linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "disk-io.h"
  12#include "ordered-data.h"
  13#include "transaction.h"
  14#include "backref.h"
  15#include "extent_io.h"
  16#include "dev-replace.h"
  17#include "check-integrity.h"
  18#include "rcu-string.h"
  19#include "raid56.h"
  20
  21/*
  22 * This is only the first step towards a full-features scrub. It reads all
  23 * extent and super block and verifies the checksums. In case a bad checksum
  24 * is found or the extent cannot be read, good data will be written back if
  25 * any can be found.
  26 *
  27 * Future enhancements:
  28 *  - In case an unrepairable extent is encountered, track which files are
  29 *    affected and report them
  30 *  - track and record media errors, throw out bad devices
  31 *  - add a mode to also read unallocated space
  32 */
  33
  34struct scrub_block;
  35struct scrub_ctx;
  36
  37/*
  38 * the following three values only influence the performance.
  39 * The last one configures the number of parallel and outstanding I/O
  40 * operations. The first two values configure an upper limit for the number
  41 * of (dynamically allocated) pages that are added to a bio.
  42 */
  43#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  44#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  45#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  46
  47/*
  48 * the following value times PAGE_SIZE needs to be large enough to match the
  49 * largest node/leaf/sector size that shall be supported.
  50 * Values larger than BTRFS_STRIPE_LEN are not supported.
  51 */
  52#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  53
  54struct scrub_recover {
  55        refcount_t              refs;
  56        struct btrfs_bio        *bbio;
  57        u64                     map_length;
  58};
  59
  60struct scrub_page {
  61        struct scrub_block      *sblock;
  62        struct page             *page;
  63        struct btrfs_device     *dev;
  64        struct list_head        list;
  65        u64                     flags;  /* extent flags */
  66        u64                     generation;
  67        u64                     logical;
  68        u64                     physical;
  69        u64                     physical_for_dev_replace;
  70        atomic_t                refs;
  71        struct {
  72                unsigned int    mirror_num:8;
  73                unsigned int    have_csum:1;
  74                unsigned int    io_error:1;
  75        };
  76        u8                      csum[BTRFS_CSUM_SIZE];
  77
  78        struct scrub_recover    *recover;
  79};
  80
  81struct scrub_bio {
  82        int                     index;
  83        struct scrub_ctx        *sctx;
  84        struct btrfs_device     *dev;
  85        struct bio              *bio;
  86        blk_status_t            status;
  87        u64                     logical;
  88        u64                     physical;
  89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  90        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  91#else
  92        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  93#endif
  94        int                     page_count;
  95        int                     next_free;
  96        struct btrfs_work       work;
  97};
  98
  99struct scrub_block {
 100        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 101        int                     page_count;
 102        atomic_t                outstanding_pages;
 103        refcount_t              refs; /* free mem on transition to zero */
 104        struct scrub_ctx        *sctx;
 105        struct scrub_parity     *sparity;
 106        struct {
 107                unsigned int    header_error:1;
 108                unsigned int    checksum_error:1;
 109                unsigned int    no_io_error_seen:1;
 110                unsigned int    generation_error:1; /* also sets header_error */
 111
 112                /* The following is for the data used to check parity */
 113                /* It is for the data with checksum */
 114                unsigned int    data_corrected:1;
 115        };
 116        struct btrfs_work       work;
 117};
 118
 119/* Used for the chunks with parity stripe such RAID5/6 */
 120struct scrub_parity {
 121        struct scrub_ctx        *sctx;
 122
 123        struct btrfs_device     *scrub_dev;
 124
 125        u64                     logic_start;
 126
 127        u64                     logic_end;
 128
 129        int                     nsectors;
 130
 131        u64                     stripe_len;
 132
 133        refcount_t              refs;
 134
 135        struct list_head        spages;
 136
 137        /* Work of parity check and repair */
 138        struct btrfs_work       work;
 139
 140        /* Mark the parity blocks which have data */
 141        unsigned long           *dbitmap;
 142
 143        /*
 144         * Mark the parity blocks which have data, but errors happen when
 145         * read data or check data
 146         */
 147        unsigned long           *ebitmap;
 148
 149        unsigned long           bitmap[0];
 150};
 151
 152struct scrub_ctx {
 153        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 154        struct btrfs_fs_info    *fs_info;
 155        int                     first_free;
 156        int                     curr;
 157        atomic_t                bios_in_flight;
 158        atomic_t                workers_pending;
 159        spinlock_t              list_lock;
 160        wait_queue_head_t       list_wait;
 161        u16                     csum_size;
 162        struct list_head        csum_list;
 163        atomic_t                cancel_req;
 164        int                     readonly;
 165        int                     pages_per_rd_bio;
 166
 167        int                     is_dev_replace;
 168
 169        struct scrub_bio        *wr_curr_bio;
 170        struct mutex            wr_lock;
 171        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 172        struct btrfs_device     *wr_tgtdev;
 173        bool                    flush_all_writes;
 174
 175        /*
 176         * statistics
 177         */
 178        struct btrfs_scrub_progress stat;
 179        spinlock_t              stat_lock;
 180
 181        /*
 182         * Use a ref counter to avoid use-after-free issues. Scrub workers
 183         * decrement bios_in_flight and workers_pending and then do a wakeup
 184         * on the list_wait wait queue. We must ensure the main scrub task
 185         * doesn't free the scrub context before or while the workers are
 186         * doing the wakeup() call.
 187         */
 188        refcount_t              refs;
 189};
 190
 191struct scrub_warning {
 192        struct btrfs_path       *path;
 193        u64                     extent_item_size;
 194        const char              *errstr;
 195        u64                     physical;
 196        u64                     logical;
 197        struct btrfs_device     *dev;
 198};
 199
 200struct full_stripe_lock {
 201        struct rb_node node;
 202        u64 logical;
 203        u64 refs;
 204        struct mutex mutex;
 205};
 206
 207static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 208static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 209static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 210static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 211                                     struct scrub_block *sblocks_for_recheck);
 212static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 213                                struct scrub_block *sblock,
 214                                int retry_failed_mirror);
 215static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 216static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 217                                             struct scrub_block *sblock_good);
 218static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 219                                            struct scrub_block *sblock_good,
 220                                            int page_num, int force_write);
 221static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 222static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 223                                           int page_num);
 224static int scrub_checksum_data(struct scrub_block *sblock);
 225static int scrub_checksum_tree_block(struct scrub_block *sblock);
 226static int scrub_checksum_super(struct scrub_block *sblock);
 227static void scrub_block_get(struct scrub_block *sblock);
 228static void scrub_block_put(struct scrub_block *sblock);
 229static void scrub_page_get(struct scrub_page *spage);
 230static void scrub_page_put(struct scrub_page *spage);
 231static void scrub_parity_get(struct scrub_parity *sparity);
 232static void scrub_parity_put(struct scrub_parity *sparity);
 233static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 234                                    struct scrub_page *spage);
 235static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 236                       u64 physical, struct btrfs_device *dev, u64 flags,
 237                       u64 gen, int mirror_num, u8 *csum, int force,
 238                       u64 physical_for_dev_replace);
 239static void scrub_bio_end_io(struct bio *bio);
 240static void scrub_bio_end_io_worker(struct btrfs_work *work);
 241static void scrub_block_complete(struct scrub_block *sblock);
 242static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 243                               u64 extent_logical, u64 extent_len,
 244                               u64 *extent_physical,
 245                               struct btrfs_device **extent_dev,
 246                               int *extent_mirror_num);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248                                    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 253static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 254static void scrub_put_ctx(struct scrub_ctx *sctx);
 255
 256static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 257{
 258        return page->recover &&
 259               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 260}
 261
 262static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 263{
 264        refcount_inc(&sctx->refs);
 265        atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270        atomic_dec(&sctx->bios_in_flight);
 271        wake_up(&sctx->list_wait);
 272        scrub_put_ctx(sctx);
 273}
 274
 275static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 276{
 277        while (atomic_read(&fs_info->scrub_pause_req)) {
 278                mutex_unlock(&fs_info->scrub_lock);
 279                wait_event(fs_info->scrub_pause_wait,
 280                   atomic_read(&fs_info->scrub_pause_req) == 0);
 281                mutex_lock(&fs_info->scrub_lock);
 282        }
 283}
 284
 285static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 286{
 287        atomic_inc(&fs_info->scrubs_paused);
 288        wake_up(&fs_info->scrub_pause_wait);
 289}
 290
 291static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 292{
 293        mutex_lock(&fs_info->scrub_lock);
 294        __scrub_blocked_if_needed(fs_info);
 295        atomic_dec(&fs_info->scrubs_paused);
 296        mutex_unlock(&fs_info->scrub_lock);
 297
 298        wake_up(&fs_info->scrub_pause_wait);
 299}
 300
 301static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 302{
 303        scrub_pause_on(fs_info);
 304        scrub_pause_off(fs_info);
 305}
 306
 307/*
 308 * Insert new full stripe lock into full stripe locks tree
 309 *
 310 * Return pointer to existing or newly inserted full_stripe_lock structure if
 311 * everything works well.
 312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 313 *
 314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 315 * function
 316 */
 317static struct full_stripe_lock *insert_full_stripe_lock(
 318                struct btrfs_full_stripe_locks_tree *locks_root,
 319                u64 fstripe_logical)
 320{
 321        struct rb_node **p;
 322        struct rb_node *parent = NULL;
 323        struct full_stripe_lock *entry;
 324        struct full_stripe_lock *ret;
 325
 326        lockdep_assert_held(&locks_root->lock);
 327
 328        p = &locks_root->root.rb_node;
 329        while (*p) {
 330                parent = *p;
 331                entry = rb_entry(parent, struct full_stripe_lock, node);
 332                if (fstripe_logical < entry->logical) {
 333                        p = &(*p)->rb_left;
 334                } else if (fstripe_logical > entry->logical) {
 335                        p = &(*p)->rb_right;
 336                } else {
 337                        entry->refs++;
 338                        return entry;
 339                }
 340        }
 341
 342        /*
 343         * Insert new lock.
 344         */
 345        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 346        if (!ret)
 347                return ERR_PTR(-ENOMEM);
 348        ret->logical = fstripe_logical;
 349        ret->refs = 1;
 350        mutex_init(&ret->mutex);
 351
 352        rb_link_node(&ret->node, parent, p);
 353        rb_insert_color(&ret->node, &locks_root->root);
 354        return ret;
 355}
 356
 357/*
 358 * Search for a full stripe lock of a block group
 359 *
 360 * Return pointer to existing full stripe lock if found
 361 * Return NULL if not found
 362 */
 363static struct full_stripe_lock *search_full_stripe_lock(
 364                struct btrfs_full_stripe_locks_tree *locks_root,
 365                u64 fstripe_logical)
 366{
 367        struct rb_node *node;
 368        struct full_stripe_lock *entry;
 369
 370        lockdep_assert_held(&locks_root->lock);
 371
 372        node = locks_root->root.rb_node;
 373        while (node) {
 374                entry = rb_entry(node, struct full_stripe_lock, node);
 375                if (fstripe_logical < entry->logical)
 376                        node = node->rb_left;
 377                else if (fstripe_logical > entry->logical)
 378                        node = node->rb_right;
 379                else
 380                        return entry;
 381        }
 382        return NULL;
 383}
 384
 385/*
 386 * Helper to get full stripe logical from a normal bytenr.
 387 *
 388 * Caller must ensure @cache is a RAID56 block group.
 389 */
 390static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 391                                   u64 bytenr)
 392{
 393        u64 ret;
 394
 395        /*
 396         * Due to chunk item size limit, full stripe length should not be
 397         * larger than U32_MAX. Just a sanity check here.
 398         */
 399        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 400
 401        /*
 402         * round_down() can only handle power of 2, while RAID56 full
 403         * stripe length can be 64KiB * n, so we need to manually round down.
 404         */
 405        ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 406                cache->full_stripe_len + cache->key.objectid;
 407        return ret;
 408}
 409
 410/*
 411 * Lock a full stripe to avoid concurrency of recovery and read
 412 *
 413 * It's only used for profiles with parities (RAID5/6), for other profiles it
 414 * does nothing.
 415 *
 416 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 417 * So caller must call unlock_full_stripe() at the same context.
 418 *
 419 * Return <0 if encounters error.
 420 */
 421static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 422                            bool *locked_ret)
 423{
 424        struct btrfs_block_group_cache *bg_cache;
 425        struct btrfs_full_stripe_locks_tree *locks_root;
 426        struct full_stripe_lock *existing;
 427        u64 fstripe_start;
 428        int ret = 0;
 429
 430        *locked_ret = false;
 431        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 432        if (!bg_cache) {
 433                ASSERT(0);
 434                return -ENOENT;
 435        }
 436
 437        /* Profiles not based on parity don't need full stripe lock */
 438        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 439                goto out;
 440        locks_root = &bg_cache->full_stripe_locks_root;
 441
 442        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 443
 444        /* Now insert the full stripe lock */
 445        mutex_lock(&locks_root->lock);
 446        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 447        mutex_unlock(&locks_root->lock);
 448        if (IS_ERR(existing)) {
 449                ret = PTR_ERR(existing);
 450                goto out;
 451        }
 452        mutex_lock(&existing->mutex);
 453        *locked_ret = true;
 454out:
 455        btrfs_put_block_group(bg_cache);
 456        return ret;
 457}
 458
 459/*
 460 * Unlock a full stripe.
