tree B)
2316         *
2317         * A range of space can refer to two file extents in one tree while
2318         * refer to only one file extent in another tree.
2319         *
2320         * So we may process a disk offset more than one time(two extents in A)
2321         * and locate at the same extent(one extent in B), then insert two same
2322         * backrefs(both refer to the extent in B).
2323         */
2324        return 0;
2325}
2326
2327static void backref_insert(struct rb_root *root,
2328                           struct sa_defrag_extent_backref *backref)
2329{
2330        struct rb_node **p = &root->rb_node;
2331        struct rb_node *parent = NULL;
2332        struct sa_defrag_extent_backref *entry;
2333        int ret;
2334
2335        while (*p) {
2336                parent = *p;
2337                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2338
2339                ret = backref_comp(backref, entry);
2340                if (ret < 0)
2341                        p = &(*p)->rb_left;
2342                else
2343                        p = &(*p)->rb_right;
2344        }
2345
2346        rb_link_node(&backref->node, parent, p);
2347        rb_insert_color(&backref->node, root);
2348}
2349
2350/*
2351 * Note the backref might has changed, and in this case we just return 0.
2352 */
2353static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2354                                       void *ctx)
2355{
2356        struct btrfs_file_extent_item *extent;
2357        struct old_sa_defrag_extent *old = ctx;
2358        struct new_sa_defrag_extent *new = old->new;
2359        struct btrfs_path *path = new->path;
2360        struct btrfs_key key;
2361        struct btrfs_root *root;
2362        struct sa_defrag_extent_backref *backref;
2363        struct extent_buffer *leaf;
2364        struct inode *inode = new->inode;
2365        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2366        int slot;
2367        int ret;
2368        u64 extent_offset;
2369        u64 num_bytes;
2370
2371        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2372            inum == btrfs_ino(BTRFS_I(inode)))
2373                return 0;
2374
2375        key.objectid = root_id;
2376        key.type = BTRFS_ROOT_ITEM_KEY;
2377        key.offset = (u64)-1;
2378
2379        root = btrfs_read_fs_root_no_name(fs_info, &key);
2380        if (IS_ERR(root)) {
2381                if (PTR_ERR(root) == -ENOENT)
2382                        return 0;
2383                WARN_ON(1);
2384                btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2385                         inum, offset, root_id);
2386                return PTR_ERR(root);
2387        }
2388
2389        key.objectid = inum;
2390        key.type = BTRFS_EXTENT_DATA_KEY;
2391        if (offset > (u64)-1 << 32)
2392                key.offset = 0;
2393        else
2394                key.offset = offset;
2395
2396        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2397        if (WARN_ON(ret < 0))
2398                return ret;
2399        ret = 0;
2400
2401        while (1) {
2402                cond_resched();
2403
2404                leaf = path->nodes[0];
2405                slot = path->slots[0];
2406
2407                if (slot >= btrfs_header_nritems(leaf)) {
2408                        ret = btrfs_next_leaf(root, path);
2409                        if (ret < 0) {
2410                                goto out;
2411                        } else if (ret > 0) {
2412                                ret = 0;
2413                                goto out;
2414                        }
2415                        continue;
2416                }
2417
2418                path->slots[0]++;
2419
2420                btrfs_item_key_to_cpu(leaf, &key, slot);
2421
2422                if (key.objectid > inum)
2423                        goto out;
2424
2425                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2426                        continue;
2427
2428                extent = btrfs_item_ptr(leaf, slot,
2429                                        struct btrfs_file_extent_item);
2430
2431                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2432                        continue;
2433
2434                /*
2435                 * 'offset' refers to the exact key.offset,
2436                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2437                 * (key.offset - extent_offset).
2438                 */
2439                if (key.offset != offset)
2440                        continue;
2441
2442                extent_offset = btrfs_file_extent_offset(leaf, extent);
2443                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2444
2445                if (extent_offset >= old->extent_offset + old->offset +
2446                    old->len || extent_offset + num_bytes <=
2447                    old->extent_offset + old->offset)
2448                        continue;
2449                break;
2450        }
2451
2452        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2453        if (!backref) {
2454                ret = -ENOENT;
2455                goto out;
2456        }
2457
2458        backref->root_id = root_id;
2459        backref->inum = inum;
2460        backref->file_pos = offset;
2461        backref->num_bytes = num_bytes;
2462        backref->extent_offset = extent_offset;
2463        backref->generation = btrfs_file_extent_generation(leaf, extent);
2464        backref->old = old;
2465        backref_insert(&new->root, backref);
2466        old->count++;
2467out:
2468        btrfs_release_path(path);
2469        WARN_ON(ret);
2470        return ret;
2471}
2472
2473static noinline bool record_extent_backrefs(struct btrfs_path *path,
2474                                   struct new_sa_defrag_extent *new)
2475{
2476        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2477        struct old_sa_defrag_extent *old, *tmp;
2478        int ret;
2479
2480        new->path = path;
2481
2482        list_for_each_entry_safe(old, tmp, &new->head, list) {
2483                ret = iterate_inodes_from_logical(old->bytenr +
2484                                                  old->extent_offset, fs_info,
2485                                                  path, record_one_backref,
2486                                                  old, false);
2487                if (ret < 0 && ret != -ENOENT)
2488                        return false;
2489
2490                /* no backref to be processed for this extent */
2491                if (!old->count) {
2492                        list_del(&old->list);
2493                        kfree(old);
2494                }
2495        }
2496
2497        if (list_empty(&new->head))
2498                return false;
2499
2500        return true;
2501}
2502
2503static int relink_is_mergable(struct extent_buffer *leaf,
2504                              struct btrfs_file_extent_item *fi,
2505                              struct new_sa_defrag_extent *new)
2506{
2507        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2508                return 0;
2509
2510        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2511                return 0;
2512
2513        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2514                return 0;
2515
2516        if (btrfs_file_extent_encryption(leaf, fi) ||
2517            btrfs_file_extent_other_encoding(leaf, fi))
2518                return 0;
2519
2520        return 1;
2521}
2522
2523/*
2524 * Note the backref might has changed, and in this case we just return 0.
2525 */
2526static noinline int relink_extent_backref(struct btrfs_path *path,
2527                                 struct sa_defrag_extent_backref *prev,
2528                                 struct sa_defrag_extent_backref *backref)
2529{
2530        struct btrfs_file_extent_item *extent;
2531        struct btrfs_file_extent_item *item;
2532        struct btrfs_ordered_extent *ordered;
2533        struct btrfs_trans_handle *trans;
2534        struct btrfs_root *root;
2535        struct btrfs_key key;
2536        struct extent_buffer *leaf;
2537        struct old_sa_defrag_extent *old = backref->old;
2538        struct new_sa_defrag_extent *new = old->new;
2539        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2540        struct inode *inode;
2541        struct extent_state *cached = NULL;
2542        int ret = 0;
2543        u64 start;
2544        u64 len;
2545        u64 lock_start;
2546        u64 lock_end;
2547        bool merge = false;
2548        int index;
2549
2550        if (prev && prev->root_id == backref->root_id &&
2551            prev->inum == backref->inum &&
2552            prev->file_pos + prev->num_bytes == backref->file_pos)
2553                merge = true;
2554
2555        /* step 1: get root */
2556        key.objectid = backref->root_id;
2557        key.type = BTRFS_ROOT_ITEM_KEY;
2558        key.offset = (u64)-1;
2559
2560        index = srcu_read_lock(&fs_info->subvol_srcu);
2561
2562        root = btrfs_read_fs_root_no_name(fs_info, &key);
2563        if (IS_ERR(root)) {
2564                srcu_read_unlock(&fs_info->subvol_srcu, index);
2565                if (PTR_ERR(root) == -ENOENT)
2566                        return 0;
2567                return PTR_ERR(root);
2568        }
2569
2570        if (btrfs_root_readonly(root)) {
2571                srcu_read_unlock(&fs_info->subvol_srcu, index);
2572                return 0;
2573        }
2574
2575        /* step 2: get inode */
2576        key.objectid = backref->inum;
2577        key.type = BTRFS_INODE_ITEM_KEY;
2578        key.offset = 0;
2579
2580        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2581        if (IS_ERR(inode)) {
2582                srcu_read_unlock(&fs_info->subvol_srcu, index);
2583                return 0;
2584        }
2585
2586        srcu_read_unlock(&fs_info->subvol_srcu, index);
2587
2588        /* step 3: relink backref */
2589        lock_start = backref->file_pos;
2590        lock_end = backref->file_pos + backref->num_bytes - 1;
2591        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2592                         &cached);
2593
2594        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2595        if (ordered) {
2596                btrfs_put_ordered_extent(ordered);
2597                goto out_unlock;
2598        }
2599
2600        trans = btrfs_join_transaction(root);
2601        if (IS_ERR(trans)) {
2602                ret = PTR_ERR(trans);
2603                goto out_unlock;
2604        }
2605
2606        key.objectid = backref->inum;
2607        key.type = BTRFS_EXTENT_DATA_KEY;
2608        key.offset = backref->file_pos;
2609
2610        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2611        if (ret < 0) {
2612                goto out_free_path;
2613        } else if (ret > 0) {
2614                ret = 0;
2615                goto out_free_path;
2616        }
2617
2618        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2619                                struct btrfs_file_extent_item);
2620
2621        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2622            backref->generation)
2623                goto out_free_path;
2624
2625        btrfs_release_path(path);
2626
2627        start = backref->file_pos;
2628        if (backref->extent_offset < old->extent_offset + old->offset)
2629                start += old->extent_offset + old->offset -
2630                         backref->extent_offset;
2631
2632        len = min(backref->extent_offset + backref->num_bytes,
2633                  old->extent_offset + old->offset + old->len);
2634        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2635
2636        ret = btrfs_drop_extents(trans, root, inode, start,
2637                                 start + len, 1);
2638        if (ret)
2639                goto out_free_path;
2640again:
2641        key.objectid = btrfs_ino(BTRFS_I(inode));
2642        key.type = BTRFS_EXTENT_DATA_KEY;
2643        key.offset = start;
2644
2645        path->leave_spinning = 1;
2646        if (merge) {
2647                struct btrfs_file_extent_item *fi;
2648                u64 extent_len;
2649                struct btrfs_key found_key;
2650
2651                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2652                if (ret < 0)
2653                        goto out_free_path;
2654
2655                path->slots[0]--;
2656                leaf = path->nodes[0];
2657                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2658
2659                fi = btrfs_item_ptr(leaf, path->slots[0],
2660                                    struct btrfs_file_extent_item);
2661                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2662
2663                if (extent_len + found_key.offset == start &&
2664                    relink_is_mergable(leaf, fi, new)) {
2665                        btrfs_set_file_extent_num_bytes(leaf, fi,
2666                                                        extent_len + len);
2667                        btrfs_mark_buffer_dirty(leaf);
2668                        inode_add_bytes(inode, len);
2669
2670                        ret = 1;
2671                        goto out_free_path;
2672                } else {
2673                        merge = false;
2674                        btrfs_release_path(path);
2675                        goto again;
2676                }
2677        }
2678
2679        ret = btrfs_insert_empty_item(trans, root, path, &key,
2680                                        sizeof(*extent));
2681        if (ret) {
2682                btrfs_abort_transaction(trans, ret);
2683                goto out_free_path;
2684        }
2685
2686        leaf = path->nodes[0];
2687        item = btrfs_item_ptr(leaf, path->slots[0],
2688                                struct btrfs_file_extent_item);
2689        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2690        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2691        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2692        btrfs_set_file_extent_num_bytes(leaf, item, len);
2693        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2694        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2695        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2696        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2697        btrfs_set_file_extent_encryption(leaf, item, 0);
2698        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2699
2700        btrfs_mark_buffer_dirty(leaf);
2701        inode_add_bytes(inode, len);
2702        btrfs_release_path(path);
2703
2704        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2705                        new->disk_len, 0,
2706                        backref->root_id, backref->inum,
2707                        new->file_pos); /* start - extent_offset */
2708        if (ret) {
2709                btrfs_abort_transaction(trans, ret);
2710                goto out_free_path;
2711        }
2712
2713        ret = 1;
2714out_free_path:
2715        btrfs_release_path(path);
2716        path->leave_spinning = 0;
2717        btrfs_end_transaction(trans);
2718out_unlock:
2719        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2720                             &cached);
2721        iput(inode);
2722        return ret;
2723}
2724
2725static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2726{
2727        struct old_sa_defrag_extent *old, *tmp;
2728
2729        if (!new)
2730                return;
2731
2732        list_for_each_entry_safe(old, tmp, &new->head, list) {
2733                kfree(old);
2734        }
2735        kfree(new);
2736}
2737
2738static void relink_file_extents(struct new_sa_defrag_extent *new)
2739{
2740        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2741        struct btrfs_path *path;
2742        struct sa_defrag_extent_backref *backref;
2743        struct sa_defrag_extent_backref *prev = NULL;
2744        struct rb_node *node;
2745        int ret;
2746
2747        path = btrfs_alloc_path();
2748        if (!path)
2749                return;
2750
2751        if (!record_extent_backrefs(path, new)) {
2752                btrfs_free_path(path);
2753                goto out;
2754        }
2755        btrfs_release_path(path);
2756
2757        while (1) {
2758                node = rb_first(&new->root);
2759                if (!node)
2760                        break;
2761                rb_erase(node, &new->root);
2762
2763                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2764
2765                ret = relink_extent_backref(path, prev, backref);
2766                WARN_ON(ret < 0);
2767
2768                kfree(prev);
2769
2770                if (ret == 1)
2771                        prev = backref;
2772                else
2773                        prev = NULL;
2774                cond_resched();
2775        }
2776        kfree(prev);
2777
2778        btrfs_free_path(path);
2779out:
2780        free_sa_defrag_extent(new);
2781
2782        atomic_dec(&fs_info->defrag_running);
2783        wake_up(&fs_info->transaction_wait);
2784}
2785
2786static struct new_sa_defrag_extent *
2787record_old_file_extents(struct inode *inode,
2788                        struct btrfs_ordered_extent *ordered)
2789{
2790        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2791        struct btrfs_root *root = BTRFS_I(inode)->root;
2792        struct btrfs_path *path;
2793        struct btrfs_key key;
2794        struct old_sa_defrag_extent *old;
2795        struct new_sa_defrag_extent *new;
2796        int ret;
2797
2798        new = kmalloc(sizeof(*new), GFP_NOFS);
2799        if (!new)
2800                return NULL;
2801
2802        new->inode = inode;
2803        new->file_pos = ordered->file_offset;
2804        new->len = ordered->len;
2805        new->bytenr = ordered->start;
2806        new->disk_len = ordered->disk_len;
2807        new->compress_type = ordered->compress_type;
2808        new->root = RB_ROOT;
2809        INIT_LIST_HEAD(&new->head);
2810
2811        path = btrfs_alloc_path();
2812        if (!path)
2813                goto out_kfree;
2814
2815        key.objectid = btrfs_ino(BTRFS_I(inode));
2816        key.type = BTRFS_EXTENT_DATA_KEY;
2817        key.offset = new->file_pos;
2818
2819        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2820        if (ret < 0)
2821                goto out_free_path;
2822        if (ret > 0 && path->slots[0] > 0)
2823                path->slots[0]--;
2824
2825        /* find out all the old extents for the file range */
2826        while (1) {
2827                struct btrfs_file_extent_item *extent;
2828                struct extent_buffer *l;
2829                int slot;
2830                u64 num_bytes;
2831                u64 offset;
2832                u64 end;
2833                u64 disk_bytenr;
2834                u64 extent_offset;
2835
2836                l = path->nodes[0];
2837                slot = path->slots[0];
2838
2839                if (slot >= btrfs_header_nritems(l)) {
2840                        ret = btrfs_next_leaf(root, path);
2841                        if (ret < 0)
2842                                goto out_free_path;
2843                        else if (ret > 0)
2844                                break;
2845                        continue;
2846                }
2847
2848                btrfs_item_key_to_cpu(l, &key, slot);
2849
2850                if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2851                        break;
2852                if (key.type != BTRFS_EXTENT_DATA_KEY)
2853                        break;
2854                if (key.offset >= new->file_pos + new->len)
2855                        break;
2856
2857                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2858
2859                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2860                if (key.offset + num_bytes < new->file_pos)
2861                        goto next;
2862
2863                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2864                if (!disk_bytenr)
2865                        goto next;
2866
2867                extent_offset = btrfs_file_extent_offset(l, extent);
2868
2869                old = kmalloc(sizeof(*old), GFP_NOFS);
2870                if (!old)
2871                        goto out_free_path;
2872
2873                offset = max(new->file_pos, key.offset);
2874                end = min(new->file_pos + new->len, key.offset + num_bytes);
2875
2876                old->bytenr = disk_bytenr;
2877                old->extent_offset = extent_offset;
2878                old->offset = offset - key.offset;
2879                old->len = end - offset;
2880                old->new = new;
2881                old->count = 0;
2882                list_add_tail(&old->list, &new->head);
2883next:
2884                path->slots[0]++;
2885                cond_resched();
2886        }
2887
2888        btrfs_free_path(path);
2889        atomic_inc(&fs_info->defrag_running);
2890
2891        return new;
2892
2893out_free_path:
2894        btrfs_free_path(path);
2895out_kfree:
2896        free_sa_defrag_extent(new);
2897        return NULL;
2898}
2899
2900static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2901                                         u64 start, u64 len)
2902{
2903        struct btrfs_block_group_cache *cache;
2904
2905        cache = btrfs_lookup_block_group(fs_info, start);
2906        ASSERT(cache);
2907
2908        spin_lock(&cache->lock);
2909        cache->delalloc_bytes -= len;
2910        spin_unlock(&cache->lock);
2911
2912        btrfs_put_block_group(cache);
2913}
2914
2915/* as ordered data IO finishes, this gets called so we can finish
2916 * an ordered extent if the range of bytes in the file it covers are
2917 * fully written.
2918 */
2919static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2920{
2921        struct inode *inode = ordered_extent->inode;
2922        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2923        struct btrfs_root *root = BTRFS_I(inode)->root;
2924        struct btrfs_trans_handle *trans = NULL;
2925        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2926        struct extent_state *cached_state = NULL;
2927        struct new_sa_defrag_extent *new = NULL;
2928        int compress_type = 0;
2929        int ret = 0;
2930        u64 logical_len = ordered_extent->len;
2931        bool nolock;
2932        bool truncated = false;
2933        bool range_locked = false;
2934        bool clear_new_delalloc_bytes = false;
2935        bool clear_reserved_extent = true;
2936
2937        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2938            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2939            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2940                clear_new_delalloc_bytes = true;
2941
2942        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2943
2944        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2945                ret = -EIO;
2946                goto out;
2947        }
2948
2949        btrfs_free_io_failure_record(BTRFS_I(inode),
2950                        ordered_extent->file_offset,
2951                        ordered_extent->file_offset +
2952                        ordered_extent->len - 1);
2953
2954        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2955                truncated = true;
2956                logical_len = ordered_extent->truncated_len;
2957                /* Truncated the entire extent, don't bother adding */
2958                if (!logical_len)
2959                        goto out;
2960        }
2961
2962        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2963                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2964
2965                /*
2966                 * For mwrite(mmap + memset to write) case, we still reserve
2967                 * space for NOCOW range.
2968                 * As NOCOW won't cause a new delayed ref, just free the space
2969                 */
2970                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2971                                       ordered_extent->len);
2972                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2973                if (nolock)
2974                        trans = btrfs_join_transaction_nolock(root);
2975                else
2976                        trans = btrfs_join_transaction(root);
2977                if (IS_ERR(trans)) {
2978                        ret = PTR_ERR(trans);
2979                        trans = NULL;
2980                        goto out;
2981                }
2982                trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2983                ret = btrfs_update_inode_fallback(trans, root, inode);
2984                if (ret) /* -ENOMEM or corruption */
2985                        btrfs_abort_transaction(trans, ret);
2986                goto out;
2987        }
2988
2989        range_locked = true;
2990        lock_extent_bits(io_tree, ordered_extent->file_offset,
2991                         ordered_extent->file_offset + ordered_extent->len - 1,
2992                         &cached_state);
2993
2994        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2995                        ordered_extent->file_offset + ordered_extent->len - 1,
2996                        EXTENT_DEFRAG, 0, cached_state);
2997        if (ret) {
2998                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2999                if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3000                        /* the inode is shared */
3001                        new = record_old_file_extents(inode, ordered_extent);
3002
3003                clear_extent_bit(io_tree, ordered_extent->file_offset,
3004                        ordered_extent->file_offset + ordered_extent->len - 1,
3005                        EXTENT_DEFRAG, 0, 0, &cached_state);
3006        }
3007
3008        if (nolock)
3009                trans = btrfs_join_transaction_nolock(root);
3010        else
3011                trans = btrfs_join_transaction(root);
3012        if (IS_ERR(trans)) {
3013                ret = PTR_ERR(trans);
3014                trans = NULL;
3015                goto out;
3016        }
3017
3018        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3019
3020        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3021                compress_type = ordered_extent->compress_type;
3022        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3023                BUG_ON(compress_type);
3024                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3025                                       ordered_extent->len);
3026                ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3027                                                ordered_extent->file_offset,
3028                                                ordered_extent->file_offset +
3029                                                logical_len);
3030        } else {
3031                BUG_ON(root == fs_info->tree_root);
3032                ret = insert_reserved_file_extent(trans, inode,
3033                                                ordered_extent->file_offset,
3034                                                ordered_extent->start,
3035                                                ordered_extent->disk_len,
3036                                                logical_len, logical_len,
3037                                                compress_type, 0, 0,
3038                                                BTRFS_FILE_EXTENT_REG);
3039                if (!ret) {
3040                        clear_reserved_extent = false;
3041                        btrfs_release_delalloc_bytes(fs_info,
3042                                                     ordered_extent->start,
3043                                                     ordered_extent->disk_len);
3044                }
3045        }
3046        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3047                           ordered_extent->file_offset, ordered_extent->len,
3048                           trans->transid);
3049        if (ret < 0) {
3050                btrfs_abort_transaction(trans, ret);
3051                goto out;
3052        }
3053
3054        ret = add_pending_csums(trans, inode, &ordered_extent->list);
3055        if (ret) {
3056                btrfs_abort_transaction(trans, ret);
3057                goto out;
3058        }
3059
3060        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3061        ret = btrfs_update_inode_fallback(trans, root, inode);
3062        if (ret) { /* -ENOMEM or corruption */
3063                btrfs_abort_transaction(trans, ret);
3064                goto out;
3065        }
3066        ret = 0;
3067out:
3068        if (range_locked || clear_new_delalloc_bytes) {
3069                unsigned int clear_bits = 0;
3070
3071                if (range_locked)
3072                        clear_bits |= EXTENT_LOCKED;
3073                if (clear_new_delalloc_bytes)
3074                        clear_bits |= EXTENT_DELALLOC_NEW;
3075                clear_extent_bit(&BTRFS_I(inode)->io_tree,
3076                                 ordered_extent->file_offset,
3077                                 ordered_extent->file_offset +
3078                                 ordered_extent->len - 1,
3079                                 clear_bits,
3080                                 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3081                                 0, &cached_state);
3082        }
3083
3084        if (trans)
3085                btrfs_end_transaction(trans);
3086
3087        if (ret || truncated) {
3088                u64 start, end;
3089
3090                if (truncated)
3091                        start = ordered_extent->file_offset + logical_len;
3092                else
3093                        start = ordered_extent->file_offset;
3094                end = ordered_extent->file_offset + ordered_extent->len - 1;
3095                clear_extent_uptodate(io_tree, start, end, NULL);
3096
3097                /* Drop the cache for the part of the extent we didn't write. */
3098                btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3099
3100                /*
3101                 * If the ordered extent had an IOERR or something else went
3102                 * wrong we need to return the space for this ordered extent
3103                 * back to the allocator.  We only free the extent in the
3104                 * truncated case if we didn't write out the extent at all.
3105                 *
3106                 * If we made it past insert_reserved_file_extent before we
3107                 * errored out then we don't need to do this as the accounting
3108                 * has already been done.
3109                 */
3110                if ((ret || !logical_len) &&
3111                    clear_reserved_extent &&
3112                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3113                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3114                        btrfs_free_reserved_extent(fs_info,
3115                                                   ordered_extent->start,
3116                                                   ordered_extent->disk_len, 1);
3117        }
3118
3119
3120        /*
3121         * This needs to be done to make sure anybody waiting knows we are done
3122         * updating everything for this ordered extent.
3123         */
3124        btrfs_remove_ordered_extent(inode, ordered_extent);
3125
3126        /* for snapshot-aware defrag */
3127        if (new) {
3128                if (ret) {
3129                        free_sa_defrag_extent(new);
3130                        atomic_dec(&fs_info->defrag_running);
3131                } else {
3132                        relink_file_extents(new);
3133                }
3134        }
3135
3136        /* once for us */
3137        btrfs_put_ordered_extent(ordered_extent);
3138        /* once for the tree */
3139        btrfs_put_ordered_extent(ordered_extent);
3140
3141        return ret;
3142}
3143
3144static void finish_ordered_fn(struct btrfs_work *work)
3145{
3146        struct btrfs_ordered_extent *ordered_extent;
3147        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3148        btrfs_finish_ordered_io(ordered_extent);
3149}
3150
3151void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3152                                          u64 end, int uptodate)
3153{
3154        struct inode *inode = page->mapping->host;
3155        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3156        struct btrfs_ordered_extent *ordered_extent = NULL;
3157        struct btrfs_workqueue *wq;
3158        btrfs_work_func_t func;
3159
3160        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3161
3162        ClearPagePrivate2(page);
3163        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3164                                            end - start + 1, uptodate))
3165                return;
3166
3167        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3168                wq = fs_info->endio_freespace_worker;
3169                func = btrfs_freespace_write_helper;
3170        } else {
3171                wq = fs_info->endio_write_workers;
3172                func = btrfs_endio_write_helper;
3173        }
3174
3175        btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3176                        NULL);
3177        btrfs_queue_work(wq, &ordered_extent->work);
3178}
3179
3180static int __readpage_endio_check(struct inode *inode,
3181                                  struct btrfs_io_bio *io_bio,
3182                                  int icsum, struct page *page,
3183                                  int pgoff, u64 start, size_t len)
3184{
3185        char *kaddr;
3186        u32 csum_expected;
3187        u32 csum = ~(u32)0;
3188
3189        csum_expected = *(((u32 *)io_bio->csum) + icsum);
3190
3191        kaddr = kmap_atomic(page);
3192        csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3193        btrfs_csum_final(csum, (u8 *)&csum);
3194        if (csum != csum_expected)
3195                goto zeroit;
3196
3197        kunmap_atomic(kaddr);
3198        return 0;
3199zeroit:
3200        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3201                                    io_bio->mirror_num);
3202        memset(kaddr + pgoff, 1, len);
3203        flush_dcache_page(page);
3204        kunmap_atomic(kaddr);
3205        return -EIO;
3206}
3207
3208/*
3209 * when reads are done, we need to check csums to verify the data is correct
3210 * if there's a match, we allow the bio to finish.  If not, the code in
3211 * extent_io.c will try to find good copies for us.
3212 */
3213static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3214                                      u64 phy_offset, struct page *page,
3215                                      u64 start, u64 end, int mirror)
3216{
3217        size_t offset = start - page_offset(page);
3218        struct inode *inode = page->mapping->host;
3219        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3220        struct btrfs_root *root = BTRFS_I(inode)->root;
3221
3222        if (PageChecked(page)) {
3223                ClearPageChecked(page);
3224                return 0;
3225        }
3226
3227        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3228                return 0;
3229
3230        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3231            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3232                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3233                return 0;
3234        }
3235
3236        phy_offset >>= inode->i_sb->s_blocksize_bits;
3237        return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3238                                      start, (size_t)(end - start + 1));
3239}
3240
3241/*
3242 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3243 *
3244 * @inode: The inode we want to perform iput on
3245 *
3246 * This function uses the generic vfs_inode::i_count to track whether we should
3247 * just decrement it (in case it's > 1) or if this is the last iput then link
3248 * the inode to the delayed iput machinery. Delayed iputs are processed at
3249 * transaction commit time/superblock commit/cleaner kthread.
3250 */
3251void btrfs_add_delayed_iput(struct inode *inode)
3252{
3253        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3254        struct btrfs_inode *binode = BTRFS_I(inode);
3255
3256        if (atomic_add_unless(&inode->i_count, -1, 1))
3257                return;
3258
3259        atomic_inc(&fs_info->nr_delayed_iputs);
3260        spin_lock(&fs_info->delayed_iput_lock);
3261        ASSERT(list_empty(&binode->delayed_iput));
3262        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3263        spin_unlock(&fs_info->delayed_iput_lock);
3264        if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3265                wake_up_process(fs_info->cleaner_kthread);
3266}
3267
3268void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3269{
3270
3271        spin_lock(&fs_info->delayed_iput_lock);
3272        while (!list_empty(&fs_info->delayed_iputs)) {
3273                struct btrfs_inode *inode;
3274
3275                inode = list_first_entry(&fs_info->delayed_iputs,
3276                                struct btrfs_inode, delayed_iput);
3277                list_del_init(&inode->delayed_iput);
3278                spin_unlock(&fs_info->delayed_iput_lock);
3279                iput(&inode->vfs_inode);
3280                if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3281                        wake_up(&fs_info->delayed_iputs_wait);
3282                spin_lock(&fs_info->delayed_iput_lock);
3283        }
3284        spin_unlock(&fs_info->delayed_iput_lock);
3285}
3286
3287/**
3288 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3289 * @fs_info - the fs_info for this fs
3290 * @return - EINTR if we were killed, 0 if nothing's pending
3291 *
3292 * This will wait on any delayed iputs that are currently running with KILLABLE
3293 * set.  Once they are all done running we will return, unless we are killed in
3294 * which case we return EINTR. This helps in user operations like fallocate etc
3295 * that might get blocked on the iputs.
3296 */
3297int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3298{
3299        int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3300                        atomic_read(&fs_info->nr_delayed_iputs) == 0);
3301        if (ret)
3302                return -EINTR;
3303        return 0;
3304}
3305
3306/*
3307 * This creates an orphan entry for the given inode in case something goes wrong
3308 * in the middle of an unlink.
3309 */
3310int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311                     struct btrfs_inode *inode)
3312{
3313        int ret;
3314
3315        ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3316        if (ret && ret != -EEXIST) {
3317                btrfs_abort_transaction(trans, ret);
3318                return ret;
3319        }
3320
3321        return 0;
3322}
3323
3324/*
3325 * We have done the delete so we can go ahead and remove the orphan item for
3326 * this particular inode.
3327 */
3328static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3329                            struct btrfs_inode *inode)
3330{
3331        return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3332}
3333
3334/*
3335 * this cleans up any orphans that may be left on the list from the last use
3336 * of this root.
3337 */
3338int btrfs_orphan_cleanup(struct btrfs_root *root)
3339{
3340        struct btrfs_fs_info *fs_info = root->fs_info;
3341        struct btrfs_path *path;
3342        struct extent_buffer *leaf;
3343        struct btrfs_key key, found_key;
3344        struct btrfs_trans_handle *trans;
3345        struct inode *inode;
3346        u64 last_objectid = 0;
3347        int ret = 0, nr_unlink = 0;
3348
3349        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3350                return 0;
3351
3352        path = btrfs_alloc_path();
3353        if (!path) {
3354                ret = -ENOMEM;
3355                goto out;
3356        }
3357        path->reada = READA_BACK;
3358
3359        key.objectid = BTRFS_ORPHAN_OBJECTID;
3360        key.type = BTRFS_ORPHAN_ITEM_KEY;
3361        key.offset = (u64)-1;
3362
3363        while (1) {
3364                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3365                if (ret < 0)
3366                        goto out;
3367
3368                /*
3369                 * if ret == 0 means we found what we were searching for, which
3370                 * is weird, but possible, so only screw with path if we didn't
3371                 * find the key and see if we have stuff that matches
3372                 */
3373                if (ret > 0) {
3374                        ret = 0;
3375                        if (path->slots[0] == 0)
3376                                break;
3377                        path->slots[0]--;
3378                }
3379
3380                /* pull out the item */
3381                leaf = path->nodes[0];
3382                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3383
3384                /* make sure the item matches what we want */
3385                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3386                        break;
3387                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3388                        break;
3389
3390                /* release the path since we're done with it */
3391                btrfs_release_path(path);
3392
3393                /*
3394                 * this is where we are basically btrfs_lookup, without the
3395                 * crossing root thing.  we store the inode number in the
3396                 * offset of the orphan item.
3397                 */
3398
3399                if (found_key.offset == last_objectid) {
3400                        btrfs_err(fs_info,
3401                                  "Error removing orphan entry, stopping orphan cleanup");
3402                        ret = -EINVAL;
3403                        goto out;
3404                }
3405
3406                last_objectid = found_key.offset;
3407
3408                found_key.objectid = found_key.offset;
3409                found_key.type = BTRFS_INODE_ITEM_KEY;
3410                found_key.offset = 0;
3411                inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3412                ret = PTR_ERR_OR_ZERO(inode);
3413                if (ret && ret != -ENOENT)
3414                        goto out;
3415
3416                if (ret == -ENOENT && root == fs_info->tree_root) {
3417                        struct btrfs_root *dead_root;
3418                        struct btrfs_fs_info *fs_info = root->fs_info;
3419                        int is_dead_root = 0;
3420
3421                        /*
3422                         * this is an orphan in the tree root. Currently these
3423                         * could come from 2 sources:
3424                         *  a) a snapshot deletion in progress
3425                         *  b) a free space cache inode
3426                         * We need to distinguish those two, as the snapshot
3427                         * orphan must not get deleted.