 461 *
 462 * NOTE: Caller must ensure it's the same context calling corresponding
 463 * lock_full_stripe().
 464 *
 465 * Return 0 if we unlock full stripe without problem.
 466 * Return <0 for error
 467 */
 468static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 469                              bool locked)
 470{
 471        struct btrfs_block_group_cache *bg_cache;
 472        struct btrfs_full_stripe_locks_tree *locks_root;
 473        struct full_stripe_lock *fstripe_lock;
 474        u64 fstripe_start;
 475        bool freeit = false;
 476        int ret = 0;
 477
 478        /* If we didn't acquire full stripe lock, no need to continue */
 479        if (!locked)
 480                return 0;
 481
 482        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 483        if (!bg_cache) {
 484                ASSERT(0);
 485                return -ENOENT;
 486        }
 487        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 488                goto out;
 489
 490        locks_root = &bg_cache->full_stripe_locks_root;
 491        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 492
 493        mutex_lock(&locks_root->lock);
 494        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 495        /* Unpaired unlock_full_stripe() detected */
 496        if (!fstripe_lock) {
 497                WARN_ON(1);
 498                ret = -ENOENT;
 499                mutex_unlock(&locks_root->lock);
 500                goto out;
 501        }
 502
 503        if (fstripe_lock->refs == 0) {
 504                WARN_ON(1);
 505                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 506                        fstripe_lock->logical);
 507        } else {
 508                fstripe_lock->refs--;
 509        }
 510
 511        if (fstripe_lock->refs == 0) {
 512                rb_erase(&fstripe_lock->node, &locks_root->root);
 513                freeit = true;
 514        }
 515        mutex_unlock(&locks_root->lock);
 516
 517        mutex_unlock(&fstripe_lock->mutex);
 518        if (freeit)
 519                kfree(fstripe_lock);
 520out:
 521        btrfs_put_block_group(bg_cache);
 522        return ret;
 523}
 524
 525static void scrub_free_csums(struct scrub_ctx *sctx)
 526{
 527        while (!list_empty(&sctx->csum_list)) {
 528                struct btrfs_ordered_sum *sum;
 529                sum = list_first_entry(&sctx->csum_list,
 530                                       struct btrfs_ordered_sum, list);
 531                list_del(&sum->list);
 532                kfree(sum);
 533        }
 534}
 535
 536static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 537{
 538        int i;
 539
 540        if (!sctx)
 541                return;
 542
 543        /* this can happen when scrub is cancelled */
 544        if (sctx->curr != -1) {
 545                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 546
 547                for (i = 0; i < sbio->page_count; i++) {
 548                        WARN_ON(!sbio->pagev[i]->page);
 549                        scrub_block_put(sbio->pagev[i]->sblock);
 550                }
 551                bio_put(sbio->bio);
 552        }
 553
 554        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 555                struct scrub_bio *sbio = sctx->bios[i];
 556
 557                if (!sbio)
 558                        break;
 559                kfree(sbio);
 560        }
 561
 562        kfree(sctx->wr_curr_bio);
 563        scrub_free_csums(sctx);
 564        kfree(sctx);
 565}
 566
 567static void scrub_put_ctx(struct scrub_ctx *sctx)
 568{
 569        if (refcount_dec_and_test(&sctx->refs))
 570                scrub_free_ctx(sctx);
 571}
 572
 573static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 574                struct btrfs_fs_info *fs_info, int is_dev_replace)
 575{
 576        struct scrub_ctx *sctx;
 577        int             i;
 578
 579        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 580        if (!sctx)
 581                goto nomem;
 582        refcount_set(&sctx->refs, 1);
 583        sctx->is_dev_replace = is_dev_replace;
 584        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 585        sctx->curr = -1;
 586        sctx->fs_info = fs_info;
 587        INIT_LIST_HEAD(&sctx->csum_list);
 588        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 589                struct scrub_bio *sbio;
 590
 591                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 592                if (!sbio)
 593                        goto nomem;
 594                sctx->bios[i] = sbio;
 595
 596                sbio->index = i;
 597                sbio->sctx = sctx;
 598                sbio->page_count = 0;
 599                btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 600                                scrub_bio_end_io_worker, NULL, NULL);
 601
 602                if (i != SCRUB_BIOS_PER_SCTX - 1)
 603                        sctx->bios[i]->next_free = i + 1;
 604                else
 605                        sctx->bios[i]->next_free = -1;
 606        }
 607        sctx->first_free = 0;
 608        atomic_set(&sctx->bios_in_flight, 0);
 609        atomic_set(&sctx->workers_pending, 0);
 610        atomic_set(&sctx->cancel_req, 0);
 611        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 612
 613        spin_lock_init(&sctx->list_lock);
 614        spin_lock_init(&sctx->stat_lock);
 615        init_waitqueue_head(&sctx->list_wait);
 616
 617        WARN_ON(sctx->wr_curr_bio != NULL);
 618        mutex_init(&sctx->wr_lock);
 619        sctx->wr_curr_bio = NULL;
 620        if (is_dev_replace) {
 621                WARN_ON(!fs_info->dev_replace.tgtdev);
 622                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 623                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 624                sctx->flush_all_writes = false;
 625        }
 626
 627        return sctx;
 628
 629nomem:
 630        scrub_free_ctx(sctx);
 631        return ERR_PTR(-ENOMEM);
 632}
 633
 634static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 635                                     void *warn_ctx)
 636{
 637        u64 isize;
 638        u32 nlink;
 639        int ret;
 640        int i;
 641        unsigned nofs_flag;
 642        struct extent_buffer *eb;
 643        struct btrfs_inode_item *inode_item;
 644        struct scrub_warning *swarn = warn_ctx;
 645        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 646        struct inode_fs_paths *ipath = NULL;
 647        struct btrfs_root *local_root;
 648        struct btrfs_key root_key;
 649        struct btrfs_key key;
 650
 651        root_key.objectid = root;
 652        root_key.type = BTRFS_ROOT_ITEM_KEY;
 653        root_key.offset = (u64)-1;
 654        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 655        if (IS_ERR(local_root)) {
 656                ret = PTR_ERR(local_root);
 657                goto err;
 658        }
 659
 660        /*
 661         * this makes the path point to (inum INODE_ITEM ioff)
 662         */
 663        key.objectid = inum;
 664        key.type = BTRFS_INODE_ITEM_KEY;
 665        key.offset = 0;
 666
 667        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 668        if (ret) {
 669                btrfs_release_path(swarn->path);
 670                goto err;
 671        }
 672
 673        eb = swarn->path->nodes[0];
 674        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 675                                        struct btrfs_inode_item);
 676        isize = btrfs_inode_size(eb, inode_item);
 677        nlink = btrfs_inode_nlink(eb, inode_item);
 678        btrfs_release_path(swarn->path);
 679
 680        /*
 681         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 682         * uses GFP_NOFS in this context, so we keep it consistent but it does
 683         * not seem to be strictly necessary.
 684         */
 685        nofs_flag = memalloc_nofs_save();
 686        ipath = init_ipath(4096, local_root, swarn->path);
 687        memalloc_nofs_restore(nofs_flag);
 688        if (IS_ERR(ipath)) {
 689                ret = PTR_ERR(ipath);
 690                ipath = NULL;
 691                goto err;
 692        }
 693        ret = paths_from_inode(inum, ipath);
 694
 695        if (ret < 0)
 696                goto err;
 697
 698        /*
 699         * we deliberately ignore the bit ipath might have been too small to
 700         * hold all of the paths here
 701         */
 702        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 703                btrfs_warn_in_rcu(fs_info,
 704"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 705                                  swarn->errstr, swarn->logical,
 706                                  rcu_str_deref(swarn->dev->name),
 707                                  swarn->physical,
 708                                  root, inum, offset,
 709                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 710                                  (char *)(unsigned long)ipath->fspath->val[i]);
 711
 712        free_ipath(ipath);
 713        return 0;
 714
 715err:
 716        btrfs_warn_in_rcu(fs_info,
 717                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 718                          swarn->errstr, swarn->logical,
 719                          rcu_str_deref(swarn->dev->name),
 720                          swarn->physical,
 721                          root, inum, offset, ret);
 722
 723        free_ipath(ipath);
 724        return 0;
 725}
 726
 727static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 728{
 729        struct btrfs_device *dev;
 730        struct btrfs_fs_info *fs_info;
 731        struct btrfs_path *path;
 732        struct btrfs_key found_key;
 733        struct extent_buffer *eb;
 734        struct btrfs_extent_item *ei;
 735        struct scrub_warning swarn;
 736        unsigned long ptr = 0;
 737        u64 extent_item_pos;
 738        u64 flags = 0;
 739        u64 ref_root;
 740        u32 item_size;
 741        u8 ref_level = 0;
 742        int ret;
 743
 744        WARN_ON(sblock->page_count < 1);
 745        dev = sblock->pagev[0]->dev;
 746        fs_info = sblock->sctx->fs_info;
 747
 748        path = btrfs_alloc_path();
 749        if (!path)
 750                return;
 751
 752        swarn.physical = sblock->pagev[0]->physical;
 753        swarn.logical = sblock->pagev[0]->logical;
 754        swarn.errstr = errstr;
 755        swarn.dev = NULL;
 756
 757        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 758                                  &flags);
 759        if (ret < 0)
 760                goto out;
 761
 762        extent_item_pos = swarn.logical - found_key.objectid;
 763        swarn.extent_item_size = found_key.offset;
 764
 765        eb = path->nodes[0];
 766        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 767        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 768
 769        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 770                do {
 771                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 772                                                      item_size, &ref_root,
 773                                                      &ref_level);
 774                        btrfs_warn_in_rcu(fs_info,
 775"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 776                                errstr, swarn.logical,
 777                                rcu_str_deref(dev->name),
 778                                swarn.physical,
 779                                ref_level ? "node" : "leaf",
 780                                ret < 0 ? -1 : ref_level,
 781                                ret < 0 ? -1 : ref_root);
 782                } while (ret != 1);
 783                btrfs_release_path(path);
 784        } else {
 785                btrfs_release_path(path);
 786                swarn.path = path;
 787                swarn.dev = dev;
 788                iterate_extent_inodes(fs_info, found_key.objectid,
 789                                        extent_item_pos, 1,
 790                                        scrub_print_warning_inode, &swarn, false);
 791        }
 792
 793out:
 794        btrfs_free_path(path);
 795}
 796
 797static inline void scrub_get_recover(struct scrub_recover *recover)
 798{
 799        refcount_inc(&recover->refs);
 800}
 801
 802static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 803                                     struct scrub_recover *recover)
 804{
 805        if (refcount_dec_and_test(&recover->refs)) {
 806                btrfs_bio_counter_dec(fs_info);
 807                btrfs_put_bbio(recover->bbio);
 808                kfree(recover);
 809        }
 810}
 811
 812/*
 813 * scrub_handle_errored_block gets called when either verification of the
 814 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 815 * case, this function handles all pages in the bio, even though only one
 816 * may be bad.
 817 * The goal of this function is to repair the errored block by using the
 818 * contents of one of the mirrors.
 819 */
 820static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 821{
 822        struct scrub_ctx *sctx = sblock_to_check->sctx;
 823        struct btrfs_device *dev;
 824        struct btrfs_fs_info *fs_info;
 825        u64 logical;
 826        unsigned int failed_mirror_index;
 827        unsigned int is_metadata;
 828        unsigned int have_csum;
 829        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 830        struct scrub_block *sblock_bad;
 831        int ret;
 832        int mirror_index;
 833        int page_num;
 834        int success;
 835        bool full_stripe_locked;
 836        unsigned int nofs_flag;
 837        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 838                                      DEFAULT_RATELIMIT_BURST);
 839
 840        BUG_ON(sblock_to_check->page_count < 1);
 841        fs_info = sctx->fs_info;
 842        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 843                /*
 844                 * if we find an error in a super block, we just report it.
 845                 * They will get written with the next transaction commit
 846                 * anyway
 847                 */
 848                spin_lock(&sctx->stat_lock);
 849                ++sctx->stat.super_errors;
 850                spin_unlock(&sctx->stat_lock);
 851                return 0;
 852        }
 853        logical = sblock_to_check->pagev[0]->logical;
 854        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 855        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 856        is_metadata = !(sblock_to_check->pagev[0]->flags &
 857                        BTRFS_EXTENT_FLAG_DATA);
 858        have_csum = sblock_to_check->pagev[0]->have_csum;
 859        dev = sblock_to_check->pagev[0]->dev;
 860
 861        /*
 862         * We must use GFP_NOFS because the scrub task might be waiting for a
 863         * worker task executing this function and in turn a transaction commit
 864         * might be waiting the scrub task to pause (which needs to wait for all
 865         * the worker tasks to complete before pausing).
 866         * We do allocations in the workers through insert_full_stripe_lock()
 867         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 868         * this function.
 869         */
 870        nofs_flag = memalloc_nofs_save();
 871        /*
 872         * For RAID5/6, race can happen for a different device scrub thread.
 873         * For data corruption, Parity and Data threads will both try
 874         * to recovery the data.
 875         * Race can lead to doubly added csum error, or even unrecoverable
 876         * error.