3428                         * find_dead_roots already ran before us, so if this
3429                         * is a snapshot deletion, we should find the root
3430                         * in the dead_roots list
3431                         */
3432                        spin_lock(&fs_info->trans_lock);
3433                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3434                                            root_list) {
3435                                if (dead_root->root_key.objectid ==
3436                                    found_key.objectid) {
3437                                        is_dead_root = 1;
3438                                        break;
3439                                }
3440                        }
3441                        spin_unlock(&fs_info->trans_lock);
3442                        if (is_dead_root) {
3443                                /* prevent this orphan from being found again */
3444                                key.offset = found_key.objectid - 1;
3445                                continue;
3446                        }
3447
3448                }
3449
3450                /*
3451                 * If we have an inode with links, there are a couple of
3452                 * possibilities. Old kernels (before v3.12) used to create an
3453                 * orphan item for truncate indicating that there were possibly
3454                 * extent items past i_size that needed to be deleted. In v3.12,
3455                 * truncate was changed to update i_size in sync with the extent
3456                 * items, but the (useless) orphan item was still created. Since
3457                 * v4.18, we don't create the orphan item for truncate at all.
3458                 *
3459                 * So, this item could mean that we need to do a truncate, but
3460                 * only if this filesystem was last used on a pre-v3.12 kernel
3461                 * and was not cleanly unmounted. The odds of that are quite
3462                 * slim, and it's a pain to do the truncate now, so just delete
3463                 * the orphan item.
3464                 *
3465                 * It's also possible that this orphan item was supposed to be
3466                 * deleted but wasn't. The inode number may have been reused,
3467                 * but either way, we can delete the orphan item.
3468                 */
3469                if (ret == -ENOENT || inode->i_nlink) {
3470                        if (!ret)
3471                                iput(inode);
3472                        trans = btrfs_start_transaction(root, 1);
3473                        if (IS_ERR(trans)) {
3474                                ret = PTR_ERR(trans);
3475                                goto out;
3476                        }
3477                        btrfs_debug(fs_info, "auto deleting %Lu",
3478                                    found_key.objectid);
3479                        ret = btrfs_del_orphan_item(trans, root,
3480                                                    found_key.objectid);
3481                        btrfs_end_transaction(trans);
3482                        if (ret)
3483                                goto out;
3484                        continue;
3485                }
3486
3487                nr_unlink++;
3488
3489                /* this will do delete_inode and everything for us */
3490                iput(inode);
3491        }
3492        /* release the path since we're done with it */
3493        btrfs_release_path(path);
3494
3495        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3496
3497        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3498                trans = btrfs_join_transaction(root);
3499                if (!IS_ERR(trans))
3500                        btrfs_end_transaction(trans);
3501        }
3502
3503        if (nr_unlink)
3504                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3505
3506out:
3507        if (ret)
3508                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3509        btrfs_free_path(path);
3510        return ret;
3511}
3512
3513/*
3514 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3515 * don't find any xattrs, we know there can't be any acls.
3516 *
3517 * slot is the slot the inode is in, objectid is the objectid of the inode
3518 */
3519static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3520                                          int slot, u64 objectid,
3521                                          int *first_xattr_slot)
3522{
3523        u32 nritems = btrfs_header_nritems(leaf);
3524        struct btrfs_key found_key;
3525        static u64 xattr_access = 0;
3526        static u64 xattr_default = 0;
3527        int scanned = 0;
3528
3529        if (!xattr_access) {
3530                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3531                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3532                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3533                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3534        }
3535
3536        slot++;
3537        *first_xattr_slot = -1;
3538        while (slot < nritems) {
3539                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3540
3541                /* we found a different objectid, there must not be acls */
3542                if (found_key.objectid != objectid)
3543                        return 0;
3544
3545                /* we found an xattr, assume we've got an acl */
3546                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3547                        if (*first_xattr_slot == -1)
3548                                *first_xattr_slot = slot;
3549                        if (found_key.offset == xattr_access ||
3550                            found_key.offset == xattr_default)
3551                                return 1;
3552                }
3553
3554                /*
3555                 * we found a key greater than an xattr key, there can't
3556                 * be any acls later on
3557                 */
3558                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3559                        return 0;
3560
3561                slot++;
3562                scanned++;
3563
3564                /*
3565                 * it goes inode, inode backrefs, xattrs, extents,
3566                 * so if there are a ton of hard links to an inode there can
3567                 * be a lot of backrefs.  Don't waste time searching too hard,
3568                 * this is just an optimization
3569                 */
3570                if (scanned >= 8)
3571                        break;
3572        }
3573        /* we hit the end of the leaf before we found an xattr or
3574         * something larger than an xattr.  We have to assume the inode
3575         * has acls
3576         */
3577        if (*first_xattr_slot == -1)
3578                *first_xattr_slot = slot;
3579        return 1;
3580}
3581
3582/*
3583 * read an inode from the btree into the in-memory inode
3584 */
3585static int btrfs_read_locked_inode(struct inode *inode,
3586                                   struct btrfs_path *in_path)
3587{
3588        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3589        struct btrfs_path *path = in_path;
3590        struct extent_buffer *leaf;
3591        struct btrfs_inode_item *inode_item;
3592        struct btrfs_root *root = BTRFS_I(inode)->root;
3593        struct btrfs_key location;
3594        unsigned long ptr;
3595        int maybe_acls;
3596        u32 rdev;
3597        int ret;
3598        bool filled = false;
3599        int first_xattr_slot;
3600
3601        ret = btrfs_fill_inode(inode, &rdev);
3602        if (!ret)
3603                filled = true;
3604
3605        if (!path) {
3606                path = btrfs_alloc_path();
3607                if (!path)
3608                        return -ENOMEM;
3609        }
3610
3611        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3612
3613        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3614        if (ret) {
3615                if (path != in_path)
3616                        btrfs_free_path(path);
3617                return ret;
3618        }
3619
3620        leaf = path->nodes[0];
3621
3622        if (filled)
3623                goto cache_index;
3624
3625        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3626                                    struct btrfs_inode_item);
3627        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3628        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3629        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3630        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3631        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3632
3633        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3634        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3635
3636        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3637        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3638
3639        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3640        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3641
3642        BTRFS_I(inode)->i_otime.tv_sec =
3643                btrfs_timespec_sec(leaf, &inode_item->otime);
3644        BTRFS_I(inode)->i_otime.tv_nsec =
3645                btrfs_timespec_nsec(leaf, &inode_item->otime);
3646
3647        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3648        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3649        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3650
3651        inode_set_iversion_queried(inode,
3652                                   btrfs_inode_sequence(leaf, inode_item));
3653        inode->i_generation = BTRFS_I(inode)->generation;
3654        inode->i_rdev = 0;
3655        rdev = btrfs_inode_rdev(leaf, inode_item);
3656
3657        BTRFS_I(inode)->index_cnt = (u64)-1;
3658        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3659
3660cache_index:
3661        /*
3662         * If we were modified in the current generation and evicted from memory
3663         * and then re-read we need to do a full sync since we don't have any
3664         * idea about which extents were modified before we were evicted from
3665         * cache.
3666         *
3667         * This is required for both inode re-read from disk and delayed inode
3668         * in delayed_nodes_tree.
3669         */
3670        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3671                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3672                        &BTRFS_I(inode)->runtime_flags);
3673
3674        /*
3675         * We don't persist the id of the transaction where an unlink operation
3676         * against the inode was last made. So here we assume the inode might
3677         * have been evicted, and therefore the exact value of last_unlink_trans
3678         * lost, and set it to last_trans to avoid metadata inconsistencies
3679         * between the inode and its parent if the inode is fsync'ed and the log
3680         * replayed. For example, in the scenario:
3681         *
3682         * touch mydir/foo
3683         * ln mydir/foo mydir/bar
3684         * sync
3685         * unlink mydir/bar
3686         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3687         * xfs_io -c fsync mydir/foo
3688         * <power failure>
3689         * mount fs, triggers fsync log replay
3690         *
3691         * We must make sure that when we fsync our inode foo we also log its
3692         * parent inode, otherwise after log replay the parent still has the
3693         * dentry with the "bar" name but our inode foo has a link count of 1
3694         * and doesn't have an inode ref with the name "bar" anymore.
3695         *
3696         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3697         * but it guarantees correctness at the expense of occasional full
3698         * transaction commits on fsync if our inode is a directory, or if our
3699         * inode is not a directory, logging its parent unnecessarily.
3700         */
3701        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3702        /*
3703         * Similar reasoning for last_link_trans, needs to be set otherwise
3704         * for a case like the following:
3705         *
3706         * mkdir A
3707         * touch foo
3708         * ln foo A/bar
3709         * echo 2 > /proc/sys/vm/drop_caches
3710         * fsync foo
3711         * <power failure>
3712         *
3713         * Would result in link bar and directory A not existing after the power
3714         * failure.
3715         */
3716        BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3717
3718        path->slots[0]++;
3719        if (inode->i_nlink != 1 ||
3720            path->slots[0] >= btrfs_header_nritems(leaf))
3721                goto cache_acl;
3722
3723        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3725                goto cache_acl;
3726
3727        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728        if (location.type == BTRFS_INODE_REF_KEY) {
3729                struct btrfs_inode_ref *ref;
3730
3731                ref = (struct btrfs_inode_ref *)ptr;
3732                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734                struct btrfs_inode_extref *extref;
3735
3736                extref = (struct btrfs_inode_extref *)ptr;
3737                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738                                                                     extref);
3739        }
3740cache_acl:
3741        /*
3742         * try to precache a NULL acl entry for files that don't have
3743         * any xattrs or acls
3744         */
3745        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3746                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3747        if (first_xattr_slot != -1) {
3748                path->slots[0] = first_xattr_slot;
3749                ret = btrfs_load_inode_props(inode, path);
3750                if (ret)
3751                        btrfs_err(fs_info,
3752                                  "error loading props for ino %llu (root %llu): %d",
3753                                  btrfs_ino(BTRFS_I(inode)),
3754                                  root->root_key.objectid, ret);
3755        }
3756        if (path != in_path)
3757                btrfs_free_path(path);
3758
3759        if (!maybe_acls)
3760                cache_no_acl(inode);
3761
3762        switch (inode->i_mode & S_IFMT) {
3763        case S_IFREG:
3764                inode->i_mapping->a_ops = &btrfs_aops;
3765                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3766                inode->i_fop = &btrfs_file_operations;
3767                inode->i_op = &btrfs_file_inode_operations;
3768                break;
3769        case S_IFDIR:
3770                inode->i_fop = &btrfs_dir_file_operations;
3771                inode->i_op = &btrfs_dir_inode_operations;
3772                break;
3773        case S_IFLNK:
3774                inode->i_op = &btrfs_symlink_inode_operations;
3775                inode_nohighmem(inode);
3776                inode->i_mapping->a_ops = &btrfs_aops;
3777                break;
3778        default:
3779                inode->i_op = &btrfs_special_inode_operations;
3780                init_special_inode(inode, inode->i_mode, rdev);
3781                break;
3782        }
3783
3784        btrfs_sync_inode_flags_to_i_flags(inode);
3785        return 0;
3786}
3787
3788/*
3789 * given a leaf and an inode, copy the inode fields into the leaf
3790 */
3791static void fill_inode_item(struct btrfs_trans_handle *trans,
3792                            struct extent_buffer *leaf,
3793                            struct btrfs_inode_item *item,
3794                            struct inode *inode)
3795{
3796        struct btrfs_map_token token;
3797
3798        btrfs_init_map_token(&token);
3799
3800        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3801        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3802        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3803                                   &token);
3804        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3805        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3806
3807        btrfs_set_token_timespec_sec(leaf, &item->atime,
3808                                     inode->i_atime.tv_sec, &token);
3809        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3810                                      inode->i_atime.tv_nsec, &token);
3811
3812        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3813                                     inode->i_mtime.tv_sec, &token);
3814        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3815                                      inode->i_mtime.tv_nsec, &token);
3816
3817        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3818                                     inode->i_ctime.tv_sec, &token);
3819        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3820                                      inode->i_ctime.tv_nsec, &token);
3821
3822        btrfs_set_token_timespec_sec(leaf, &item->otime,
3823                                     BTRFS_I(inode)->i_otime.tv_sec, &token);
3824        btrfs_set_token_timespec_nsec(leaf, &item->otime,
3825                                      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3826
3827        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3828                                     &token);
3829        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3830                                         &token);
3831        btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3832                                       &token);
3833        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3834        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3835        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3836        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3837}
3838
3839/*
3840 * copy everything in the in-memory inode into the btree.
3841 */
3842static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3843                                struct btrfs_root *root, struct inode *inode)
3844{
3845        struct btrfs_inode_item *inode_item;
3846        struct btrfs_path *path;
3847        struct extent_buffer *leaf;
3848        int ret;
3849
3850        path = btrfs_alloc_path();
3851        if (!path)
3852                return -ENOMEM;
3853
3854        path->leave_spinning = 1;
3855        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3856                                 1);
3857        if (ret) {
3858                if (ret > 0)
3859                        ret = -ENOENT;
3860                goto failed;
3861        }
3862
3863        leaf = path->nodes[0];
3864        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3865                                    struct btrfs_inode_item);
3866
3867        fill_inode_item(trans, leaf, inode_item, inode);
3868        btrfs_mark_buffer_dirty(leaf);
3869        btrfs_set_inode_last_trans(trans, inode);
3870        ret = 0;
3871failed:
3872        btrfs_free_path(path);
3873        return ret;
3874}
3875
3876/*
3877 * copy everything in the in-memory inode into the btree.
3878 */
3879noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3880                                struct btrfs_root *root, struct inode *inode)
3881{
3882        struct btrfs_fs_info *fs_info = root->fs_info;
3883        int ret;
3884
3885        /*
3886         * If the inode is a free space inode, we can deadlock during commit
3887         * if we put it into the delayed code.
3888         *
3889         * The data relocation inode should also be directly updated
3890         * without delay
3891         */
3892        if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3893            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3894            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3895                btrfs_update_root_times(trans, root);
3896
3897                ret = btrfs_delayed_update_inode(trans, root, inode);
3898                if (!ret)
3899                        btrfs_set_inode_last_trans(trans, inode);
3900                return ret;
3901        }
3902
3903        return btrfs_update_inode_item(trans, root, inode);
3904}
3905
3906noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3907                                         struct btrfs_root *root,
3908                                         struct inode *inode)
3909{
3910        int ret;
3911
3912        ret = btrfs_update_inode(trans, root, inode);
3913        if (ret == -ENOSPC)
3914                return btrfs_update_inode_item(trans, root, inode);
3915        return ret;
3916}
3917
3918/*
3919 * unlink helper that gets used here in inode.c and in the tree logging
3920 * recovery code.  It remove a link in a directory with a given name, and
3921 * also drops the back refs in the inode to the directory
3922 */
3923static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3924                                struct btrfs_root *root,
3925                                struct btrfs_inode *dir,
3926                                struct btrfs_inode *inode,
3927                                const char *name, int name_len)
3928{
3929        struct btrfs_fs_info *fs_info = root->fs_info;
3930        struct btrfs_path *path;
3931        int ret = 0;
3932        struct extent_buffer *leaf;
3933        struct btrfs_dir_item *di;
3934        struct btrfs_key key;
3935        u64 index;
3936        u64 ino = btrfs_ino(inode);
3937        u64 dir_ino = btrfs_ino(dir);
3938
3939        path = btrfs_alloc_path();
3940        if (!path) {
3941                ret = -ENOMEM;
3942                goto out;
3943        }
3944
3945        path->leave_spinning = 1;
3946        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3947                                    name, name_len, -1);
3948        if (IS_ERR_OR_NULL(di)) {
3949                ret = di ? PTR_ERR(di) : -ENOENT;
3950                goto err;
3951        }
3952        leaf = path->nodes[0];
3953        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3954        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3955        if (ret)
3956                goto err;
3957        btrfs_release_path(path);
3958
3959        /*
3960         * If we don't have dir index, we have to get it by looking up
3961         * the inode ref, since we get the inode ref, remove it directly,
3962         * it is unnecessary to do delayed deletion.
3963         *
3964         * But if we have dir index, needn't search inode ref to get it.
3965         * Since the inode ref is close to the inode item, it is better
3966         * that we delay to delete it, and just do this deletion when
3967         * we update the inode item.
3968         */
3969        if (inode->dir_index) {
3970                ret = btrfs_delayed_delete_inode_ref(inode);
3971                if (!ret) {
3972                        index = inode->dir_index;
3973                        goto skip_backref;
3974                }
3975        }
3976
3977        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3978                                  dir_ino, &index);
3979        if (ret) {
3980                btrfs_info(fs_info,
3981                        "failed to delete reference to %.*s, inode %llu parent %llu",
3982                        name_len, name, ino, dir_ino);
3983                btrfs_abort_transaction(trans, ret);
3984                goto err;
3985        }
3986skip_backref:
3987        ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3988        if (ret) {
3989                btrfs_abort_transaction(trans, ret);
3990                goto err;
3991        }
3992
3993        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3994                        dir_ino);
3995        if (ret != 0 && ret != -ENOENT) {
3996                btrfs_abort_transaction(trans, ret);
3997                goto err;
3998        }
3999
4000        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4001                        index);
4002        if (ret == -ENOENT)
4003                ret = 0;
4004        else if (ret)
4005                btrfs_abort_transaction(trans, ret);
4006err:
4007        btrfs_free_path(path);
4008        if (ret)
4009                goto out;
4010
4011        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4012        inode_inc_iversion(&inode->vfs_inode);
4013        inode_inc_iversion(&dir->vfs_inode);
4014        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4015                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4016        ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4017out:
4018        return ret;
4019}
4020
4021int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022                       struct btrfs_root *root,
4023                       struct btrfs_inode *dir, struct btrfs_inode *inode,
4024                       const char *name, int name_len)
4025{
4026        int ret;
4027        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028        if (!ret) {
4029                drop_nlink(&inode->vfs_inode);
4030                ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4031        }
4032        return ret;
4033}
4034
4035/*
4036 * helper to start transaction for unlink and rmdir.
4037 *
4038 * unlink and rmdir are special in btrfs, they do not always free space, so
4039 * if we cannot make our reservations the normal way try and see if there is
4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041 * allow the unlink to occur.
4042 */
4043static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4044{
4045        struct btrfs_root *root = BTRFS_I(dir)->root;
4046
4047        /*
4048         * 1 for the possible orphan item
4049         * 1 for the dir item
4050         * 1 for the dir index
4051         * 1 for the inode ref
4052         * 1 for the inode
4053         */
4054        return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4055}
4056
4057static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058{
4059        struct btrfs_root *root = BTRFS_I(dir)->root;
4060        struct btrfs_trans_handle *trans;
4061        struct inode *inode = d_inode(dentry);
4062        int ret;
4063
4064        trans = __unlink_start_trans(dir);
4065        if (IS_ERR(trans))
4066                return PTR_ERR(trans);
4067
4068        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4069                        0);
4070
4071        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4072                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4073                        dentry->d_name.len);
4074        if (ret)
4075                goto out;
4076
4077        if (inode->i_nlink == 0) {
4078                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4079                if (ret)
4080                        goto out;
4081        }
4082
4083out:
4084        btrfs_end_transaction(trans);
4085        btrfs_btree_balance_dirty(root->fs_info);
4086        return ret;
4087}
4088
4089static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4090                               struct inode *dir, u64 objectid,
4091                               const char *name, int name_len)
4092{
4093        struct btrfs_root *root = BTRFS_I(dir)->root;
4094        struct btrfs_path *path;
4095        struct extent_buffer *leaf;
4096        struct btrfs_dir_item *di;
4097        struct btrfs_key key;
4098        u64 index;
4099        int ret;
4100        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4101
4102        path = btrfs_alloc_path();
4103        if (!path)
4104                return -ENOMEM;
4105
4106        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4107                                   name, name_len, -1);
4108        if (IS_ERR_OR_NULL(di)) {
4109                ret = di ? PTR_ERR(di) : -ENOENT;
4110                goto out;
4111        }
4112
4113        leaf = path->nodes[0];
4114        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4115        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4116        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4117        if (ret) {
4118                btrfs_abort_transaction(trans, ret);
4119                goto out;
4120        }
4121        btrfs_release_path(path);
4122
4123        ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4124                                 dir_ino, &index, name, name_len);
4125        if (ret < 0) {
4126                if (ret != -ENOENT) {
4127                        btrfs_abort_transaction(trans, ret);
4128                        goto out;
4129                }
4130                di = btrfs_search_dir_index_item(root, path, dir_ino,
4131                                                 name, name_len);
4132                if (IS_ERR_OR_NULL(di)) {
4133                        if (!di)
4134                                ret = -ENOENT;
4135                        else
4136                                ret = PTR_ERR(di);
4137                        btrfs_abort_transaction(trans, ret);
4138                        goto out;
4139                }
4140
4141                leaf = path->nodes[0];
4142                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4143                index = key.offset;
4144        }
4145        btrfs_release_path(path);
4146
4147        ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4148        if (ret) {
4149                btrfs_abort_transaction(trans, ret);
4150                goto out;
4151        }
4152
4153        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4154        inode_inc_iversion(dir);
4155        dir->i_mtime = dir->i_ctime = current_time(dir);
4156        ret = btrfs_update_inode_fallback(trans, root, dir);
4157        if (ret)
4158                btrfs_abort_transaction(trans, ret);
4159out:
4160        btrfs_free_path(path);
4161        return ret;
4162}
4163
4164/*
4165 * Helper to check if the subvolume references other subvolumes or if it's
4166 * default.
4167 */
4168static noinline int may_destroy_subvol(struct btrfs_root *root)
4169{
4170        struct btrfs_fs_info *fs_info = root->fs_info;
4171        struct btrfs_path *path;
4172        struct btrfs_dir_item *di;
4173        struct btrfs_key key;
4174        u64 dir_id;
4175        int ret;
4176
4177        path = btrfs_alloc_path();
4178        if (!path)
4179                return -ENOMEM;
4180
4181        /* Make sure this root isn't set as the default subvol */
4182        dir_id = btrfs_super_root_dir(fs_info->super_copy);
4183        di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4184                                   dir_id, "default", 7, 0);
4185        if (di && !IS_ERR(di)) {
4186                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4187                if (key.objectid == root->root_key.objectid) {
4188                        ret = -EPERM;
4189                        btrfs_err(fs_info,
4190                                  "deleting default subvolume %llu is not allowed",
4191                                  key.objectid);
4192                        goto out;
4193                }
4194                btrfs_release_path(path);
4195        }
4196
4197        key.objectid = root->root_key.objectid;
4198        key.type = BTRFS_ROOT_REF_KEY;
4199        key.offset = (u64)-1;
4200
4201        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4202        if (ret < 0)
4203                goto out;
4204        BUG_ON(ret == 0);
4205
4206        ret = 0;
4207        if (path->slots[0] > 0) {
4208                path->slots[0]--;
4209                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4210                if (key.objectid == root->root_key.objectid &&
4211                    key.type == BTRFS_ROOT_REF_KEY)
4212                        ret = -ENOTEMPTY;
4213        }
4214out:
4215        btrfs_free_path(path);
4216        return ret;
4217}
4218
4219/* Delete all dentries for inodes belonging to the root */
4220static void btrfs_prune_dentries(struct btrfs_root *root)
4221{
4222        struct btrfs_fs_info *fs_info = root->fs_info;
4223        struct rb_node *node;
4224        struct rb_node *prev;
4225        struct btrfs_inode *entry;
4226        struct inode *inode;
4227        u64 objectid = 0;
4228
4229        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4230                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4231
4232        spin_lock(&root->inode_lock);
4233again:
4234        node = root->inode_tree.rb_node;
4235        prev = NULL;
4236        while (node) {
4237                prev = node;
4238                entry = rb_entry(node, struct btrfs_inode, rb_node);
4239
4240                if (objectid < btrfs_ino(entry))
4241                        node = node->rb_left;
4242                else if (objectid > btrfs_ino(entry))
4243                        node = node->rb_right;
4244                else
4245                        break;
4246        }
4247        if (!node) {
4248                while (prev) {
4249                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4250                        if (objectid <= btrfs_ino(entry)) {
4251                                node = prev;
4252                                break;
4253                        }
4254                        prev = rb_next(prev);
4255                }
4256        }
4257        while (node) {
4258                entry = rb_entry(node, struct btrfs_inode, rb_node);
4259                objectid = btrfs_ino(entry) + 1;
4260                inode = igrab(&entry->vfs_inode);
4261                if (inode) {
4262                        spin_unlock(&root->inode_lock);
4263                        if (atomic_read(&inode->i_count) > 1)
4264                                d_prune_aliases(inode);
4265                        /*
4266                         * btrfs_drop_inode will have it removed from the inode
4267                         * cache when its usage count hits zero.
4268                         */
4269                        iput(inode);
4270                        cond_resched();
4271                        spin_lock(&root->inode_lock);
4272                        goto again;
4273                }
4274
4275                if (cond_resched_lock(&root->inode_lock))
4276                        goto again;
4277
4278                node = rb_next(node);
4279        }
4280        spin_unlock(&root->inode_lock);
4281}
4282
4283int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4284{
4285        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4286        struct btrfs_root *root = BTRFS_I(dir)->root;
4287        struct inode *inode = d_inode(dentry);
4288        struct btrfs_root *dest = BTRFS_I(inode)->root;
4289        struct btrfs_trans_handle *trans;
4290        struct btrfs_block_rsv block_rsv;
4291        u64 root_flags;
4292        int ret;
4293        int err;
4294
4295        /*
4296         * Don't allow to delete a subvolume with send in progress. This is
4297         * inside the inode lock so the error handling that has to drop the bit
4298         * again is not run concurrently.
4299         */
4300        spin_lock(&dest->root_item_lock);
4301        if (dest->send_in_progress) {
4302                spin_unlock(&dest->root_item_lock);
4303                btrfs_warn(fs_info,
4304                           "attempt to delete subvolume %llu during send",
4305                           dest->root_key.objectid);
4306                return -EPERM;
4307        }
4308        root_flags = btrfs_root_flags(&dest->root_item);
4309        btrfs_set_root_flags(&dest->root_item,
4310                             root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4311        spin_unlock(&dest->root_item_lock);
4312
4313        down_write(&fs_info->subvol_sem);
4314
4315        err = may_destroy_subvol(dest);
4316        if (err)
4317                goto out_up_write;
4318
4319        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4320        /*
4321         * One for dir inode,
4322         * two for dir entries,
4323         * two for root ref/backref.
4324         */
4325        err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4326        if (err)
4327                goto out_up_write;
4328
4329        trans = btrfs_start_transaction(root, 0);
4330        if (IS_ERR(trans)) {
4331                err = PTR_ERR(trans);
4332                goto out_release;
4333        }
4334        trans->block_rsv = &block_rsv;
4335        trans->bytes_reserved = block_rsv.size;
4336
4337        btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4338
4339        ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4340                                  dentry->d_name.name, dentry->d_name.len);
4341        if (ret) {
4342                err = ret;
4343                btrfs_abort_transaction(trans, ret);
4344                goto out_end_trans;
4345        }
4346
4347        btrfs_record_root_in_trans(trans, dest);
4348
4349        memset(&dest->root_item.drop_progress, 0,
4350                sizeof(dest->root_item.drop_progress));
4351        dest->root_item.drop_level = 0;
4352        btrfs_set_root_refs(&dest->root_item, 0);
4353
4354        if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4355                ret = btrfs_insert_orphan_item(trans,
4356                                        fs_info->tree_root,
4357                                        dest->root_key.objectid);
4358                if (ret) {
4359                        btrfs_abort_transaction(trans, ret);
4360                        err = ret;
4361                        goto out_end_trans;
4362                }
4363        }
4364
4365        ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4366                                  BTRFS_UUID_KEY_SUBVOL,
4367                                  dest->root_key.objectid);
4368        if (ret && ret != -ENOENT) {
4369                btrfs_abort_transaction(trans, ret);
4370                err = ret;
4371                goto out_end_trans;
4372        }
4373        if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4374                ret = btrfs_uuid_tree_remove(trans,
4375                                          dest->root_item.received_uuid,
4376                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4377                                          dest->root_key.objectid);
4378                if (ret && ret != -ENOENT) {
4379                        btrfs_abort_transaction(trans, ret);
4380                        err = ret;
4381                        goto out_end_trans;
4382                }
4383        }
4384
4385out_end_trans:
4386        trans->block_rsv = NULL;
4387        trans->bytes_reserved = 0;
4388        ret = btrfs_end_transaction(trans);
4389        if (ret && !err)
4390                err = ret;
4391        inode->i_flags |= S_DEAD;
4392out_release:
4393        btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4394out_up_write:
4395        up_write(&fs_info->subvol_sem);
4396        if (err) {
4397                spin_lock(&dest->root_item_lock);
4398                root_flags = btrfs_root_flags(&dest->root_item);
4399                btrfs_set_root_flags(&dest->root_item,
4400                                root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4401                spin_unlock(&dest->root_item_lock);
4402        } else {
4403                d_invalidate(dentry);
4404                btrfs_prune_dentries(dest);
4405                ASSERT(dest->send_in_progress == 0);
4406
4407                /* the last ref */
4408                if (dest->ino_cache_inode) {
4409                        iput(dest->ino_cache_inode);
4410                        dest->ino_cache_inode = NULL;
4411                }
4412        }
4413
4414        return err;
4415}
4416
4417static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4418{
4419        struct inode *inode = d_inode(dentry);
4420        int err = 0;
4421        struct btrfs_root *root = BTRFS_I(dir)->root;
4422        struct btrfs_trans_handle *trans;
4423        u64 last_unlink_trans;
4424
4425        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4426                return -ENOTEMPTY;
4427        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4428                return btrfs_delete_subvolume(dir, dentry);
4429
4430        trans = __unlink_start_trans(dir);
4431        if (IS_ERR(trans))
4432                return PTR_ERR(trans);
4433
4434        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4435                err = btrfs_unlink_subvol(trans, dir,
4436                                          BTRFS_I(inode)->location.objectid,
4437                                          dentry->d_name.name,
4438                                          dentry->d_name.len);
4439                goto out;
4440        }
4441
4442        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4443        if (err)
4444                goto out;
4445
4446        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4447
4448        /* now the directory is empty */
4449        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4450                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4451                        dentry->d_name.len);
4452        if (!err) {
4453                btrfs_i_size_write(BTRFS_I(inode), 0);
4454                /*
4455                 * Propagate the last_unlink_trans value of the deleted dir to
4456                 * its parent directory. This is to prevent an unrecoverable
4457                 * log tree in the case we do something like this:
4458                 * 1) create dir foo
4459                 * 2) create snapshot under dir foo
4460                 * 3) delete the snapshot
4461                 * 4) rmdir foo
4462                 * 5) mkdir foo
4463                 * 6) fsync foo or some file inside foo
4464                 */
4465                if (last_unlink_trans >= trans->transid)
4466                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4467        }
4468out:
4469        btrfs_end_transaction(trans);
4470        btrfs_btree_balance_dirty(root->fs_info);
4471
4472        return err;
4473}
4474
4475/*
4476 * Return this if we need to call truncate_block for the last bit of the
4477 * truncate.
4478 */
4479#define NEED_TRUNCATE_BLOCK 1
4480
4481/*
4482 * this can truncate away extent items, csum items and directory items.
4483 * It starts at a high offset and removes keys until it can't find
4484 * any higher than new_size
4485 *
4486 * csum items that cross the new i_size are truncated to the new size
4487 * as well.
4488 *
4489 * min_type is the minimum key type to truncate down to.  If set to 0, this
4490 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4491 */
4492int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4493                               struct btrfs_root *root,
4494                               struct inode *inode,
4495                               u64 new_size, u32 min_type)
4496{
4497        struct btrfs_fs_info *fs_info = root->fs_info;
4498        struct btrfs_path *path;
4499        struct extent_buffer *leaf;
4500        struct btrfs_file_extent_item *fi;
4501        struct btrfs_key key;
4502        struct btrfs_key found_key;
4503        u64 extent_start = 0;
4504        u64 extent_num_bytes = 0;
4505        u64 extent_offset = 0;
4506        u64 item_end = 0;
4507        u64 last_size = new_size;
4508        u32 found_type = (u8)-1;
4509        int found_extent;
4510        int del_item;
4511        int pending_del_nr = 0;
4512        int pending_del_slot = 0;
4513        int extent_type = -1;
4514        int ret;
4515        u64 ino = btrfs_ino(BTRFS_I(inode));
4516        u64 bytes_deleted = 0;
4517        bool be_nice = false;
4518        bool should_throttle = false;
4519
4520        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4521
4522        /*
4523         * for non-free space inodes and ref cows, we want to back off from
4524         * time to time
4525         */
4526        if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4527            test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4528                be_nice = true;
4529
4530        path = btrfs_alloc_path();
4531        if (!path)
4532                return -ENOMEM;
4533        path->reada = READA_BACK;
4534
4535        /*
4536         * We want to drop from the next block forward in case this new size is
4537         * not block aligned since we will be keeping the last block of the
4538         * extent just the way it is.
4539         */
4540        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4541            root == fs_info->tree_root)
4542                btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4543                                        fs_info->sectorsize),
4544                                        (u64)-1, 0);
4545
4546        /*
4547         * This function is also used to drop the items in the log tree before
4548         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4549         * it is used to drop the logged items. So we shouldn't kill the delayed
4550         * items.
4551         */
4552        if (min_type == 0 && root == BTRFS_I(inode)->root)
4553                btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4554
4555        key.objectid = ino;
4556        key.offset = (u64)-1;
4557        key.type = (u8)-1;
4558
4559search_again:
4560        /*
4561         * with a 16K leaf size and 128MB extents, you can actually queue
4562         * up a huge file in a single leaf.  Most of the time that
4563         * bytes_deleted is > 0, it will be huge by the time we get here
4564         */
4565        if (be_nice && bytes_deleted > SZ_32M &&
4566            btrfs_should_end_transaction(trans)) {
4567                ret = -EAGAIN;
4568                goto out;
4569        }
4570
4571        path->leave_spinning = 1;
4572        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4573        if (ret < 0)
4574                goto out;
4575
4576        if (ret > 0) {
4577                ret = 0;
4578                /* there are no items in the tree for us to truncate, we're
4579                 * done
4580                 */
4581                if (path->slots[0] == 0)
4582                        goto out;
4583                path->slots[0]--;
4584        }
4585
4586        while (1) {
4587                fi = NULL;
4588                leaf = path->nodes[0];
4589                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4590                found_type = found_key.type;
4591
4592                if (found_key.objectid != ino)
4593                        break;
4594
4595                if (found_type < min_type)
4596                        break;
4597
4598                item_end = found_key.offset;
4599                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4600                        fi = btrfs_item_ptr(leaf, path->slots[0],
4601                                            struct btrfs_file_extent_item);
4602                        extent_type = btrfs_file_extent_type(leaf, fi);
4603                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4604                                item_end +=
4605                                    btrfs_file_extent_num_bytes(leaf, fi);
4606
4607                                trace_btrfs_truncate_show_fi_regular(
4608                                        BTRFS_I(inode), leaf, fi,
4609                                        found_key.offset);
4610                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4611                                item_end += btrfs_file_extent_ram_bytes(leaf,
4612                                                                        fi);
4613
4614                                trace_btrfs_truncate_show_fi_inline(
4615                                        BTRFS_I(inode), leaf, fi, path->slots[0],
4616                                        found_key.offset);
4617                        }
4618                        item_end--;
4619                }
4620                if (found_type > min_type) {
4621                        del_item = 1;
4622                } else {
4623                        if (item_end < new_size)
4624                                break;
4625                        if (found_key.offset >= new_size)
4626                                del_item = 1;
4627                        else
4628                                del_item = 0;
4629                }
4630                found_extent = 0;
4631                /* FIXME, shrink the extent if the ref count is only 1 */
4632                if (found_type != BTRFS_EXTENT_DATA_KEY)
4633                        goto delete;
4634
4635                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4636                        u64 num_dec;
4637                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4638                        if (!del_item) {
4639                                u64 orig_num_bytes =
4640                                        btrfs_file_extent_num_bytes(leaf, fi);
4641                                extent_num_bytes = ALIGN(new_size -
4642                                                found_key.offset,
4643                                                fs_info->sectorsize);
4644                                btrfs_set_file_extent_num_bytes(leaf, fi,
4645                                                         extent_num_bytes);
4646                                num_dec = (orig_num_bytes -
4647                                           extent_num_bytes);
4648                                if (test_bit(BTRFS_ROOT_REF_COWS,
4649                                             &root->state) &&
4650                                    extent_start != 0)
4651                                        inode_sub_bytes(inode, num_dec);
4652                                btrfs_mark_buffer_dirty(leaf);
4653                        } else {
4654                                extent_num_bytes =
4655                                        btrfs_file_extent_disk_num_bytes(leaf,
4656                                                                         fi);
4657                                extent_offset = found_key.offset -
4658                                        btrfs_file_extent_offset(leaf, fi);
4659
4660                                /* FIXME blocksize != 4096 */
4661                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4662                                if (extent_start != 0) {
4663                                        found_extent = 1;
4664                                        if (test_bit(BTRFS_ROOT_REF_COWS,
4665                                                     &root->state))
4666                                                inode_sub_bytes(inode, num_dec);
4667                                }
4668                        }
4669                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4670                        /*
4671                         * we can't truncate inline items that have had
4672                         * special encodings
4673                         */
4674                        if (!del_item &&
4675                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4676                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4677                            btrfs_file_extent_compression(leaf, fi) == 0) {
4678                                u32 size = (u32)(new_size - found_key.offset);
4679
4680                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4681                                size = btrfs_file_extent_calc_inline_size(size);
4682                                btrfs_truncate_item(root->fs_info, path, size, 1);
4683                        } else if (!del_item) {
4684                                /*
4685                                 * We have to bail so the last_size is set to
4686                                 * just before this extent.
4687                                 */
4688                                ret = NEED_TRUNCATE_BLOCK;
4689                                break;
4690                        }
4691
4692                        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4693                                inode_sub_bytes(inode, item_end + 1 - new_size);
4694                }
4695delete:
4696                if (del_item)
4697                        last_size = found_key.offset;
4698                else
4699                        last_size = new_size;
4700                if (del_item) {
4701                        if (!pending_del_nr) {
4702                                /* no pending yet, add ourselves */
4703                                pending_del_slot = path->slots[0];
4704                                pending_del_nr = 1;
4705                        } else if (pending_del_nr &&
4706                                   path->slots[0] + 1 == pending_del_slot) {
4707                                /* hop on the pending chunk */
4708                                pending_del_nr++;
4709                                pending_del_slot = path->slots[0];
4710                        } else {
4711                                BUG();
4712                        }
4713                } else {
4714                        break;
4715                }
4716                should_throttle = false;
4717
4718                if (found_extent &&
4719                    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4720                     root == fs_info->tree_root)) {
4721                        btrfs_set_path_blocking(path);
4722                        bytes_deleted += extent_num_bytes;
4723                        ret = btrfs_free_extent(trans, root, extent_start,
4724                                                extent_num_bytes, 0,
4725                                                btrfs_header_owner(leaf),
4726                                                ino, extent_offset);
4727                        if (ret) {
4728                                btrfs_abort_transaction(trans, ret);
4729                                break;
4730                        }
4731                        if (be_nice) {
4732                                if (btrfs_should_throttle_delayed_refs(trans))
4733                                        should_throttle = true;
4734                        }
4735                }
4736
4737                if (found_type == BTRFS_INODE_ITEM_KEY)
4738                        break;
4739
4740                if (path->slots[0] == 0 ||
4741                    path->slots[0] != pending_del_slot ||
4742                    should_throttle) {
4743                        if (pending_del_nr) {
4744                                ret = btrfs_del_items(trans, root, path,
4745                                                pending_del_slot,
4746                                                pending_del_nr);
4747                                if (ret) {
4748                                        btrfs_abort_transaction(trans, ret);
4749                                        break;
4750                                }
4751                                pending_del_nr = 0;
4752                        }
4753                        btrfs_release_path(path);
4754
4755                        /*
4756                         * We can generate a lot of delayed refs, so we need to
4757                         * throttle every once and a while and make sure we're
4758                         * adding enough space to keep up with the work we are
4759                         * generating.  Since we hold a transaction here we
4760                         * can't flush, and we don't want to FLUSH_LIMIT because
4761                         * we could have generated too many delayed refs to
4762                         * actually allocate, so just bail if we're short and
4763                         * let the normal reservation dance happen higher up.
4764                         */
4765                        if (should_throttle) {
4766                                ret = btrfs_delayed_refs_rsv_refill(fs_info,
4767                                                        BTRFS_RESERVE_NO_FLUSH);
4768                                if (ret) {
4769                                        ret = -EAGAIN;
4770                                        break;
4771                                }
4772                        }
4773                        goto search_again;
4774                } else {
4775                        path->slots[0]--;
4776                }
4777        }
4778out:
4779        if (ret >= 0 && pending_del_nr) {
4780                int err;
4781
4782                err = btrfs_del_items(trans, root, path, pending_del_slot,
4783                                      pending_del_nr);
4784                if (err) {
4785                        btrfs_abort_transaction(trans, err);
4786                        ret = err;
4787                }
4788        }
4789        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4790                ASSERT(last_size >= new_size);
4791                if (!ret && last_size > new_size)
4792                        last_size = new_size;
4793                btrfs_ordered_update_i_size(inode, last_size, NULL);
4794        }
4795
4796        btrfs_free_path(path);
4797        return ret;
4798}
4799
4800/*
4801 * btrfs_truncate_block - read, zero a chunk and write a block
4802 * @inode - inode that we're zeroing
4803 * @from - the offset to start zeroing
4804 * @len - the length to zero, 0 to zero the entire range respective to the
4805 *      offset
4806 * @front - zero up to the offset instead of from the offset on
4807 *
4808 * This will find the block for the "from" offset and cow the block and zero the
4809 * part we want to zero.  This is used with truncate and hole punching.
4810 */
4811int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4812                        int front)
4813{
4814        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4815        struct address_space *mapping = inode->i_mapping;
4816        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4817        struct btrfs_ordered_extent *ordered;
4818        struct extent_state *cached_state = NULL;
4819        struct extent_changeset *data_reserved = NULL;
4820        char *kaddr;
4821        u32 blocksize = fs_info->sectorsize;
4822        pgoff_t index = from >> PAGE_SHIFT;
4823        unsigned offset = from & (blocksize - 1);
4824        struct page *page;
4825        gfp_t mask = btrfs_alloc_write_mask(mapping);
4826        int ret = 0;
4827        u64 block_start;
4828        u64 block_end;
4829
4830        if (IS_ALIGNED(offset, blocksize) &&
4831            (!len || IS_ALIGNED(len, blocksize)))
4832                goto out;
4833
4834        block_start = round_down(from, blocksize);
4835        block_end = block_start + blocksize - 1;
4836
4837        ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4838                                           block_start, blocksize);
4839        if (ret)
4840                goto out;
4841
4842again:
4843        page = find_or_create_page(mapping, index, mask);
4844        if (!page) {
4845                btrfs_delalloc_release_space(inode, data_reserved,
4846                                             block_start, blocksize, true);
4847                btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4848                ret = -ENOMEM;
4849                goto out;
4850        }
4851
4852        if (!PageUptodate(page)) {
4853                ret = btrfs_readpage(NULL, page);
4854                lock_page(page);
4855                if (page->mapping != mapping) {
4856                        unlock_page(page);
4857                        put_page(page);
4858                        goto again;
4859                }
4860                if (!PageUptodate(page)) {
4861                        ret = -EIO;
4862                        goto out_unlock;
4863                }
4864        }
4865        wait_on_page_writeback(page);
4866
4867        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4868        set_page_extent_mapped(page);
4869
4870        ordered = btrfs_lookup_ordered_extent(inode, block_start);
4871        if (ordered) {
4872                unlock_extent_cached(io_tree, block_start, block_end,
4873                                     &cached_state);
4874                unlock_page(page);
4875                put_page(page);
4876                btrfs_start_ordered_extent(inode, ordered, 1);
4877                btrfs_put_ordered_extent(ordered);
4878                goto again;
4879        }
4880
4881        clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4882                          EXTENT_DIRTY | EXTENT_DELALLOC |
4883                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4884                          0, 0, &cached_state);
4885
4886        ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4887                                        &cached_state, 0);
4888        if (ret) {
4889                unlock_extent_cached(io_tree, block_start, block_end,
4890                                     &cached_state);
4891                goto out_unlock;
4892        }
4893
4894        if (offset != blocksize) {
4895                if (!len)
4896                        len = blocksize - offset;
4897                kaddr = kmap(page);
4898                if (front)
4899                        memset(kaddr + (block_start - page_offset(page)),
4900                                0, offset);
4901                else
4902                        memset(kaddr + (block_start - page_offset(page)) +  offset,
4903                                0, len);
4904                flush_dcache_page(page);
4905                kunmap(page);
4906        }
4907        ClearPageChecked(page);
4908        set_page_dirty(page);
4909        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4910
4911out_unlock:
4912        if (ret)
4913                btrfs_delalloc_release_space(inode, data_reserved, block_start,
4914                                             blocksize, true);
4915        btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4916        unlock_page(page);
4917        put_page(page);
4918out:
4919        extent_changeset_free(data_reserved);
4920        return ret;
4921}
4922
4923static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4924                             u64 offset, u64 len)
4925{
4926        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4927        struct btrfs_trans_handle *trans;
4928        int ret;
4929
4930        /*
4931         * Still need to make sure the inode looks like it's been updated so
4932         * that any holes get logged if we fsync.
4933         */
4934        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4935                BTRFS_I(inode)->last_trans = fs_info->generation;
4936                BTRFS_I(inode)->last_sub_trans = root->log_transid;
4937                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4938                return 0;
4939        }
4940
4941        /*
4942         * 1 - for the one we're dropping
4943         * 1 - for the one we're adding
4944         * 1 - for updating the inode.
4945         */
4946        trans = btrfs_start_transaction(root, 3);
4947        if (IS_ERR(trans))
4948                return PTR_ERR(trans);
4949
4950        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4951        if (ret) {
4952                btrfs_abort_transaction(trans, ret);
4953                btrfs_end_transaction(trans);
4954                return ret;
4955        }
4956
4957        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4958                        offset, 0, 0, len, 0, len, 0, 0, 0);
4959        if (ret)
4960                btrfs_abort_transaction(trans, ret);
4961        else
4962                btrfs_update_inode(trans, root, inode);
4963        btrfs_end_transaction(trans);
4964        return ret;
4965}
4966
4967/*
4968 * This function puts in dummy file extents for the area we're creating a hole
4969 * for.  So if we are truncating this file to a larger size we need to insert
4970 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4971 * the range between oldsize and size
4972 */
4973int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4974{
4975        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4976        struct btrfs_root *root = BTRFS_I(inode)->root;
4977        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4978        struct extent_map *em = NULL;
4979        struct extent_state *cached_state = NULL;
4980        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4981        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4982        u64 block_end = ALIGN(size, fs_info->sectorsize);
4983        u64 last_byte;
4984        u64 cur_offset;
4985        u64 hole_size;
4986        int err = 0;
4987
4988        /*
4989         * If our size started in the middle of a block we need to zero out the
4990         * rest of the block before we expand the i_size, otherwise we could
4991         * expose stale data.
4992         */
4993        err = btrfs_truncate_block(inode, oldsize, 0, 0);
4994        if (err)
4995                return err;
4996
4997        if (size <= hole_start)
4998                return 0;
4999
5000        while (1) {
5001                struct btrfs_ordered_extent *ordered;
5002
5003                lock_extent_bits(io_tree, hole_start, block_end - 1,
5004                                 &cached_state);
5005                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5006                                                     block_end - hole_start);
5007                if (!ordered)
5008                        break;
5009                unlock_extent_cached(io_tree, hole_start, block_end - 1,
5010                                     &cached_state);
5011                btrfs_start_ordered_extent(inode, ordered, 1);
5012                btrfs_put_ordered_extent(ordered);
5013        }
5014
5015        cur_offset = hole_start;
5016        while (1) {
5017                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5018                                block_end - cur_offset, 0);
5019                if (IS_ERR(em)) {
5020                        err = PTR_ERR(em);
5021                        em = NULL;
5022                        break;
5023                }
5024                last_byte = min(extent_map_end(em), block_end);
5025                last_byte = ALIGN(last_byte, fs_info->sectorsize);
5026                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5027                        struct extent_map *hole_em;
5028                        hole_size = last_byte - cur_offset;
5029
5030                        err = maybe_insert_hole(root, inode, cur_offset,
5031                                                hole_size);
5032                        if (err)
5033                                break;
5034                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5035                                                cur_offset + hole_size - 1, 0);
5036                        hole_em = alloc_extent_map();
5037                        if (!hole_em) {
5038                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5039                                        &BTRFS_I(inode)->runtime_flags);
5040                                goto next;
5041                        }
5042                        hole_em->start = cur_offset;
5043                        hole_em->len = hole_size;
5044                        hole_em->orig_start = cur_offset;
5045
5046                        hole_em->block_start = EXTENT_MAP_HOLE;
5047                        hole_em->block_len = 0;
5048                        hole_em->orig_block_len = 0;
5049                        hole_em->ram_bytes = hole_size;
5050                        hole_em->bdev = fs_info->fs_devices->latest_bdev;
5051                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
5052                        hole_em->generation = fs_info->generation;
5053
5054                        while (1) {
5055                                write_lock(&em_tree->lock);
5056                                err = add_extent_mapping(em_tree, hole_em, 1);
5057                                write_unlock(&em_tree->lock);
5058                                if (err != -EEXIST)
5059                                        break;
5060                                btrfs_drop_extent_cache(BTRFS_I(inode),
5061                                                        cur_offset,
5062                                                        cur_offset +
5063                                                        hole_size - 1, 0);
5064                        }
5065                        free_extent_map(hole_em);
5066                }
5067next:
5068                free_extent_map(em);
5069                em = NULL;
5070                cur_offset = last_byte;
5071                if (cur_offset >= block_end)
5072                        break;
5073        }
5074        free_extent_map(em);
5075        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5076        return err;
5077}
5078
5079static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5080{
5081        struct btrfs_root *root = BTRFS_I(inode)->root;
5082        struct btrfs_trans_handle *trans;
5083        loff_t oldsize = i_size_read(inode);
5084        loff_t newsize = attr->ia_size;
5085        int mask = attr->ia_valid;
5086        int ret;
5087
5088        /*
5089         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5090         * special case where we need to update the times despite not having
5091         * these flags set.  For all other operations the VFS set these flags
5092         * explicitly if it wants a timestamp update.
5093         */
5094        if (newsize != oldsize) {
5095                inode_inc_iversion(inode);
5096                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5097                        inode->i_ctime = inode->i_mtime =
5098                                current_time(inode);
5099        }
5100
5101        if (newsize > oldsize) {
5102                /*
5103                 * Don't do an expanding truncate while snapshotting is ongoing.
5104                 * This is to ensure the snapshot captures a fully consistent
5105                 * state of this file - if the snapshot captures this expanding
5106                 * truncation, it must capture all writes that happened before
5107                 * this truncation.
5108                 */
5109                btrfs_wait_for_snapshot_creation(root);
5110                ret = btrfs_cont_expand(inode, oldsize, newsize);
5111                if (ret) {
5112                        btrfs_end_write_no_snapshotting(root);
5113                        return ret;
5114                }
5115
5116                trans = btrfs_start_transaction(root, 1);
5117                if (IS_ERR(trans)) {
5118                        btrfs_end_write_no_snapshotting(root);
5119                        return PTR_ERR(trans);
5120                }
5121
5122                i_size_write(inode, newsize);
5123                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5124                pagecache_isize_extended(inode, oldsize, newsize);
5125                ret = btrfs_update_inode(trans, root, inode);
5126                btrfs_end_write_no_snapshotting(root);
5127                btrfs_end_transaction(trans);
5128        } else {
5129
5130                /*
5131                 * We're truncating a file that used to have good data down to
5132                 * zero. Make sure it gets into the ordered flush list so that
5133                 * any new writes get down to disk quickly.
5134                 */
5135                if (newsize == 0)
5136                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5137                                &BTRFS_I(inode)->runtime_flags);
5138
5139                truncate_setsize(inode, newsize);
5140
5141                /* Disable nonlocked read DIO to avoid the endless truncate */
5142                btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5143                inode_dio_wait(inode);
5144                btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5145
5146                ret = btrfs_truncate(inode, newsize == oldsize);
5147                if (ret && inode->i_nlink) {
5148                        int err;
5149
5150                        /*
5151                         * Truncate failed, so fix up the in-memory size. We
5152                         * adjusted disk_i_size down as we removed extents, so
5153                         * wait for disk_i_size to be stable and then update the
5154                         * in-memory size to match.
5155                         */
5156                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5157                        if (err)
5158                                return err;
5159                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5160                }
5161        }
5162
5163        return ret;
5164}
5165
5166static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5167{
5168        struct inode *inode = d_inode(dentry);
5169        struct btrfs_root *root = BTRFS_I(inode)->root;
5170        int err;
5171
5172        if (btrfs_root_readonly(root))
5173                return -EROFS;
5174
5175        err = setattr_prepare(dentry, attr);
5176        if (err)
5177                return err;
5178
5179        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5180                err = btrfs_setsize(inode, attr);
5181                if (err)
5182                        return err;
5183        }
5184
5185        if (attr->ia_valid) {
5186                setattr_copy(inode, attr);
5187                inode_inc_iversion(inode);
5188                err = btrfs_dirty_inode(inode);
5189
5190                if (!err && attr->ia_valid & ATTR_MODE)
5191                        err = posix_acl_chmod(inode, inode->i_mode);
5192        }
5193
5194        return err;
5195}
5196
5197/*
5198 * While truncating the inode pages during eviction, we get the VFS calling
5199 * btrfs_invalidatepage() against each page of the inode. This is slow because
5200 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5201 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5202 * extent_state structures over and over, wasting lots of time.
5203 *
5204 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5205 * those expensive operations on a per page basis and do only the ordered io
5206 * finishing, while we release here the extent_map and extent_state structures,
5207 * without the excessive merging and splitting.
5208 */
5209static void evict_inode_truncate_pages(struct inode *inode)
5210{
5211        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5212        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5213        struct rb_node *node;
5214
5215        ASSERT(inode->i_state & I_FREEING);
5216        truncate_inode_pages_final(&inode->i_data);
5217
5218        write_lock(&map_tree->lock);
5219        while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5220                struct extent_map *em;
5221
5222                node = rb_first_cached(&map_tree->map);
5223                em = rb_entry(node, struct extent_map, rb_node);
5224                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5225                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5226                remove_extent_mapping(map_tree, em);
5227                free_extent_map(em);
5228                if (need_resched()) {
5229                        write_unlock(&map_tree->lock);
5230                        cond_resched();
5231                        write_lock(&map_tree->lock);
5232                }
5233        }
5234        write_unlock(&map_tree->lock);
5235
5236        /*
5237         * Keep looping until we have no more ranges in the io tree.
5238         * We can have ongoing bios started by readpages (called from readahead)
5239         * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5240         * still in progress (unlocked the pages in the bio but did not yet
5241         * unlocked the ranges in the io tree). Therefore this means some
5242         * ranges can still be locked and eviction started because before
5243         * submitting those bios, which are executed by a separate task (work
5244         * queue kthread), inode references (inode->i_count) were not taken
5245         * (which would be dropped in the end io callback of each bio).
5246         * Therefore here we effectively end up waiting for those bios and
5247         * anyone else holding locked ranges without having bumped the inode's
5248         * reference count - if we don't do it, when they access the inode's
5249         * io_tree to unlock a range it may be too late, leading to an
5250         * use-after-free issue.
5251         */
5252        spin_lock(&io_tree->lock);
5253        while (!RB_EMPTY_ROOT(&io_tree->state)) {
5254                struct extent_state *state;
5255                struct extent_state *cached_state = NULL;
5256                u64 start;
5257                u64 end;
5258                unsigned state_flags;
5259
5260                node = rb_first(&io_tree->state);
5261                state = rb_entry(node, struct extent_state, rb_node);
5262                start = state->start;
5263                end = state->end;
5264                state_flags = state->state;
5265                spin_unlock(&io_tree->lock);
5266
5267                lock_extent_bits(io_tree, start, end, &cached_state);
5268
5269                /*
5270                 * If still has DELALLOC flag, the extent didn't reach disk,
5271                 * and its reserved space won't be freed by delayed_ref.
5272                 * So we need to free its reserved space here.
5273                 * (Refer to comment in btrfs_invalidatepage, case 2)
5274                 *
5275                 * Note, end is the bytenr of last byte, so we need + 1 here.
5276                 */
5277                if (state_flags & EXTENT_DELALLOC)
5278                        btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5279
5280                clear_extent_bit(io_tree, start, end,
5281                                 EXTENT_LOCKED | EXTENT_DIRTY |
5282                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5283                                 EXTENT_DEFRAG, 1, 1, &cached_state);
5284
5285                cond_resched();
5286                spin_lock(&io_tree->lock);
5287        }
5288        spin_unlock(&io_tree->lock);
5289}
5290
5291static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5292                                                        struct btrfs_block_rsv *rsv)
5293{
5294        struct btrfs_fs_info *fs_info = root->fs_info;
5295        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5296        u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5297        int failures = 0;
5298
5299        for (;;) {
5300                struct btrfs_trans_handle *trans;
5301                int ret;
5302
5303                ret = btrfs_block_rsv_refill(root, rsv,
5304                                             rsv->size + delayed_refs_extra,
5305                                             BTRFS_RESERVE_FLUSH_LIMIT);
5306
5307                if (ret && ++failures > 2) {
5308                        btrfs_warn(fs_info,
5309                                   "could not allocate space for a delete; will truncate on mount");
5310                        return ERR_PTR(-ENOSPC);
5311                }
5312
5313                /*
5314                 * Evict can generate a large amount of delayed refs without
5315                 * having a way to add space back since we exhaust our temporary
5316                 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5317                 * because we could deadlock with so many things in the flushing
5318                 * code, so we have to try and hold some extra space to
5319                 * compensate for our delayed ref generation.  If we can't get
5320                 * that space then we need see if we can steal our minimum from
5321                 * the global reserve.  We will be ratelimited by the amount of
5322                 * space we have for the delayed refs rsv, so we'll end up
5323                 * committing and trying again.
5324                 */
5325                trans = btrfs_join_transaction(root);
5326                if (IS_ERR(trans) || !ret) {
5327                        if (!IS_ERR(trans)) {
5328                                trans->block_rsv = &fs_info->trans_block_rsv;
5329                                trans->bytes_reserved = delayed_refs_extra;
5330                                btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5331                                                        delayed_refs_extra, 1);
5332                        }
5333                        return trans;
5334                }
5335
5336                /*
5337                 * Try to steal from the global reserve if there is space for
5338                 * it.
5339                 */
5340                if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5341                    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5342                        return trans;
5343
5344                /* If not, commit and try again. */
5345                ret = btrfs_commit_transaction(trans);
5346                if (ret)
5347                        return ERR_PTR(ret);
5348        }
5349}
5350
5351void btrfs_evict_inode(struct inode *inode)
5352{
5353        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5354        struct btrfs_trans_handle *trans;
5355        struct btrfs_root *root = BTRFS_I(inode)->root;
5356        struct btrfs_block_rsv *rsv;
5357        int ret;
5358
5359        trace_btrfs_inode_evict(inode);
5360
5361        if (!root) {
5362                clear_inode(inode);
5363                return;
5364        }
5365
5366        evict_inode_truncate_pages(inode);
5367
5368        if (inode->i_nlink &&
5369            ((btrfs_root_refs(&root->root_item) != 0 &&
5370              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5371             btrfs_is_free_space_inode(BTRFS_I(inode))))
5372                goto no_delete;
5373
5374        if (is_bad_inode(inode))
5375                goto no_delete;
5376
5377        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5378
5379        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5380                goto no_delete;
5381
5382        if (inode->i_nlink > 0) {
5383                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5384                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5385                goto no_delete;
5386        }
5387
5388        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5389        if (ret)
5390                goto no_delete;
5391
5392        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5393        if (!rsv)
5394                goto no_delete;
5395        rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5396        rsv->failfast = 1;
5397
5398        btrfs_i_size_write(BTRFS_I(inode), 0);
5399
5400        while (1) {
5401                trans = evict_refill_and_join(root, rsv);
5402                if (IS_ERR(trans))
5403                        goto free_rsv;
5404
5405                trans->block_rsv = rsv;
5406
5407                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5408                trans->block_rsv = &fs_info->trans_block_rsv;
5409                btrfs_end_transaction(trans);
5410                btrfs_btree_balance_dirty(fs_info);
5411                if (ret && ret != -ENOSPC && ret != -EAGAIN)
5412                        goto free_rsv;
5413                else if (!ret)
5414                        break;
5415        }
5416
5417        /*
5418         * Errors here aren't a big deal, it just means we leave orphan items in
5419         * the tree. They will be cleaned up on the next mount. If the inode
5420         * number gets reused, cleanup deletes the orphan item without doing
5421         * anything, and unlink reuses the existing orphan item.
5422         *
5423         * If it turns out that we are dropping too many of these, we might want
5424         * to add a mechanism for retrying these after a commit.
5425         */
5426        trans = evict_refill_and_join(root, rsv);
5427        if (!IS_ERR(trans)) {
5428                trans->block_rsv = rsv;
5429                btrfs_orphan_del(trans, BTRFS_I(inode));
5430                trans->block_rsv = &fs_info->trans_block_rsv;
5431                btrfs_end_transaction(trans);
5432        }
5433
5434        if (!(root == fs_info->tree_root ||
5435              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5436                btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5437
5438free_rsv:
5439        btrfs_free_block_rsv(fs_info, rsv);
5440no_delete:
5441        /*
5442         * If we didn't successfully delete, the orphan item will still be in
5443         * the tree and we'll retry on the next mount. Again, we might also want
5444         * to retry these periodically in the future.
5445         */
5446        btrfs_remove_delayed_node(BTRFS_I(inode));
5447        clear_inode(inode);
5448}
5449
5450/*
5451 * this returns the key found in the dir entry in the location pointer.
5452 * If no dir entries were found, returns -ENOENT.
5453 * If found a corrupted location in dir entry, returns -EUCLEAN.
5454 */
5455static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5456                               struct btrfs_key *location)
5457{
5458        const char *name = dentry->d_name.name;
5459        int namelen = dentry->d_name.len;
5460        struct btrfs_dir_item *di;
5461        struct btrfs_path *path;
5462        struct btrfs_root *root = BTRFS_I(dir)->root;
5463        int ret = 0;
5464
5465        path = btrfs_alloc_path();
5466        if (!path)
5467                return -ENOMEM;
5468
5469        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5470                        name, namelen, 0);
5471        if (IS_ERR_OR_NULL(di)) {
5472                ret = di ? PTR_ERR(di) : -ENOENT;
5473                goto out;
5474        }
5475
5476        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5477        if (location->type != BTRFS_INODE_ITEM_KEY &&
5478            location->type != BTRFS_ROOT_ITEM_KEY) {
5479                ret = -EUCLEAN;
5480                btrfs_warn(root->fs_info,
5481"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5482                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5483                           location->objectid, location->type, location->offset);
5484        }
5485out:
5486        btrfs_free_path(path);
5487        return ret;
5488}
5489
5490/*
5491 * when we hit a tree root in a directory, the btrfs part of the inode
5492 * needs to be changed to reflect the root directory of the tree root.  This
5493 * is kind of like crossing a mount point.
5494 */
5495static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5496                                    struct inode *dir,
5497                                    struct dentry *dentry,
5498                                    struct btrfs_key *location,
5499                                    struct btrfs_root **sub_root)
5500{
5501        struct btrfs_path *path;
5502        struct btrfs_root *new_root;
5503        struct btrfs_root_ref *ref;
5504        struct extent_buffer *leaf;
5505        struct btrfs_key key;
5506        int ret;
5507        int err = 0;
5508
5509        path = btrfs_alloc_path();
5510        if (!path) {
5511                err = -ENOMEM;
5512                goto out;
5513        }
5514
5515        err = -ENOENT;
5516        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5517        key.type = BTRFS_ROOT_REF_KEY;
5518        key.offset = location->objectid;
5519
5520        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5521        if (ret) {
5522                if (ret < 0)
5523                        err = ret;
5524                goto out;
5525        }
5526
5527        leaf = path->nodes[0];
5528        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5529        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5530            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5531                goto out;
5532
5533        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5534                                   (unsigned long)(ref + 1),
5535                                   dentry->d_name.len);
5536        if (ret)
5537                goto out;
5538
5539        btrfs_release_path(path);
5540
5541        new_root = btrfs_read_fs_root_no_name(fs_info, location);
5542        if (IS_ERR(new_root)) {
5543                err = PTR_ERR(new_root);
5544                goto out;
5545        }
5546
5547        *sub_root = new_root;
5548        location->objectid = btrfs_root_dirid(&new_root->root_item);
5549        location->type = BTRFS_INODE_ITEM_KEY;
5550        location->offset = 0;
5551        err = 0;
5552out:
5553        btrfs_free_path(path);
5554        return err;
5555}
5556
5557static void inode_tree_add(struct inode *inode)
5558{
5559        struct btrfs_root *root = BTRFS_I(inode)->root;
5560        struct btrfs_inode *entry;
5561        struct rb_node **p;
5562        struct rb_node *parent;
5563        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5564        u64 ino = btrfs_ino(BTRFS_I(inode));
5565
5566        if (inode_unhashed(inode))
5567                return;
5568        parent = NULL;
5569        spin_lock(&root->inode_lock);
5570        p = &root->inode_tree.rb_node;
5571        while (*p) {
5572                parent = *p;
5573                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5574
5575                if (ino < btrfs_ino(entry))
5576                        p = &parent->rb_left;
5577                else if (ino > btrfs_ino(entry))
5578                        p = &parent->rb_right;
5579                else {
5580                        WARN_ON(!(entry->vfs_inode.i_state &
5581                                  (I_WILL_FREE | I_FREEING)));
5582                        rb_replace_node(parent, new, &root->inode_tree);
5583                        RB_CLEAR_NODE(parent);
5584                        spin_unlock(&root->inode_lock);
5585                        return;
5586                }
5587        }
5588        rb_link_node(new, parent, p);
5589        rb_insert_color(new, &root->inode_tree);
5590        spin_unlock(&root->inode_lock);
5591}
5592
5593static void inode_tree_del(struct inode *inode)
5594{
5595        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5596        struct btrfs_root *root = BTRFS_I(inode)->root;
5597        int empty = 0;
5598
5599        spin_lock(&root->inode_lock);
5600        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5601                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5602                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5603                empty = RB_EMPTY_ROOT(&root->inode_tree);
5604        }
5605        spin_unlock(&root->inode_lock);
5606
5607        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5608                synchronize_srcu(&fs_info->subvol_srcu);
5609                spin_lock(&root->inode_lock);
5610                empty = RB_EMPTY_ROOT(&root->inode_tree);
5611                spin_unlock(&root->inode_lock);
5612                if (empty)
5613                        btrfs_add_dead_root(root);
5614        }
5615}
5616
5617
5618static int btrfs_init_locked_inode(struct inode *inode, void *p)
5619{
5620        struct btrfs_iget_args *args = p;
5621        inode->i_ino = args->location->objectid;
5622        memcpy(&BTRFS_I(inode)->location, args->location,
5623               sizeof(*args->location));
5624        BTRFS_I(inode)->root = args->root;
5625        return 0;
5626}
5627
5628static int btrfs_find_actor(struct inode *inode, void *opaque)
5629{
5630        struct btrfs_iget_args *args = opaque;
5631        return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5632                args->root == BTRFS_I(inode)->root;
5633}
5634
5635static struct inode *btrfs_iget_locked(struct super_block *s,
5636                                       struct btrfs_key *location,
5637                                       struct btrfs_root *root)
5638{
5639        struct inode *inode;
5640        struct btrfs_iget_args args;
5641        unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5642
5643        args.location = location;
5644        args.root = root;
5645
5646        inode = iget5_locked(s, hashval, btrfs_find_actor,
5647                             btrfs_init_locked_inode,
5648                             (void *)&args);
5649        return inode;
5650}
5651
5652/* Get an inode object given its location and corresponding root.