 877         */
 878        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 879        if (ret < 0) {
 880                memalloc_nofs_restore(nofs_flag);
 881                spin_lock(&sctx->stat_lock);
 882                if (ret == -ENOMEM)
 883                        sctx->stat.malloc_errors++;
 884                sctx->stat.read_errors++;
 885                sctx->stat.uncorrectable_errors++;
 886                spin_unlock(&sctx->stat_lock);
 887                return ret;
 888        }
 889
 890        /*
 891         * read all mirrors one after the other. This includes to
 892         * re-read the extent or metadata block that failed (that was
 893         * the cause that this fixup code is called) another time,
 894         * page by page this time in order to know which pages
 895         * caused I/O errors and which ones are good (for all mirrors).
 896         * It is the goal to handle the situation when more than one
 897         * mirror contains I/O errors, but the errors do not
 898         * overlap, i.e. the data can be repaired by selecting the
 899         * pages from those mirrors without I/O error on the
 900         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 901         * would be that mirror #1 has an I/O error on the first page,
 902         * the second page is good, and mirror #2 has an I/O error on
 903         * the second page, but the first page is good.
 904         * Then the first page of the first mirror can be repaired by
 905         * taking the first page of the second mirror, and the
 906         * second page of the second mirror can be repaired by
 907         * copying the contents of the 2nd page of the 1st mirror.
 908         * One more note: if the pages of one mirror contain I/O
 909         * errors, the checksum cannot be verified. In order to get
 910         * the best data for repairing, the first attempt is to find
 911         * a mirror without I/O errors and with a validated checksum.
 912         * Only if this is not possible, the pages are picked from
 913         * mirrors with I/O errors without considering the checksum.
 914         * If the latter is the case, at the end, the checksum of the
 915         * repaired area is verified in order to correctly maintain
 916         * the statistics.
 917         */
 918
 919        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 920                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 921        if (!sblocks_for_recheck) {
 922                spin_lock(&sctx->stat_lock);
 923                sctx->stat.malloc_errors++;
 924                sctx->stat.read_errors++;
 925                sctx->stat.uncorrectable_errors++;
 926                spin_unlock(&sctx->stat_lock);
 927                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 928                goto out;
 929        }
 930
 931        /* setup the context, map the logical blocks and alloc the pages */
 932        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 933        if (ret) {
 934                spin_lock(&sctx->stat_lock);
 935                sctx->stat.read_errors++;
 936                sctx->stat.uncorrectable_errors++;
 937                spin_unlock(&sctx->stat_lock);
 938                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 939                goto out;
 940        }
 941        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 942        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 943
 944        /* build and submit the bios for the failed mirror, check checksums */
 945        scrub_recheck_block(fs_info, sblock_bad, 1);
 946
 947        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 948            sblock_bad->no_io_error_seen) {
 949                /*
 950                 * the error disappeared after reading page by page, or
 951                 * the area was part of a huge bio and other parts of the
 952                 * bio caused I/O errors, or the block layer merged several
 953                 * read requests into one and the error is caused by a
 954                 * different bio (usually one of the two latter cases is
 955                 * the cause)
 956                 */
 957                spin_lock(&sctx->stat_lock);
 958                sctx->stat.unverified_errors++;
 959                sblock_to_check->data_corrected = 1;
 960                spin_unlock(&sctx->stat_lock);
 961
 962                if (sctx->is_dev_replace)
 963                        scrub_write_block_to_dev_replace(sblock_bad);
 964                goto out;
 965        }
 966
 967        if (!sblock_bad->no_io_error_seen) {
 968                spin_lock(&sctx->stat_lock);
 969                sctx->stat.read_errors++;
 970                spin_unlock(&sctx->stat_lock);
 971                if (__ratelimit(&_rs))
 972                        scrub_print_warning("i/o error", sblock_to_check);
 973                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 974        } else if (sblock_bad->checksum_error) {
 975                spin_lock(&sctx->stat_lock);
 976                sctx->stat.csum_errors++;
 977                spin_unlock(&sctx->stat_lock);
 978                if (__ratelimit(&_rs))
 979                        scrub_print_warning("checksum error", sblock_to_check);
 980                btrfs_dev_stat_inc_and_print(dev,
 981                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 982        } else if (sblock_bad->header_error) {
 983                spin_lock(&sctx->stat_lock);
 984                sctx->stat.verify_errors++;
 985                spin_unlock(&sctx->stat_lock);
 986                if (__ratelimit(&_rs))
 987                        scrub_print_warning("checksum/header error",
 988                                            sblock_to_check);
 989                if (sblock_bad->generation_error)
 990                        btrfs_dev_stat_inc_and_print(dev,
 991                                BTRFS_DEV_STAT_GENERATION_ERRS);
 992                else
 993                        btrfs_dev_stat_inc_and_print(dev,
 994                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 995        }
 996
 997        if (sctx->readonly) {
 998                ASSERT(!sctx->is_dev_replace);
 999                goto out;
1000        }
1001
1002        /*
1003         * now build and submit the bios for the other mirrors, check
1004         * checksums.
1005         * First try to pick the mirror which is completely without I/O
1006         * errors and also does not have a checksum error.
1007         * If one is found, and if a checksum is present, the full block
1008         * that is known to contain an error is rewritten. Afterwards
1009         * the block is known to be corrected.
1010         * If a mirror is found which is completely correct, and no
1011         * checksum is present, only those pages are rewritten that had
1012         * an I/O error in the block to be repaired, since it cannot be
1013         * determined, which copy of the other pages is better (and it
1014         * could happen otherwise that a correct page would be
1015         * overwritten by a bad one).
1016         */
1017        for (mirror_index = 0; ;mirror_index++) {
1018                struct scrub_block *sblock_other;
1019
1020                if (mirror_index == failed_mirror_index)
1021                        continue;
1022
1023                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1024                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1025                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1026                                break;
1027                        if (!sblocks_for_recheck[mirror_index].page_count)
1028                                break;
1029
1030                        sblock_other = sblocks_for_recheck + mirror_index;
1031                } else {
1032                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1033                        int max_allowed = r->bbio->num_stripes -
1034                                                r->bbio->num_tgtdevs;
1035
1036                        if (mirror_index >= max_allowed)
1037                                break;
1038                        if (!sblocks_for_recheck[1].page_count)
1039                                break;
1040
1041                        ASSERT(failed_mirror_index == 0);
1042                        sblock_other = sblocks_for_recheck + 1;
1043                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1044                }
1045
1046                /* build and submit the bios, check checksums */
1047                scrub_recheck_block(fs_info, sblock_other, 0);
1048
1049                if (!sblock_other->header_error &&
1050                    !sblock_other->checksum_error &&
1051                    sblock_other->no_io_error_seen) {
1052                        if (sctx->is_dev_replace) {
1053                                scrub_write_block_to_dev_replace(sblock_other);
1054                                goto corrected_error;
1055                        } else {
1056                                ret = scrub_repair_block_from_good_copy(
1057                                                sblock_bad, sblock_other);
1058                                if (!ret)
1059                                        goto corrected_error;
1060                        }
1061                }
1062        }
1063
1064        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1065                goto did_not_correct_error;
1066
1067        /*
1068         * In case of I/O errors in the area that is supposed to be
1069         * repaired, continue by picking good copies of those pages.
1070         * Select the good pages from mirrors to rewrite bad pages from
1071         * the area to fix. Afterwards verify the checksum of the block
1072         * that is supposed to be repaired. This verification step is
1073         * only done for the purpose of statistic counting and for the
1074         * final scrub report, whether errors remain.
1075         * A perfect algorithm could make use of the checksum and try
1076         * all possible combinations of pages from the different mirrors
1077         * until the checksum verification succeeds. For example, when
1078         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1079         * of mirror #2 is readable but the final checksum test fails,
1080         * then the 2nd page of mirror #3 could be tried, whether now
1081         * the final checksum succeeds. But this would be a rare
1082         * exception and is therefore not implemented. At least it is
1083         * avoided that the good copy is overwritten.
1084         * A more useful improvement would be to pick the sectors
1085         * without I/O error based on sector sizes (512 bytes on legacy
1086         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1087         * mirror could be repaired by taking 512 byte of a different
1088         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1089         * area are unreadable.
1090         */
1091        success = 1;
1092        for (page_num = 0; page_num < sblock_bad->page_count;
1093             page_num++) {
1094                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1095                struct scrub_block *sblock_other = NULL;
1096
1097                /* skip no-io-error page in scrub */
1098                if (!page_bad->io_error && !sctx->is_dev_replace)
1099                        continue;
1100
1101                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1102                        /*
1103                         * In case of dev replace, if raid56 rebuild process
1104                         * didn't work out correct data, then copy the content
1105                         * in sblock_bad to make sure target device is identical
1106                         * to source device, instead of writing garbage data in
1107                         * sblock_for_recheck array to target device.
1108                         */
1109                        sblock_other = NULL;
1110                } else if (page_bad->io_error) {
1111                        /* try to find no-io-error page in mirrors */
1112                        for (mirror_index = 0;
1113                             mirror_index < BTRFS_MAX_MIRRORS &&
1114                             sblocks_for_recheck[mirror_index].page_count > 0;
1115                             mirror_index++) {
1116                                if (!sblocks_for_recheck[mirror_index].
1117                                    pagev[page_num]->io_error) {
1118                                        sblock_other = sblocks_for_recheck +
1119                                                       mirror_index;
1120                                        break;
1121                                }
1122                        }
1123                        if (!sblock_other)
1124                                success = 0;
1125                }
1126
1127                if (sctx->is_dev_replace) {
1128                        /*
1129                         * did not find a mirror to fetch the page
1130                         * from. scrub_write_page_to_dev_replace()
1131                         * handles this case (page->io_error), by
1132                         * filling the block with zeros before
1133                         * submitting the write request
1134                         */
1135                        if (!sblock_other)
1136                                sblock_other = sblock_bad;
1137
1138                        if (scrub_write_page_to_dev_replace(sblock_other,
1139                                                            page_num) != 0) {
1140                                atomic64_inc(
1141                                        &fs_info->dev_replace.num_write_errors);
1142                                success = 0;
1143                        }
1144                } else if (sblock_other) {
1145                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1146                                                               sblock_other,
1147                                                               page_num, 0);
1148                        if (0 == ret)
1149                                page_bad->io_error = 0;
1150                        else
1151                                success = 0;
1152                }
1153        }
1154
1155        if (success && !sctx->is_dev_replace) {
1156                if (is_metadata || have_csum) {
1157                        /*
1158                         * need to verify the checksum now that all
1159                         * sectors on disk are repaired (the write
1160                         * request for data to be repaired is on its way).
1161                         * Just be lazy and use scrub_recheck_block()
1162                         * which re-reads the data before the checksum
1163                         * is verified, but most likely the data comes out
1164                         * of the page cache.
1165                         */
1166                        scrub_recheck_block(fs_info, sblock_bad, 1);
1167                        if (!sblock_bad->header_error &&
1168                            !sblock_bad->checksum_error &&
1169                            sblock_bad->no_io_error_seen)
1170                                goto corrected_error;
1171                        else
1172                                goto did_not_correct_error;
1173                } else {
1174corrected_error:
1175                        spin_lock(&sctx->stat_lock);
1176                        sctx->stat.corrected_errors++;
1177                        sblock_to_check->data_corrected = 1;
1178                        spin_unlock(&sctx->stat_lock);
1179                        btrfs_err_rl_in_rcu(fs_info,
1180                                "fixed up error at logical %llu on dev %s",
1181                                logical, rcu_str_deref(dev->name));
1182                }
1183        } else {
1184did_not_correct_error:
1185                spin_lock(&sctx->stat_lock);
1186                sctx->stat.uncorrectable_errors++;
1187                spin_unlock(&sctx->stat_lock);
1188                btrfs_err_rl_in_rcu(fs_info,
1189                        "unable to fixup (regular) error at logical %llu on dev %s",
1190                        logical, rcu_str_deref(dev->name));
1191        }
1192
1193out:
1194        if (sblocks_for_recheck) {
1195                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1196                     mirror_index++) {
1197                        struct scrub_block *sblock = sblocks_for_recheck +
1198                                                     mirror_index;
1199                        struct scrub_recover *recover;
1200                        int page_index;
1201
1202                        for (page_index = 0; page_index < sblock->page_count;
1203                             page_index++) {
1204                                sblock->pagev[page_index]->sblock = NULL;
1205                                recover = sblock->pagev[page_index]->recover;
1206                                if (recover) {
1207                                        scrub_put_recover(fs_info, recover);
1208                                        sblock->pagev[page_index]->recover =
1209                                                                        NULL;
1210                                }
1211                                scrub_page_put(sblock->pagev[page_index]);
1212                        }
1213                }
1214                kfree(sblocks_for_recheck);
1215        }
1216
1217        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1218        memalloc_nofs_restore(nofs_flag);
1219        if (ret < 0)
1220                return ret;
1221        return 0;
1222}
1223
1224static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1225{
1226        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1227                return 2;
1228        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1229                return 3;
1230        else
1231                return (int)bbio->num_stripes;
1232}
1233
1234static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1235                                                 u64 *raid_map,
1236                                                 u64 mapped_length,
1237                                                 int nstripes, int mirror,
1238                                                 int *stripe_index,
1239                                                 u64 *stripe_offset)
1240{
1241        int i;
1242
1243        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1244                /* RAID5/6 */
1245                for (i = 0; i < nstripes; i++) {
1246                        if (raid_map[i] == RAID6_Q_STRIPE ||
1247                            raid_map[i] == RAID5_P_STRIPE)
1248                                continue;
1249
1250                        if (logical >= raid_map[i] &&
1251                            logical < raid_map[i] + mapped_length)
1252                                break;
1253                }
1254
1255                *stripe_index = i;
1256                *stripe_offset = logical - raid_map[i];
1257        } else {
1258                /* The other RAID type */
1259                *stripe_index = mirror;
1260                *stripe_offset = 0;
1261        }
1262}
1263
1264static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1265                                     struct scrub_block *sblocks_for_recheck)
1266{
1267        struct scrub_ctx *sctx = original_sblock->sctx;
1268        struct btrfs_fs_info *fs_info = sctx->fs_info;
1269        u64 length = original_sblock->page_count * PAGE_SIZE;
1270        u64 logical = original_sblock->pagev[0]->logical;
1271        u64 generation = original_sblock->pagev[0]->generation;
1272        u64 flags = original_sblock->pagev[0]->flags;
1273        u64 have_csum = original_sblock->pagev[0]->have_csum;
1274        struct scrub_recover *recover;
1275        struct btrfs_bio *bbio;
1276        u64 sublen;
1277        u64 mapped_length;
1278        u64 stripe_offset;
1279        int stripe_index;
1280        int page_index = 0;
1281        int mirror_index;
1282        int nmirrors;
1283        int ret;
1284
1285        /*
1286         * note: the two members refs and outstanding_pages
1287         * are not used (and not set) in the blocks that are used for
1288         * the recheck procedure
1289         */
1290
1291        while (length > 0) {
1292                sublen = min_t(u64, length, PAGE_SIZE);
1293                mapped_length = sublen;
1294                bbio = NULL;
1295
1296                /*
1297                 * with a length of PAGE_SIZE, each returned stripe
1298                 * represents one mirror
1299                 */
1300                btrfs_bio_counter_inc_blocked(fs_info);
1301                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1302                                logical, &mapped_length, &bbio);
1303                if (ret || !bbio || mapped_length < sublen) {
1304                        btrfs_put_bbio(bbio);
1305                        btrfs_bio_counter_dec(fs_info);
1306                        return -EIO;
1307                }
1308
1309                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1310                if (!recover) {
1311                        btrfs_put_bbio(bbio);
1312                        btrfs_bio_counter_dec(fs_info);
1313                        return -ENOMEM;
1314                }
1315
1316                refcount_set(&recover->refs, 1);
1317                recover->bbio = bbio;
1318                recover->map_length = mapped_length;
1319
1320                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1321
1322                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1323
1324                for (mirror_index = 0; mirror_index < nmirrors;
1325                     mirror_index++) {
1326                        struct scrub_block *sblock;
1327                        struct scrub_page *page;
1328
1329                        sblock = sblocks_for_recheck + mirror_index;
1330                        sblock->sctx = sctx;
1331
1332                        page = kzalloc(sizeof(*page), GFP_NOFS);
1333                        if (!page) {
1334leave_nomem:
1335                                spin_lock(&sctx->stat_lock);
1336                                sctx->stat.malloc_errors++;
1337                                spin_unlock(&sctx->stat_lock);
1338                                scrub_put_recover(fs_info, recover);
1339                                return -ENOMEM;
1340                        }
1341                        scrub_page_get(page);
1342                        sblock->pagev[page_index] = page;
1343                        page->sblock = sblock;
1344                        page->flags = flags;
1345                        page->generation = generation;
1346                        page->logical = logical;
1347                        page->have_csum = have_csum;
1348                        if (have_csum)
1349                                memcpy(page->csum,
1350                                       original_sblock->pagev[0]->csum,
1351                                       sctx->csum_size);
1352
1353                        scrub_stripe_index_and_offset(logical,
1354                                                      bbio->map_type,
1355                                                      bbio->raid_map,
1356                                                      mapped_length,
1357                                                      bbio->num_stripes -
1358                                                      bbio->num_tgtdevs,
1359                                                      mirror_index,
1360                                                      &stripe_index,
1361                                                      &stripe_offset);
1362                        page->physical = bbio->stripes[stripe_index].physical +
1363                                         stripe_offset;
1364                        page->dev = bbio->stripes[stripe_index].dev;
1365
1366                        BUG_ON(page_index >= original_sblock->page_count);
1367                        page->physical_for_dev_replace =
1368                                original_sblock->pagev[page_index]->
1369                                physical_for_dev_replace;
1370                        /* for missing devices, dev->bdev is NULL */
1371                        page->mirror_num = mirror_index + 1;
1372                        sblock->page_count++;
1373                        page->page = alloc_page(GFP_NOFS);
1374                        if (!page->page)
1375                                goto leave_nomem;
1376
1377                        scrub_get_recover(recover);
1378                        page->recover = recover;
1379                }
1380                scrub_put_recover(fs_info, recover);
1381                length -= sublen;
1382                logical += sublen;
1383                page_index++;
1384        }
1385
1386        return 0;
1387}
1388
1389static void scrub_bio_wait_endio(struct bio *bio)
1390{
1391        complete(bio->bi_private);
1392}
1393
1394static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1395                                        struct bio *bio,
1396                                        struct scrub_page *page)
1397{
1398        DECLARE_COMPLETION_ONSTACK(done);
1399        int ret;
1400        int mirror_num;
1401
1402        bio->bi_iter.bi_sector = page->logical >> 9;
1403        bio->bi_private = &done;
1404        bio->bi_end_io = scrub_bio_wait_endio;
1405
1406        mirror_num = page->sblock->pagev[0]->mirror_num;
1407        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1408                                    page->recover->map_length,
1409                                    mirror_num, 0);
1410        if (ret)
1411                return ret;
1412
1413        wait_for_completion_io(&done);
1414        return blk_status_to_errno(bio->bi_status);
1415}
1416
1417static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1418                                          struct scrub_block *sblock)
1419{
1420        struct scrub_page *first_page = sblock->pagev[0];
1421        struct bio *bio;
1422        int page_num;
1423
1424        /* All pages in sblock belong to the same stripe on the same device. */
1425        ASSERT(first_page->dev);
1426        if (!first_page->dev->bdev)
1427                goto out;
1428
1429        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1430        bio_set_dev(bio, first_page->dev->bdev);
1431
1432        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1433                struct scrub_page *page = sblock->pagev[page_num];
1434
1435                WARN_ON(!page->page);
1436                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1437        }
1438
1439        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1440                bio_put(bio);
1441                goto out;
1442        }
1443
1444        bio_put(bio);
1445
1446        scrub_recheck_block_checksum(sblock);
1447
1448        return;
1449out:
1450        for (page_num = 0; page_num < sblock->page_count; page_num++)
1451                sblock->pagev[page_num]->io_error = 1;
1452
1453        sblock->no_io_error_seen = 0;
1454}
1455
1456/*
1457 * this function will check the on disk data for checksum errors, header
1458 * errors and read I/O errors. If any I/O errors happen, the exact pages
1459 * which are errored are marked as being bad. The goal is to enable scrub
1460 * to take those pages that are not errored from all the mirrors so that
1461 * the pages that are errored in the just handled mirror can be repaired.
1462 */
1463static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1464                                struct scrub_block *sblock,
1465                                int retry_failed_mirror)
1466{
1467        int page_num;
1468
1469        sblock->no_io_error_seen = 1;
1470
1471        /* short cut for raid56 */
1472        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1473                return scrub_recheck_block_on_raid56(fs_info, sblock);
1474
1475        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1476                struct bio *bio;
1477                struct scrub_page *page = sblock->pagev[page_num];
1478
1479                if (page->dev->bdev == NULL) {
1480                        page->io_error = 1;
1481                        sblock->no_io_error_seen = 0;
1482                        continue;
1483                }
1484
1485                WARN_ON(!page->page);
1486                bio = btrfs_io_bio_alloc(1);
1487                bio_set_dev(bio, page->dev->bdev);
1488
1489                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1490                bio->bi_iter.bi_sector = page->physical >> 9;
1491                bio->bi_opf = REQ_OP_READ;
1492
1493                if (btrfsic_submit_bio_wait(bio)) {
1494                        page->io_error = 1;
1495                        sblock->no_io_error_seen = 0;
1496                }
1497
1498                bio_put(bio);
1499        }
1500
1501        if (sblock->no_io_error_seen)
1502                scrub_recheck_block_checksum(sblock);
1503}
1504
1505static inline int scrub_check_fsid(u8 fsid[],
1506                                   struct scrub_page *spage)
1507{
1508        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1509        int ret;
1510
1511        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1512        return !ret;
1513}
1514
1515static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1516{
1517        sblock->header_error = 0;
1518        sblock->checksum_error = 0;
1519        sblock->generation_error = 0;
1520
1521        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1522                scrub_checksum_data(sblock);
1523        else
1524                scrub_checksum_tree_block(sblock);
1525}
1526
1527static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1528                                             struct scrub_block *sblock_good)
1529{
1530        int page_num;
1531        int ret = 0;
1532
1533        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1534                int ret_sub;
1535
1536                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1537                                                           sblock_good,
1538                                                           page_num, 1);
1539                if (ret_sub)
1540                        ret = ret_sub;
1541        }
1542
1543        return ret;
1544}
1545
1546static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1547                                            struct scrub_block *sblock_good,
1548                                            int page_num, int force_write)
1549{
1550        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1551        struct scrub_page *page_good = sblock_good->pagev[page_num];
1552        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1553
1554        BUG_ON(page_bad->page == NULL);
1555        BUG_ON(page_good->page == NULL);
1556        if (force_write || sblock_bad->header_error ||
1557            sblock_bad->checksum_error || page_bad->io_error) {
1558                struct bio *bio;
1559                int ret;
1560
1561                if (!page_bad->dev->bdev) {
1562                        btrfs_warn_rl(fs_info,
1563                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1564                        return -EIO;
1565                }
1566
1567                bio = btrfs_io_bio_alloc(1);
1568                bio_set_dev(bio, page_bad->dev->bdev);
1569                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1570                bio->bi_opf = REQ_OP_WRITE;
1571
1572                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1573                if (PAGE_SIZE != ret) {
1574                        bio_put(bio);
1575                        return -EIO;
1576                }
1577
1578                if (btrfsic_submit_bio_wait(bio)) {
1579                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1580                                BTRFS_DEV_STAT_WRITE_ERRS);
1581                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1582                        bio_put(bio);
1583                        return -EIO;
1584                }
1585                bio_put(bio);
1586        }
1587
1588        return 0;
1589}
1590
1591static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1592{
1593        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1594        int page_num;
1595
1596        /*
1597         * This block is used for the check of the parity on the source device,
1598         * so the data needn't be written into the destination device.