5653 * Returns in *is_new if the inode was read from disk
5654 */
5655struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5656                              struct btrfs_root *root, int *new,
5657                              struct btrfs_path *path)
5658{
5659        struct inode *inode;
5660
5661        inode = btrfs_iget_locked(s, location, root);
5662        if (!inode)
5663                return ERR_PTR(-ENOMEM);
5664
5665        if (inode->i_state & I_NEW) {
5666                int ret;
5667
5668                ret = btrfs_read_locked_inode(inode, path);
5669                if (!ret) {
5670                        inode_tree_add(inode);
5671                        unlock_new_inode(inode);
5672                        if (new)
5673                                *new = 1;
5674                } else {
5675                        iget_failed(inode);
5676                        /*
5677                         * ret > 0 can come from btrfs_search_slot called by
5678                         * btrfs_read_locked_inode, this means the inode item
5679                         * was not found.
5680                         */
5681                        if (ret > 0)
5682                                ret = -ENOENT;
5683                        inode = ERR_PTR(ret);
5684                }
5685        }
5686
5687        return inode;
5688}
5689
5690struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5691                         struct btrfs_root *root, int *new)
5692{
5693        return btrfs_iget_path(s, location, root, new, NULL);
5694}
5695
5696static struct inode *new_simple_dir(struct super_block *s,
5697                                    struct btrfs_key *key,
5698                                    struct btrfs_root *root)
5699{
5700        struct inode *inode = new_inode(s);
5701
5702        if (!inode)
5703                return ERR_PTR(-ENOMEM);
5704
5705        BTRFS_I(inode)->root = root;
5706        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5707        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5708
5709        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5710        inode->i_op = &btrfs_dir_ro_inode_operations;
5711        inode->i_opflags &= ~IOP_XATTR;
5712        inode->i_fop = &simple_dir_operations;
5713        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5714        inode->i_mtime = current_time(inode);
5715        inode->i_atime = inode->i_mtime;
5716        inode->i_ctime = inode->i_mtime;
5717        BTRFS_I(inode)->i_otime = inode->i_mtime;
5718
5719        return inode;
5720}
5721
5722struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5723{
5724        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5725        struct inode *inode;
5726        struct btrfs_root *root = BTRFS_I(dir)->root;
5727        struct btrfs_root *sub_root = root;
5728        struct btrfs_key location;
5729        int index;
5730        int ret = 0;
5731
5732        if (dentry->d_name.len > BTRFS_NAME_LEN)
5733                return ERR_PTR(-ENAMETOOLONG);
5734
5735        ret = btrfs_inode_by_name(dir, dentry, &location);
5736        if (ret < 0)
5737                return ERR_PTR(ret);
5738
5739        if (location.type == BTRFS_INODE_ITEM_KEY) {
5740                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5741                return inode;
5742        }
5743
5744        index = srcu_read_lock(&fs_info->subvol_srcu);
5745        ret = fixup_tree_root_location(fs_info, dir, dentry,
5746                                       &location, &sub_root);
5747        if (ret < 0) {
5748                if (ret != -ENOENT)
5749                        inode = ERR_PTR(ret);
5750                else
5751                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5752        } else {
5753                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5754        }
5755        srcu_read_unlock(&fs_info->subvol_srcu, index);
5756
5757        if (!IS_ERR(inode) && root != sub_root) {
5758                down_read(&fs_info->cleanup_work_sem);
5759                if (!sb_rdonly(inode->i_sb))
5760                        ret = btrfs_orphan_cleanup(sub_root);
5761                up_read(&fs_info->cleanup_work_sem);
5762                if (ret) {
5763                        iput(inode);
5764                        inode = ERR_PTR(ret);
5765                }
5766        }
5767
5768        return inode;
5769}
5770
5771static int btrfs_dentry_delete(const struct dentry *dentry)
5772{
5773        struct btrfs_root *root;
5774        struct inode *inode = d_inode(dentry);
5775
5776        if (!inode && !IS_ROOT(dentry))
5777                inode = d_inode(dentry->d_parent);
5778
5779        if (inode) {
5780                root = BTRFS_I(inode)->root;
5781                if (btrfs_root_refs(&root->root_item) == 0)
5782                        return 1;
5783
5784                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5785                        return 1;
5786        }
5787        return 0;
5788}
5789
5790static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5791                                   unsigned int flags)
5792{
5793        struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5794
5795        if (inode == ERR_PTR(-ENOENT))
5796                inode = NULL;
5797        return d_splice_alias(inode, dentry);
5798}
5799
5800unsigned char btrfs_filetype_table[] = {
5801        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5802};
5803
5804/*
5805 * All this infrastructure exists because dir_emit can fault, and we are holding
5806 * the tree lock when doing readdir.  For now just allocate a buffer and copy
5807 * our information into that, and then dir_emit from the buffer.  This is
5808 * similar to what NFS does, only we don't keep the buffer around in pagecache
5809 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5810 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5811 * tree lock.
5812 */
5813static int btrfs_opendir(struct inode *inode, struct file *file)
5814{
5815        struct btrfs_file_private *private;
5816
5817        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5818        if (!private)
5819                return -ENOMEM;
5820        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5821        if (!private->filldir_buf) {
5822                kfree(private);
5823                return -ENOMEM;
5824        }
5825        file->private_data = private;
5826        return 0;
5827}
5828
5829struct dir_entry {
5830        u64 ino;
5831        u64 offset;
5832        unsigned type;
5833        int name_len;
5834};
5835
5836static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5837{
5838        while (entries--) {
5839                struct dir_entry *entry = addr;
5840                char *name = (char *)(entry + 1);
5841
5842                ctx->pos = get_unaligned(&entry->offset);
5843                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5844                                         get_unaligned(&entry->ino),
5845                                         get_unaligned(&entry->type)))
5846                        return 1;
5847                addr += sizeof(struct dir_entry) +
5848                        get_unaligned(&entry->name_len);
5849                ctx->pos++;
5850        }
5851        return 0;
5852}
5853
5854static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5855{
5856        struct inode *inode = file_inode(file);
5857        struct btrfs_root *root = BTRFS_I(inode)->root;
5858        struct btrfs_file_private *private = file->private_data;
5859        struct btrfs_dir_item *di;
5860        struct btrfs_key key;
5861        struct btrfs_key found_key;
5862        struct btrfs_path *path;
5863        void *addr;
5864        struct list_head ins_list;
5865        struct list_head del_list;
5866        int ret;
5867        struct extent_buffer *leaf;
5868        int slot;
5869        char *name_ptr;
5870        int name_len;
5871        int entries = 0;
5872        int total_len = 0;
5873        bool put = false;
5874        struct btrfs_key location;
5875
5876        if (!dir_emit_dots(file, ctx))
5877                return 0;
5878
5879        path = btrfs_alloc_path();
5880        if (!path)
5881                return -ENOMEM;
5882
5883        addr = private->filldir_buf;
5884        path->reada = READA_FORWARD;
5885
5886        INIT_LIST_HEAD(&ins_list);
5887        INIT_LIST_HEAD(&del_list);
5888        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5889
5890again:
5891        key.type = BTRFS_DIR_INDEX_KEY;
5892        key.offset = ctx->pos;
5893        key.objectid = btrfs_ino(BTRFS_I(inode));
5894
5895        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5896        if (ret < 0)
5897                goto err;
5898
5899        while (1) {
5900                struct dir_entry *entry;
5901
5902                leaf = path->nodes[0];
5903                slot = path->slots[0];
5904                if (slot >= btrfs_header_nritems(leaf)) {
5905                        ret = btrfs_next_leaf(root, path);
5906                        if (ret < 0)
5907                                goto err;
5908                        else if (ret > 0)
5909                                break;
5910                        continue;
5911                }
5912
5913                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5914
5915                if (found_key.objectid != key.objectid)
5916                        break;
5917                if (found_key.type != BTRFS_DIR_INDEX_KEY)
5918                        break;
5919                if (found_key.offset < ctx->pos)
5920                        goto next;
5921                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5922                        goto next;
5923                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5924                name_len = btrfs_dir_name_len(leaf, di);
5925                if ((total_len + sizeof(struct dir_entry) + name_len) >=
5926                    PAGE_SIZE) {
5927                        btrfs_release_path(path);
5928                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5929                        if (ret)
5930                                goto nopos;
5931                        addr = private->filldir_buf;
5932                        entries = 0;
5933                        total_len = 0;
5934                        goto again;
5935                }
5936
5937                entry = addr;
5938                put_unaligned(name_len, &entry->name_len);
5939                name_ptr = (char *)(entry + 1);
5940                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5941                                   name_len);
5942                put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5943                                &entry->type);
5944                btrfs_dir_item_key_to_cpu(leaf, di, &location);
5945                put_unaligned(location.objectid, &entry->ino);
5946                put_unaligned(found_key.offset, &entry->offset);
5947                entries++;
5948                addr += sizeof(struct dir_entry) + name_len;
5949                total_len += sizeof(struct dir_entry) + name_len;
5950next:
5951                path->slots[0]++;
5952        }
5953        btrfs_release_path(path);
5954
5955        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5956        if (ret)
5957                goto nopos;
5958
5959        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5960        if (ret)
5961                goto nopos;
5962
5963        /*
5964         * Stop new entries from being returned after we return the last
5965         * entry.
5966         *
5967         * New directory entries are assigned a strictly increasing
5968         * offset.  This means that new entries created during readdir
5969         * are *guaranteed* to be seen in the future by that readdir.
5970         * This has broken buggy programs which operate on names as
5971         * they're returned by readdir.  Until we re-use freed offsets
5972         * we have this hack to stop new entries from being returned
5973         * under the assumption that they'll never reach this huge
5974         * offset.
5975         *
5976         * This is being careful not to overflow 32bit loff_t unless the
5977         * last entry requires it because doing so has broken 32bit apps
5978         * in the past.
5979         */
5980        if (ctx->pos >= INT_MAX)
5981                ctx->pos = LLONG_MAX;
5982        else
5983                ctx->pos = INT_MAX;
5984nopos:
5985        ret = 0;
5986err:
5987        if (put)
5988                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5989        btrfs_free_path(path);
5990        return ret;
5991}
5992
5993/*
5994 * This is somewhat expensive, updating the tree every time the
5995 * inode changes.  But, it is most likely to find the inode in cache.
5996 * FIXME, needs more benchmarking...there are no reasons other than performance
5997 * to keep or drop this code.
5998 */
5999static int btrfs_dirty_inode(struct inode *inode)
6000{
6001        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6002        struct btrfs_root *root = BTRFS_I(inode)->root;
6003        struct btrfs_trans_handle *trans;
6004        int ret;
6005
6006        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6007                return 0;
6008
6009        trans = btrfs_join_transaction(root);
6010        if (IS_ERR(trans))
6011                return PTR_ERR(trans);
6012
6013        ret = btrfs_update_inode(trans, root, inode);
6014        if (ret && ret == -ENOSPC) {
6015                /* whoops, lets try again with the full transaction */
6016                btrfs_end_transaction(trans);
6017                trans = btrfs_start_transaction(root, 1);
6018                if (IS_ERR(trans))
6019                        return PTR_ERR(trans);
6020
6021                ret = btrfs_update_inode(trans, root, inode);
6022        }
6023        btrfs_end_transaction(trans);
6024        if (BTRFS_I(inode)->delayed_node)
6025                btrfs_balance_delayed_items(fs_info);
6026
6027        return ret;
6028}
6029
6030/*
6031 * This is a copy of file_update_time.  We need this so we can return error on
6032 * ENOSPC for updating the inode in the case of file write and mmap writes.
6033 */
6034static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6035                             int flags)
6036{
6037        struct btrfs_root *root = BTRFS_I(inode)->root;
6038        bool dirty = flags & ~S_VERSION;
6039
6040        if (btrfs_root_readonly(root))
6041                return -EROFS;
6042
6043        if (flags & S_VERSION)
6044                dirty |= inode_maybe_inc_iversion(inode, dirty);
6045        if (flags & S_CTIME)
6046                inode->i_ctime = *now;
6047        if (flags & S_MTIME)
6048                inode->i_mtime = *now;
6049        if (flags & S_ATIME)
6050                inode->i_atime = *now;
6051        return dirty ? btrfs_dirty_inode(inode) : 0;
6052}
6053
6054/*
6055 * find the highest existing sequence number in a directory
6056 * and then set the in-memory index_cnt variable to reflect
6057 * free sequence numbers
6058 */
6059static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6060{
6061        struct btrfs_root *root = inode->root;
6062        struct btrfs_key key, found_key;
6063        struct btrfs_path *path;
6064        struct extent_buffer *leaf;
6065        int ret;
6066
6067        key.objectid = btrfs_ino(inode);
6068        key.type = BTRFS_DIR_INDEX_KEY;
6069        key.offset = (u64)-1;
6070
6071        path = btrfs_alloc_path();
6072        if (!path)
6073                return -ENOMEM;
6074
6075        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6076        if (ret < 0)
6077                goto out;
6078        /* FIXME: we should be able to handle this */
6079        if (ret == 0)
6080                goto out;
6081        ret = 0;
6082
6083        /*
6084         * MAGIC NUMBER EXPLANATION:
6085         * since we search a directory based on f_pos we have to start at 2
6086         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6087         * else has to start at 2
6088         */
6089        if (path->slots[0] == 0) {
6090                inode->index_cnt = 2;
6091                goto out;
6092        }
6093
6094        path->slots[0]--;
6095
6096        leaf = path->nodes[0];
6097        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6098
6099        if (found_key.objectid != btrfs_ino(inode) ||
6100            found_key.type != BTRFS_DIR_INDEX_KEY) {
6101                inode->index_cnt = 2;
6102                goto out;
6103        }
6104
6105        inode->index_cnt = found_key.offset + 1;
6106out:
6107        btrfs_free_path(path);
6108        return ret;
6109}
6110
6111/*
6112 * helper to find a free sequence number in a given directory.  This current
6113 * code is very simple, later versions will do smarter things in the btree
6114 */
6115int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6116{
6117        int ret = 0;
6118
6119        if (dir->index_cnt == (u64)-1) {
6120                ret = btrfs_inode_delayed_dir_index_count(dir);
6121                if (ret) {
6122                        ret = btrfs_set_inode_index_count(dir);
6123                        if (ret)
6124                                return ret;
6125                }
6126        }
6127
6128        *index = dir->index_cnt;
6129        dir->index_cnt++;
6130
6131        return ret;
6132}
6133
6134static int btrfs_insert_inode_locked(struct inode *inode)
6135{
6136        struct btrfs_iget_args args;
6137        args.location = &BTRFS_I(inode)->location;
6138        args.root = BTRFS_I(inode)->root;
6139
6140        return insert_inode_locked4(inode,
6141                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6142                   btrfs_find_actor, &args);
6143}
6144
6145/*
6146 * Inherit flags from the parent inode.
6147 *
6148 * Currently only the compression flags and the cow flags are inherited.
6149 */
6150static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6151{
6152        unsigned int flags;
6153
6154        if (!dir)
6155                return;
6156
6157        flags = BTRFS_I(dir)->flags;
6158
6159        if (flags & BTRFS_INODE_NOCOMPRESS) {
6160                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6161                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6162        } else if (flags & BTRFS_INODE_COMPRESS) {
6163                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6164                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6165        }
6166
6167        if (flags & BTRFS_INODE_NODATACOW) {
6168                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6169                if (S_ISREG(inode->i_mode))
6170                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6171        }
6172
6173        btrfs_sync_inode_flags_to_i_flags(inode);
6174}
6175
6176static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6177                                     struct btrfs_root *root,
6178                                     struct inode *dir,
6179                                     const char *name, int name_len,
6180                                     u64 ref_objectid, u64 objectid,
6181                                     umode_t mode, u64 *index)
6182{
6183        struct btrfs_fs_info *fs_info = root->fs_info;
6184        struct inode *inode;
6185        struct btrfs_inode_item *inode_item;
6186        struct btrfs_key *location;
6187        struct btrfs_path *path;
6188        struct btrfs_inode_ref *ref;
6189        struct btrfs_key key[2];
6190        u32 sizes[2];
6191        int nitems = name ? 2 : 1;
6192        unsigned long ptr;
6193        int ret;
6194
6195        path = btrfs_alloc_path();
6196        if (!path)
6197                return ERR_PTR(-ENOMEM);
6198
6199        inode = new_inode(fs_info->sb);
6200        if (!inode) {
6201                btrfs_free_path(path);
6202                return ERR_PTR(-ENOMEM);
6203        }
6204
6205        /*
6206         * O_TMPFILE, set link count to 0, so that after this point,
6207         * we fill in an inode item with the correct link count.
6208         */
6209        if (!name)
6210                set_nlink(inode, 0);
6211
6212        /*
6213         * we have to initialize this early, so we can reclaim the inode
6214         * number if we fail afterwards in this function.
6215         */
6216        inode->i_ino = objectid;
6217
6218        if (dir && name) {
6219                trace_btrfs_inode_request(dir);
6220
6221                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6222                if (ret) {
6223                        btrfs_free_path(path);
6224                        iput(inode);
6225                        return ERR_PTR(ret);
6226                }
6227        } else if (dir) {
6228                *index = 0;
6229        }
6230        /*
6231         * index_cnt is ignored for everything but a dir,
6232         * btrfs_set_inode_index_count has an explanation for the magic
6233         * number
6234         */
6235        BTRFS_I(inode)->index_cnt = 2;
6236        BTRFS_I(inode)->dir_index = *index;
6237        BTRFS_I(inode)->root = root;
6238        BTRFS_I(inode)->generation = trans->transid;
6239        inode->i_generation = BTRFS_I(inode)->generation;
6240
6241        /*
6242         * We could have gotten an inode number from somebody who was fsynced
6243         * and then removed in this same transaction, so let's just set full
6244         * sync since it will be a full sync anyway and this will blow away the
6245         * old info in the log.
6246         */
6247        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6248
6249        key[0].objectid = objectid;
6250        key[0].type = BTRFS_INODE_ITEM_KEY;
6251        key[0].offset = 0;
6252
6253        sizes[0] = sizeof(struct btrfs_inode_item);
6254
6255        if (name) {
6256                /*
6257                 * Start new inodes with an inode_ref. This is slightly more
6258                 * efficient for small numbers of hard links since they will
6259                 * be packed into one item. Extended refs will kick in if we
6260                 * add more hard links than can fit in the ref item.
6261                 */
6262                key[1].objectid = objectid;
6263                key[1].type = BTRFS_INODE_REF_KEY;
6264                key[1].offset = ref_objectid;
6265
6266                sizes[1] = name_len + sizeof(*ref);
6267        }
6268
6269        location = &BTRFS_I(inode)->location;
6270        location->objectid = objectid;
6271        location->offset = 0;
6272        location->type = BTRFS_INODE_ITEM_KEY;
6273
6274        ret = btrfs_insert_inode_locked(inode);
6275        if (ret < 0) {
6276                iput(inode);
6277                goto fail;
6278        }
6279
6280        path->leave_spinning = 1;
6281        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6282        if (ret != 0)
6283                goto fail_unlock;
6284
6285        inode_init_owner(inode, dir, mode);
6286        inode_set_bytes(inode, 0);
6287
6288        inode->i_mtime = current_time(inode);
6289        inode->i_atime = inode->i_mtime;
6290        inode->i_ctime = inode->i_mtime;
6291        BTRFS_I(inode)->i_otime = inode->i_mtime;
6292
6293        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6294                                  struct btrfs_inode_item);
6295        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6296                             sizeof(*inode_item));
6297        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6298
6299        if (name) {
6300                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6301                                     struct btrfs_inode_ref);
6302                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6303                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6304                ptr = (unsigned long)(ref + 1);
6305                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6306        }
6307
6308        btrfs_mark_buffer_dirty(path->nodes[0]);
6309        btrfs_free_path(path);
6310
6311        btrfs_inherit_iflags(inode, dir);
6312
6313        if (S_ISREG(mode)) {
6314                if (btrfs_test_opt(fs_info, NODATASUM))
6315                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6316                if (btrfs_test_opt(fs_info, NODATACOW))
6317                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6318                                BTRFS_INODE_NODATASUM;
6319        }
6320
6321        inode_tree_add(inode);
6322
6323        trace_btrfs_inode_new(inode);
6324        btrfs_set_inode_last_trans(trans, inode);
6325
6326        btrfs_update_root_times(trans, root);
6327
6328        ret = btrfs_inode_inherit_props(trans, inode, dir);
6329        if (ret)
6330                btrfs_err(fs_info,
6331                          "error inheriting props for ino %llu (root %llu): %d",
6332                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6333
6334        return inode;
6335
6336fail_unlock:
6337        discard_new_inode(inode);
6338fail:
6339        if (dir && name)
6340                BTRFS_I(dir)->index_cnt--;
6341        btrfs_free_path(path);
6342        return ERR_PTR(ret);
6343}
6344
6345static inline u8 btrfs_inode_type(struct inode *inode)
6346{
6347        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6348}
6349
6350/*
6351 * utility function to add 'inode' into 'parent_inode' with
6352 * a give name and a given sequence number.
6353 * if 'add_backref' is true, also insert a backref from the
6354 * inode to the parent directory.
6355 */
6356int btrfs_add_link(struct btrfs_trans_handle *trans,
6357                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6358                   const char *name, int name_len, int add_backref, u64 index)
6359{
6360        int ret = 0;
6361        struct btrfs_key key;
6362        struct btrfs_root *root = parent_inode->root;
6363        u64 ino = btrfs_ino(inode);
6364        u64 parent_ino = btrfs_ino(parent_inode);
6365
6366        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6367                memcpy(&key, &inode->root->root_key, sizeof(key));
6368        } else {
6369                key.objectid = ino;
6370                key.type = BTRFS_INODE_ITEM_KEY;
6371                key.offset = 0;
6372        }
6373
6374        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6375                ret = btrfs_add_root_ref(trans, key.objectid,
6376                                         root->root_key.objectid, parent_ino,
6377                                         index, name, name_len);
6378        } else if (add_backref) {
6379                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6380                                             parent_ino, index);
6381        }
6382
6383        /* Nothing to clean up yet */
6384        if (ret)
6385                return ret;
6386
6387        ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6388                                    btrfs_inode_type(&inode->vfs_inode), index);
6389        if (ret == -EEXIST || ret == -EOVERFLOW)
6390                goto fail_dir_item;
6391        else if (ret) {
6392                btrfs_abort_transaction(trans, ret);
6393                return ret;
6394        }
6395
6396        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6397                           name_len * 2);
6398        inode_inc_iversion(&parent_inode->vfs_inode);
6399        parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6400                current_time(&parent_inode->vfs_inode);
6401        ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6402        if (ret)
6403                btrfs_abort_transaction(trans, ret);
6404        return ret;
6405
6406fail_dir_item:
6407        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6408                u64 local_index;
6409                int err;
6410                err = btrfs_del_root_ref(trans, key.objectid,
6411                                         root->root_key.objectid, parent_ino,
6412                                         &local_index, name, name_len);
6413                if (err)
6414                        btrfs_abort_transaction(trans, err);
6415        } else if (add_backref) {
6416                u64 local_index;
6417                int err;
6418
6419                err = btrfs_del_inode_ref(trans, root, name, name_len,
6420                                          ino, parent_ino, &local_index);
6421                if (err)
6422                        btrfs_abort_transaction(trans, err);
6423        }
6424
6425        /* Return the original error code */
6426        return ret;
6427}
6428
6429static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6430                            struct btrfs_inode *dir, struct dentry *dentry,
6431                            struct btrfs_inode *inode, int backref, u64 index)
6432{
6433        int err = btrfs_add_link(trans, dir, inode,
6434                                 dentry->d_name.name, dentry->d_name.len,
6435                                 backref, index);
6436        if (err > 0)
6437                err = -EEXIST;
6438        return err;
6439}
6440
6441static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6442                        umode_t mode, dev_t rdev)
6443{
6444        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6445        struct btrfs_trans_handle *trans;
6446        struct btrfs_root *root = BTRFS_I(dir)->root;
6447        struct inode *inode = NULL;
6448        int err;
6449        u64 objectid;
6450        u64 index = 0;
6451
6452        /*
6453         * 2 for inode item and ref
6454         * 2 for dir items
6455         * 1 for xattr if selinux is on
6456         */
6457        trans = btrfs_start_transaction(root, 5);
6458        if (IS_ERR(trans))
6459                return PTR_ERR(trans);
6460
6461        err = btrfs_find_free_ino(root, &objectid);
6462        if (err)
6463                goto out_unlock;
6464
6465        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6466                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6467                        mode, &index);
6468        if (IS_ERR(inode)) {
6469                err = PTR_ERR(inode);
6470                inode = NULL;
6471                goto out_unlock;
6472        }
6473
6474        /*
6475        * If the active LSM wants to access the inode during
6476        * d_instantiate it needs these. Smack checks to see
6477        * if the filesystem supports xattrs by looking at the
6478        * ops vector.
6479        */
6480        inode->i_op = &btrfs_special_inode_operations;
6481        init_special_inode(inode, inode->i_mode, rdev);
6482
6483        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6484        if (err)
6485                goto out_unlock;
6486
6487        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6488                        0, index);
6489        if (err)
6490                goto out_unlock;
6491
6492        btrfs_update_inode(trans, root, inode);
6493        d_instantiate_new(dentry, inode);
6494
6495out_unlock:
6496        btrfs_end_transaction(trans);
6497        btrfs_btree_balance_dirty(fs_info);
6498        if (err && inode) {
6499                inode_dec_link_count(inode);
6500                discard_new_inode(inode);
6501        }
6502        return err;
6503}
6504
6505static int btrfs_create(struct inode *dir, struct dentry *dentry,
6506                        umode_t mode, bool excl)
6507{
6508        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6509        struct btrfs_trans_handle *trans;
6510        struct btrfs_root *root = BTRFS_I(dir)->root;
6511        struct inode *inode = NULL;
6512        int err;
6513        u64 objectid;
6514        u64 index = 0;
6515
6516        /*
6517         * 2 for inode item and ref
6518         * 2 for dir items
6519         * 1 for xattr if selinux is on
6520         */
6521        trans = btrfs_start_transaction(root, 5);
6522        if (IS_ERR(trans))
6523                return PTR_ERR(trans);
6524
6525        err = btrfs_find_free_ino(root, &objectid);
6526        if (err)
6527                goto out_unlock;
6528
6529        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6530                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6531                        mode, &index);
6532        if (IS_ERR(inode)) {
6533                err = PTR_ERR(inode);
6534                inode = NULL;
6535                goto out_unlock;
6536        }
6537        /*
6538        * If the active LSM wants to access the inode during
6539        * d_instantiate it needs these. Smack checks to see
6540        * if the filesystem supports xattrs by looking at the
6541        * ops vector.
6542        */
6543        inode->i_fop = &btrfs_file_operations;
6544        inode->i_op = &btrfs_file_inode_operations;
6545        inode->i_mapping->a_ops = &btrfs_aops;
6546
6547        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6548        if (err)
6549                goto out_unlock;
6550
6551        err = btrfs_update_inode(trans, root, inode);
6552        if (err)
6553                goto out_unlock;
6554
6555        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6556                        0, index);
6557        if (err)
6558                goto out_unlock;
6559
6560        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6561        d_instantiate_new(dentry, inode);
6562
6563out_unlock:
6564        btrfs_end_transaction(trans);
6565        if (err && inode) {
6566                inode_dec_link_count(inode);
6567                discard_new_inode(inode);
6568        }
6569        btrfs_btree_balance_dirty(fs_info);
6570        return err;
6571}
6572
6573static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6574                      struct dentry *dentry)
6575{
6576        struct btrfs_trans_handle *trans = NULL;
6577        struct btrfs_root *root = BTRFS_I(dir)->root;
6578        struct inode *inode = d_inode(old_dentry);
6579        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6580        u64 index;
6581        int err;
6582        int drop_inode = 0;
6583
6584        /* do not allow sys_link's with other subvols of the same device */
6585        if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6586                return -EXDEV;
6587
6588        if (inode->i_nlink >= BTRFS_LINK_MAX)
6589                return -EMLINK;
6590
6591        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6592        if (err)
6593                goto fail;
6594
6595        /*
6596         * 2 items for inode and inode ref
6597         * 2 items for dir items
6598         * 1 item for parent inode
6599         * 1 item for orphan item deletion if O_TMPFILE
6600         */
6601        trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6602        if (IS_ERR(trans)) {
6603                err = PTR_ERR(trans);
6604                trans = NULL;
6605                goto fail;
6606        }
6607
6608        /* There are several dir indexes for this inode, clear the cache. */
6609        BTRFS_I(inode)->dir_index = 0ULL;
6610        inc_nlink(inode);
6611        inode_inc_iversion(inode);
6612        inode->i_ctime = current_time(inode);
6613        ihold(inode);
6614        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6615
6616        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6617                        1, index);
6618
6619        if (err) {
6620                drop_inode = 1;
6621        } else {
6622                struct dentry *parent = dentry->d_parent;
6623                int ret;
6624
6625                err = btrfs_update_inode(trans, root, inode);
6626                if (err)
6627                        goto fail;
6628                if (inode->i_nlink == 1) {
6629                        /*
6630                         * If new hard link count is 1, it's a file created
6631                         * with open(2) O_TMPFILE flag.
6632                         */
6633                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6634                        if (err)
6635                                goto fail;
6636                }
6637                BTRFS_I(inode)->last_link_trans = trans->transid;
6638                d_instantiate(dentry, inode);
6639                ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6640                                         true, NULL);
6641                if (ret == BTRFS_NEED_TRANS_COMMIT) {
6642                        err = btrfs_commit_transaction(trans);
6643                        trans = NULL;
6644                }
6645        }
6646
6647fail:
6648        if (trans)
6649                btrfs_end_transaction(trans);
6650        if (drop_inode) {
6651                inode_dec_link_count(inode);
6652                iput(inode);
6653        }
6654        btrfs_btree_balance_dirty(fs_info);
6655        return err;
6656}
6657
6658static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6659{
6660        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6661        struct inode *inode = NULL;
6662        struct btrfs_trans_handle *trans;
6663        struct btrfs_root *root = BTRFS_I(dir)->root;
6664        int err = 0;
6665        u64 objectid = 0;
6666        u64 index = 0;
6667
6668        /*
6669         * 2 items for inode and ref
6670         * 2 items for dir items
6671         * 1 for xattr if selinux is on
6672         */
6673        trans = btrfs_start_transaction(root, 5);
6674        if (IS_ERR(trans))
6675                return PTR_ERR(trans);
6676
6677        err = btrfs_find_free_ino(root, &objectid);
6678        if (err)
6679                goto out_fail;
6680
6681        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6682                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6683                        S_IFDIR | mode, &index);
6684        if (IS_ERR(inode)) {
6685                err = PTR_ERR(inode);
6686                inode = NULL;
6687                goto out_fail;
6688        }
6689
6690        /* these must be set before we unlock the inode */
6691        inode->i_op = &btrfs_dir_inode_operations;
6692        inode->i_fop = &btrfs_dir_file_operations;
6693
6694        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6695        if (err)
6696                goto out_fail;
6697
6698        btrfs_i_size_write(BTRFS_I(inode), 0);
6699        err = btrfs_update_inode(trans, root, inode);
6700        if (err)
6701                goto out_fail;
6702
6703        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6704                        dentry->d_name.name,
6705                        dentry->d_name.len, 0, index);
6706        if (err)
6707                goto out_fail;
6708
6709        d_instantiate_new(dentry, inode);
6710
6711out_fail:
6712        btrfs_end_transaction(trans);
6713        if (err && inode) {
6714                inode_dec_link_count(inode);
6715                discard_new_inode(inode);
6716        }
6717        btrfs_btree_balance_dirty(fs_info);
6718        return err;
6719}
6720
6721static noinline int uncompress_inline(struct btrfs_path *path,
6722                                      struct page *page,
6723                                      size_t pg_offset, u64 extent_offset,
6724                                      struct btrfs_file_extent_item *item)
6725{
6726        int ret;
6727        struct extent_buffer *leaf = path->nodes[0];
6728        char *tmp;
6729        size_t max_size;
6730        unsigned long inline_size;
6731        unsigned long ptr;
6732        int compress_type;
6733
6734        WARN_ON(pg_offset != 0);
6735        compress_type = btrfs_file_extent_compression(leaf, item);
6736        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6737        inline_size = btrfs_file_extent_inline_item_len(leaf,
6738                                        btrfs_item_nr(path->slots[0]));
6739        tmp = kmalloc(inline_size, GFP_NOFS);
6740        if (!tmp)
6741                return -ENOMEM;
6742        ptr = btrfs_file_extent_inline_start(item);
6743
6744        read_extent_buffer(leaf, tmp, ptr, inline_size);
6745
6746        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6747        ret = btrfs_decompress(compress_type, tmp, page,
6748                               extent_offset, inline_size, max_size);
6749
6750        /*
6751         * decompression code contains a memset to fill in any space between the end
6752         * of the uncompressed data and the end of max_size in case the decompressed
6753         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6754         * the end of an inline extent and the beginning of the next block, so we
6755         * cover that region here.
6756         */
6757
6758        if (max_size + pg_offset < PAGE_SIZE) {
6759                char *map = kmap(page);
6760                memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6761                kunmap(page);
6762        }
6763        kfree(tmp);
6764        return ret;
6765}
6766
6767/*
6768 * a bit scary, this does extent mapping from logical file offset to the disk.
6769 * the ugly parts come from merging extents from the disk with the in-ram
6770 * representation.  This gets more complex because of the data=ordered code,
6771 * where the in-ram extents might be locked pending data=ordered completion.
6772 *
6773 * This also copies inline extents directly into the page.
6774 */
6775struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6776                                    struct page *page,
6777                                    size_t pg_offset, u64 start, u64 len,
6778                                    int create)
6779{
6780        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6781        int ret;
6782        int err = 0;
6783        u64 extent_start = 0;
6784        u64 extent_end = 0;
6785        u64 objectid = btrfs_ino(inode);
6786        int extent_type = -1;
6787        struct btrfs_path *path = NULL;
6788        struct btrfs_root *root = inode->root;
6789        struct btrfs_file_extent_item *item;
6790        struct extent_buffer *leaf;
6791        struct btrfs_key found_key;
6792        struct extent_map *em = NULL;
6793        struct extent_map_tree *em_tree = &inode->extent_tree;
6794        struct extent_io_tree *io_tree = &inode->io_tree;
6795        const bool new_inline = !page || create;
6796
6797        read_lock(&em_tree->lock);
6798        em = lookup_extent_mapping(em_tree, start, len);
6799        if (em)
6800                em->bdev = fs_info->fs_devices->latest_bdev;
6801        read_unlock(&em_tree->lock);
6802
6803        if (em) {
6804                if (em->start > start || em->start + em->len <= start)
6805                        free_extent_map(em);
6806                else if (em->block_start == EXTENT_MAP_INLINE && page)
6807                        free_extent_map(em);
6808                else
6809                        goto out;
6810        }
6811        em = alloc_extent_map();
6812        if (!em) {
6813                err = -ENOMEM;
6814                goto out;
6815        }
6816        em->bdev = fs_info->fs_devices->latest_bdev;
6817        em->start = EXTENT_MAP_HOLE;
6818        em->orig_start = EXTENT_MAP_HOLE;
6819        em->len = (u64)-1;
6820        em->block_len = (u64)-1;
6821
6822        path = btrfs_alloc_path();
6823        if (!path) {
6824                err = -ENOMEM;
6825                goto out;
6826        }
6827
6828        /* Chances are we'll be called again, so go ahead and do readahead */
6829        path->reada = READA_FORWARD;
6830
6831        /*
6832         * Unless we're going to uncompress the inline extent, no sleep would
6833         * happen.
6834         */
6835        path->leave_spinning = 1;
6836
6837        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6838        if (ret < 0) {
6839                err = ret;
6840                goto out;
6841        } else if (ret > 0) {
6842                if (path->slots[0] == 0)
6843                        goto not_found;
6844                path->slots[0]--;
6845        }
6846
6847        leaf = path->nodes[0];
6848        item = btrfs_item_ptr(leaf, path->slots[0],
6849                              struct btrfs_file_extent_item);
6850        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6851        if (found_key.objectid != objectid ||
6852            found_key.type != BTRFS_EXTENT_DATA_KEY) {
6853                /*
6854                 * If we backup past the first extent we want to move forward
6855                 * and see if there is an extent in front of us, otherwise we'll
6856                 * say there is a hole for our whole search range which can
6857                 * cause problems.
6858                 */
6859                extent_end = start;
6860                goto next;
6861        }
6862
6863        extent_type = btrfs_file_extent_type(leaf, item);
6864        extent_start = found_key.offset;
6865        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6866            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6867                extent_end = extent_start +
6868                       btrfs_file_extent_num_bytes(leaf, item);
6869
6870                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6871                                                       extent_start);
6872        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6873                size_t size;
6874
6875                size = btrfs_file_extent_ram_bytes(leaf, item);
6876                extent_end = ALIGN(extent_start + size,
6877                                   fs_info->sectorsize);
6878
6879                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6880                                                      path->slots[0],
6881                                                      extent_start);
6882        }
6883next:
6884        if (start >= extent_end) {
6885                path->slots[0]++;
6886                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6887                        ret = btrfs_next_leaf(root, path);
6888                        if (ret < 0) {
6889                                err = ret;
6890                                goto out;
6891                        } else if (ret > 0) {
6892                                goto not_found;
6893                        }
6894                        leaf = path->nodes[0];
6895                }
6896                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6897                if (found_key.objectid != objectid ||
6898                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6899                        goto not_found;
6900                if (start + len <= found_key.offset)
6901                        goto not_found;
6902                if (start > found_key.offset)
6903                        goto next;
6904
6905                /* New extent overlaps with existing one */
6906                em->start = start;
6907                em->orig_start = start;
6908                em->len = found_key.offset - start;
6909                em->block_start = EXTENT_MAP_HOLE;
6910                goto insert;
6911        }
6912
6913        btrfs_extent_item_to_extent_map(inode, path, item,
6914                        new_inline, em);
6915
6916        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6917            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6918                goto insert;
6919        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6920                unsigned long ptr;
6921                char *map;
6922                size_t size;
6923                size_t extent_offset;
6924                size_t copy_size;
6925
6926                if (new_inline)
6927                        goto out;
6928
6929                size = btrfs_file_extent_ram_bytes(leaf, item);
6930                extent_offset = page_offset(page) + pg_offset - extent_start;
6931                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6932                                  size - extent_offset);
6933                em->start = extent_start + extent_offset;
6934                em->len = ALIGN(copy_size, fs_info->sectorsize);
6935                em->orig_block_len = em->len;
6936                em->orig_start = em->start;
6937                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6938
6939                btrfs_set_path_blocking(path);
6940                if (!PageUptodate(page)) {
6941                        if (btrfs_file_extent_compression(leaf, item) !=
6942                            BTRFS_COMPRESS_NONE) {
6943                                ret = uncompress_inline(path, page, pg_offset,
6944                                                        extent_offset, item);
6945                                if (ret) {
6946                                        err = ret;
6947                                        goto out;
6948                                }
6949                        } else {
6950                                map = kmap(page);
6951                                read_extent_buffer(leaf, map + pg_offset, ptr,
6952                                                   copy_size);
6953                                if (pg_offset + copy_size < PAGE_SIZE) {
6954                                        memset(map + pg_offset + copy_size, 0,
6955                                               PAGE_SIZE - pg_offset -
6956                                               copy_size);
6957                                }
6958                                kunmap(page);
6959                        }
6960                        flush_dcache_page(page);
6961                }
6962                set_extent_uptodate(io_tree, em->start,
6963                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6964                goto insert;
6965        }
6966not_found:
6967        em->start = start;
6968        em->orig_start = start;
6969        em->len = len;
6970        em->block_start = EXTENT_MAP_HOLE;
6971insert:
6972        btrfs_release_path(path);
6973        if (em->start > start || extent_map_end(em) <= start) {
6974                btrfs_err(fs_info,
6975                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
6976                          em->start, em->len, start, len);
6977                err = -EIO;
6978                goto out;
6979        }
6980
6981        err = 0;
6982        write_lock(&em_tree->lock);
6983        err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6984        write_unlock(&em_tree->lock);
6985out:
6986        btrfs_free_path(path);
6987
6988        trace_btrfs_get_extent(root, inode, em);
6989
6990        if (err) {
6991                free_extent_map(em);
6992                return ERR_PTR(err);
6993        }
6994        BUG_ON(!em); /* Error is always set */
6995        return em;
6996}
6997
6998struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6999                                           u64 start, u64 len)
7000{
7001        struct extent_map *em;
7002        struct extent_map *hole_em = NULL;
7003        u64 delalloc_start = start;
7004        u64 end;
7005        u64 delalloc_len;
7006        u64 delalloc_end;
7007        int err = 0;
7008
7009        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7010        if (IS_ERR(em))
7011                return em;
7012        /*
7013         * If our em maps to:
7014         * - a hole or
7015         * - a pre-alloc extent,
7016         * there might actually be delalloc bytes behind it.
7017         */
7018        if (em->block_start != EXTENT_MAP_HOLE &&
7019            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7020                return em;
7021        else
7022                hole_em = em;
7023
7024        /* check to see if we've wrapped (len == -1 or similar) */
7025        end = start + len;
7026        if (end < start)
7027                end = (u64)-1;
7028        else
7029                end -= 1;
7030
7031        em = NULL;
7032
7033        /* ok, we didn't find anything, lets look for delalloc */
7034        delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7035                                 end, len, EXTENT_DELALLOC, 1);
7036        delalloc_end = delalloc_start + delalloc_len;
7037        if (delalloc_end < delalloc_start)
7038                delalloc_end = (u64)-1;
7039
7040        /*
7041         * We didn't find anything useful, return the original results from
7042         * get_extent()
7043         */
7044        if (delalloc_start > end || delalloc_end <= start) {
7045                em = hole_em;
7046                hole_em = NULL;
7047                goto out;
7048        }
7049
7050        /*
7051         * Adjust the delalloc_start to make sure it doesn't go backwards from
7052         * the start they passed in
7053         */
7054        delalloc_start = max(start, delalloc_start);
7055        delalloc_len = delalloc_end - delalloc_start;
7056
7057        if (delalloc_len > 0) {
7058                u64 hole_start;
7059                u64 hole_len;
7060                const u64 hole_end = extent_map_end(hole_em);
7061
7062                em = alloc_extent_map();
7063                if (!em) {
7064                        err = -ENOMEM;
7065                        goto out;
7066                }
7067                em->bdev = NULL;
7068
7069                ASSERT(hole_em);
7070                /*
7071                 * When btrfs_get_extent can't find anything it returns one
7072                 * huge hole
7073                 *
7074                 * Make sure what it found really fits our range, and adjust to
7075                 * make sure it is based on the start from the caller
7076                 */
7077                if (hole_end <= start || hole_em->start > end) {
7078                       free_extent_map(hole_em);
7079                       hole_em = NULL;
7080                } else {
7081                       hole_start = max(hole_em->start, start);
7082                       hole_len = hole_end - hole_start;
7083                }
7084
7085                if (hole_em && delalloc_start > hole_start) {
7086                        /*
7087                         * Our hole starts before our delalloc, so we have to
7088                         * return just the parts of the hole that go until the
7089                         * delalloc starts
7090                         */
7091                        em->len = min(hole_len, delalloc_start - hole_start);
7092                        em->start = hole_start;
7093                        em->orig_start = hole_start;
7094                        /*
7095                         * Don't adjust block start at all, it is fixed at
7096                         * EXTENT_MAP_HOLE
7097                         */
7098                        em->block_start = hole_em->block_start;
7099                        em->block_len = hole_len;
7100                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7101                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7102                } else {
7103                        /*
7104                         * Hole is out of passed range or it starts after
7105                         * delalloc range
7106                         */
7107                        em->start = delalloc_start;
7108                        em->len = delalloc_len;
7109                        em->orig_start = delalloc_start;
7110                        em->block_start = EXTENT_MAP_DELALLOC;
7111                        em->block_len = delalloc_len;
7112                }
7113        } else {
7114                return hole_em;
7115        }
7116out:
7117
7118        free_extent_map(hole_em);
7119        if (err) {
7120                free_extent_map(em);
7121                return ERR_PTR(err);
7122        }
7123        return em;
7124}
7125
7126static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7127                                                  const u64 start,
7128                                                  const u64 len,
7129                                                  const u64 orig_start,
7130                                                  const u64 block_start,
7131                                                  const u64 block_len,
7132                                                  const u64 orig_block_len,
7133                                                  const u64 ram_bytes,
7134                                                  const int type)
7135{
7136        struct extent_map *em = NULL;
7137        int ret;
7138
7139        if (type != BTRFS_ORDERED_NOCOW) {
7140                em = create_io_em(inode, start, len, orig_start,
7141                                  block_start, block_len, orig_block_len,
7142                                  ram_bytes,
7143                                  BTRFS_COMPRESS_NONE, /* compress_type */
7144                                  type);
7145                if (IS_ERR(em))
7146                        goto out;
7147        }
7148        ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7149                                           len, block_len, type);
7150        if (ret) {
7151                if (em) {
7152                        free_extent_map(em);
7153                        btrfs_drop_extent_cache(BTRFS_I(inode), start,
7154                                                start + len - 1, 0);
7155                }
7156                em = ERR_PTR(ret);
7157        }
7158 out:
7159
7160        return em;
7161}
7162
7163static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7164                                                  u64 start, u64 len)
7165{
7166        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7167        struct btrfs_root *root = BTRFS_I(inode)->root;
7168        struct extent_map *em;
7169        struct btrfs_key ins;
7170        u64 alloc_hint;
7171        int ret;
7172
7173        alloc_hint = get_extent_allocation_hint(inode, start, len);
7174        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7175                                   0, alloc_hint, &ins, 1, 1);
7176        if (ret)
7177                return ERR_PTR(ret);
7178
7179        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7180                                     ins.objectid, ins.offset, ins.offset,
7181                                     ins.offset, BTRFS_ORDERED_REGULAR);
7182        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7183        if (IS_ERR(em))
7184                btrfs_free_reserved_extent(fs_info, ins.objectid,
7185                                           ins.offset, 1);
7186
7187        return em;
7188}
7189
7190/*
7191 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7192 * block must be cow'd
7193 */
7194noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7195                              u64 *orig_start, u64 *orig_block_len,
7196                              u64 *ram_bytes)
7197{
7198        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7199        struct btrfs_path *path;
7200        int ret;
7201        struct extent_buffer *leaf;
7202        struct btrfs_root *root = BTRFS_I(inode)->root;
7203        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7204        struct btrfs_file_extent_item *fi;
7205        struct btrfs_key key;
7206        u64 disk_bytenr;
7207        u64 backref_offset;
7208        u64 extent_end;
7209        u64 num_bytes;
7210        int slot;
7211        int found_type;
7212        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7213
7214        path = btrfs_alloc_path();
7215        if (!path)
7216                return -ENOMEM;
7217
7218        ret = btrfs_lookup_file_extent(NULL, root, path,
7219                        btrfs_ino(BTRFS_I(inode)), offset, 0);
7220        if (ret < 0)
7221                goto out;
7222
7223        slot = path->slots[0];
7224        if (ret == 1) {
7225                if (slot == 0) {
7226                        /* can't find the item, must cow */
7227                        ret = 0;
7228                        goto out;
7229                }
7230                slot--;
7231        }
7232        ret = 0;
7233        leaf = path->nodes[0];
7234        btrfs_item_key_to_cpu(leaf, &key, slot);
7235        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7236            key.type != BTRFS_EXTENT_DATA_KEY) {
7237                /* not our file or wrong item type, must cow */
7238                goto out;
7239        }
7240
7241        if (key.offset > offset) {
7242                /* Wrong offset, must cow */
7243                goto out;
7244        }
7245
7246        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7247        found_type = btrfs_file_extent_type(leaf, fi);
7248        if (found_type != BTRFS_FILE_EXTENT_REG &&
7249            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7250                /* not a regular extent, must cow */
7251                goto out;
7252        }
7253
7254        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7255                goto out;
7256
7257        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7258        if (extent_end <= offset)
7259                goto out;
7260
7261        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7262        if (disk_bytenr == 0)
7263                goto out;
7264
7265        if (btrfs_file_extent_compression(leaf, fi) ||
7266            btrfs_file_extent_encryption(leaf, fi) ||
7267            btrfs_file_extent_other_encoding(leaf, fi))
7268                goto out;
7269
7270        /*
7271         * Do the same check as in btrfs_cross_ref_exist but without the
7272         * unnecessary search.
7273         */
7274        if (btrfs_file_extent_generation(leaf, fi) <=
7275            btrfs_root_last_snapshot(&root->root_item))
7276                goto out;
7277
7278        backref_offset = btrfs_file_extent_offset(leaf, fi);
7279
7280        if (orig_start) {
7281                *orig_start = key.offset - backref_offset;
7282                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7283                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7284        }
7285
7286        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7287                goto out;
7288
7289        num_bytes = min(offset + *len, extent_end) - offset;
7290        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7291                u64 range_end;
7292
7293                range_end = round_up(offset + num_bytes,
7294                                     root->fs_info->sectorsize) - 1;
7295                ret = test_range_bit(io_tree, offset, range_end,
7296                                     EXTENT_DELALLOC, 0, NULL);
7297                if (ret) {
7298                        ret = -EAGAIN;
7299                        goto out;
7300                }
7301        }
7302
7303        btrfs_release_path(path);
7304
7305        /*
7306         * look for other files referencing this extent, if we
7307         * find any we must cow
7308         */
7309
7310        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7311                                    key.offset - backref_offset, disk_bytenr);
7312        if (ret) {
7313                ret = 0;
7314                goto out;
7315        }
7316
7317        /*
7318         * adjust disk_bytenr and num_bytes to cover just the bytes
7319         * in this extent we are about to write.  If there
7320         * are any csums in that range we have to cow in order
7321         * to keep the csums correct
7322         */
7323        disk_bytenr += backref_offset;
7324        disk_bytenr += offset - key.offset;
7325        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7326                goto out;
7327        /*
7328         * all of the above have passed, it is safe to overwrite this extent
7329         * without cow
7330         */
7331        *len = num_bytes;
7332        ret = 1;
7333out:
7334        btrfs_free_path(path);
7335        return ret;
7336}
7337
7338static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7339                              struct extent_state **cached_state, int writing)
7340{
7341        struct btrfs_ordered_extent *ordered;
7342        int ret = 0;
7343
7344        while (1) {
7345                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7346                                 cached_state);
7347                /*
7348                 * We're concerned with the entire range that we're going to be
7349                 * doing DIO to, so we need to make sure there's no ordered
7350                 * extents in this range.
7351                 */
7352                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7353                                                     lockend - lockstart + 1);
7354
7355                /*
7356                 * We need to make sure there are no buffered pages in this
7357                 * range either, we could have raced between the invalidate in
7358                 * generic_file_direct_write and locking the extent.  The
7359                 * invalidate needs to happen so that reads after a write do not
7360                 * get stale data.
7361                 */
7362                if (!ordered &&
7363                    (!writing || !filemap_range_has_page(inode->i_mapping,
7364                                                         lockstart, lockend)))
7365                        break;
7366
7367                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7368                                     cached_state);
7369
7370                if (ordered) {
7371                        /*
7372                         * If we are doing a DIO read and the ordered extent we
7373                         * found is for a buffered write, we can not wait for it
7374                         * to complete and retry, because if we do so we can
7375                         * deadlock with concurrent buffered writes on page
7376                         * locks. This happens only if our DIO read covers more
7377                         * than one extent map, if at this point has already
7378                         * created an ordered extent for a previous extent map
7379                         * and locked its range in the inode's io tree, and a
7380                         * concurrent write against that previous extent map's
7381                         * range and this range started (we unlock the ranges
7382                         * in the io tree only when the bios complete and
7383                         * buffered writes always lock pages before attempting
7384                         * to lock range in the io tree).
7385                         */
7386                        if (writing ||
7387                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7388                                btrfs_start_ordered_extent(inode, ordered, 1);
7389                        else
7390                                ret = -ENOTBLK;
7391                        btrfs_put_ordered_extent(ordered);
7392                } else {
7393                        /*
7394                         * We could trigger writeback for this range (and wait
7395                         * for it to complete) and then invalidate the pages for
7396                         * this range (through invalidate_inode_pages2_range()),
7397                         * but that can lead us to a deadlock with a concurrent
7398                         * call to readpages() (a buffered read or a defrag call
7399                         * triggered a readahead) on a page lock due to an
7400                         * ordered dio extent we created before but did not have
7401                         * yet a corresponding bio submitted (whence it can not
7402                         * complete), which makes readpages() wait for that
7403                         * ordered extent to complete while holding a lock on
7404                         * that page.
7405                         */
7406                        ret = -ENOTBLK;
7407                }
7408
7409                if (ret)
7410                        break;
7411
7412                cond_resched();
7413        }
7414
7415        return ret;
7416}
7417
7418/* The callers of this must take lock_extent() */
7419static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7420                                       u64 orig_start, u64 block_start,
7421                                       u64 block_len, u64 orig_block_len,
7422                                       u64 ram_bytes, int compress_type,
7423                                       int type)
7424{
7425        struct extent_map_tree *em_tree;
7426        struct extent_map *em;
7427        struct btrfs_root *root = BTRFS_I(inode)->root;
7428        int ret;
7429
7430        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7431               type == BTRFS_ORDERED_COMPRESSED ||
7432               type == BTRFS_ORDERED_NOCOW ||
7433               type == BTRFS_ORDERED_REGULAR);
7434
7435        em_tree = &BTRFS_I(inode)->extent_tree;
7436        em = alloc_extent_map();
7437        if (!em)
7438                return ERR_PTR(-ENOMEM);
7439
7440        em->start = start;
7441        em->orig_start = orig_start;
7442        em->len = len;
7443        em->block_len = block_len;
7444        em->block_start = block_start;
7445        em->bdev = root->fs_info->fs_devices->latest_bdev;
7446        em->orig_block_len = orig_block_len;
7447        em->ram_bytes = ram_bytes;
7448        em->generation = -1;
7449        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7450        if (type == BTRFS_ORDERED_PREALLOC) {
7451                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7452        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7453                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7454                em->compress_type = compress_type;
7455        }
7456
7457        do {
7458                btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7459                                em->start + em->len - 1, 0);
7460                write_lock(&em_tree->lock);
7461                ret = add_extent_mapping(em_tree, em, 1);
7462                write_unlock(&em_tree->lock);
7463                /*
7464                 * The caller has taken lock_extent(), who could race with us
7465                 * to add em?
7466                 */
7467        } while (ret == -EEXIST);
7468
7469        if (ret) {
7470                free_extent_map(em);
7471                return ERR_PTR(ret);
7472        }
7473
7474        /* em got 2 refs now, callers needs to do free_extent_map once. */
7475        return em;
7476}
7477
7478
7479static int btrfs_get_blocks_direct_read(struct extent_map *em,
7480                                        struct buffer_head *bh_result,
7481                                        struct inode *inode,
7482                                        u64 start, u64 len)
7483{
7484        if (em->block_start == EXTENT_MAP_HOLE ||
7485                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7486                return -ENOENT;
7487
7488        len = min(len, em->len - (start - em->start));
7489
7490        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7491                inode->i_blkbits;
7492        bh_result->b_size = len;
7493        bh_result->b_bdev = em->bdev;
7494        set_buffer_mapped(bh_result);
7495
7496        return 0;
7497}
7498
7499static int btrfs_get_blocks_direct_write(struct extent_map **map,
7500                                         struct buffer_head *bh_result,
7501                                         struct inode *inode,
7502                                         struct btrfs_dio_data *dio_data,
7503                                         u64 start, u64 len)
7504{
7505        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7506        struct extent_map *em = *map;
7507        int ret = 0;
7508
7509        /*
7510         * We don't allocate a new extent in the following cases
7511         *
7512         * 1) The inode is marked as NODATACOW. In this case we'll just use the
7513         * existing extent.
7514         * 2) The extent is marked as PREALLOC. We're good to go here and can
7515         * just use the extent.
7516         *
7517         */
7518        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7519            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7520             em->block_start != EXTENT_MAP_HOLE)) {
7521                int type;
7522                u64 block_start, orig_start, orig_block_len, ram_bytes;
7523
7524                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7525                        type = BTRFS_ORDERED_PREALLOC;
7526                else
7527                        type = BTRFS_ORDERED_NOCOW;
7528                len = min(len, em->len - (start - em->start));
7529                block_start = em->block_start + (start - em->start);
7530
7531                if (can_nocow_extent(inode, start, &len, &orig_start,
7532                                     &orig_block_len, &ram_bytes) == 1 &&
7533                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7534                        struct extent_map *em2;
7535
7536                        em2 = btrfs_create_dio_extent(inode, start, len,
7537                                                      orig_start, block_start,
7538                                                      len, orig_block_len,
7539                                                      ram_bytes, type);
7540                        btrfs_dec_nocow_writers(fs_info, block_start);
7541                        if (type == BTRFS_ORDERED_PREALLOC) {
7542                                free_extent_map(em);
7543                                *map = em = em2;
7544                        }
7545
7546                        if (em2 && IS_ERR(em2)) {
7547                                ret = PTR_ERR(em2);
7548                                goto out;
7549                        }
7550                        /*
7551                         * For inode marked NODATACOW or extent marked PREALLOC,
7552                         * use the existing or preallocated extent, so does not
7553                         * need to adjust btrfs_space_info's bytes_may_use.
7554                         */
7555                        btrfs_free_reserved_data_space_noquota(inode, start,
7556                                                               len);
7557                        goto skip_cow;
7558                }
7559        }
7560
7561        /* this will cow the extent */
7562        len = bh_result->b_size;
7563        free_extent_map(em);
7564        *map = em = btrfs_new_extent_direct(inode, start, len);
7565        if (IS_ERR(em)) {
7566                ret = PTR_ERR(em);
7567                goto out;
7568        }
7569
7570        len = min(len, em->len - (start - em->start));
7571
7572skip_cow:
7573        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7574                inode->i_blkbits;
7575        bh_result->b_size = len;
7576        bh_result->b_bdev = em->bdev;
7577        set_buffer_mapped(bh_result);
7578
7579        if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7580                set_buffer_new(bh_result);
7581
7582        /*
7583         * Need to update the i_size under the extent lock so buffered
7584         * readers will get the updated i_size when we unlock.
7585         */
7586        if (!dio_data->overwrite && start + len > i_size_read(inode))
7587                i_size_write(inode, start + len);
7588
7589        WARN_ON(dio_data->reserve < len);
7590        dio_data->reserve -= len;
7591        dio_data->unsubmitted_oe_range_end = start + len;
7592        current->journal_info = dio_data;
7593out:
7594        return ret;
7595}
7596
7597static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7598                                   struct buffer_head *bh_result, int create)
7599{
7600        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7601        struct extent_map *em;
7602        struct extent_state *cached_state = NULL;
7603        struct btrfs_dio_data *dio_data = NULL;
7604        u64 start = iblock << inode->i_blkbits;
7605        u64 lockstart, lockend;
7606        u64 len = bh_result->b_size;
7607        int unlock_bits = EXTENT_LOCKED;
7608        int ret = 0;
7609
7610        if (create)
7611                unlock_bits |= EXTENT_DIRTY;
7612        else
7613                len = min_t(u64, len, fs_info->sectorsize);
7614
7615        lockstart = start;
7616        lockend = start + len - 1;
7617
7618        if (current->journal_info) {
7619                /*
7620                 * Need to pull our outstanding extents and set journal_info to NULL so
7621                 * that anything that needs to check if there's a transaction doesn't get
7622                 * confused.
7623                 */
7624                dio_data = current->journal_info;
7625                current->journal_info = NULL;
7626        }
7627
7628        /*
7629         * If this errors out it's because we couldn't invalidate pagecache for
7630         * this range and we need to fallback to buffered.
7631         */
7632        if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7633                               create)) {
7634                ret = -ENOTBLK;
7635                goto err;
7636        }
7637
7638        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7639        if (IS_ERR(em)) {
7640                ret = PTR_ERR(em);
7641                goto unlock_err;
7642        }
7643
7644        /*
7645         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7646         * io.  INLINE is special, and we could probably kludge it in here, but
7647         * it's still buffered so for safety lets just fall back to the generic
7648         * buffered path.
7649         *
7650         * For COMPRESSED we _have_ to read the entire extent in so we can
7651         * decompress it, so there will be buffering required no matter what we
7652         * do, so go ahead and fallback to buffered.
7653         *
7654         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7655         * to buffered IO.  Don't blame me, this is the price we pay for using
7656         * the generic code.
7657         */
7658        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7659            em->block_start == EXTENT_MAP_INLINE) {
7660                free_extent_map(em);
7661                ret = -ENOTBLK;
7662                goto unlock_err;
7663        }
7664
7665        if (create) {
7666                ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7667                                                    dio_data, start, len);
7668                if (ret < 0)
7669                        goto unlock_err;
7670
7671                /* clear and unlock the entire range */
7672                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7673                                 unlock_bits, 1, 0, &cached_state);
7674        } else {
7675                ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7676                                                   start, len);
7677                /* Can be negative only if we read from a hole */
7678                if (ret < 0) {
7679                        ret = 0;
7680                        free_extent_map(em);
7681                        goto unlock_err;
7682                }
7683                /*
7684                 * We need to unlock only the end area that we aren't using.
7685                 * The rest is going to be unlocked by the endio routine.
7686                 */
7687                lockstart = start + bh_result->b_size;
7688                if (lockstart < lockend) {
7689                        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7690                                         lockend, unlock_bits, 1, 0,
7691                                         &cached_state);
7692                } else {
7693                        free_extent_state(cached_state);
7694                }
7695        }
7696
7697        free_extent_map(em);
7698
7699        return 0;
7700
7701unlock_err:
7702        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7703                         unlock_bits, 1, 0, &cached_state);
7704err:
7705        if (dio_data)
7706                current->journal_info = dio_data;
7707        return ret;
7708}
7709
7710static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7711                                                 struct bio *bio,
7712                                                 int mirror_num)
7713{
7714        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7715        blk_status_t ret;
7716
7717        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7718
7719        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7720        if (ret)
7721                return ret;
7722
7723        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7724
7725        return ret;
7726}
7727
7728static int btrfs_check_dio_repairable(struct inode *inode,
7729                                      struct bio *failed_bio,
7730                                      struct io_failure_record *failrec,
7731                                      int failed_mirror)
7732{
7733        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7734        int num_copies;
7735
7736        num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7737        if (num_copies == 1) {
7738                /*
7739                 * we only have a single copy of the data, so don't bother with
7740                 * all the retry and error correction code that follows. no
7741                 * matter what the error is, it is very likely to persist.