1599         */
1600        if (sblock->sparity)
1601                return;
1602
1603        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1604                int ret;
1605
1606                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1607                if (ret)
1608                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1609        }
1610}
1611
1612static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1613                                           int page_num)
1614{
1615        struct scrub_page *spage = sblock->pagev[page_num];
1616
1617        BUG_ON(spage->page == NULL);
1618        if (spage->io_error) {
1619                void *mapped_buffer = kmap_atomic(spage->page);
1620
1621                clear_page(mapped_buffer);
1622                flush_dcache_page(spage->page);
1623                kunmap_atomic(mapped_buffer);
1624        }
1625        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1626}
1627
1628static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1629                                    struct scrub_page *spage)
1630{
1631        struct scrub_bio *sbio;
1632        int ret;
1633
1634        mutex_lock(&sctx->wr_lock);
1635again:
1636        if (!sctx->wr_curr_bio) {
1637                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1638                                              GFP_KERNEL);
1639                if (!sctx->wr_curr_bio) {
1640                        mutex_unlock(&sctx->wr_lock);
1641                        return -ENOMEM;
1642                }
1643                sctx->wr_curr_bio->sctx = sctx;
1644                sctx->wr_curr_bio->page_count = 0;
1645        }
1646        sbio = sctx->wr_curr_bio;
1647        if (sbio->page_count == 0) {
1648                struct bio *bio;
1649
1650                sbio->physical = spage->physical_for_dev_replace;
1651                sbio->logical = spage->logical;
1652                sbio->dev = sctx->wr_tgtdev;
1653                bio = sbio->bio;
1654                if (!bio) {
1655                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1656                        sbio->bio = bio;
1657                }
1658
1659                bio->bi_private = sbio;
1660                bio->bi_end_io = scrub_wr_bio_end_io;
1661                bio_set_dev(bio, sbio->dev->bdev);
1662                bio->bi_iter.bi_sector = sbio->physical >> 9;
1663                bio->bi_opf = REQ_OP_WRITE;
1664                sbio->status = 0;
1665        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1666                   spage->physical_for_dev_replace ||
1667                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1668                   spage->logical) {
1669                scrub_wr_submit(sctx);
1670                goto again;
1671        }
1672
1673        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1674        if (ret != PAGE_SIZE) {
1675                if (sbio->page_count < 1) {
1676                        bio_put(sbio->bio);
1677                        sbio->bio = NULL;
1678                        mutex_unlock(&sctx->wr_lock);
1679                        return -EIO;
1680                }
1681                scrub_wr_submit(sctx);
1682                goto again;
1683        }
1684
1685        sbio->pagev[sbio->page_count] = spage;
1686        scrub_page_get(spage);
1687        sbio->page_count++;
1688        if (sbio->page_count == sctx->pages_per_wr_bio)
1689                scrub_wr_submit(sctx);
1690        mutex_unlock(&sctx->wr_lock);
1691
1692        return 0;
1693}
1694
1695static void scrub_wr_submit(struct scrub_ctx *sctx)
1696{
1697        struct scrub_bio *sbio;
1698
1699        if (!sctx->wr_curr_bio)
1700                return;
1701
1702        sbio = sctx->wr_curr_bio;
1703        sctx->wr_curr_bio = NULL;
1704        WARN_ON(!sbio->bio->bi_disk);
1705        scrub_pending_bio_inc(sctx);
1706        /* process all writes in a single worker thread. Then the block layer
1707         * orders the requests before sending them to the driver which
1708         * doubled the write performance on spinning disks when measured
1709         * with Linux 3.5 */
1710        btrfsic_submit_bio(sbio->bio);
1711}
1712
1713static void scrub_wr_bio_end_io(struct bio *bio)
1714{
1715        struct scrub_bio *sbio = bio->bi_private;
1716        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1717
1718        sbio->status = bio->bi_status;
1719        sbio->bio = bio;
1720
1721        btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1722                         scrub_wr_bio_end_io_worker, NULL, NULL);
1723        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724}
1725
1726static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727{
1728        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729        struct scrub_ctx *sctx = sbio->sctx;
1730        int i;
1731
1732        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733        if (sbio->status) {
1734                struct btrfs_dev_replace *dev_replace =
1735                        &sbio->sctx->fs_info->dev_replace;
1736
1737                for (i = 0; i < sbio->page_count; i++) {
1738                        struct scrub_page *spage = sbio->pagev[i];
1739
1740                        spage->io_error = 1;
1741                        atomic64_inc(&dev_replace->num_write_errors);
1742                }
1743        }
1744
1745        for (i = 0; i < sbio->page_count; i++)
1746                scrub_page_put(sbio->pagev[i]);
1747
1748        bio_put(sbio->bio);
1749        kfree(sbio);
1750        scrub_pending_bio_dec(sctx);
1751}
1752
1753static int scrub_checksum(struct scrub_block *sblock)
1754{
1755        u64 flags;
1756        int ret;
1757
1758        /*
1759         * No need to initialize these stats currently,
1760         * because this function only use return value
1761         * instead of these stats value.
1762         *
1763         * Todo:
1764         * always use stats
1765         */
1766        sblock->header_error = 0;
1767        sblock->generation_error = 0;
1768        sblock->checksum_error = 0;
1769
1770        WARN_ON(sblock->page_count < 1);
1771        flags = sblock->pagev[0]->flags;
1772        ret = 0;
1773        if (flags & BTRFS_EXTENT_FLAG_DATA)
1774                ret = scrub_checksum_data(sblock);
1775        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776                ret = scrub_checksum_tree_block(sblock);
1777        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778                (void)scrub_checksum_super(sblock);
1779        else
1780                WARN_ON(1);
1781        if (ret)
1782                scrub_handle_errored_block(sblock);
1783
1784        return ret;
1785}
1786
1787static int scrub_checksum_data(struct scrub_block *sblock)
1788{
1789        struct scrub_ctx *sctx = sblock->sctx;
1790        u8 csum[BTRFS_CSUM_SIZE];
1791        u8 *on_disk_csum;
1792        struct page *page;
1793        void *buffer;
1794        u32 crc = ~(u32)0;
1795        u64 len;
1796        int index;
1797
1798        BUG_ON(sblock->page_count < 1);
1799        if (!sblock->pagev[0]->have_csum)
1800                return 0;
1801
1802        on_disk_csum = sblock->pagev[0]->csum;
1803        page = sblock->pagev[0]->page;
1804        buffer = kmap_atomic(page);
1805
1806        len = sctx->fs_info->sectorsize;
1807        index = 0;
1808        for (;;) {
1809                u64 l = min_t(u64, len, PAGE_SIZE);
1810
1811                crc = btrfs_csum_data(buffer, crc, l);
1812                kunmap_atomic(buffer);
1813                len -= l;
1814                if (len == 0)
1815                        break;
1816                index++;
1817                BUG_ON(index >= sblock->page_count);
1818                BUG_ON(!sblock->pagev[index]->page);
1819                page = sblock->pagev[index]->page;
1820                buffer = kmap_atomic(page);
1821        }
1822
1823        btrfs_csum_final(crc, csum);
1824        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1825                sblock->checksum_error = 1;
1826
1827        return sblock->checksum_error;
1828}
1829
1830static int scrub_checksum_tree_block(struct scrub_block *sblock)
1831{
1832        struct scrub_ctx *sctx = sblock->sctx;
1833        struct btrfs_header *h;
1834        struct btrfs_fs_info *fs_info = sctx->fs_info;
1835        u8 calculated_csum[BTRFS_CSUM_SIZE];
1836        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1837        struct page *page;
1838        void *mapped_buffer;
1839        u64 mapped_size;
1840        void *p;
1841        u32 crc = ~(u32)0;
1842        u64 len;
1843        int index;
1844
1845        BUG_ON(sblock->page_count < 1);
1846        page = sblock->pagev[0]->page;
1847        mapped_buffer = kmap_atomic(page);
1848        h = (struct btrfs_header *)mapped_buffer;
1849        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1850
1851        /*
1852         * we don't use the getter functions here, as we
1853         * a) don't have an extent buffer and
1854         * b) the page is already kmapped
1855         */
1856        if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1857                sblock->header_error = 1;
1858
1859        if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1860                sblock->header_error = 1;
1861                sblock->generation_error = 1;
1862        }
1863
1864        if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1865                sblock->header_error = 1;
1866
1867        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1868                   BTRFS_UUID_SIZE))
1869                sblock->header_error = 1;
1870
1871        len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1872        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1873        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1874        index = 0;
1875        for (;;) {
1876                u64 l = min_t(u64, len, mapped_size);
1877
1878                crc = btrfs_csum_data(p, crc, l);
1879                kunmap_atomic(mapped_buffer);
1880                len -= l;
1881                if (len == 0)
1882                        break;
1883                index++;
1884                BUG_ON(index >= sblock->page_count);
1885                BUG_ON(!sblock->pagev[index]->page);
1886                page = sblock->pagev[index]->page;
1887                mapped_buffer = kmap_atomic(page);
1888                mapped_size = PAGE_SIZE;
1889                p = mapped_buffer;
1890        }
1891
1892        btrfs_csum_final(crc, calculated_csum);
1893        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1894                sblock->checksum_error = 1;
1895
1896        return sblock->header_error || sblock->checksum_error;
1897}
1898
1899static int scrub_checksum_super(struct scrub_block *sblock)
1900{
1901        struct btrfs_super_block *s;
1902        struct scrub_ctx *sctx = sblock->sctx;
1903        u8 calculated_csum[BTRFS_CSUM_SIZE];
1904        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1905        struct page *page;
1906        void *mapped_buffer;
1907        u64 mapped_size;
1908        void *p;
1909        u32 crc = ~(u32)0;
1910        int fail_gen = 0;
1911        int fail_cor = 0;
1912        u64 len;
1913        int index;
1914
1915        BUG_ON(sblock->page_count < 1);
1916        page = sblock->pagev[0]->page;
1917        mapped_buffer = kmap_atomic(page);
1918        s = (struct btrfs_super_block *)mapped_buffer;
1919        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1920
1921        if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1922                ++fail_cor;
1923
1924        if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1925                ++fail_gen;
1926
1927        if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1928                ++fail_cor;
1929
1930        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1931        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1932        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1933        index = 0;
1934        for (;;) {
1935                u64 l = min_t(u64, len, mapped_size);
1936
1937                crc = btrfs_csum_data(p, crc, l);
1938                kunmap_atomic(mapped_buffer);
1939                len -= l;
1940                if (len == 0)
1941                        break;
1942                index++;
1943                BUG_ON(index >= sblock->page_count);
1944                BUG_ON(!sblock->pagev[index]->page);
1945                page = sblock->pagev[index]->page;
1946                mapped_buffer = kmap_atomic(page);
1947                mapped_size = PAGE_SIZE;
1948                p = mapped_buffer;
1949        }
1950
1951        btrfs_csum_final(crc, calculated_csum);
1952        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1953                ++fail_cor;
1954
1955        if (fail_cor + fail_gen) {
1956                /*
1957                 * if we find an error in a super block, we just report it.
1958                 * They will get written with the next transaction commit
1959                 * anyway
1960                 */
1961                spin_lock(&sctx->stat_lock);
1962                ++sctx->stat.super_errors;
1963                spin_unlock(&sctx->stat_lock);
1964                if (fail_cor)
1965                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1966                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1967                else
1968                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1969                                BTRFS_DEV_STAT_GENERATION_ERRS);
1970        }
1971
1972        return fail_cor + fail_gen;
1973}
1974
1975static void scrub_block_get(struct scrub_block *sblock)
1976{
1977        refcount_inc(&sblock->refs);
1978}
1979
1980static void scrub_block_put(struct scrub_block *sblock)
1981{
1982        if (refcount_dec_and_test(&sblock->refs)) {
1983                int i;
1984
1985                if (sblock->sparity)
1986                        scrub_parity_put(sblock->sparity);
1987
1988                for (i = 0; i < sblock->page_count; i++)
1989                        scrub_page_put(sblock->pagev[i]);
1990                kfree(sblock);
1991        }
1992}
1993
1994static void scrub_page_get(struct scrub_page *spage)
1995{
1996        atomic_inc(&spage->refs);
1997}
1998
1999static void scrub_page_put(struct scrub_page *spage)
2000{
2001        if (atomic_dec_and_test(&spage->refs)) {
2002                if (spage->page)
2003                        __free_page(spage->page);
2004                kfree(spage);
2005        }
2006}
2007
2008static void scrub_submit(struct scrub_ctx *sctx)
2009{
2010        struct scrub_bio *sbio;
2011
2012        if (sctx->curr == -1)
2013                return;
2014
2015        sbio = sctx->bios[sctx->curr];
2016        sctx->curr = -1;
2017        scrub_pending_bio_inc(sctx);
2018        btrfsic_submit_bio(sbio->bio);
2019}
2020
2021static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2022                                    struct scrub_page *spage)
2023{
2024        struct scrub_block *sblock = spage->sblock;
2025        struct scrub_bio *sbio;
2026        int ret;
2027
2028again:
2029        /*
2030         * grab a fresh bio or wait for one to become available
2031         */
2032        while (sctx->curr == -1) {
2033                spin_lock(&sctx->list_lock);
2034                sctx->curr = sctx->first_free;
2035                if (sctx->curr != -1) {
2036                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2037                        sctx->bios[sctx->curr]->next_free = -1;
2038                        sctx->bios[sctx->curr]->page_count = 0;
2039                        spin_unlock(&sctx->list_lock);
2040                } else {
2041                        spin_unlock(&sctx->list_lock);
2042                        wait_event(sctx->list_wait, sctx->first_free != -1);
2043                }
2044        }
2045        sbio = sctx->bios[sctx->curr];
2046        if (sbio->page_count == 0) {
2047                struct bio *bio;
2048
2049                sbio->physical = spage->physical;
2050                sbio->logical = spage->logical;
2051                sbio->dev = spage->dev;
2052                bio = sbio->bio;
2053                if (!bio) {
2054                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2055                        sbio->bio = bio;
2056                }
2057
2058                bio->bi_private = sbio;
2059                bio->bi_end_io = scrub_bio_end_io;
2060                bio_set_dev(bio, sbio->dev->bdev);
2061                bio->bi_iter.bi_sector = sbio->physical >> 9;
2062                bio->bi_opf = REQ_OP_READ;
2063                sbio->status = 0;
2064        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2065                   spage->physical ||
2066                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2067                   spage->logical ||
2068                   sbio->dev != spage->dev) {
2069                scrub_submit(sctx);
2070                goto again;
2071        }
2072
2073        sbio->pagev[sbio->page_count] = spage;
2074        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2075        if (ret != PAGE_SIZE) {
2076                if (sbio->page_count < 1) {
2077                        bio_put(sbio->bio);
2078                        sbio->bio = NULL;
2079                        return -EIO;
2080                }
2081                scrub_submit(sctx);
2082                goto again;
2083        }
2084
2085        scrub_block_get(sblock); /* one for the page added to the bio */
2086        atomic_inc(&sblock->outstanding_pages);
2087        sbio->page_count++;
2088        if (sbio->page_count == sctx->pages_per_rd_bio)
2089                scrub_submit(sctx);
2090
2091        return 0;
2092}
2093
2094static void scrub_missing_raid56_end_io(struct bio *bio)
2095{
2096        struct scrub_block *sblock = bio->bi_private;
2097        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2098
2099        if (bio->bi_status)
2100                sblock->no_io_error_seen = 0;
2101
2102        bio_put(bio);
2103
2104        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2105}
2106
2107static void scrub_missing_raid56_worker(struct btrfs_work *work)
2108{
2109        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2110        struct scrub_ctx *sctx = sblock->sctx;
2111        struct btrfs_fs_info *fs_info = sctx->fs_info;
2112        u64 logical;
2113        struct btrfs_device *dev;
2114
2115        logical = sblock->pagev[0]->logical;
2116        dev = sblock->pagev[0]->dev;
2117
2118        if (sblock->no_io_error_seen)
2119                scrub_recheck_block_checksum(sblock);
2120
2121        if (!sblock->no_io_error_seen) {
2122                spin_lock(&sctx->stat_lock);
2123                sctx->stat.read_errors++;
2124                spin_unlock(&sctx->stat_lock);
2125                btrfs_err_rl_in_rcu(fs_info,
2126                        "IO error rebuilding logical %llu for dev %s",
2127                        logical, rcu_str_deref(dev->name));
2128        } else if (sblock->header_error || sblock->checksum_error) {
2129                spin_lock(&sctx->stat_lock);
2130                sctx->stat.uncorrectable_errors++;
2131                spin_unlock(&sctx->stat_lock);
2132                btrfs_err_rl_in_rcu(fs_info,
2133                        "failed to rebuild valid logical %llu for dev %s",
2134                        logical, rcu_str_deref(dev->name));
2135        } else {
2136                scrub_write_block_to_dev_replace(sblock);
2137        }
2138
2139        scrub_block_put(sblock);
2140
2141        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2142                mutex_lock(&sctx->wr_lock);
2143                scrub_wr_submit(sctx);
2144                mutex_unlock(&sctx->wr_lock);
2145        }
2146
2147        scrub_pending_bio_dec(sctx);
2148}
2149
2150static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2151{
2152        struct scrub_ctx *sctx = sblock->sctx;
2153        struct btrfs_fs_info *fs_info = sctx->fs_info;
2154        u64 length = sblock->page_count * PAGE_SIZE;
2155        u64 logical = sblock->pagev[0]->logical;
2156        struct btrfs_bio *bbio = NULL;
2157        struct bio *bio;
2158        struct btrfs_raid_bio *rbio;
2159        int ret;
2160        int i;
2161
2162        btrfs_bio_counter_inc_blocked(fs_info);
2163        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2164                        &length, &bbio);
2165        if (ret || !bbio || !bbio->raid_map)
2166                goto bbio_out;
2167
2168        if (WARN_ON(!sctx->is_dev_replace ||
2169                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2170                /*
2171                 * We shouldn't be scrubbing a missing device. Even for dev
2172                 * replace, we should only get here for RAID 5/6. We either
2173                 * managed to mount something with no mirrors remaining or
2174                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2175                 */
2176                goto bbio_out;
2177        }
2178
2179        bio = btrfs_io_bio_alloc(0);
2180        bio->bi_iter.bi_sector = logical >> 9;
2181        bio->bi_private = sblock;
2182        bio->bi_end_io = scrub_missing_raid56_end_io;
2183
2184        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2185        if (!rbio)
2186                goto rbio_out;
2187
2188        for (i = 0; i < sblock->page_count; i++) {
2189                struct scrub_page *spage = sblock->pagev[i];
2190
2191                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2192        }
2193
2194        btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2195                        scrub_missing_raid56_worker, NULL, NULL);
2196        scrub_block_get(sblock);
2197        scrub_pending_bio_inc(sctx);
2198        raid56_submit_missing_rbio(rbio);
2199        return;
2200
2201rbio_out:
2202        bio_put(bio);
2203bbio_out:
2204        btrfs_bio_counter_dec(fs_info);
2205        btrfs_put_bbio(bbio);
2206        spin_lock(&sctx->stat_lock);
2207        sctx->stat.malloc_errors++;
2208        spin_unlock(&sctx->stat_lock);
2209}
2210
2211static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2212                       u64 physical, struct btrfs_device *dev, u64 flags,
2213                       u64 gen, int mirror_num, u8 *csum, int force,
2214                       u64 physical_for_dev_replace)
2215{
2216        struct scrub_block *sblock;
2217        int index;
2218
2219        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2220        if (!sblock) {
2221                spin_lock(&sctx->stat_lock);
2222                sctx->stat.malloc_errors++;
2223                spin_unlock(&sctx->stat_lock);
2224                return -ENOMEM;
2225        }
2226
2227        /* one ref inside this function, plus one for each page added to
2228         * a bio later on */
2229        refcount_set(&sblock->refs, 1);
2230        sblock->sctx = sctx;
2231        sblock->no_io_error_seen = 1;
2232
2233        for (index = 0; len > 0; index++) {
2234                struct scrub_page *spage;
2235                u64 l = min_t(u64, len, PAGE_SIZE);
2236
2237                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2238                if (!spage) {
2239leave_nomem:
2240                        spin_lock(&sctx->stat_lock);
2241                        sctx->stat.malloc_errors++;
2242                        spin_unlock(&sctx->stat_lock);
2243                        scrub_block_put(sblock);
2244                        return -ENOMEM;
2245                }
2246                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2247                scrub_page_get(spage);
2248                sblock->pagev[index] = spage;
2249                spage->sblock = sblock;
2250                spage->dev = dev;
2251                spage->flags = flags;
2252                spage->generation = gen;
2253                spage->logical = logical;
2254                spage->physical = physical;
2255                spage->physical_for_dev_replace = physical_for_dev_replace;
2256                spage->mirror_num = mirror_num;
2257                if (csum) {
2258                        spage->have_csum = 1;
2259                        memcpy(spage->csum, csum, sctx->csum_size);
2260                } else {
2261                        spage->have_csum = 0;
2262                }
2263                sblock->page_count++;
2264                spage->page = alloc_page(GFP_KERNEL);
2265                if (!spage->page)
2266                        goto leave_nomem;
2267                len -= l;
2268                logical += l;
2269                physical += l;
2270                physical_for_dev_replace += l;
2271        }
2272
2273        WARN_ON(sblock->page_count == 0);
2274        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2275                /*
2276                 * This case should only be hit for RAID 5/6 device replace. See
2277                 * the comment in scrub_missing_raid56_pages() for details.
2278                 */
2279                scrub_missing_raid56_pages(sblock);
2280        } else {
2281                for (index = 0; index < sblock->page_count; index++) {
2282                        struct scrub_page *spage = sblock->pagev[index];
2283                        int ret;
2284
2285                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2286                        if (ret) {
2287                                scrub_block_put(sblock);
2288                                return ret;
2289                        }
2290                }
2291
2292                if (force)
2293                        scrub_submit(sctx);
2294        }
2295
2296        /* last one frees, either here or in bio completion for last page */
2297        scrub_block_put(sblock);
2298        return 0;
2299}
2300
2301static void scrub_bio_end_io(struct bio *bio)
2302{
2303        struct scrub_bio *sbio = bio->bi_private;
2304        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2305
2306        sbio->status = bio->bi_status;
2307        sbio->bio = bio;
2308
2309        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2310}
2311
2312static void scrub_bio_end_io_worker(struct btrfs_work *work)
2313{
2314        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2315        struct scrub_ctx *sctx = sbio->sctx;
2316        int i;
2317
2318        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2319        if (sbio->status) {
2320                for (i = 0; i < sbio->page_count; i++) {
2321                        struct scrub_page *spage = sbio->pagev[i];
2322
2323                        spage->io_error = 1;
2324                        spage->sblock->no_io_error_seen = 0;
2325                }
2326        }
2327
2328        /* now complete the scrub_block items that have all pages completed */
2329        for (i = 0; i < sbio->page_count; i++) {
2330                struct scrub_page *spage = sbio->pagev[i];
2331                struct scrub_block *sblock = spage->sblock;
2332
2333                if (atomic_dec_and_test(&sblock->outstanding_pages))
2334                        scrub_block_complete(sblock);
2335                scrub_block_put(sblock);
2336        }
2337
2338        bio_put(sbio->bio);
2339        sbio->bio = NULL;
2340        spin_lock(&sctx->list_lock);
2341        sbio->next_free = sctx->first_free;
2342        sctx->first_free = sbio->index;
2343        spin_unlock(&sctx->list_lock);
2344
2345        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346                mutex_lock(&sctx->wr_lock);
2347                scrub_wr_submit(sctx);
2348                mutex_unlock(&sctx->wr_lock);
2349        }
2350
2351        scrub_pending_bio_dec(sctx);
2352}
2353
2354static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2355                                       unsigned long *bitmap,
2356                                       u64 start, u64 len)
2357{
2358        u64 offset;
2359        u64 nsectors64;
2360        u32 nsectors;
2361        int sectorsize = sparity->sctx->fs_info->sectorsize;
2362
2363        if (len >= sparity->stripe_len) {
2364                bitmap_set(bitmap, 0, sparity->nsectors);
2365                return;
2366        }
2367
2368        start -= sparity->logic_start;
2369        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2370        offset = div_u64(offset, sectorsize);
2371        nsectors64 = div_u64(len, sectorsize);
2372
2373        ASSERT(nsectors64 < UINT_MAX);
2374        nsectors = (u32)nsectors64;
2375
2376        if (offset + nsectors <= sparity->nsectors) {
2377                bitmap_set(bitmap, offset, nsectors);
2378                return;
2379        }
2380
2381        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2382        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2383}
2384
2385static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2386                                                   u64 start, u64 len)
2387{
2388        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2389}
2390
2391static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2392                                                  u64 start, u64 len)
2393{
2394        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2395}
2396
2397static void scrub_block_complete(struct scrub_block *sblock)
2398{
2399        int corrupted = 0;
2400
2401        if (!sblock->no_io_error_seen) {
2402                corrupted = 1;
2403                scrub_handle_errored_block(sblock);
2404        } else {
2405                /*
2406                 * if has checksum error, write via repair mechanism in
2407                 * dev replace case, otherwise write here in dev replace
2408                 * case.