7742                 */
7743                btrfs_debug(fs_info,
7744                        "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7745                        num_copies, failrec->this_mirror, failed_mirror);
7746                return 0;
7747        }
7748
7749        failrec->failed_mirror = failed_mirror;
7750        failrec->this_mirror++;
7751        if (failrec->this_mirror == failed_mirror)
7752                failrec->this_mirror++;
7753
7754        if (failrec->this_mirror > num_copies) {
7755                btrfs_debug(fs_info,
7756                        "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7757                        num_copies, failrec->this_mirror, failed_mirror);
7758                return 0;
7759        }
7760
7761        return 1;
7762}
7763
7764static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7765                                   struct page *page, unsigned int pgoff,
7766                                   u64 start, u64 end, int failed_mirror,
7767                                   bio_end_io_t *repair_endio, void *repair_arg)
7768{
7769        struct io_failure_record *failrec;
7770        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7771        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7772        struct bio *bio;
7773        int isector;
7774        unsigned int read_mode = 0;
7775        int segs;
7776        int ret;
7777        blk_status_t status;
7778        struct bio_vec bvec;
7779
7780        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7781
7782        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7783        if (ret)
7784                return errno_to_blk_status(ret);
7785
7786        ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7787                                         failed_mirror);
7788        if (!ret) {
7789                free_io_failure(failure_tree, io_tree, failrec);
7790                return BLK_STS_IOERR;
7791        }
7792
7793        segs = bio_segments(failed_bio);
7794        bio_get_first_bvec(failed_bio, &bvec);
7795        if (segs > 1 ||
7796            (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7797                read_mode |= REQ_FAILFAST_DEV;
7798
7799        isector = start - btrfs_io_bio(failed_bio)->logical;
7800        isector >>= inode->i_sb->s_blocksize_bits;
7801        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7802                                pgoff, isector, repair_endio, repair_arg);
7803        bio->bi_opf = REQ_OP_READ | read_mode;
7804
7805        btrfs_debug(BTRFS_I(inode)->root->fs_info,
7806                    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7807                    read_mode, failrec->this_mirror, failrec->in_validation);
7808
7809        status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7810        if (status) {
7811                free_io_failure(failure_tree, io_tree, failrec);
7812                bio_put(bio);
7813        }
7814
7815        return status;
7816}
7817
7818struct btrfs_retry_complete {
7819        struct completion done;
7820        struct inode *inode;
7821        u64 start;
7822        int uptodate;
7823};
7824
7825static void btrfs_retry_endio_nocsum(struct bio *bio)
7826{
7827        struct btrfs_retry_complete *done = bio->bi_private;
7828        struct inode *inode = done->inode;
7829        struct bio_vec *bvec;
7830        struct extent_io_tree *io_tree, *failure_tree;
7831        int i;
7832        struct bvec_iter_all iter_all;
7833
7834        if (bio->bi_status)
7835                goto end;
7836
7837        ASSERT(bio->bi_vcnt == 1);
7838        io_tree = &BTRFS_I(inode)->io_tree;
7839        failure_tree = &BTRFS_I(inode)->io_failure_tree;
7840        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7841
7842        done->uptodate = 1;
7843        ASSERT(!bio_flagged(bio, BIO_CLONED));
7844        bio_for_each_segment_all(bvec, bio, i, iter_all)
7845                clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7846                                 io_tree, done->start, bvec->bv_page,
7847                                 btrfs_ino(BTRFS_I(inode)), 0);
7848end:
7849        complete(&done->done);
7850        bio_put(bio);
7851}
7852
7853static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7854                                                struct btrfs_io_bio *io_bio)
7855{
7856        struct btrfs_fs_info *fs_info;
7857        struct bio_vec bvec;
7858        struct bvec_iter iter;
7859        struct btrfs_retry_complete done;
7860        u64 start;
7861        unsigned int pgoff;
7862        u32 sectorsize;
7863        int nr_sectors;
7864        blk_status_t ret;
7865        blk_status_t err = BLK_STS_OK;
7866
7867        fs_info = BTRFS_I(inode)->root->fs_info;
7868        sectorsize = fs_info->sectorsize;
7869
7870        start = io_bio->logical;
7871        done.inode = inode;
7872        io_bio->bio.bi_iter = io_bio->iter;
7873
7874        bio_for_each_segment(bvec, &io_bio->bio, iter) {
7875                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7876                pgoff = bvec.bv_offset;
7877
7878next_block_or_try_again:
7879                done.uptodate = 0;
7880                done.start = start;
7881                init_completion(&done.done);
7882
7883                ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7884                                pgoff, start, start + sectorsize - 1,
7885                                io_bio->mirror_num,
7886                                btrfs_retry_endio_nocsum, &done);
7887                if (ret) {
7888                        err = ret;
7889                        goto next;
7890                }
7891
7892                wait_for_completion_io(&done.done);
7893
7894                if (!done.uptodate) {
7895                        /* We might have another mirror, so try again */
7896                        goto next_block_or_try_again;
7897                }
7898
7899next:
7900                start += sectorsize;
7901
7902                nr_sectors--;
7903                if (nr_sectors) {
7904                        pgoff += sectorsize;
7905                        ASSERT(pgoff < PAGE_SIZE);
7906                        goto next_block_or_try_again;
7907                }
7908        }
7909
7910        return err;
7911}
7912
7913static void btrfs_retry_endio(struct bio *bio)
7914{
7915        struct btrfs_retry_complete *done = bio->bi_private;
7916        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7917        struct extent_io_tree *io_tree, *failure_tree;
7918        struct inode *inode = done->inode;
7919        struct bio_vec *bvec;
7920        int uptodate;
7921        int ret;
7922        int i;
7923        struct bvec_iter_all iter_all;
7924
7925        if (bio->bi_status)
7926                goto end;
7927
7928        uptodate = 1;
7929
7930        ASSERT(bio->bi_vcnt == 1);
7931        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7932
7933        io_tree = &BTRFS_I(inode)->io_tree;
7934        failure_tree = &BTRFS_I(inode)->io_failure_tree;
7935
7936        ASSERT(!bio_flagged(bio, BIO_CLONED));
7937        bio_for_each_segment_all(bvec, bio, i, iter_all) {
7938                ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7939                                             bvec->bv_offset, done->start,
7940                                             bvec->bv_len);
7941                if (!ret)
7942                        clean_io_failure(BTRFS_I(inode)->root->fs_info,
7943                                         failure_tree, io_tree, done->start,
7944                                         bvec->bv_page,
7945                                         btrfs_ino(BTRFS_I(inode)),
7946                                         bvec->bv_offset);
7947                else
7948                        uptodate = 0;
7949        }
7950
7951        done->uptodate = uptodate;
7952end:
7953        complete(&done->done);
7954        bio_put(bio);
7955}
7956
7957static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7958                struct btrfs_io_bio *io_bio, blk_status_t err)
7959{
7960        struct btrfs_fs_info *fs_info;
7961        struct bio_vec bvec;
7962        struct bvec_iter iter;
7963        struct btrfs_retry_complete done;
7964        u64 start;
7965        u64 offset = 0;
7966        u32 sectorsize;
7967        int nr_sectors;
7968        unsigned int pgoff;
7969        int csum_pos;
7970        bool uptodate = (err == 0);
7971        int ret;
7972        blk_status_t status;
7973
7974        fs_info = BTRFS_I(inode)->root->fs_info;
7975        sectorsize = fs_info->sectorsize;
7976
7977        err = BLK_STS_OK;
7978        start = io_bio->logical;
7979        done.inode = inode;
7980        io_bio->bio.bi_iter = io_bio->iter;
7981
7982        bio_for_each_segment(bvec, &io_bio->bio, iter) {
7983                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7984
7985                pgoff = bvec.bv_offset;
7986next_block:
7987                if (uptodate) {
7988                        csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7989                        ret = __readpage_endio_check(inode, io_bio, csum_pos,
7990                                        bvec.bv_page, pgoff, start, sectorsize);
7991                        if (likely(!ret))
7992                                goto next;
7993                }
7994try_again:
7995                done.uptodate = 0;
7996                done.start = start;
7997                init_completion(&done.done);
7998
7999                status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8000                                        pgoff, start, start + sectorsize - 1,
8001                                        io_bio->mirror_num, btrfs_retry_endio,
8002                                        &done);
8003                if (status) {
8004                        err = status;
8005                        goto next;
8006                }
8007
8008                wait_for_completion_io(&done.done);
8009
8010                if (!done.uptodate) {
8011                        /* We might have another mirror, so try again */
8012                        goto try_again;
8013                }
8014next:
8015                offset += sectorsize;
8016                start += sectorsize;
8017
8018                ASSERT(nr_sectors);
8019
8020                nr_sectors--;
8021                if (nr_sectors) {
8022                        pgoff += sectorsize;
8023                        ASSERT(pgoff < PAGE_SIZE);
8024                        goto next_block;
8025                }
8026        }
8027
8028        return err;
8029}
8030
8031static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8032                struct btrfs_io_bio *io_bio, blk_status_t err)
8033{
8034        bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8035
8036        if (skip_csum) {
8037                if (unlikely(err))
8038                        return __btrfs_correct_data_nocsum(inode, io_bio);
8039                else
8040                        return BLK_STS_OK;
8041        } else {
8042                return __btrfs_subio_endio_read(inode, io_bio, err);
8043        }
8044}
8045
8046static void btrfs_endio_direct_read(struct bio *bio)
8047{
8048        struct btrfs_dio_private *dip = bio->bi_private;
8049        struct inode *inode = dip->inode;
8050        struct bio *dio_bio;
8051        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8052        blk_status_t err = bio->bi_status;
8053
8054        if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8055                err = btrfs_subio_endio_read(inode, io_bio, err);
8056
8057        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8058                      dip->logical_offset + dip->bytes - 1);
8059        dio_bio = dip->dio_bio;
8060
8061        kfree(dip);
8062
8063        dio_bio->bi_status = err;
8064        dio_end_io(dio_bio);
8065        btrfs_io_bio_free_csum(io_bio);
8066        bio_put(bio);
8067}
8068
8069static void __endio_write_update_ordered(struct inode *inode,
8070                                         const u64 offset, const u64 bytes,
8071                                         const bool uptodate)
8072{
8073        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8074        struct btrfs_ordered_extent *ordered = NULL;
8075        struct btrfs_workqueue *wq;
8076        btrfs_work_func_t func;
8077        u64 ordered_offset = offset;
8078        u64 ordered_bytes = bytes;
8079        u64 last_offset;
8080
8081        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8082                wq = fs_info->endio_freespace_worker;
8083                func = btrfs_freespace_write_helper;
8084        } else {
8085                wq = fs_info->endio_write_workers;
8086                func = btrfs_endio_write_helper;
8087        }
8088
8089        while (ordered_offset < offset + bytes) {
8090                last_offset = ordered_offset;
8091                if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8092                                                           &ordered_offset,
8093                                                           ordered_bytes,
8094                                                           uptodate)) {
8095                        btrfs_init_work(&ordered->work, func,
8096                                        finish_ordered_fn,
8097                                        NULL, NULL);
8098                        btrfs_queue_work(wq, &ordered->work);
8099                }
8100                /*
8101                 * If btrfs_dec_test_ordered_pending does not find any ordered
8102                 * extent in the range, we can exit.
8103                 */
8104                if (ordered_offset == last_offset)
8105                        return;
8106                /*
8107                 * Our bio might span multiple ordered extents. In this case
8108                 * we keep going until we have accounted the whole dio.
8109                 */
8110                if (ordered_offset < offset + bytes) {
8111                        ordered_bytes = offset + bytes - ordered_offset;
8112                        ordered = NULL;
8113                }
8114        }
8115}
8116
8117static void btrfs_endio_direct_write(struct bio *bio)
8118{
8119        struct btrfs_dio_private *dip = bio->bi_private;
8120        struct bio *dio_bio = dip->dio_bio;
8121
8122        __endio_write_update_ordered(dip->inode, dip->logical_offset,
8123                                     dip->bytes, !bio->bi_status);
8124
8125        kfree(dip);
8126
8127        dio_bio->bi_status = bio->bi_status;
8128        dio_end_io(dio_bio);
8129        bio_put(bio);
8130}
8131
8132static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8133                                    struct bio *bio, u64 offset)
8134{
8135        struct inode *inode = private_data;
8136        blk_status_t ret;
8137        ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8138        BUG_ON(ret); /* -ENOMEM */
8139        return 0;
8140}
8141
8142static void btrfs_end_dio_bio(struct bio *bio)
8143{
8144        struct btrfs_dio_private *dip = bio->bi_private;
8145        blk_status_t err = bio->bi_status;
8146
8147        if (err)
8148                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8149                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8150                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8151                           bio->bi_opf,
8152                           (unsigned long long)bio->bi_iter.bi_sector,
8153                           bio->bi_iter.bi_size, err);
8154
8155        if (dip->subio_endio)
8156                err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8157
8158        if (err) {
8159                /*
8160                 * We want to perceive the errors flag being set before
8161                 * decrementing the reference count. We don't need a barrier
8162                 * since atomic operations with a return value are fully
8163                 * ordered as per atomic_t.txt
8164                 */
8165                dip->errors = 1;
8166        }
8167
8168        /* if there are more bios still pending for this dio, just exit */
8169        if (!atomic_dec_and_test(&dip->pending_bios))
8170                goto out;
8171
8172        if (dip->errors) {
8173                bio_io_error(dip->orig_bio);
8174        } else {
8175                dip->dio_bio->bi_status = BLK_STS_OK;
8176                bio_endio(dip->orig_bio);
8177        }
8178out:
8179        bio_put(bio);
8180}
8181
8182static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8183                                                 struct btrfs_dio_private *dip,
8184                                                 struct bio *bio,
8185                                                 u64 file_offset)
8186{
8187        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8188        struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8189        blk_status_t ret;
8190
8191        /*
8192         * We load all the csum data we need when we submit
8193         * the first bio to reduce the csum tree search and
8194         * contention.
8195         */
8196        if (dip->logical_offset == file_offset) {
8197                ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8198                                                file_offset);
8199                if (ret)
8200                        return ret;
8201        }
8202
8203        if (bio == dip->orig_bio)
8204                return 0;
8205
8206        file_offset -= dip->logical_offset;
8207        file_offset >>= inode->i_sb->s_blocksize_bits;
8208        io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8209
8210        return 0;
8211}
8212
8213static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8214                struct inode *inode, u64 file_offset, int async_submit)
8215{
8216        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8217        struct btrfs_dio_private *dip = bio->bi_private;
8218        bool write = bio_op(bio) == REQ_OP_WRITE;
8219        blk_status_t ret;
8220
8221        /* Check btrfs_submit_bio_hook() for rules about async submit. */
8222        if (async_submit)
8223                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8224
8225        if (!write) {
8226                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8227                if (ret)
8228                        goto err;
8229        }
8230
8231        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8232                goto map;
8233
8234        if (write && async_submit) {
8235                ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8236                                          file_offset, inode,
8237                                          btrfs_submit_bio_start_direct_io);
8238                goto err;
8239        } else if (write) {
8240                /*
8241                 * If we aren't doing async submit, calculate the csum of the
8242                 * bio now.
8243                 */
8244                ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8245                if (ret)
8246                        goto err;
8247        } else {
8248                ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8249                                                     file_offset);
8250                if (ret)
8251                        goto err;
8252        }
8253map:
8254        ret = btrfs_map_bio(fs_info, bio, 0, 0);
8255err:
8256        return ret;
8257}
8258
8259static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8260{
8261        struct inode *inode = dip->inode;
8262        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8263        struct bio *bio;
8264        struct bio *orig_bio = dip->orig_bio;
8265        u64 start_sector = orig_bio->bi_iter.bi_sector;
8266        u64 file_offset = dip->logical_offset;
8267        u64 map_length;
8268        int async_submit = 0;
8269        u64 submit_len;
8270        int clone_offset = 0;
8271        int clone_len;
8272        int ret;
8273        blk_status_t status;
8274
8275        map_length = orig_bio->bi_iter.bi_size;
8276        submit_len = map_length;
8277        ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8278                              &map_length, NULL, 0);
8279        if (ret)
8280                return -EIO;
8281
8282        if (map_length >= submit_len) {
8283                bio = orig_bio;
8284                dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8285                goto submit;
8286        }
8287
8288        /* async crcs make it difficult to collect full stripe writes. */
8289        if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8290                async_submit = 0;
8291        else
8292                async_submit = 1;
8293
8294        /* bio split */
8295        ASSERT(map_length <= INT_MAX);
8296        atomic_inc(&dip->pending_bios);
8297        do {
8298                clone_len = min_t(int, submit_len, map_length);
8299
8300                /*
8301                 * This will never fail as it's passing GPF_NOFS and
8302                 * the allocation is backed by btrfs_bioset.
8303                 */
8304                bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8305                                              clone_len);
8306                bio->bi_private = dip;
8307                bio->bi_end_io = btrfs_end_dio_bio;
8308                btrfs_io_bio(bio)->logical = file_offset;
8309
8310                ASSERT(submit_len >= clone_len);
8311                submit_len -= clone_len;
8312                if (submit_len == 0)
8313                        break;
8314
8315                /*
8316                 * Increase the count before we submit the bio so we know
8317                 * the end IO handler won't happen before we increase the
8318                 * count. Otherwise, the dip might get freed before we're
8319                 * done setting it up.
8320                 */
8321                atomic_inc(&dip->pending_bios);
8322
8323                status = btrfs_submit_dio_bio(bio, inode, file_offset,
8324                                                async_submit);
8325                if (status) {
8326                        bio_put(bio);
8327                        atomic_dec(&dip->pending_bios);
8328                        goto out_err;
8329                }
8330
8331                clone_offset += clone_len;
8332                start_sector += clone_len >> 9;
8333                file_offset += clone_len;
8334
8335                map_length = submit_len;
8336                ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8337                                      start_sector << 9, &map_length, NULL, 0);
8338                if (ret)
8339                        goto out_err;
8340        } while (submit_len > 0);
8341
8342submit:
8343        status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8344        if (!status)
8345                return 0;
8346
8347        bio_put(bio);
8348out_err:
8349        dip->errors = 1;
8350        /*
8351         * Before atomic variable goto zero, we must  make sure dip->errors is
8352         * perceived to be set. This ordering is ensured by the fact that an
8353         * atomic operations with a return value are fully ordered as per
8354         * atomic_t.txt
8355         */
8356        if (atomic_dec_and_test(&dip->pending_bios))
8357                bio_io_error(dip->orig_bio);
8358
8359        /* bio_end_io() will handle error, so we needn't return it */
8360        return 0;
8361}
8362
8363static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8364                                loff_t file_offset)
8365{
8366        struct btrfs_dio_private *dip = NULL;
8367        struct bio *bio = NULL;
8368        struct btrfs_io_bio *io_bio;
8369        bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8370        int ret = 0;
8371
8372        bio = btrfs_bio_clone(dio_bio);
8373
8374        dip = kzalloc(sizeof(*dip), GFP_NOFS);
8375        if (!dip) {
8376                ret = -ENOMEM;
8377                goto free_ordered;
8378        }
8379
8380        dip->private = dio_bio->bi_private;
8381        dip->inode = inode;
8382        dip->logical_offset = file_offset;
8383        dip->bytes = dio_bio->bi_iter.bi_size;
8384        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8385        bio->bi_private = dip;
8386        dip->orig_bio = bio;
8387        dip->dio_bio = dio_bio;
8388        atomic_set(&dip->pending_bios, 0);
8389        io_bio = btrfs_io_bio(bio);
8390        io_bio->logical = file_offset;
8391
8392        if (write) {
8393                bio->bi_end_io = btrfs_endio_direct_write;
8394        } else {
8395                bio->bi_end_io = btrfs_endio_direct_read;
8396                dip->subio_endio = btrfs_subio_endio_read;
8397        }
8398
8399        /*
8400         * Reset the range for unsubmitted ordered extents (to a 0 length range)
8401         * even if we fail to submit a bio, because in such case we do the
8402         * corresponding error handling below and it must not be done a second
8403         * time by btrfs_direct_IO().
8404         */
8405        if (write) {
8406                struct btrfs_dio_data *dio_data = current->journal_info;
8407
8408                dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8409                        dip->bytes;
8410                dio_data->unsubmitted_oe_range_start =
8411                        dio_data->unsubmitted_oe_range_end;
8412        }
8413
8414        ret = btrfs_submit_direct_hook(dip);
8415        if (!ret)
8416                return;
8417
8418        btrfs_io_bio_free_csum(io_bio);
8419
8420free_ordered:
8421        /*
8422         * If we arrived here it means either we failed to submit the dip
8423         * or we either failed to clone the dio_bio or failed to allocate the
8424         * dip. If we cloned the dio_bio and allocated the dip, we can just
8425         * call bio_endio against our io_bio so that we get proper resource
8426         * cleanup if we fail to submit the dip, otherwise, we must do the
8427         * same as btrfs_endio_direct_[write|read] because we can't call these
8428         * callbacks - they require an allocated dip and a clone of dio_bio.
8429         */
8430        if (bio && dip) {
8431                bio_io_error(bio);
8432                /*
8433                 * The end io callbacks free our dip, do the final put on bio
8434                 * and all the cleanup and final put for dio_bio (through
8435                 * dio_end_io()).
8436                 */
8437                dip = NULL;
8438                bio = NULL;
8439        } else {
8440                if (write)
8441                        __endio_write_update_ordered(inode,
8442                                                file_offset,
8443                                                dio_bio->bi_iter.bi_size,
8444                                                false);
8445                else
8446                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8447                              file_offset + dio_bio->bi_iter.bi_size - 1);
8448
8449                dio_bio->bi_status = BLK_STS_IOERR;
8450                /*
8451                 * Releases and cleans up our dio_bio, no need to bio_put()
8452                 * nor bio_endio()/bio_io_error() against dio_bio.
8453                 */
8454                dio_end_io(dio_bio);
8455        }
8456        if (bio)
8457                bio_put(bio);
8458        kfree(dip);
8459}
8460
8461static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8462                               const struct iov_iter *iter, loff_t offset)
8463{
8464        int seg;
8465        int i;
8466        unsigned int blocksize_mask = fs_info->sectorsize - 1;
8467        ssize_t retval = -EINVAL;
8468
8469        if (offset & blocksize_mask)
8470                goto out;
8471
8472        if (iov_iter_alignment(iter) & blocksize_mask)
8473                goto out;
8474
8475        /* If this is a write we don't need to check anymore */
8476        if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8477                return 0;
8478        /*
8479         * Check to make sure we don't have duplicate iov_base's in this
8480         * iovec, if so return EINVAL, otherwise we'll get csum errors
8481         * when reading back.
8482         */
8483        for (seg = 0; seg < iter->nr_segs; seg++) {
8484                for (i = seg + 1; i < iter->nr_segs; i++) {
8485                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8486                                goto out;
8487                }
8488        }
8489        retval = 0;
8490out:
8491        return retval;
8492}
8493
8494static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8495{
8496        struct file *file = iocb->ki_filp;
8497        struct inode *inode = file->f_mapping->host;
8498        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8499        struct btrfs_dio_data dio_data = { 0 };
8500        struct extent_changeset *data_reserved = NULL;
8501        loff_t offset = iocb->ki_pos;
8502        size_t count = 0;
8503        int flags = 0;
8504        bool wakeup = true;
8505        bool relock = false;
8506        ssize_t ret;
8507
8508        if (check_direct_IO(fs_info, iter, offset))
8509                return 0;
8510
8511        inode_dio_begin(inode);
8512
8513        /*
8514         * The generic stuff only does filemap_write_and_wait_range, which
8515         * isn't enough if we've written compressed pages to this area, so
8516         * we need to flush the dirty pages again to make absolutely sure
8517         * that any outstanding dirty pages are on disk.
8518         */
8519        count = iov_iter_count(iter);
8520        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8521                     &BTRFS_I(inode)->runtime_flags))
8522                filemap_fdatawrite_range(inode->i_mapping, offset,
8523                                         offset + count - 1);
8524
8525        if (iov_iter_rw(iter) == WRITE) {
8526                /*
8527                 * If the write DIO is beyond the EOF, we need update
8528                 * the isize, but it is protected by i_mutex. So we can
8529                 * not unlock the i_mutex at this case.
8530                 */
8531                if (offset + count <= inode->i_size) {
8532                        dio_data.overwrite = 1;
8533                        inode_unlock(inode);
8534                        relock = true;
8535                } else if (iocb->ki_flags & IOCB_NOWAIT) {
8536                        ret = -EAGAIN;
8537                        goto out;
8538                }
8539                ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8540                                                   offset, count);
8541                if (ret)
8542                        goto out;
8543
8544                /*
8545                 * We need to know how many extents we reserved so that we can
8546                 * do the accounting properly if we go over the number we
8547                 * originally calculated.  Abuse current->journal_info for this.
8548                 */
8549                dio_data.reserve = round_up(count,
8550                                            fs_info->sectorsize);
8551                dio_data.unsubmitted_oe_range_start = (u64)offset;
8552                dio_data.unsubmitted_oe_range_end = (u64)offset;
8553                current->journal_info = &dio_data;
8554                down_read(&BTRFS_I(inode)->dio_sem);
8555        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8556                                     &BTRFS_I(inode)->runtime_flags)) {
8557                inode_dio_end(inode);
8558                flags = DIO_LOCKING | DIO_SKIP_HOLES;
8559                wakeup = false;
8560        }
8561
8562        ret = __blockdev_direct_IO(iocb, inode,
8563                                   fs_info->fs_devices->latest_bdev,
8564                                   iter, btrfs_get_blocks_direct, NULL,
8565                                   btrfs_submit_direct, flags);
8566        if (iov_iter_rw(iter) == WRITE) {
8567                up_read(&BTRFS_I(inode)->dio_sem);
8568                current->journal_info = NULL;
8569                if (ret < 0 && ret != -EIOCBQUEUED) {
8570                        if (dio_data.reserve)
8571                                btrfs_delalloc_release_space(inode, data_reserved,
8572                                        offset, dio_data.reserve, true);
8573                        /*
8574                         * On error we might have left some ordered extents
8575                         * without submitting corresponding bios for them, so
8576                         * cleanup them up to avoid other tasks getting them
8577                         * and waiting for them to complete forever.
8578                         */
8579                        if (dio_data.unsubmitted_oe_range_start <
8580                            dio_data.unsubmitted_oe_range_end)
8581                                __endio_write_update_ordered(inode,
8582                                        dio_data.unsubmitted_oe_range_start,
8583                                        dio_data.unsubmitted_oe_range_end -
8584                                        dio_data.unsubmitted_oe_range_start,
8585                                        false);
8586                } else if (ret >= 0 && (size_t)ret < count)
8587                        btrfs_delalloc_release_space(inode, data_reserved,
8588                                        offset, count - (size_t)ret, true);
8589                btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8590        }
8591out:
8592        if (wakeup)
8593                inode_dio_end(inode);
8594        if (relock)
8595                inode_lock(inode);
8596
8597        extent_changeset_free(data_reserved);
8598        return ret;
8599}
8600
8601#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8602
8603static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8604                __u64 start, __u64 len)
8605{
8606        int     ret;
8607
8608        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8609        if (ret)
8610                return ret;
8611
8612        return extent_fiemap(inode, fieinfo, start, len);
8613}
8614
8615int btrfs_readpage(struct file *file, struct page *page)
8616{
8617        struct extent_io_tree *tree;
8618        tree = &BTRFS_I(page->mapping->host)->io_tree;
8619        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8620}
8621
8622static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8623{
8624        struct inode *inode = page->mapping->host;
8625        int ret;
8626
8627        if (current->flags & PF_MEMALLOC) {
8628                redirty_page_for_writepage(wbc, page);
8629                unlock_page(page);
8630                return 0;
8631        }
8632
8633        /*
8634         * If we are under memory pressure we will call this directly from the
8635         * VM, we need to make sure we have the inode referenced for the ordered
8636         * extent.  If not just return like we didn't do anything.
8637         */
8638        if (!igrab(inode)) {
8639                redirty_page_for_writepage(wbc, page);
8640                return AOP_WRITEPAGE_ACTIVATE;
8641        }
8642        ret = extent_write_full_page(page, wbc);
8643        btrfs_add_delayed_iput(inode);
8644        return ret;
8645}
8646
8647static int btrfs_writepages(struct address_space *mapping,
8648                            struct writeback_control *wbc)
8649{
8650        return extent_writepages(mapping, wbc);
8651}
8652
8653static int
8654btrfs_readpages(struct file *file, struct address_space *mapping,
8655                struct list_head *pages, unsigned nr_pages)
8656{
8657        return extent_readpages(mapping, pages, nr_pages);
8658}
8659
8660static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8661{
8662        int ret = try_release_extent_mapping(page, gfp_flags);
8663        if (ret == 1) {
8664                ClearPagePrivate(page);
8665                set_page_private(page, 0);
8666                put_page(page);
8667        }
8668        return ret;
8669}
8670
8671static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8672{
8673        if (PageWriteback(page) || PageDirty(page))
8674                return 0;
8675        return __btrfs_releasepage(page, gfp_flags);
8676}
8677
8678static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8679                                 unsigned int length)
8680{
8681        struct inode *inode = page->mapping->host;
8682        struct extent_io_tree *tree;
8683        struct btrfs_ordered_extent *ordered;
8684        struct extent_state *cached_state = NULL;
8685        u64 page_start = page_offset(page);
8686        u64 page_end = page_start + PAGE_SIZE - 1;
8687        u64 start;
8688        u64 end;
8689        int inode_evicting = inode->i_state & I_FREEING;
8690
8691        /*
8692         * we have the page locked, so new writeback can't start,
8693         * and the dirty bit won't be cleared while we are here.
8694         *
8695         * Wait for IO on this page so that we can safely clear
8696         * the PagePrivate2 bit and do ordered accounting
8697         */
8698        wait_on_page_writeback(page);
8699
8700        tree = &BTRFS_I(inode)->io_tree;
8701        if (offset) {
8702                btrfs_releasepage(page, GFP_NOFS);
8703                return;
8704        }
8705
8706        if (!inode_evicting)
8707                lock_extent_bits(tree, page_start, page_end, &cached_state);
8708again:
8709        start = page_start;
8710        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8711                                        page_end - start + 1);
8712        if (ordered) {
8713                end = min(page_end, ordered->file_offset + ordered->len - 1);
8714                /*
8715                 * IO on this page will never be started, so we need
8716                 * to account for any ordered extents now
8717                 */
8718                if (!inode_evicting)
8719                        clear_extent_bit(tree, start, end,
8720                                         EXTENT_DIRTY | EXTENT_DELALLOC |
8721                                         EXTENT_DELALLOC_NEW |
8722                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8723                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8724                /*
8725                 * whoever cleared the private bit is responsible
8726                 * for the finish_ordered_io
8727                 */
8728                if (TestClearPagePrivate2(page)) {
8729                        struct btrfs_ordered_inode_tree *tree;
8730                        u64 new_len;
8731
8732                        tree = &BTRFS_I(inode)->ordered_tree;
8733
8734                        spin_lock_irq(&tree->lock);
8735                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8736                        new_len = start - ordered->file_offset;
8737                        if (new_len < ordered->truncated_len)
8738                                ordered->truncated_len = new_len;
8739                        spin_unlock_irq(&tree->lock);
8740
8741                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8742                                                           start,
8743                                                           end - start + 1, 1))
8744                                btrfs_finish_ordered_io(ordered);
8745                }
8746                btrfs_put_ordered_extent(ordered);
8747                if (!inode_evicting) {
8748                        cached_state = NULL;
8749                        lock_extent_bits(tree, start, end,
8750                                         &cached_state);
8751                }
8752
8753                start = end + 1;
8754                if (start < page_end)
8755                        goto again;
8756        }
8757
8758        /*
8759         * Qgroup reserved space handler
8760         * Page here will be either
8761         * 1) Already written to disk
8762         *    In this case, its reserved space is released from data rsv map
8763         *    and will be freed by delayed_ref handler finally.
8764         *    So even we call qgroup_free_data(), it won't decrease reserved
8765         *    space.
8766         * 2) Not written to disk
8767         *    This means the reserved space should be freed here. However,
8768         *    if a truncate invalidates the page (by clearing PageDirty)
8769         *    and the page is accounted for while allocating extent
8770         *    in btrfs_check_data_free_space() we let delayed_ref to
8771         *    free the entire extent.
8772         */
8773        if (PageDirty(page))
8774                btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8775        if (!inode_evicting) {
8776                clear_extent_bit(tree, page_start, page_end,
8777                                 EXTENT_LOCKED | EXTENT_DIRTY |
8778                                 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8779                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8780                                 &cached_state);
8781
8782                __btrfs_releasepage(page, GFP_NOFS);
8783        }
8784
8785        ClearPageChecked(page);
8786        if (PagePrivate(page)) {
8787                ClearPagePrivate(page);
8788                set_page_private(page, 0);
8789                put_page(page);
8790        }
8791}
8792
8793/*
8794 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8795 * called from a page fault handler when a page is first dirtied. Hence we must
8796 * be careful to check for EOF conditions here. We set the page up correctly
8797 * for a written page which means we get ENOSPC checking when writing into
8798 * holes and correct delalloc and unwritten extent mapping on filesystems that
8799 * support these features.
8800 *
8801 * We are not allowed to take the i_mutex here so we have to play games to
8802 * protect against truncate races as the page could now be beyond EOF.  Because
8803 * truncate_setsize() writes the inode size before removing pages, once we have
8804 * the page lock we can determine safely if the page is beyond EOF. If it is not
8805 * beyond EOF, then the page is guaranteed safe against truncation until we
8806 * unlock the page.
8807 */
8808vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8809{
8810        struct page *page = vmf->page;
8811        struct inode *inode = file_inode(vmf->vma->vm_file);
8812        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8813        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8814        struct btrfs_ordered_extent *ordered;
8815        struct extent_state *cached_state = NULL;
8816        struct extent_changeset *data_reserved = NULL;
8817        char *kaddr;
8818        unsigned long zero_start;
8819        loff_t size;
8820        vm_fault_t ret;
8821        int ret2;
8822        int reserved = 0;
8823        u64 reserved_space;
8824        u64 page_start;
8825        u64 page_end;
8826        u64 end;
8827
8828        reserved_space = PAGE_SIZE;
8829
8830        sb_start_pagefault(inode->i_sb);
8831        page_start = page_offset(page);
8832        page_end = page_start + PAGE_SIZE - 1;
8833        end = page_end;
8834
8835        /*
8836         * Reserving delalloc space after obtaining the page lock can lead to
8837         * deadlock. For example, if a dirty page is locked by this function
8838         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8839         * dirty page write out, then the btrfs_writepage() function could
8840         * end up waiting indefinitely to get a lock on the page currently
8841         * being processed by btrfs_page_mkwrite() function.