2409                 */
2410                corrupted = scrub_checksum(sblock);
2411                if (!corrupted && sblock->sctx->is_dev_replace)
2412                        scrub_write_block_to_dev_replace(sblock);
2413        }
2414
2415        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2416                u64 start = sblock->pagev[0]->logical;
2417                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2418                          PAGE_SIZE;
2419
2420                scrub_parity_mark_sectors_error(sblock->sparity,
2421                                                start, end - start);
2422        }
2423}
2424
2425static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2426{
2427        struct btrfs_ordered_sum *sum = NULL;
2428        unsigned long index;
2429        unsigned long num_sectors;
2430
2431        while (!list_empty(&sctx->csum_list)) {
2432                sum = list_first_entry(&sctx->csum_list,
2433                                       struct btrfs_ordered_sum, list);
2434                if (sum->bytenr > logical)
2435                        return 0;
2436                if (sum->bytenr + sum->len > logical)
2437                        break;
2438
2439                ++sctx->stat.csum_discards;
2440                list_del(&sum->list);
2441                kfree(sum);
2442                sum = NULL;
2443        }
2444        if (!sum)
2445                return 0;
2446
2447        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2448        ASSERT(index < UINT_MAX);
2449
2450        num_sectors = sum->len / sctx->fs_info->sectorsize;
2451        memcpy(csum, sum->sums + index, sctx->csum_size);
2452        if (index == num_sectors - 1) {
2453                list_del(&sum->list);
2454                kfree(sum);
2455        }
2456        return 1;
2457}
2458
2459/* scrub extent tries to collect up to 64 kB for each bio */
2460static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2461                        u64 logical, u64 len,
2462                        u64 physical, struct btrfs_device *dev, u64 flags,
2463                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2464{
2465        int ret;
2466        u8 csum[BTRFS_CSUM_SIZE];
2467        u32 blocksize;
2468
2469        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2470                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2471                        blocksize = map->stripe_len;
2472                else
2473                        blocksize = sctx->fs_info->sectorsize;
2474                spin_lock(&sctx->stat_lock);
2475                sctx->stat.data_extents_scrubbed++;
2476                sctx->stat.data_bytes_scrubbed += len;
2477                spin_unlock(&sctx->stat_lock);
2478        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2479                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480                        blocksize = map->stripe_len;
2481                else
2482                        blocksize = sctx->fs_info->nodesize;
2483                spin_lock(&sctx->stat_lock);
2484                sctx->stat.tree_extents_scrubbed++;
2485                sctx->stat.tree_bytes_scrubbed += len;
2486                spin_unlock(&sctx->stat_lock);
2487        } else {
2488                blocksize = sctx->fs_info->sectorsize;
2489                WARN_ON(1);
2490        }
2491
2492        while (len) {
2493                u64 l = min_t(u64, len, blocksize);
2494                int have_csum = 0;
2495
2496                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2497                        /* push csums to sbio */
2498                        have_csum = scrub_find_csum(sctx, logical, csum);
2499                        if (have_csum == 0)
2500                                ++sctx->stat.no_csum;
2501                }
2502                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2503                                  mirror_num, have_csum ? csum : NULL, 0,
2504                                  physical_for_dev_replace);
2505                if (ret)
2506                        return ret;
2507                len -= l;
2508                logical += l;
2509                physical += l;
2510                physical_for_dev_replace += l;
2511        }
2512        return 0;
2513}
2514
2515static int scrub_pages_for_parity(struct scrub_parity *sparity,
2516                                  u64 logical, u64 len,
2517                                  u64 physical, struct btrfs_device *dev,
2518                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2519{
2520        struct scrub_ctx *sctx = sparity->sctx;
2521        struct scrub_block *sblock;
2522        int index;
2523
2524        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2525        if (!sblock) {
2526                spin_lock(&sctx->stat_lock);
2527                sctx->stat.malloc_errors++;
2528                spin_unlock(&sctx->stat_lock);
2529                return -ENOMEM;
2530        }
2531
2532        /* one ref inside this function, plus one for each page added to
2533         * a bio later on */
2534        refcount_set(&sblock->refs, 1);
2535        sblock->sctx = sctx;
2536        sblock->no_io_error_seen = 1;
2537        sblock->sparity = sparity;
2538        scrub_parity_get(sparity);
2539
2540        for (index = 0; len > 0; index++) {
2541                struct scrub_page *spage;
2542                u64 l = min_t(u64, len, PAGE_SIZE);
2543
2544                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2545                if (!spage) {
2546leave_nomem:
2547                        spin_lock(&sctx->stat_lock);
2548                        sctx->stat.malloc_errors++;
2549                        spin_unlock(&sctx->stat_lock);
2550                        scrub_block_put(sblock);
2551                        return -ENOMEM;
2552                }
2553                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2554                /* For scrub block */
2555                scrub_page_get(spage);
2556                sblock->pagev[index] = spage;
2557                /* For scrub parity */
2558                scrub_page_get(spage);
2559                list_add_tail(&spage->list, &sparity->spages);
2560                spage->sblock = sblock;
2561                spage->dev = dev;
2562                spage->flags = flags;
2563                spage->generation = gen;
2564                spage->logical = logical;
2565                spage->physical = physical;
2566                spage->mirror_num = mirror_num;
2567                if (csum) {
2568                        spage->have_csum = 1;
2569                        memcpy(spage->csum, csum, sctx->csum_size);
2570                } else {
2571                        spage->have_csum = 0;
2572                }
2573                sblock->page_count++;
2574                spage->page = alloc_page(GFP_KERNEL);
2575                if (!spage->page)
2576                        goto leave_nomem;
2577                len -= l;
2578                logical += l;
2579                physical += l;
2580        }
2581
2582        WARN_ON(sblock->page_count == 0);
2583        for (index = 0; index < sblock->page_count; index++) {
2584                struct scrub_page *spage = sblock->pagev[index];
2585                int ret;
2586
2587                ret = scrub_add_page_to_rd_bio(sctx, spage);
2588                if (ret) {
2589                        scrub_block_put(sblock);
2590                        return ret;
2591                }
2592        }
2593
2594        /* last one frees, either here or in bio completion for last page */
2595        scrub_block_put(sblock);
2596        return 0;
2597}
2598
2599static int scrub_extent_for_parity(struct scrub_parity *sparity,
2600                                   u64 logical, u64 len,
2601                                   u64 physical, struct btrfs_device *dev,
2602                                   u64 flags, u64 gen, int mirror_num)
2603{
2604        struct scrub_ctx *sctx = sparity->sctx;
2605        int ret;
2606        u8 csum[BTRFS_CSUM_SIZE];
2607        u32 blocksize;
2608
2609        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2610                scrub_parity_mark_sectors_error(sparity, logical, len);
2611                return 0;
2612        }
2613
2614        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2615                blocksize = sparity->stripe_len;
2616        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2617                blocksize = sparity->stripe_len;
2618        } else {
2619                blocksize = sctx->fs_info->sectorsize;
2620                WARN_ON(1);
2621        }
2622
2623        while (len) {
2624                u64 l = min_t(u64, len, blocksize);
2625                int have_csum = 0;
2626
2627                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628                        /* push csums to sbio */
2629                        have_csum = scrub_find_csum(sctx, logical, csum);
2630                        if (have_csum == 0)
2631                                goto skip;
2632                }
2633                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2634                                             flags, gen, mirror_num,
2635                                             have_csum ? csum : NULL);
2636                if (ret)
2637                        return ret;
2638skip:
2639                len -= l;
2640                logical += l;
2641                physical += l;
2642        }
2643        return 0;
2644}
2645
2646/*
2647 * Given a physical address, this will calculate it's
2648 * logical offset. if this is a parity stripe, it will return
2649 * the most left data stripe's logical offset.
2650 *
2651 * return 0 if it is a data stripe, 1 means parity stripe.
2652 */
2653static int get_raid56_logic_offset(u64 physical, int num,
2654                                   struct map_lookup *map, u64 *offset,
2655                                   u64 *stripe_start)
2656{
2657        int i;
2658        int j = 0;
2659        u64 stripe_nr;
2660        u64 last_offset;
2661        u32 stripe_index;
2662        u32 rot;
2663
2664        last_offset = (physical - map->stripes[num].physical) *
2665                      nr_data_stripes(map);
2666        if (stripe_start)
2667                *stripe_start = last_offset;
2668
2669        *offset = last_offset;
2670        for (i = 0; i < nr_data_stripes(map); i++) {
2671                *offset = last_offset + i * map->stripe_len;
2672
2673                stripe_nr = div64_u64(*offset, map->stripe_len);
2674                stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2675
2676                /* Work out the disk rotation on this stripe-set */
2677                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2678                /* calculate which stripe this data locates */
2679                rot += i;
2680                stripe_index = rot % map->num_stripes;
2681                if (stripe_index == num)
2682                        return 0;
2683                if (stripe_index < num)
2684                        j++;
2685        }
2686        *offset = last_offset + j * map->stripe_len;
2687        return 1;
2688}
2689
2690static void scrub_free_parity(struct scrub_parity *sparity)
2691{
2692        struct scrub_ctx *sctx = sparity->sctx;
2693        struct scrub_page *curr, *next;
2694        int nbits;
2695
2696        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2697        if (nbits) {
2698                spin_lock(&sctx->stat_lock);
2699                sctx->stat.read_errors += nbits;
2700                sctx->stat.uncorrectable_errors += nbits;
2701                spin_unlock(&sctx->stat_lock);
2702        }
2703
2704        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2705                list_del_init(&curr->list);
2706                scrub_page_put(curr);
2707        }
2708
2709        kfree(sparity);
2710}
2711
2712static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2713{
2714        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2715                                                    work);
2716        struct scrub_ctx *sctx = sparity->sctx;
2717
2718        scrub_free_parity(sparity);
2719        scrub_pending_bio_dec(sctx);
2720}
2721
2722static void scrub_parity_bio_endio(struct bio *bio)
2723{
2724        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2725        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2726
2727        if (bio->bi_status)
2728                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2729                          sparity->nsectors);
2730
2731        bio_put(bio);
2732
2733        btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2734                        scrub_parity_bio_endio_worker, NULL, NULL);
2735        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2736}
2737
2738static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2739{
2740        struct scrub_ctx *sctx = sparity->sctx;
2741        struct btrfs_fs_info *fs_info = sctx->fs_info;
2742        struct bio *bio;
2743        struct btrfs_raid_bio *rbio;
2744        struct btrfs_bio *bbio = NULL;
2745        u64 length;
2746        int ret;
2747
2748        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2749                           sparity->nsectors))
2750                goto out;
2751
2752        length = sparity->logic_end - sparity->logic_start;
2753
2754        btrfs_bio_counter_inc_blocked(fs_info);
2755        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2756                               &length, &bbio);
2757        if (ret || !bbio || !bbio->raid_map)
2758                goto bbio_out;
2759
2760        bio = btrfs_io_bio_alloc(0);
2761        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2762        bio->bi_private = sparity;
2763        bio->bi_end_io = scrub_parity_bio_endio;
2764
2765        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2766                                              length, sparity->scrub_dev,
2767                                              sparity->dbitmap,
2768                                              sparity->nsectors);
2769        if (!rbio)
2770                goto rbio_out;
2771
2772        scrub_pending_bio_inc(sctx);
2773        raid56_parity_submit_scrub_rbio(rbio);
2774        return;
2775
2776rbio_out:
2777        bio_put(bio);
2778bbio_out:
2779        btrfs_bio_counter_dec(fs_info);
2780        btrfs_put_bbio(bbio);
2781        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2782                  sparity->nsectors);
2783        spin_lock(&sctx->stat_lock);
2784        sctx->stat.malloc_errors++;
2785        spin_unlock(&sctx->stat_lock);
2786out:
2787        scrub_free_parity(sparity);
2788}
2789
2790static inline int scrub_calc_parity_bitmap_len(int nsectors)
2791{
2792        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2793}
2794
2795static void scrub_parity_get(struct scrub_parity *sparity)
2796{
2797        refcount_inc(&sparity->refs);
2798}
2799
2800static void scrub_parity_put(struct scrub_parity *sparity)
2801{
2802        if (!refcount_dec_and_test(&sparity->refs))
2803                return;
2804
2805        scrub_parity_check_and_repair(sparity);
2806}
2807
2808static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2809                                                  struct map_lookup *map,
2810                                                  struct btrfs_device *sdev,
2811                                                  struct btrfs_path *path,
2812                                                  u64 logic_start,
2813                                                  u64 logic_end)
2814{
2815        struct btrfs_fs_info *fs_info = sctx->fs_info;
2816        struct btrfs_root *root = fs_info->extent_root;
2817        struct btrfs_root *csum_root = fs_info->csum_root;
2818        struct btrfs_extent_item *extent;
2819        struct btrfs_bio *bbio = NULL;
2820        u64 flags;
2821        int ret;
2822        int slot;
2823        struct extent_buffer *l;
2824        struct btrfs_key key;
2825        u64 generation;
2826        u64 extent_logical;
2827        u64 extent_physical;
2828        u64 extent_len;
2829        u64 mapped_length;
2830        struct btrfs_device *extent_dev;
2831        struct scrub_parity *sparity;
2832        int nsectors;
2833        int bitmap_len;
2834        int extent_mirror_num;
2835        int stop_loop = 0;
2836
2837        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2838        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2839        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2840                          GFP_NOFS);
2841        if (!sparity) {
2842                spin_lock(&sctx->stat_lock);
2843                sctx->stat.malloc_errors++;
2844                spin_unlock(&sctx->stat_lock);
2845                return -ENOMEM;
2846        }
2847
2848        sparity->stripe_len = map->stripe_len;
2849        sparity->nsectors = nsectors;
2850        sparity->sctx = sctx;
2851        sparity->scrub_dev = sdev;
2852        sparity->logic_start = logic_start;
2853        sparity->logic_end = logic_end;
2854        refcount_set(&sparity->refs, 1);
2855        INIT_LIST_HEAD(&sparity->spages);
2856        sparity->dbitmap = sparity->bitmap;
2857        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2858
2859        ret = 0;
2860        while (logic_start < logic_end) {
2861                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862                        key.type = BTRFS_METADATA_ITEM_KEY;
2863                else
2864                        key.type = BTRFS_EXTENT_ITEM_KEY;
2865                key.objectid = logic_start;
2866                key.offset = (u64)-1;
2867
2868                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2869                if (ret < 0)
2870                        goto out;
2871
2872                if (ret > 0) {
2873                        ret = btrfs_previous_extent_item(root, path, 0);
2874                        if (ret < 0)
2875                                goto out;
2876                        if (ret > 0) {
2877                                btrfs_release_path(path);
2878                                ret = btrfs_search_slot(NULL, root, &key,
2879                                                        path, 0, 0);
2880                                if (ret < 0)
2881                                        goto out;
2882                        }
2883                }
2884
2885                stop_loop = 0;
2886                while (1) {
2887                        u64 bytes;
2888
2889                        l = path->nodes[0];
2890                        slot = path->slots[0];
2891                        if (slot >= btrfs_header_nritems(l)) {
2892                                ret = btrfs_next_leaf(root, path);
2893                                if (ret == 0)
2894                                        continue;
2895                                if (ret < 0)
2896                                        goto out;
2897
2898                                stop_loop = 1;
2899                                break;
2900                        }
2901                        btrfs_item_key_to_cpu(l, &key, slot);
2902
2903                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2904                            key.type != BTRFS_METADATA_ITEM_KEY)
2905                                goto next;
2906
2907                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2908                                bytes = fs_info->nodesize;
2909                        else
2910                                bytes = key.offset;
2911
2912                        if (key.objectid + bytes <= logic_start)
2913                                goto next;
2914
2915                        if (key.objectid >= logic_end) {
2916                                stop_loop = 1;
2917                                break;
2918                        }
2919
2920                        while (key.objectid >= logic_start + map->stripe_len)
2921                                logic_start += map->stripe_len;