8842         */
8843        ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8844                                           reserved_space);
8845        if (!ret2) {
8846                ret2 = file_update_time(vmf->vma->vm_file);
8847                reserved = 1;
8848        }
8849        if (ret2) {
8850                ret = vmf_error(ret2);
8851                if (reserved)
8852                        goto out;
8853                goto out_noreserve;
8854        }
8855
8856        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8857again:
8858        lock_page(page);
8859        size = i_size_read(inode);
8860
8861        if ((page->mapping != inode->i_mapping) ||
8862            (page_start >= size)) {
8863                /* page got truncated out from underneath us */
8864                goto out_unlock;
8865        }
8866        wait_on_page_writeback(page);
8867
8868        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8869        set_page_extent_mapped(page);
8870
8871        /*
8872         * we can't set the delalloc bits if there are pending ordered
8873         * extents.  Drop our locks and wait for them to finish
8874         */
8875        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8876                        PAGE_SIZE);
8877        if (ordered) {
8878                unlock_extent_cached(io_tree, page_start, page_end,
8879                                     &cached_state);
8880                unlock_page(page);
8881                btrfs_start_ordered_extent(inode, ordered, 1);
8882                btrfs_put_ordered_extent(ordered);
8883                goto again;
8884        }
8885
8886        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8887                reserved_space = round_up(size - page_start,
8888                                          fs_info->sectorsize);
8889                if (reserved_space < PAGE_SIZE) {
8890                        end = page_start + reserved_space - 1;
8891                        btrfs_delalloc_release_space(inode, data_reserved,
8892                                        page_start, PAGE_SIZE - reserved_space,
8893                                        true);
8894                }
8895        }
8896
8897        /*
8898         * page_mkwrite gets called when the page is firstly dirtied after it's
8899         * faulted in, but write(2) could also dirty a page and set delalloc
8900         * bits, thus in this case for space account reason, we still need to
8901         * clear any delalloc bits within this page range since we have to
8902         * reserve data&meta space before lock_page() (see above comments).
8903         */
8904        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8905                          EXTENT_DIRTY | EXTENT_DELALLOC |
8906                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8907                          0, 0, &cached_state);
8908
8909        ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8910                                        &cached_state, 0);
8911        if (ret2) {
8912                unlock_extent_cached(io_tree, page_start, page_end,
8913                                     &cached_state);
8914                ret = VM_FAULT_SIGBUS;
8915                goto out_unlock;
8916        }
8917        ret2 = 0;
8918
8919        /* page is wholly or partially inside EOF */
8920        if (page_start + PAGE_SIZE > size)
8921                zero_start = offset_in_page(size);
8922        else
8923                zero_start = PAGE_SIZE;
8924
8925        if (zero_start != PAGE_SIZE) {
8926                kaddr = kmap(page);
8927                memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8928                flush_dcache_page(page);
8929                kunmap(page);
8930        }
8931        ClearPageChecked(page);
8932        set_page_dirty(page);
8933        SetPageUptodate(page);
8934
8935        BTRFS_I(inode)->last_trans = fs_info->generation;
8936        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8937        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8938
8939        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8940
8941        if (!ret2) {
8942                btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8943                sb_end_pagefault(inode->i_sb);
8944                extent_changeset_free(data_reserved);
8945                return VM_FAULT_LOCKED;
8946        }
8947
8948out_unlock:
8949        unlock_page(page);
8950out:
8951        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8952        btrfs_delalloc_release_space(inode, data_reserved, page_start,
8953                                     reserved_space, (ret != 0));
8954out_noreserve:
8955        sb_end_pagefault(inode->i_sb);
8956        extent_changeset_free(data_reserved);
8957        return ret;
8958}
8959
8960static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8961{
8962        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8963        struct btrfs_root *root = BTRFS_I(inode)->root;
8964        struct btrfs_block_rsv *rsv;
8965        int ret;
8966        struct btrfs_trans_handle *trans;
8967        u64 mask = fs_info->sectorsize - 1;
8968        u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8969
8970        if (!skip_writeback) {
8971                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8972                                               (u64)-1);
8973                if (ret)
8974                        return ret;
8975        }
8976
8977        /*
8978         * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8979         * things going on here:
8980         *
8981         * 1) We need to reserve space to update our inode.
8982         *
8983         * 2) We need to have something to cache all the space that is going to
8984         * be free'd up by the truncate operation, but also have some slack
8985         * space reserved in case it uses space during the truncate (thank you
8986         * very much snapshotting).
8987         *
8988         * And we need these to be separate.  The fact is we can use a lot of
8989         * space doing the truncate, and we have no earthly idea how much space
8990         * we will use, so we need the truncate reservation to be separate so it
8991         * doesn't end up using space reserved for updating the inode.  We also
8992         * need to be able to stop the transaction and start a new one, which
8993         * means we need to be able to update the inode several times, and we
8994         * have no idea of knowing how many times that will be, so we can't just
8995         * reserve 1 item for the entirety of the operation, so that has to be
8996         * done separately as well.
8997         *
8998         * So that leaves us with
8999         *
9000         * 1) rsv - for the truncate reservation, which we will steal from the
9001         * transaction reservation.
9002         * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9003         * updating the inode.
9004         */
9005        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9006        if (!rsv)
9007                return -ENOMEM;
9008        rsv->size = min_size;
9009        rsv->failfast = 1;
9010
9011        /*
9012         * 1 for the truncate slack space
9013         * 1 for updating the inode.
9014         */
9015        trans = btrfs_start_transaction(root, 2);
9016        if (IS_ERR(trans)) {
9017                ret = PTR_ERR(trans);
9018                goto out;
9019        }
9020
9021        /* Migrate the slack space for the truncate to our reserve */
9022        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9023                                      min_size, false);
9024        BUG_ON(ret);
9025
9026        /*
9027         * So if we truncate and then write and fsync we normally would just
9028         * write the extents that changed, which is a problem if we need to
9029         * first truncate that entire inode.  So set this flag so we write out
9030         * all of the extents in the inode to the sync log so we're completely
9031         * safe.
9032         */
9033        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9034        trans->block_rsv = rsv;
9035
9036        while (1) {
9037                ret = btrfs_truncate_inode_items(trans, root, inode,
9038                                                 inode->i_size,
9039                                                 BTRFS_EXTENT_DATA_KEY);
9040                trans->block_rsv = &fs_info->trans_block_rsv;
9041                if (ret != -ENOSPC && ret != -EAGAIN)
9042                        break;
9043
9044                ret = btrfs_update_inode(trans, root, inode);
9045                if (ret)
9046                        break;
9047
9048                btrfs_end_transaction(trans);
9049                btrfs_btree_balance_dirty(fs_info);
9050
9051                trans = btrfs_start_transaction(root, 2);
9052                if (IS_ERR(trans)) {
9053                        ret = PTR_ERR(trans);
9054                        trans = NULL;
9055                        break;
9056                }
9057
9058                btrfs_block_rsv_release(fs_info, rsv, -1);
9059                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9060                                              rsv, min_size, false);
9061                BUG_ON(ret);    /* shouldn't happen */
9062                trans->block_rsv = rsv;
9063        }
9064
9065        /*
9066         * We can't call btrfs_truncate_block inside a trans handle as we could
9067         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9068         * we've truncated everything except the last little bit, and can do
9069         * btrfs_truncate_block and then update the disk_i_size.
9070         */
9071        if (ret == NEED_TRUNCATE_BLOCK) {
9072                btrfs_end_transaction(trans);
9073                btrfs_btree_balance_dirty(fs_info);
9074
9075                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9076                if (ret)
9077                        goto out;
9078                trans = btrfs_start_transaction(root, 1);
9079                if (IS_ERR(trans)) {
9080                        ret = PTR_ERR(trans);
9081                        goto out;
9082                }
9083                btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9084        }
9085
9086        if (trans) {
9087                int ret2;
9088
9089                trans->block_rsv = &fs_info->trans_block_rsv;
9090                ret2 = btrfs_update_inode(trans, root, inode);
9091                if (ret2 && !ret)
9092                        ret = ret2;
9093
9094                ret2 = btrfs_end_transaction(trans);
9095                if (ret2 && !ret)
9096                        ret = ret2;
9097                btrfs_btree_balance_dirty(fs_info);
9098        }
9099out:
9100        btrfs_free_block_rsv(fs_info, rsv);
9101
9102        return ret;
9103}
9104
9105/*
9106 * create a new subvolume directory/inode (helper for the ioctl).
9107 */
9108int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9109                             struct btrfs_root *new_root,
9110                             struct btrfs_root *parent_root,
9111                             u64 new_dirid)
9112{
9113        struct inode *inode;
9114        int err;
9115        u64 index = 0;
9116
9117        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9118                                new_dirid, new_dirid,
9119                                S_IFDIR | (~current_umask() & S_IRWXUGO),
9120                                &index);
9121        if (IS_ERR(inode))
9122                return PTR_ERR(inode);
9123        inode->i_op = &btrfs_dir_inode_operations;
9124        inode->i_fop = &btrfs_dir_file_operations;
9125
9126        set_nlink(inode, 1);
9127        btrfs_i_size_write(BTRFS_I(inode), 0);
9128        unlock_new_inode(inode);
9129
9130        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9131        if (err)
9132                btrfs_err(new_root->fs_info,
9133                          "error inheriting subvolume %llu properties: %d",
9134                          new_root->root_key.objectid, err);
9135
9136        err = btrfs_update_inode(trans, new_root, inode);
9137
9138        iput(inode);
9139        return err;
9140}
9141
9142struct inode *btrfs_alloc_inode(struct super_block *sb)
9143{
9144        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9145        struct btrfs_inode *ei;
9146        struct inode *inode;
9147
9148        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9149        if (!ei)
9150                return NULL;
9151
9152        ei->root = NULL;
9153        ei->generation = 0;
9154        ei->last_trans = 0;
9155        ei->last_sub_trans = 0;
9156        ei->logged_trans = 0;
9157        ei->delalloc_bytes = 0;
9158        ei->new_delalloc_bytes = 0;
9159        ei->defrag_bytes = 0;
9160        ei->disk_i_size = 0;
9161        ei->flags = 0;
9162        ei->csum_bytes = 0;
9163        ei->index_cnt = (u64)-1;
9164        ei->dir_index = 0;
9165        ei->last_unlink_trans = 0;
9166        ei->last_link_trans = 0;
9167        ei->last_log_commit = 0;
9168
9169        spin_lock_init(&ei->lock);
9170        ei->outstanding_extents = 0;
9171        if (sb->s_magic != BTRFS_TEST_MAGIC)
9172                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9173                                              BTRFS_BLOCK_RSV_DELALLOC);
9174        ei->runtime_flags = 0;
9175        ei->prop_compress = BTRFS_COMPRESS_NONE;
9176        ei->defrag_compress = BTRFS_COMPRESS_NONE;
9177
9178        ei->delayed_node = NULL;
9179
9180        ei->i_otime.tv_sec = 0;
9181        ei->i_otime.tv_nsec = 0;
9182
9183        inode = &ei->vfs_inode;
9184        extent_map_tree_init(&ei->extent_tree);
9185        extent_io_tree_init(&ei->io_tree, inode);
9186        extent_io_tree_init(&ei->io_failure_tree, inode);
9187        ei->io_tree.track_uptodate = 1;
9188        ei->io_failure_tree.track_uptodate = 1;
9189        atomic_set(&ei->sync_writers, 0);
9190        mutex_init(&ei->log_mutex);
9191        mutex_init(&ei->delalloc_mutex);
9192        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9193        INIT_LIST_HEAD(&ei->delalloc_inodes);
9194        INIT_LIST_HEAD(&ei->delayed_iput);
9195        RB_CLEAR_NODE(&ei->rb_node);
9196        init_rwsem(&ei->dio_sem);
9197
9198        return inode;
9199}
9200
9201#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9202void btrfs_test_destroy_inode(struct inode *inode)
9203{
9204        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9205        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9206}
9207#endif
9208
9209static void btrfs_i_callback(struct rcu_head *head)
9210{
9211        struct inode *inode = container_of(head, struct inode, i_rcu);
9212        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9213}
9214
9215void btrfs_destroy_inode(struct inode *inode)
9216{
9217        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9218        struct btrfs_ordered_extent *ordered;
9219        struct btrfs_root *root = BTRFS_I(inode)->root;
9220
9221        WARN_ON(!hlist_empty(&inode->i_dentry));
9222        WARN_ON(inode->i_data.nrpages);
9223        WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9224        WARN_ON(BTRFS_I(inode)->block_rsv.size);
9225        WARN_ON(BTRFS_I(inode)->outstanding_extents);
9226        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9227        WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9228        WARN_ON(BTRFS_I(inode)->csum_bytes);
9229        WARN_ON(BTRFS_I(inode)->defrag_bytes);
9230
9231        /*
9232         * This can happen where we create an inode, but somebody else also
9233         * created the same inode and we need to destroy the one we already
9234         * created.
9235         */
9236        if (!root)
9237                goto free;
9238
9239        while (1) {
9240                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9241                if (!ordered)
9242                        break;
9243                else {
9244                        btrfs_err(fs_info,
9245                                  "found ordered extent %llu %llu on inode cleanup",
9246                                  ordered->file_offset, ordered->len);
9247                        btrfs_remove_ordered_extent(inode, ordered);
9248                        btrfs_put_ordered_extent(ordered);
9249                        btrfs_put_ordered_extent(ordered);
9250                }
9251        }
9252        btrfs_qgroup_check_reserved_leak(inode);
9253        inode_tree_del(inode);
9254        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9255free:
9256        call_rcu(&inode->i_rcu, btrfs_i_callback);
9257}
9258
9259int btrfs_drop_inode(struct inode *inode)
9260{
9261        struct btrfs_root *root = BTRFS_I(inode)->root;
9262
9263        if (root == NULL)
9264                return 1;
9265
9266        /* the snap/subvol tree is on deleting */
9267        if (btrfs_root_refs(&root->root_item) == 0)
9268                return 1;
9269        else
9270                return generic_drop_inode(inode);
9271}
9272
9273static void init_once(void *foo)
9274{
9275        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9276
9277        inode_init_once(&ei->vfs_inode);
9278}
9279
9280void __cold btrfs_destroy_cachep(void)
9281{
9282        /*
9283         * Make sure all delayed rcu free inodes are flushed before we
9284         * destroy cache.
9285         */
9286        rcu_barrier();
9287        kmem_cache_destroy(btrfs_inode_cachep);
9288        kmem_cache_destroy(btrfs_trans_handle_cachep);
9289        kmem_cache_destroy(btrfs_path_cachep);
9290        kmem_cache_destroy(btrfs_free_space_cachep);
9291}
9292
9293int __init btrfs_init_cachep(void)
9294{
9295        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9296                        sizeof(struct btrfs_inode), 0,
9297                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9298                        init_once);
9299        if (!btrfs_inode_cachep)
9300                goto fail;
9301
9302        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9303                        sizeof(struct btrfs_trans_handle), 0,
9304                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9305        if (!btrfs_trans_handle_cachep)
9306                goto fail;
9307
9308        btrfs_path_cachep = kmem_cache_create("btrfs_path",
9309                        sizeof(struct btrfs_path), 0,
9310                        SLAB_MEM_SPREAD, NULL);
9311        if (!btrfs_path_cachep)
9312                goto fail;
9313
9314        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9315                        sizeof(struct btrfs_free_space), 0,
9316                        SLAB_MEM_SPREAD, NULL);
9317        if (!btrfs_free_space_cachep)
9318                goto fail;
9319
9320        return 0;
9321fail:
9322        btrfs_destroy_cachep();
9323        return -ENOMEM;
9324}
9325
9326static int btrfs_getattr(const struct path *path, struct kstat *stat,
9327                         u32 request_mask, unsigned int flags)
9328{
9329        u64 delalloc_bytes;
9330        struct inode *inode = d_inode(path->dentry);
9331        u32 blocksize = inode->i_sb->s_blocksize;
9332        u32 bi_flags = BTRFS_I(inode)->flags;
9333
9334        stat->result_mask |= STATX_BTIME;
9335        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9336        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9337        if (bi_flags & BTRFS_INODE_APPEND)
9338                stat->attributes |= STATX_ATTR_APPEND;
9339        if (bi_flags & BTRFS_INODE_COMPRESS)
9340                stat->attributes |= STATX_ATTR_COMPRESSED;
9341        if (bi_flags & BTRFS_INODE_IMMUTABLE)
9342                stat->attributes |= STATX_ATTR_IMMUTABLE;
9343        if (bi_flags & BTRFS_INODE_NODUMP)
9344                stat->attributes |= STATX_ATTR_NODUMP;
9345
9346        stat->attributes_mask |= (STATX_ATTR_APPEND |
9347                                  STATX_ATTR_COMPRESSED |
9348                                  STATX_ATTR_IMMUTABLE |
9349                                  STATX_ATTR_NODUMP);
9350
9351        generic_fillattr(inode, stat);
9352        stat->dev = BTRFS_I(inode)->root->anon_dev;
9353
9354        spin_lock(&BTRFS_I(inode)->lock);
9355        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9356        spin_unlock(&BTRFS_I(inode)->lock);
9357        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9358                        ALIGN(delalloc_bytes, blocksize)) >> 9;
9359        return 0;
9360}
9361
9362static int btrfs_rename_exchange(struct inode *old_dir,
9363                              struct dentry *old_dentry,
9364                              struct inode *new_dir,
9365                              struct dentry *new_dentry)
9366{
9367        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9368        struct btrfs_trans_handle *trans;
9369        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9370        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9371        struct inode *new_inode = new_dentry->d_inode;
9372        struct inode *old_inode = old_dentry->d_inode;
9373        struct timespec64 ctime = current_time(old_inode);
9374        struct dentry *parent;
9375        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9376        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9377        u64 old_idx = 0;
9378        u64 new_idx = 0;
9379        u64 root_objectid;
9380        int ret;
9381        bool root_log_pinned = false;
9382        bool dest_log_pinned = false;
9383        struct btrfs_log_ctx ctx_root;
9384        struct btrfs_log_ctx ctx_dest;
9385        bool sync_log_root = false;
9386        bool sync_log_dest = false;
9387        bool commit_transaction = false;
9388
9389        /* we only allow rename subvolume link between subvolumes */
9390        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9391                return -EXDEV;
9392
9393        btrfs_init_log_ctx(&ctx_root, old_inode);
9394        btrfs_init_log_ctx(&ctx_dest, new_inode);
9395
9396        /* close the race window with snapshot create/destroy ioctl */
9397        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9398                down_read(&fs_info->subvol_sem);
9399        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9400                down_read(&fs_info->subvol_sem);
9401
9402        /*
9403         * We want to reserve the absolute worst case amount of items.  So if
9404         * both inodes are subvols and we need to unlink them then that would
9405         * require 4 item modifications, but if they are both normal inodes it
9406         * would require 5 item modifications, so we'll assume their normal
9407         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9408         * should cover the worst case number of items we'll modify.
9409         */
9410        trans = btrfs_start_transaction(root, 12);
9411        if (IS_ERR(trans)) {
9412                ret = PTR_ERR(trans);
9413                goto out_notrans;
9414        }
9415
9416        /*
9417         * We need to find a free sequence number both in the source and
9418         * in the destination directory for the exchange.
9419         */
9420        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9421        if (ret)
9422                goto out_fail;
9423        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9424        if (ret)
9425                goto out_fail;
9426
9427        BTRFS_I(old_inode)->dir_index = 0ULL;
9428        BTRFS_I(new_inode)->dir_index = 0ULL;
9429
9430        /* Reference for the source. */
9431        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9432                /* force full log commit if subvolume involved. */
9433                btrfs_set_log_full_commit(fs_info, trans);
9434        } else {
9435                btrfs_pin_log_trans(root);
9436                root_log_pinned = true;
9437                ret = btrfs_insert_inode_ref(trans, dest,
9438                                             new_dentry->d_name.name,
9439                                             new_dentry->d_name.len,
9440                                             old_ino,
9441                                             btrfs_ino(BTRFS_I(new_dir)),
9442                                             old_idx);
9443                if (ret)
9444                        goto out_fail;
9445        }
9446
9447        /* And now for the dest. */
9448        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9449                /* force full log commit if subvolume involved. */
9450                btrfs_set_log_full_commit(fs_info, trans);
9451        } else {
9452                btrfs_pin_log_trans(dest);
9453                dest_log_pinned = true;
9454                ret = btrfs_insert_inode_ref(trans, root,
9455                                             old_dentry->d_name.name,
9456                                             old_dentry->d_name.len,
9457                                             new_ino,
9458                                             btrfs_ino(BTRFS_I(old_dir)),
9459                                             new_idx);
9460                if (ret)
9461                        goto out_fail;
9462        }
9463
9464        /* Update inode version and ctime/mtime. */
9465        inode_inc_iversion(old_dir);
9466        inode_inc_iversion(new_dir);
9467        inode_inc_iversion(old_inode);
9468        inode_inc_iversion(new_inode);
9469        old_dir->i_ctime = old_dir->i_mtime = ctime;
9470        new_dir->i_ctime = new_dir->i_mtime = ctime;
9471        old_inode->i_ctime = ctime;
9472        new_inode->i_ctime = ctime;
9473
9474        if (old_dentry->d_parent != new_dentry->d_parent) {
9475                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9476                                BTRFS_I(old_inode), 1);
9477                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9478                                BTRFS_I(new_inode), 1);
9479        }
9480
9481        /* src is a subvolume */
9482        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9483                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9484                ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9485                                          old_dentry->d_name.name,
9486                                          old_dentry->d_name.len);
9487        } else { /* src is an inode */
9488                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9489                                           BTRFS_I(old_dentry->d_inode),
9490                                           old_dentry->d_name.name,
9491                                           old_dentry->d_name.len);
9492                if (!ret)
9493                        ret = btrfs_update_inode(trans, root, old_inode);
9494        }
9495        if (ret) {
9496                btrfs_abort_transaction(trans, ret);
9497                goto out_fail;
9498        }
9499
9500        /* dest is a subvolume */
9501        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9502                root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9503                ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9504                                          new_dentry->d_name.name,
9505                                          new_dentry->d_name.len);
9506        } else { /* dest is an inode */
9507                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9508                                           BTRFS_I(new_dentry->d_inode),
9509                                           new_dentry->d_name.name,
9510                                           new_dentry->d_name.len);
9511                if (!ret)
9512                        ret = btrfs_update_inode(trans, dest, new_inode);
9513        }
9514        if (ret) {
9515                btrfs_abort_transaction(trans, ret);
9516                goto out_fail;
9517        }
9518
9519        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9520                             new_dentry->d_name.name,
9521                             new_dentry->d_name.len, 0, old_idx);
9522        if (ret) {
9523                btrfs_abort_transaction(trans, ret);
9524                goto out_fail;
9525        }
9526
9527        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9528                             old_dentry->d_name.name,
9529                             old_dentry->d_name.len, 0, new_idx);
9530        if (ret) {
9531                btrfs_abort_transaction(trans, ret);
9532                goto out_fail;
9533        }
9534
9535        if (old_inode->i_nlink == 1)
9536                BTRFS_I(old_inode)->dir_index = old_idx;
9537        if (new_inode->i_nlink == 1)
9538                BTRFS_I(new_inode)->dir_index = new_idx;
9539
9540        if (root_log_pinned) {
9541                parent = new_dentry->d_parent;
9542                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9543                                         BTRFS_I(old_dir), parent,
9544                                         false, &ctx_root);
9545                if (ret == BTRFS_NEED_LOG_SYNC)
9546                        sync_log_root = true;
9547                else if (ret == BTRFS_NEED_TRANS_COMMIT)
9548                        commit_transaction = true;
9549                ret = 0;
9550                btrfs_end_log_trans(root);
9551                root_log_pinned = false;
9552        }
9553        if (dest_log_pinned) {
9554                if (!commit_transaction) {
9555                        parent = old_dentry->d_parent;
9556                        ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9557                                                 BTRFS_I(new_dir), parent,
9558                                                 false, &ctx_dest);
9559                        if (ret == BTRFS_NEED_LOG_SYNC)
9560                                sync_log_dest = true;
9561                        else if (ret == BTRFS_NEED_TRANS_COMMIT)
9562                                commit_transaction = true;
9563                        ret = 0;
9564                }
9565                btrfs_end_log_trans(dest);
9566                dest_log_pinned = false;
9567        }
9568out_fail:
9569        /*
9570         * If we have pinned a log and an error happened, we unpin tasks
9571         * trying to sync the log and force them to fallback to a transaction
9572         * commit if the log currently contains any of the inodes involved in
9573         * this rename operation (to ensure we do not persist a log with an
9574         * inconsistent state for any of these inodes or leading to any
9575         * inconsistencies when replayed). If the transaction was aborted, the
9576         * abortion reason is propagated to userspace when attempting to commit
9577         * the transaction. If the log does not contain any of these inodes, we
9578         * allow the tasks to sync it.
9579         */
9580        if (ret && (root_log_pinned || dest_log_pinned)) {
9581                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9582                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9583                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9584                    (new_inode &&
9585                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9586                        btrfs_set_log_full_commit(fs_info, trans);
9587
9588                if (root_log_pinned) {
9589                        btrfs_end_log_trans(root);
9590                        root_log_pinned = false;
9591                }
9592                if (dest_log_pinned) {
9593                        btrfs_end_log_trans(dest);
9594                        dest_log_pinned = false;
9595                }
9596        }
9597        if (!ret && sync_log_root && !commit_transaction) {
9598                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9599                                     &ctx_root);
9600                if (ret)
9601                        commit_transaction = true;
9602        }
9603        if (!ret && sync_log_dest && !commit_transaction) {
9604                ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9605                                     &ctx_dest);
9606                if (ret)
9607                        commit_transaction = true;
9608        }
9609        if (commit_transaction) {
9610                ret = btrfs_commit_transaction(trans);
9611        } else {
9612                int ret2;
9613
9614                ret2 = btrfs_end_transaction(trans);
9615                ret = ret ? ret : ret2;
9616        }
9617out_notrans:
9618        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9619                up_read(&fs_info->subvol_sem);
9620        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9621                up_read(&fs_info->subvol_sem);
9622
9623        return ret;
9624}
9625
9626static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9627                                     struct btrfs_root *root,
9628                                     struct inode *dir,
9629                                     struct dentry *dentry)
9630{
9631        int ret;
9632        struct inode *inode;
9633        u64 objectid;
9634        u64 index;
9635
9636        ret = btrfs_find_free_ino(root, &objectid);
9637        if (ret)
9638                return ret;
9639
9640        inode = btrfs_new_inode(trans, root, dir,
9641                                dentry->d_name.name,
9642                                dentry->d_name.len,
9643                                btrfs_ino(BTRFS_I(dir)),
9644                                objectid,
9645                                S_IFCHR | WHITEOUT_MODE,
9646                                &index);
9647
9648        if (IS_ERR(inode)) {
9649                ret = PTR_ERR(inode);
9650                return ret;
9651        }
9652
9653        inode->i_op = &btrfs_special_inode_operations;
9654        init_special_inode(inode, inode->i_mode,
9655                WHITEOUT_DEV);
9656
9657        ret = btrfs_init_inode_security(trans, inode, dir,
9658                                &dentry->d_name);
9659        if (ret)
9660                goto out;
9661
9662        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9663                                BTRFS_I(inode), 0, index);
9664        if (ret)
9665                goto out;
9666
9667        ret = btrfs_update_inode(trans, root, inode);
9668out:
9669        unlock_new_inode(inode);
9670        if (ret)
9671                inode_dec_link_count(inode);
9672        iput(inode);
9673
9674        return ret;
9675}
9676
9677static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9678                           struct inode *new_dir, struct dentry *new_dentry,
9679                           unsigned int flags)
9680{
9681        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9682        struct btrfs_trans_handle *trans;
9683        unsigned int trans_num_items;
9684        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9685        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9686        struct inode *new_inode = d_inode(new_dentry);
9687        struct inode *old_inode = d_inode(old_dentry);
9688        u64 index = 0;
9689        u64 root_objectid;
9690        int ret;
9691        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9692        bool log_pinned = false;
9693        struct btrfs_log_ctx ctx;
9694        bool sync_log = false;
9695        bool commit_transaction = false;
9696
9697        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9698                return -EPERM;
9699
9700        /* we only allow rename subvolume link between subvolumes */
9701        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9702                return -EXDEV;
9703
9704        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9705            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9706                return -ENOTEMPTY;
9707
9708        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9709            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9710                return -ENOTEMPTY;
9711
9712
9713        /* check for collisions, even if the  name isn't there */
9714        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9715                             new_dentry->d_name.name,
9716                             new_dentry->d_name.len);
9717
9718        if (ret) {
9719                if (ret == -EEXIST) {
9720                        /* we shouldn't get
9721                         * eexist without a new_inode */
9722                        if (WARN_ON(!new_inode)) {
9723                                return ret;
9724                        }
9725                } else {
9726                        /* maybe -EOVERFLOW */
9727                        return ret;
9728                }
9729        }
9730        ret = 0;
9731
9732        /*
9733         * we're using rename to replace one file with another.  Start IO on it
9734         * now so  we don't add too much work to the end of the transaction
9735         */
9736        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9737                filemap_flush(old_inode->i_mapping);
9738
9739        /* close the racy window with snapshot create/destroy ioctl */
9740        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9741                down_read(&fs_info->subvol_sem);
9742        /*
9743         * We want to reserve the absolute worst case amount of items.  So if
9744         * both inodes are subvols and we need to unlink them then that would
9745         * require 4 item modifications, but if they are both normal inodes it
9746         * would require 5 item modifications, so we'll assume they are normal
9747         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748         * should cover the worst case number of items we'll modify.
9749         * If our rename has the whiteout flag, we need more 5 units for the
9750         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751         * when selinux is enabled).
9752         */
9753        trans_num_items = 11;
9754        if (flags & RENAME_WHITEOUT)
9755                trans_num_items += 5;
9756        trans = btrfs_start_transaction(root, trans_num_items);
9757        if (IS_ERR(trans)) {
9758                ret = PTR_ERR(trans);
9759                goto out_notrans;
9760        }
9761
9762        if (dest != root)
9763                btrfs_record_root_in_trans(trans, dest);
9764
9765        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9766        if (ret)
9767                goto out_fail;
9768
9769        BTRFS_I(old_inode)->dir_index = 0ULL;
9770        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9771                /* force full log commit if subvolume involved. */
9772                btrfs_set_log_full_commit(fs_info, trans);
9773        } else {
9774                btrfs_pin_log_trans(root);
9775                log_pinned = true;
9776                ret = btrfs_insert_inode_ref(trans, dest,
9777                                             new_dentry->d_name.name,
9778                                             new_dentry->d_name.len,
9779                                             old_ino,
9780                                             btrfs_ino(BTRFS_I(new_dir)), index);
9781                if (ret)
9782                        goto out_fail;
9783        }
9784
9785        inode_inc_iversion(old_dir);
9786        inode_inc_iversion(new_dir);
9787        inode_inc_iversion(old_inode);
9788        old_dir->i_ctime = old_dir->i_mtime =
9789        new_dir->i_ctime = new_dir->i_mtime =
9790        old_inode->i_ctime = current_time(old_dir);
9791
9792        if (old_dentry->d_parent != new_dentry->d_parent)
9793                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9794                                BTRFS_I(old_inode), 1);
9795
9796        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9797                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9798                ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9799                                        old_dentry->d_name.name,
9800                                        old_dentry->d_name.len);
9801        } else {
9802                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9803                                        BTRFS_I(d_inode(old_dentry)),
9804                                        old_dentry->d_name.name,
9805                                        old_dentry->d_name.len);
9806                if (!ret)
9807                        ret = btrfs_update_inode(trans, root, old_inode);
9808        }
9809        if (ret) {
9810                btrfs_abort_transaction(trans, ret);
9811                goto out_fail;
9812        }
9813
9814        if (new_inode) {
9815                inode_inc_iversion(new_inode);
9816                new_inode->i_ctime = current_time(new_inode);
9817                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9818                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9819                        root_objectid = BTRFS_I(new_inode)->location.objectid;
9820                        ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9821                                                new_dentry->d_name.name,
9822                                                new_dentry->d_name.len);
9823                        BUG_ON(new_inode->i_nlink == 0);
9824                } else {
9825                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9826                                                 BTRFS_I(d_inode(new_dentry)),
9827                                                 new_dentry->d_name.name,
9828                                                 new_dentry->d_name.len);
9829                }
9830                if (!ret && new_inode->i_nlink == 0)
9831                        ret = btrfs_orphan_add(trans,
9832                                        BTRFS_I(d_inode(new_dentry)));
9833                if (ret) {
9834                        btrfs_abort_transaction(trans, ret);
9835                        goto out_fail;
9836                }
9837        }
9838
9839        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9840                             new_dentry->d_name.name,
9841                             new_dentry->d_name.len, 0, index);
9842        if (ret) {
9843                btrfs_abort_transaction(trans, ret);
9844                goto out_fail;
9845        }
9846
9847        if (old_inode->i_nlink == 1)
9848                BTRFS_I(old_inode)->dir_index = index;
9849
9850        if (log_pinned) {
9851                struct dentry *parent = new_dentry->d_parent;
9852
9853                btrfs_init_log_ctx(&ctx, old_inode);
9854                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9855                                         BTRFS_I(old_dir), parent,
9856                                         false, &ctx);
9857                if (ret == BTRFS_NEED_LOG_SYNC)
9858                        sync_log = true;
9859                else if (ret == BTRFS_NEED_TRANS_COMMIT)
9860                        commit_transaction = true;
9861                ret = 0;
9862                btrfs_end_log_trans(root);
9863                log_pinned = false;
9864        }
9865
9866        if (flags & RENAME_WHITEOUT) {
9867                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9868                                                old_dentry);
9869
9870                if (ret) {
9871                        btrfs_abort_transaction(trans, ret);
9872                        goto out_fail;
9873                }
9874        }
9875out_fail:
9876        /*
9877         * If we have pinned the log and an error happened, we unpin tasks
9878         * trying to sync the log and force them to fallback to a transaction
9879         * commit if the log currently contains any of the inodes involved in
9880         * this rename operation (to ensure we do not persist a log with an
9881         * inconsistent state for any of these inodes or leading to any
9882         * inconsistencies when replayed). If the transaction was aborted, the
9883         * abortion reason is propagated to userspace when attempting to commit
9884         * the transaction. If the log does not contain any of these inodes, we
9885         * allow the tasks to sync it.
9886         */
9887        if (ret && log_pinned) {
9888                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9889                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9890                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9891                    (new_inode &&
9892                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9893                        btrfs_set_log_full_commit(fs_info, trans);
9894
9895                btrfs_end_log_trans(root);
9896                log_pinned = false;
9897        }
9898        if (!ret && sync_log) {
9899                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9900                if (ret)
9901                        commit_transaction = true;
9902        }
9903        if (commit_transaction) {
9904                ret = btrfs_commit_transaction(trans);
9905        } else {
9906                int ret2;
9907
9908                ret2 = btrfs_end_transaction(trans);
9909                ret = ret ? ret : ret2;
9910        }
9911out_notrans:
9912        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9913                up_read(&fs_info->subvol_sem);
9914
9915        return ret;
9916}
9917
9918static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9919                         struct inode *new_dir, struct dentry *new_dentry,
9920                         unsigned int flags)
9921{
9922        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9923                return -EINVAL;
9924
9925        if (flags & RENAME_EXCHANGE)
9926                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9927                                          new_dentry);
9928
9929        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9930}
9931
9932struct btrfs_delalloc_work {
9933        struct inode *inode;
9934        struct completion completion;
9935        struct list_head list;
9936        struct btrfs_work work;
9937};
9938
9939static void btrfs_run_delalloc_work(struct btrfs_work *work)
9940{
9941        struct btrfs_delalloc_work *delalloc_work;
9942        struct inode *inode;
9943
9944        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9945                                     work);
9946        inode = delalloc_work->inode;
9947        filemap_flush(inode->i_mapping);
9948        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9949                                &BTRFS_I(inode)->runtime_flags))
9950                filemap_flush(inode->i_mapping);
9951
9952        iput(inode);
9953        complete(&delalloc_work->completion);
9954}
9955
9956static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9957{
9958        struct btrfs_delalloc_work *work;
9959
9960        work = kmalloc(sizeof(*work), GFP_NOFS);
9961        if (!work)
9962                return NULL;
9963
9964        init_completion(&work->completion);
9965        INIT_LIST_HEAD(&work->list);
9966        work->inode = inode;
9967        btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9968                        btrfs_run_delalloc_work, NULL, NULL);
9969
9970        return work;
9971}
9972
9973/*
9974 * some fairly slow code that needs optimization. This walks the list
9975 * of all the inodes with pending delalloc and forces them to disk.
9976 */
9977static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9978{
9979        struct btrfs_inode *binode;
9980        struct inode *inode;
9981        struct btrfs_delalloc_work *work, *next;
9982        struct list_head works;
9983        struct list_head splice;
9984        int ret = 0;
9985
9986        INIT_LIST_HEAD(&works);
9987        INIT_LIST_HEAD(&splice);
9988
9989        mutex_lock(&root->delalloc_mutex);
9990        spin_lock(&root->delalloc_lock);
9991        list_splice_init(&root->delalloc_inodes, &splice);
9992        while (!list_empty(&splice)) {
9993                binode = list_entry(splice.next, struct btrfs_inode,
9994                                    delalloc_inodes);
9995
9996                list_move_tail(&binode->delalloc_inodes,
9997                               &root->delalloc_inodes);
9998                inode = igrab(&binode->vfs_inode);
9999                if (!inode) {
10000                        cond_resched_lock(&root->delalloc_lock);
10001                        continue;
10002                }
10003                spin_unlock(&root->delalloc_lock);
10004
10005                if (snapshot)
10006                        set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10007                                &binode->runtime_flags);
10008                work = btrfs_alloc_delalloc_work(inode);
10009                if (!work) {
10010                        iput(inode);
10011                        ret = -ENOMEM;
10012                        goto out;
10013                }
10014                list_add_tail(&work->list, &works);
10015                btrfs_queue_work(root->fs_info->flush_workers,
10016                                 &work->work);
10017                ret++;
10018                if (nr != -1 && ret >= nr)
10019                        goto out;
10020                cond_resched();
10021                spin_lock(&root->delalloc_lock);
10022        }
10023        spin_unlock(&root->delalloc_lock);
10024
10025out:
10026        list_for_each_entry_safe(work, next, &works, list) {
10027                list_del_init(&work->list);
10028                wait_for_completion(&work->completion);
10029                kfree(work);
10030        }
10031
10032        if (!list_empty(&splice)) {
10033                spin_lock(&root->delalloc_lock);
10034                list_splice_tail(&splice, &root->delalloc_inodes);
10035                spin_unlock(&root->delalloc_lock);
10036        }
10037        mutex_unlock(&root->delalloc_mutex);
10038        return ret;
10039}
10040
10041int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10042{
10043        struct btrfs_fs_info *fs_info = root->fs_info;
10044        int ret;
10045
10046        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10047                return -EROFS;
10048
10049        ret = start_delalloc_inodes(root, -1, true);
10050        if (ret > 0)
10051                ret = 0;
10052        return ret;
10053}
10054
10055int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10056{
10057        struct btrfs_root *root;
10058        struct list_head splice;
10059        int ret;
10060
10061        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10062                return -EROFS;
10063
10064        INIT_LIST_HEAD(&splice);
10065
10066        mutex_lock(&fs_info->delalloc_root_mutex);
10067        spin_lock(&fs_info->delalloc_root_lock);
10068        list_splice_init(&fs_info->delalloc_roots, &splice);
10069        while (!list_empty(&splice) && nr) {
10070                root = list_first_entry(&splice, struct btrfs_root,
10071                                        delalloc_root);
10072                root = btrfs_grab_fs_root(root);
10073                BUG_ON(!root);
10074                list_move_tail(&root->delalloc_root,
10075                               &fs_info->delalloc_roots);
10076                spin_unlock(&fs_info->delalloc_root_lock);
10077
10078                ret = start_delalloc_inodes(root, nr, false);
10079                btrfs_put_fs_root(root);
10080                if (ret < 0)
10081                        goto out;
10082
10083                if (nr != -1) {
10084                        nr -= ret;
10085                        WARN_ON(nr < 0);
10086                }
10087                spin_lock(&fs_info->delalloc_root_lock);
10088        }
10089        spin_unlock(&fs_info->delalloc_root_lock);
10090
10091        ret = 0;
10092out:
10093        if (!list_empty(&splice)) {
10094                spin_lock(&fs_info->delalloc_root_lock);
10095                list_splice_tail(&splice, &fs_info->delalloc_roots);
10096                spin_unlock(&fs_info->delalloc_root_lock);
10097        }
10098        mutex_unlock(&fs_info->delalloc_root_mutex);
10099        return ret;
10100}
10101
10102static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10103                         const char *symname)
10104{
10105        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10106        struct btrfs_trans_handle *trans;
10107        struct btrfs_root *root = BTRFS_I(dir)->root;
10108        struct btrfs_path *path;
10109        struct btrfs_key key;
10110        struct inode *inode = NULL;
10111        int err;
10112        u64 objectid;
10113        u64 index = 0;
10114        int name_len;
10115        int datasize;
10116        unsigned long ptr;
10117        struct btrfs_file_extent_item *ei;
10118        struct extent_buffer *leaf;
10119
10120        name_len = strlen(symname);
10121        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10122                return -ENAMETOOLONG;
10123
10124        /*
10125         * 2 items for inode item and ref
10126         * 2 items for dir items
10127         * 1 item for updating parent inode item
10128         * 1 item for the inline extent item
10129         * 1 item for xattr if selinux is on
10130         */
10131        trans = btrfs_start_transaction(root, 7);
10132        if (IS_ERR(trans))
10133                return PTR_ERR(trans);
10134
10135        err = btrfs_find_free_ino(root, &objectid);
10136        if (err)
10137                goto out_unlock;
10138
10139        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10140                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10141                                objectid, S_IFLNK|S_IRWXUGO, &index);
10142        if (IS_ERR(inode)) {
10143                err = PTR_ERR(inode);
10144                inode = NULL;
10145                goto out_unlock;
10146        }
10147
10148        /*
10149        * If the active LSM wants to access the inode during
10150        * d_instantiate it needs these. Smack checks to see
10151        * if the filesystem supports xattrs by looking at the
10152        * ops vector.
10153        */
10154        inode->i_fop = &btrfs_file_operations;
10155        inode->i_op = &btrfs_file_inode_operations;
10156        inode->i_mapping->a_ops = &btrfs_aops;
10157        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10158
10159        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10160        if (err)
10161                goto out_unlock;
10162
10163        path = btrfs_alloc_path();
10164        if (!path) {
10165                err = -ENOMEM;
10166                goto out_unlock;
10167        }
10168        key.objectid = btrfs_ino(BTRFS_I(inode));
10169        key.offset = 0;
10170        key.type = BTRFS_EXTENT_DATA_KEY;
10171        datasize = btrfs_file_extent_calc_inline_size(name_len);
10172        err = btrfs_insert_empty_item(trans, root, path, &key,
10173                                      datasize);
10174        if (err) {
10175                btrfs_free_path(path);
10176                goto out_unlock;
10177        }
10178        leaf = path->nodes[0];
10179        ei = btrfs_item_ptr(leaf, path->slots[0],
10180                            struct btrfs_file_extent_item);
10181        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10182        btrfs_set_file_extent_type(leaf, ei,
10183                                   BTRFS_FILE_EXTENT_INLINE);
10184        btrfs_set_file_extent_encryption(leaf, ei, 0);
10185        btrfs_set_file_extent_compression(leaf, ei, 0);
10186        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10187        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10188
10189        ptr = btrfs_file_extent_inline_start(ei);
10190        write_extent_buffer(leaf, symname, ptr, name_len);
10191        btrfs_mark_buffer_dirty(leaf);
10192        btrfs_free_path(path);
10193
10194        inode->i_op = &btrfs_symlink_inode_operations;
10195        inode_nohighmem(inode);
10196        inode->i_mapping->a_ops = &btrfs_aops;
10197        inode_set_bytes(inode, name_len);
10198        btrfs_i_size_write(BTRFS_I(inode), name_len);
10199        err = btrfs_update_inode(trans, root, inode);
10200        /*
10201         * Last step, add directory indexes for our symlink inode. This is the
10202         * last step to avoid extra cleanup of these indexes if an error happens
10203         * elsewhere above.
10204         */
10205        if (!err)
10206                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10207                                BTRFS_I(inode), 0, index);
10208        if (err)
10209                goto out_unlock;
10210
10211        d_instantiate_new(dentry, inode);
10212
10213out_unlock:
10214        btrfs_end_transaction(trans);
10215        if (err && inode) {
10216                inode_dec_link_count(inode);
10217                discard_new_inode(inode);
10218        }
10219        btrfs_btree_balance_dirty(fs_info);
10220        return err;
10221}
10222
10223static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10224                                       u64 start, u64 num_bytes, u64 min_size,
10225                                       loff_t actual_len, u64 *alloc_hint,
10226                                       struct btrfs_trans_handle *trans)
10227{
10228        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10229        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10230        struct extent_map *em;
10231        struct btrfs_root *root = BTRFS_I(inode)->root;
10232        struct btrfs_key ins;
10233        u64 cur_offset = start;
10234        u64 i_size;
10235        u64 cur_bytes;
10236        u64 last_alloc = (u64)-1;
10237        int ret = 0;
10238        bool own_trans = true;
10239        u64 end = start + num_bytes - 1;
10240
10241        if (trans)
10242                own_trans = false;
10243        while (num_bytes > 0) {
10244                if (own_trans) {
10245                        trans = btrfs_start_transaction(root, 3);
10246                        if (IS_ERR(trans)) {
10247                                ret = PTR_ERR(trans);
10248                                break;
10249                        }
10250                }
10251
10252                cur_bytes = min_t(u64, num_bytes, SZ_256M);
10253                cur_bytes = max(cur_bytes, min_size);
10254                /*
10255                 * If we are severely fragmented we could end up with really
10256                 * small allocations, so if the allocator is returning small
10257                 * chunks lets make its job easier by only searching for those
10258                 * sized chunks.
10259                 */
10260                cur_bytes = min(cur_bytes, last_alloc);
10261                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10262                                min_size, 0, *alloc_hint, &ins, 1, 0);
10263                if (ret) {
10264                        if (own_trans)
10265                                btrfs_end_transaction(trans);
10266                        break;
10267                }
10268                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10269
10270                last_alloc = ins.offset;
10271                ret = insert_reserved_file_extent(trans, inode,
10272                                                  cur_offset, ins.objectid,
10273                                                  ins.offset, ins.offset,
10274                                                  ins.offset, 0, 0, 0,
10275                                                  BTRFS_FILE_EXTENT_PREALLOC);
10276                if (ret) {
10277                        btrfs_free_reserved_extent(fs_info, ins.objectid,
10278                                                   ins.offset, 0);
10279                        btrfs_abort_transaction(trans, ret);
10280                        if (own_trans)
10281                                btrfs_end_transaction(trans);
10282                        break;
10283                }
10284
10285                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10286                                        cur_offset + ins.offset -1, 0);
10287
10288                em = alloc_extent_map();
10289                if (!em) {
10290                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10291                                &BTRFS_I(inode)->runtime_flags);
10292                        goto next;
10293                }
10294
10295                em->start = cur_offset;
10296                em->orig_start = cur_offset;
10297                em->len = ins.offset;
10298                em->block_start = ins.objectid;
10299                em->block_len = ins.offset;
10300                em->orig_block_len = ins.offset;
10301                em->ram_bytes = ins.offset;
10302                em->bdev = fs_info->fs_devices->latest_bdev;
10303                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10304                em->generation = trans->transid;
10305
10306                while (1) {
10307                        write_lock(&em_tree->lock);
10308                        ret = add_extent_mapping(em_tree, em, 1);
10309                        write_unlock(&em_tree->lock);
10310                        if (ret != -EEXIST)
10311                                break;
10312                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10313                                                cur_offset + ins.offset - 1,
10314                                                0);
10315                }
10316                free_extent_map(em);
10317next:
10318                num_bytes -= ins.offset;
10319                cur_offset += ins.offset;
10320                *alloc_hint = ins.objectid + ins.offset;
10321
10322                inode_inc_iversion(inode);
10323                inode->i_ctime = current_time(inode);
10324                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10325                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10326                    (actual_len > inode->i_size) &&
10327                    (cur_offset > inode->i_size)) {
10328                        if (cur_offset > actual_len)
10329                                i_size = actual_len;
10330                        else
10331                                i_size = cur_offset;
10332                        i_size_write(inode, i_size);
10333                        btrfs_ordered_update_i_size(inode, i_size, NULL);
10334                }
10335
10336                ret = btrfs_update_inode(trans, root, inode);
10337
10338                if (ret) {
10339                        btrfs_abort_transaction(trans, ret);
10340                        if (own_trans)
10341                                btrfs_end_transaction(trans);
10342                        break;
10343                }
10344
10345                if (own_trans)
10346                        btrfs_end_transaction(trans);
10347        }
10348        if (cur_offset < end)
10349                btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10350                        end - cur_offset + 1);
10351        return ret;
10352}
10353
10354int btrfs_prealloc_file_range(struct inode *inode, int mode,
10355                              u64 start, u64 num_bytes, u64 min_size,
10356                              loff_t actual_len, u64 *alloc_hint)
10357{
10358        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10359                                           min_size, actual_len, alloc_hint,
10360                                           NULL);
10361}
10362
10363int btrfs_prealloc_file_range_trans(struct inode *inode,
10364                                    struct btrfs_trans_handle *trans, int mode,
10365                                    u64 start, u64 num_bytes, u64 min_size,
10366                                    loff_t actual_len, u64 *alloc_hint)
10367{
10368        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10369                                           min_size, actual_len, alloc_hint, trans);
10370}
10371
10372static int btrfs_set_page_dirty(struct page *page)
10373{
10374        return __set_page_dirty_nobuffers(page);
10375}
10376
10377static int btrfs_permission(struct inode *inode, int mask)
10378{
10379        struct btrfs_root *root = BTRFS_I(inode)->root;
10380        umode_t mode = inode->i_mode;
10381
10382        if (mask & MAY_WRITE &&
10383            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10384                if (btrfs_root_readonly(root))
10385                        return -EROFS;
10386                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10387                        return -EACCES;
10388        }
10389        return generic_permission(inode, mask);
10390}
10391
10392static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10393{
10394        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10395        struct btrfs_trans_handle *trans;
10396        struct btrfs_root *root = BTRFS_I(dir)->root;
10397        struct inode *inode = NULL;
10398        u64 objectid;
10399        u64 index;
10400        int ret = 0;
10401
10402        /*
10403         * 5 units required for adding orphan entry
10404         */
10405        trans = btrfs_start_transaction(root, 5);
10406        if (IS_ERR(trans))
10407                return PTR_ERR(trans);
10408
10409        ret = btrfs_find_free_ino(root, &objectid);
10410        if (ret)
10411                goto out;
10412
10413        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10414                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10415        if (IS_ERR(inode)) {
10416                ret = PTR_ERR(inode);
10417                inode = NULL;
10418                goto out;
10419        }
10420
10421        inode->i_fop = &btrfs_file_operations;
10422        inode->i_op = &btrfs_file_inode_operations;
10423
10424        inode->i_mapping->a_ops = &btrfs_aops;
10425        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10426
10427        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10428        if (ret)
10429                goto out;
10430
10431        ret = btrfs_update_inode(trans, root, inode);
10432        if (ret)
10433                goto out;
10434        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10435        if (ret)
10436                goto out;
10437
10438        /*
10439         * We set number of links to 0 in btrfs_new_inode(), and here we set
10440         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10441         * through:
10442         *
10443         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10444         */
10445        set_nlink(inode, 1);
10446        d_tmpfile(dentry, inode);
10447        unlock_new_inode(inode);
10448        mark_inode_dirty(inode);
10449out:
10450        btrfs_end_transaction(trans);
10451        if (ret && inode)
10452                discard_new_inode(inode);
10453        btrfs_btree_balance_dirty(fs_info);
10454        return ret;
10455}
10456
10457void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10458{
10459        struct inode *inode = tree->private_data;
10460        unsigned long index = start >> PAGE_SHIFT;
10461        unsigned long end_index = end >> PAGE_SHIFT;
10462        struct page *page;
10463
10464        while (index <= end_index) {
10465                page = find_get_page(inode->i_mapping, index);
10466                ASSERT(page); /* Pages should be in the extent_io_tree */
10467                set_page_writeback(page);
10468                put_page(page);
10469                index++;
10470        }
10471}
10472
10473#ifdef CONFIG_SWAP
10474/*
10475 * Add an entry indicating a block group or device which is pinned by a
10476 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10477 * negative errno on failure.
10478 */
10479static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10480                                  bool is_block_group)
10481{
10482        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10483        struct btrfs_swapfile_pin *sp, *entry;
10484        struct rb_node **p;
10485        struct rb_node *parent = NULL;
10486
10487        sp = kmalloc(sizeof(*sp), GFP_NOFS);
10488        if (!sp)
10489                return -ENOMEM;
10490        sp->ptr = ptr;
10491        sp->inode = inode;
10492        sp->is_block_group = is_block_group;
10493
10494        spin_lock(&fs_info->swapfile_pins_lock);
10495        p = &fs_info->swapfile_pins.rb_node;
10496        while (*p) {
10497                parent = *p;
10498                entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10499                if (sp->ptr < entry->ptr ||
10500                    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10501                        p = &(*p)->rb_left;
10502                } else if (sp->ptr > entry->ptr ||
10503                           (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10504                        p = &(*p)->rb_right;
10505                } else {
10506                        spin_unlock(&fs_info->swapfile_pins_lock);
10507                        kfree(sp);
10508                        return 1;
10509                }
10510        }
10511        rb_link_node(&sp->node, parent, p);
10512        rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10513        spin_unlock(&fs_info->swapfile_pins_lock);
10514        return 0;
10515}
10516
10517/* Free all of the entries pinned by this swapfile. */
10518static void btrfs_free_swapfile_pins(struct inode *inode)
10519{
10520        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10521        struct btrfs_swapfile_pin *sp;
10522        struct rb_node *node, *next;
10523
10524        spin_lock(&fs_info->swapfile_pins_lock);
10525        node = rb_first(&fs_info->swapfile_pins);
10526        while (node) {
10527                next = rb_next(node);
10528                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10529                if (sp->inode == inode) {
10530                        rb_erase(&sp->node, &fs_info->swapfile_pins);
10531                        if (sp->is_block_group)
10532                                btrfs_put_block_group(sp->ptr);
10533                        kfree(sp);
10534                }
10535                node = next;
10536        }
10537        spin_unlock(&fs_info->swapfile_pins_lock);
10538}
10539
10540struct btrfs_swap_info {
10541        u64 start;
10542        u64 block_start;
10543        u64 block_len;
10544        u64 lowest_ppage;
10545        u64 highest_ppage;
10546        unsigned long nr_pages;
10547        int nr_extents;
10548};
10549
10550static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10551                                 struct btrfs_swap_info *bsi)
10552{
10553        unsigned long nr_pages;
10554        u64 first_ppage, first_ppage_reported, next_ppage;
10555        int ret;
10556
10557        first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10558        next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10559                                PAGE_SIZE) >> PAGE_SHIFT;
10560
10561        if (first_ppage >= next_ppage)
10562                return 0;
10563        nr_pages = next_ppage - first_ppage;
10564
10565        first_ppage_reported = first_ppage;
10566        if (bsi->start == 0)
10567                first_ppage_reported++;
10568        if (bsi->lowest_ppage > first_ppage_reported)
10569                bsi->lowest_ppage = first_ppage_reported;
10570        if (bsi->highest_ppage < (next_ppage - 1))
10571                bsi->highest_ppage = next_ppage - 1;
10572
10573        ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10574        if (ret < 0)
10575                return ret;
10576        bsi->nr_extents += ret;
10577        bsi->nr_pages += nr_pages;
10578        return 0;
10579}
10580
10581static void btrfs_swap_deactivate(struct file *file)
10582{
10583        struct inode *inode = file_inode(file);
10584
10585        btrfs_free_swapfile_pins(inode);
10586        atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10587}
10588
10589static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10590                               sector_t *span)
10591{
10592        struct inode *inode = file_inode(file);
10593        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10594        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10595        struct extent_state *cached_state = NULL;
10596        struct extent_map *em = NULL;
10597        struct btrfs_device *device = NULL;
10598        struct btrfs_swap_info bsi = {
10599                .lowest_ppage = (sector_t)-1ULL,
10600        };
10601        int ret = 0;
10602        u64 isize;
10603        u64 start;
10604
10605        /*
10606         * If the swap file was just created, make sure delalloc is done. If the
10607         * file changes again after this, the user is doing something stupid and
10608         * we don't really care.
10609         */
10610        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10611        if (ret)
10612                return ret;
10613
10614        /*
10615         * The inode is locked, so these flags won't change after we check them.
10616         */
10617        if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10618                btrfs_warn(fs_info, "swapfile must not be compressed");
10619                return -EINVAL;
10620        }
10621        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10622                btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10623                return -EINVAL;
10624        }
10625        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10626                btrfs_warn(fs_info, "swapfile must not be checksummed");
10627                return -EINVAL;
10628        }
10629
10630        /*
10631         * Balance or device remove/replace/resize can move stuff around from
10632         * under us. The EXCL_OP flag makes sure they aren't running/won't run
10633         * concurrently while we are mapping the swap extents, and
10634         * fs_info->swapfile_pins prevents them from running while the swap file
10635         * is active and moving the extents. Note that this also prevents a
10636         * concurrent device add which isn't actually necessary, but it's not
10637         * really worth the trouble to allow it.
10638         */
10639        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10640                btrfs_warn(fs_info,
10641           "cannot activate swapfile while exclusive operation is running");
10642                return -EBUSY;
10643        }
10644        /*
10645         * Snapshots can create extents which require COW even if NODATACOW is
10646         * set. We use this counter to prevent snapshots. We must increment it
10647         * before walking the extents because we don't want a concurrent
10648         * snapshot to run after we've already checked the extents.
10649         */
10650        atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10651
10652        isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10653
10654        lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10655        start = 0;
10656        while (start < isize) {
10657                u64 logical_block_start, physical_block_start;
10658                struct btrfs_block_group_cache *bg;
10659                u64 len = isize - start;
10660
10661                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10662                if (IS_ERR(em)) {
10663                        ret = PTR_ERR(em);
10664                        goto out;
10665                }
10666
10667                if (em->block_start == EXTENT_MAP_HOLE) {
10668                        btrfs_warn(fs_info, "swapfile must not have holes");
10669                        ret = -EINVAL;
10670                        goto out;
10671                }
10672                if (em->block_start == EXTENT_MAP_INLINE) {
10673                        /*
10674                         * It's unlikely we'll ever actually find ourselves
10675                         * here, as a file small enough to fit inline won't be
10676                         * big enough to store more than the swap header, but in
10677                         * case something changes in the future, let's catch it
10678                         * here rather than later.
10679                         */
10680                        btrfs_warn(fs_info, "swapfile must not be inline");
10681                        ret = -EINVAL;
10682                        goto out;
10683                }
10684                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10685                        btrfs_warn(fs_info, "swapfile must not be compressed");
10686                        ret = -EINVAL;
10687                        goto out;
10688                }
10689
10690                logical_block_start = em->block_start + (start - em->start);
10691                len = min(len, em->len - (start - em->start));
10692                free_extent_map(em);
10693                em = NULL;
10694
10695                ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10696                if (ret < 0) {
10697                        goto out;
10698                } else if (ret) {
10699                        ret = 0;
10700                } else {
10701                        btrfs_warn(fs_info,
10702                                   "swapfile must not be copy-on-write");
10703                        ret = -EINVAL;
10704                        goto out;
10705                }
10706
10707                em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10708                if (IS_ERR(em)) {
10709                        ret = PTR_ERR(em);
10710                        goto out;
10711                }
10712
10713                if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10714                        btrfs_warn(fs_info,
10715                                   "swapfile must have single data profile");
10716                        ret = -EINVAL;
10717                        goto out;
10718                }
10719
10720                if (device == NULL) {
10721                        device = em->map_lookup->stripes[0].dev;
10722                        ret = btrfs_add_swapfile_pin(inode, device, false);
10723                        if (ret == 1)
10724                                ret = 0;
10725                        else if (ret)
10726                                goto out;
10727                } else if (device != em->map_lookup->stripes[0].dev) {
10728                        btrfs_warn(fs_info, "swapfile must be on one device");
10729                        ret = -EINVAL;
10730                        goto out;
10731                }
10732
10733                physical_block_start = (em->map_lookup->stripes[0].physical +
10734                                        (logical_block_start - em->start));
10735                len = min(len, em->len - (logical_block_start - em->start));
10736                free_extent_map(em);
10737                em = NULL;
10738
10739                bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10740                if (!bg) {
10741                        btrfs_warn(fs_info,
10742                           "could not find block group containing swapfile");
10743                        ret = -EINVAL;
10744                        goto out;
10745                }
10746
10747                ret = btrfs_add_swapfile_pin(inode, bg, true);
10748                if (ret) {
10749                        btrfs_put_block_group(bg);
10750                        if (ret == 1)
10751                                ret = 0;
10752                        else
10753                                goto out;
10754                }
10755
10756                if (bsi.block_len &&
10757                    bsi.block_start + bsi.block_len == physical_block_start) {
10758                        bsi.block_len += len;
10759                } else {
10760                        if (bsi.block_len) {
10761                                ret = btrfs_add_swap_extent(sis, &bsi);
10762                                if (ret)
10763                                        goto out;
10764                        }
10765                        bsi.start = start;
10766                        bsi.block_start = physical_block_start;
10767                        bsi.block_len = len;
10768                }
10769
10770                start += len;
10771        }
10772
10773        if (bsi.block_len)
10774                ret = btrfs_add_swap_extent(sis, &bsi);
10775
10776out:
10777        if (!IS_ERR_OR_NULL(em))
10778                free_extent_map(em);
10779
10780        unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10781
10782        if (ret)
10783                btrfs_swap_deactivate(file);
10784
10785        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10786
10787        if (ret)
10788                return ret;
10789
10790        if (device)
10791                sis->bdev = device->bdev;
10792        *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10793        sis->max = bsi.nr_pages;
10794        sis->pages = bsi.nr_pages - 1;
10795        sis->highest_bit = bsi.nr_pages - 1;
10796        return bsi.nr_extents;
10797}
10798#else
10799static void btrfs_swap_deactivate(struct file *file)
10800{
10801}
10802
10803static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10804                               sector_t *span)
10805{
10806        return -EOPNOTSUPP;
10807}
10808#endif
10809
10810static const struct inode_operations btrfs_dir_inode_operations = {
10811        .getattr        = btrfs_getattr,
10812        .lookup         = btrfs_lookup,
10813        .create         = btrfs_create,
10814        .unlink         = btrfs_unlink,
10815        .link           = btrfs_link,
10816        .mkdir          = btrfs_mkdir,
10817        .rmdir          = btrfs_rmdir,
10818        .rename         = btrfs_rename2,
10819        .symlink        = btrfs_symlink,
10820        .setattr        = btrfs_setattr,
10821        .mknod          = btrfs_mknod,
10822        .listxattr      = btrfs_listxattr,
10823        .permission     = btrfs_permission,
10824        .get_acl        = btrfs_get_acl,
10825        .set_acl        = btrfs_set_acl,
10826        .update_time    = btrfs_update_time,
10827        .tmpfile        = btrfs_tmpfile,
10828};
10829static const struct inode_operations btrfs_dir_ro_inode_operations = {
10830        .lookup         = btrfs_lookup,
10831        .permission     = btrfs_permission,
10832        .update_time    = btrfs_update_time,
10833};
10834
10835static const struct file_operations btrfs_dir_file_operations = {
10836        .llseek         = generic_file_llseek,
10837        .read           = generic_read_dir,
10838        .iterate_shared = btrfs_real_readdir,
10839        .open           = btrfs_opendir,
10840        .unlocked_ioctl = btrfs_ioctl,
10841#ifdef CONFIG_COMPAT
10842        .compat_ioctl   = btrfs_compat_ioctl,
10843#endif
10844        .release        = btrfs_release_file,
10845        .fsync          = btrfs_sync_file,
10846};
10847
10848static const struct extent_io_ops btrfs_extent_io_ops = {
10849        /* mandatory callbacks */
10850        .submit_bio_hook = btrfs_submit_bio_hook,
10851        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10852};
10853
10854/*
10855 * btrfs doesn't support the bmap operation because swapfiles
10856 * use bmap to make a mapping of extents in the file.  They assume
10857 * these extents won't change over the life of the file and they
10858 * use the bmap result to do IO directly to the drive.
10859 *
10860 * the btrfs bmap call would return logical addresses that aren't
10861 * suitable for IO and they also will change frequently as COW
10862 * operations happen.  So, swapfile + btrfs == corruption.
10863 *
10864 * For now we're avoiding this by dropping bmap.
10865 */
10866static const struct address_space_operations btrfs_aops = {
10867        .readpage       = btrfs_readpage,
10868        .writepage      = btrfs_writepage,
10869        .writepages     = btrfs_writepages,
10870        .readpages      = btrfs_readpages,
10871        .direct_IO      = btrfs_direct_IO,
10872        .invalidatepage = btrfs_invalidatepage,
10873        .releasepage    = btrfs_releasepage,
10874        .set_page_dirty = btrfs_set_page_dirty,
10875        .error_remove_page = generic_error_remove_page,
10876        .swap_activate  = btrfs_swap_activate,
10877        .swap_deactivate = btrfs_swap_deactivate,
10878};
10879
10880static const struct inode_operations btrfs_file_inode_operations = {
10881        .getattr        = btrfs_getattr,
10882        .setattr        = btrfs_setattr,
10883        .listxattr      = btrfs_listxattr,
10884        .permission     = btrfs_permission,
10885        .fiemap         = btrfs_fiemap,
10886        .get_acl        = btrfs_get_acl,
10887        .set_acl        = btrfs_set_acl,
10888        .update_time    = btrfs_update_time,
10889};
10890static const struct inode_operations btrfs_special_inode_operations = {
10891        .getattr        = btrfs_getattr,
10892        .setattr        = btrfs_setattr,
10893        .permission     = btrfs_permission,
10894        .listxattr      = btrfs_listxattr,
10895        .get_acl        = btrfs_get_acl,
10896        .set_acl        = btrfs_set_acl,
10897        .update_time    = btrfs_update_time,
10898};
10899static const struct inode_operations btrfs_symlink_inode_operations = {
10900        .get_link       = page_get_link,
10901        .getattr        = btrfs_getattr,
10902        .setattr        = btrfs_setattr,
10903        .permission     = btrfs_permission,
10904        .listxattr      = btrfs_listxattr,
10905        .update_time    = btrfs_update_time,
10906};
10907
10908const struct dentry_operations btrfs_dentry_operations = {
10909        .d_delete       = btrfs_dentry_delete,
10910};
10911