2922
2923                        extent = btrfs_item_ptr(l, slot,
2924                                                struct btrfs_extent_item);
2925                        flags = btrfs_extent_flags(l, extent);
2926                        generation = btrfs_extent_generation(l, extent);
2927
2928                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2929                            (key.objectid < logic_start ||
2930                             key.objectid + bytes >
2931                             logic_start + map->stripe_len)) {
2932                                btrfs_err(fs_info,
2933                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2934                                          key.objectid, logic_start);
2935                                spin_lock(&sctx->stat_lock);
2936                                sctx->stat.uncorrectable_errors++;
2937                                spin_unlock(&sctx->stat_lock);
2938                                goto next;
2939                        }
2940again:
2941                        extent_logical = key.objectid;
2942                        extent_len = bytes;
2943
2944                        if (extent_logical < logic_start) {
2945                                extent_len -= logic_start - extent_logical;
2946                                extent_logical = logic_start;
2947                        }
2948
2949                        if (extent_logical + extent_len >
2950                            logic_start + map->stripe_len)
2951                                extent_len = logic_start + map->stripe_len -
2952                                             extent_logical;
2953
2954                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2955                                                       extent_len);
2956
2957                        mapped_length = extent_len;
2958                        bbio = NULL;
2959                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2960                                        extent_logical, &mapped_length, &bbio,
2961                                        0);
2962                        if (!ret) {
2963                                if (!bbio || mapped_length < extent_len)
2964                                        ret = -EIO;
2965                        }
2966                        if (ret) {
2967                                btrfs_put_bbio(bbio);
2968                                goto out;
2969                        }
2970                        extent_physical = bbio->stripes[0].physical;
2971                        extent_mirror_num = bbio->mirror_num;
2972                        extent_dev = bbio->stripes[0].dev;
2973                        btrfs_put_bbio(bbio);
2974
2975                        ret = btrfs_lookup_csums_range(csum_root,
2976                                                extent_logical,
2977                                                extent_logical + extent_len - 1,
2978                                                &sctx->csum_list, 1);
2979                        if (ret)
2980                                goto out;
2981
2982                        ret = scrub_extent_for_parity(sparity, extent_logical,
2983                                                      extent_len,
2984                                                      extent_physical,
2985                                                      extent_dev, flags,
2986                                                      generation,
2987                                                      extent_mirror_num);
2988
2989                        scrub_free_csums(sctx);
2990
2991                        if (ret)
2992                                goto out;
2993
2994                        if (extent_logical + extent_len <
2995                            key.objectid + bytes) {
2996                                logic_start += map->stripe_len;
2997
2998                                if (logic_start >= logic_end) {
2999                                        stop_loop = 1;
3000                                        break;
3001                                }
3002
3003                                if (logic_start < key.objectid + bytes) {
3004                                        cond_resched();
3005                                        goto again;
3006                                }
3007                        }
3008next:
3009                        path->slots[0]++;
3010                }
3011
3012                btrfs_release_path(path);
3013
3014                if (stop_loop)
3015                        break;
3016
3017                logic_start += map->stripe_len;
3018        }
3019out:
3020        if (ret < 0)
3021                scrub_parity_mark_sectors_error(sparity, logic_start,
3022                                                logic_end - logic_start);
3023        scrub_parity_put(sparity);
3024        scrub_submit(sctx);
3025        mutex_lock(&sctx->wr_lock);
3026        scrub_wr_submit(sctx);
3027        mutex_unlock(&sctx->wr_lock);
3028
3029        btrfs_release_path(path);
3030        return ret < 0 ? ret : 0;
3031}
3032
3033static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3034                                           struct map_lookup *map,
3035                                           struct btrfs_device *scrub_dev,
3036                                           int num, u64 base, u64 length)
3037{
3038        struct btrfs_path *path, *ppath;
3039        struct btrfs_fs_info *fs_info = sctx->fs_info;
3040        struct btrfs_root *root = fs_info->extent_root;
3041        struct btrfs_root *csum_root = fs_info->csum_root;
3042        struct btrfs_extent_item *extent;
3043        struct blk_plug plug;
3044        u64 flags;
3045        int ret;
3046        int slot;
3047        u64 nstripes;
3048        struct extent_buffer *l;
3049        u64 physical;
3050        u64 logical;
3051        u64 logic_end;
3052        u64 physical_end;
3053        u64 generation;
3054        int mirror_num;
3055        struct reada_control *reada1;
3056        struct reada_control *reada2;
3057        struct btrfs_key key;
3058        struct btrfs_key key_end;
3059        u64 increment = map->stripe_len;
3060        u64 offset;
3061        u64 extent_logical;
3062        u64 extent_physical;
3063        u64 extent_len;
3064        u64 stripe_logical;
3065        u64 stripe_end;
3066        struct btrfs_device *extent_dev;
3067        int extent_mirror_num;
3068        int stop_loop = 0;
3069
3070        physical = map->stripes[num].physical;
3071        offset = 0;
3072        nstripes = div64_u64(length, map->stripe_len);
3073        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3074                offset = map->stripe_len * num;
3075                increment = map->stripe_len * map->num_stripes;
3076                mirror_num = 1;
3077        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078                int factor = map->num_stripes / map->sub_stripes;
3079                offset = map->stripe_len * (num / map->sub_stripes);
3080                increment = map->stripe_len * factor;
3081                mirror_num = num % map->sub_stripes + 1;
3082        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3083                increment = map->stripe_len;
3084                mirror_num = num % map->num_stripes + 1;
3085        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3086                increment = map->stripe_len;
3087                mirror_num = num % map->num_stripes + 1;
3088        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090                increment = map->stripe_len * nr_data_stripes(map);
3091                mirror_num = 1;
3092        } else {
3093                increment = map->stripe_len;
3094                mirror_num = 1;
3095        }
3096
3097        path = btrfs_alloc_path();
3098        if (!path)
3099                return -ENOMEM;
3100
3101        ppath = btrfs_alloc_path();
3102        if (!ppath) {
3103                btrfs_free_path(path);
3104                return -ENOMEM;
3105        }
3106
3107        /*
3108         * work on commit root. The related disk blocks are static as
3109         * long as COW is applied. This means, it is save to rewrite
3110         * them to repair disk errors without any race conditions
3111         */
3112        path->search_commit_root = 1;
3113        path->skip_locking = 1;
3114
3115        ppath->search_commit_root = 1;
3116        ppath->skip_locking = 1;
3117        /*
3118         * trigger the readahead for extent tree csum tree and wait for
3119         * completion. During readahead, the scrub is officially paused
3120         * to not hold off transaction commits
3121         */
3122        logical = base + offset;
3123        physical_end = physical + nstripes * map->stripe_len;
3124        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125                get_raid56_logic_offset(physical_end, num,
3126                                        map, &logic_end, NULL);
3127                logic_end += base;
3128        } else {
3129                logic_end = logical + increment * nstripes;
3130        }
3131        wait_event(sctx->list_wait,
3132                   atomic_read(&sctx->bios_in_flight) == 0);
3133        scrub_blocked_if_needed(fs_info);
3134
3135        /* FIXME it might be better to start readahead at commit root */
3136        key.objectid = logical;
3137        key.type = BTRFS_EXTENT_ITEM_KEY;
3138        key.offset = (u64)0;
3139        key_end.objectid = logic_end;
3140        key_end.type = BTRFS_METADATA_ITEM_KEY;
3141        key_end.offset = (u64)-1;
3142        reada1 = btrfs_reada_add(root, &key, &key_end);
3143
3144        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3145        key.type = BTRFS_EXTENT_CSUM_KEY;
3146        key.offset = logical;
3147        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3148        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3149        key_end.offset = logic_end;
3150        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3151
3152        if (!IS_ERR(reada1))
3153                btrfs_reada_wait(reada1);
3154        if (!IS_ERR(reada2))
3155                btrfs_reada_wait(reada2);
3156
3157
3158        /*
3159         * collect all data csums for the stripe to avoid seeking during
3160         * the scrub. This might currently (crc32) end up to be about 1MB
3161         */
3162        blk_start_plug(&plug);
3163
3164        /*
3165         * now find all extents for each stripe and scrub them
3166         */
3167        ret = 0;
3168        while (physical < physical_end) {
3169                /*
3170                 * canceled?
3171                 */
3172                if (atomic_read(&fs_info->scrub_cancel_req) ||
3173                    atomic_read(&sctx->cancel_req)) {
3174                        ret = -ECANCELED;
3175                        goto out;
3176                }
3177                /*
3178                 * check to see if we have to pause
3179                 */
3180                if (atomic_read(&fs_info->scrub_pause_req)) {
3181                        /* push queued extents */
3182                        sctx->flush_all_writes = true;
3183                        scrub_submit(sctx);
3184                        mutex_lock(&sctx->wr_lock);
3185                        scrub_wr_submit(sctx);
3186                        mutex_unlock(&sctx->wr_lock);
3187                        wait_event(sctx->list_wait,
3188                                   atomic_read(&sctx->bios_in_flight) == 0);
3189                        sctx->flush_all_writes = false;
3190                        scrub_blocked_if_needed(fs_info);
3191                }
3192
3193                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3194                        ret = get_raid56_logic_offset(physical, num, map,
3195                                                      &logical,
3196                                                      &stripe_logical);
3197                        logical += base;
3198                        if (ret) {
3199                                /* it is parity strip */
3200                                stripe_logical += base;
3201                                stripe_end = stripe_logical + increment;
3202                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3203                                                          ppath, stripe_logical,
3204                                                          stripe_end);
3205                                if (ret)
3206                                        goto out;
3207                                goto skip;
3208                        }
3209                }
3210
3211                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3212                        key.type = BTRFS_METADATA_ITEM_KEY;
3213                else
3214                        key.type = BTRFS_EXTENT_ITEM_KEY;
3215                key.objectid = logical;
3216                key.offset = (u64)-1;
3217
3218                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3219                if (ret < 0)
3220                        goto out;
3221
3222                if (ret > 0) {
3223                        ret = btrfs_previous_extent_item(root, path, 0);
3224                        if (ret < 0)
3225                                goto out;
3226                        if (ret > 0) {
3227                                /* there's no smaller item, so stick with the
3228                                 * larger one */
3229                                btrfs_release_path(path);
3230                                ret = btrfs_search_slot(NULL, root, &key,
3231                                                        path, 0, 0);
3232                                if (ret < 0)
3233                                        goto out;
3234                        }
3235                }
3236
3237                stop_loop = 0;
3238                while (1) {
3239                        u64 bytes;
3240
3241                        l = path->nodes[0];
3242                        slot = path->slots[0];
3243                        if (slot >= btrfs_header_nritems(l)) {
3244                                ret = btrfs_next_leaf(root, path);
3245                                if (ret == 0)
3246                                        continue;
3247                                if (ret < 0)
3248                                        goto out;
3249
3250                                stop_loop = 1;
3251                                break;
3252                        }
3253                        btrfs_item_key_to_cpu(l, &key, slot);
3254
3255                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3256                            key.type != BTRFS_METADATA_ITEM_KEY)
3257                                goto next;
3258
3259                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3260                                bytes = fs_info->nodesize;
3261                        else
3262                                bytes = key.offset;
3263
3264                        if (key.objectid + bytes <= logical)
3265                                goto next;
3266
3267                        if (key.objectid >= logical + map->stripe_len) {
3268                                /* out of this device extent */
3269                                if (key.objectid >= logic_end)
3270                                        stop_loop = 1;
3271                                break;
3272                        }
3273
3274                        extent = btrfs_item_ptr(l, slot,
3275                                                struct btrfs_extent_item);
3276                        flags = btrfs_extent_flags(l, extent);
3277                        generation = btrfs_extent_generation(l, extent);
3278
3279                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3280                            (key.objectid < logical ||
3281                             key.objectid + bytes >
3282                             logical + map->stripe_len)) {
3283                                btrfs_err(fs_info,
3284                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3285                                       key.objectid, logical);
3286                                spin_lock(&sctx->stat_lock);
3287                                sctx->stat.uncorrectable_errors++;
3288                                spin_unlock(&sctx->stat_lock);
3289                                goto next;
3290                        }
3291
3292again:
3293                        extent_logical = key.objectid;
3294                        extent_len = bytes;
3295
3296                        /*
3297                         * trim extent to this stripe
3298                         */
3299                        if (extent_logical < logical) {
3300                                extent_len -= logical - extent_logical;
3301                                extent_logical = logical;
3302                        }
3303                        if (extent_logical + extent_len >
3304                            logical + map->stripe_len) {
3305                                extent_len = logical + map->stripe_len -
3306                                             extent_logical;
3307                        }
3308
3309                        extent_physical = extent_logical - logical + physical;
3310                        extent_dev = scrub_dev;
3311                        extent_mirror_num = mirror_num;
3312                        if (sctx->is_dev_replace)
3313                                scrub_remap_extent(fs_info, extent_logical,
3314                                                   extent_len, &extent_physical,
3315                                                   &extent_dev,
3316                                                   &extent_mirror_num);
3317
3318                        ret = btrfs_lookup_csums_range(csum_root,
3319                                                       extent_logical,
3320                                                       extent_logical +
3321                                                       extent_len - 1,
3322                                                       &sctx->csum_list, 1);
3323                        if (ret)
3324                                goto out;
3325
3326                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3327                                           extent_physical, extent_dev, flags,
3328                                           generation, extent_mirror_num,
3329                                           extent_logical - logical + physical);
3330
3331                        scrub_free_csums(sctx);
3332
3333                        if (ret)
3334                                goto out;
3335
3336                        if (extent_logical + extent_len <
3337                            key.objectid + bytes) {
3338                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3339                                        /*
3340                                         * loop until we find next data stripe
3341                                         * or we have finished all stripes.
3342                                         */
3343loop:
3344                                        physical += map->stripe_len;
3345                                        ret = get_raid56_logic_offset(physical,
3346                                                        num, map, &logical,
3347                                                        &stripe_logical);
3348                                        logical += base;
3349
3350                                        if (ret && physical < physical_end) {
3351                                                stripe_logical += base;
3352                                                stripe_end = stripe_logical +
3353                                                                increment;
3354                                                ret = scrub_raid56_parity(sctx,
3355                                                        map, scrub_dev, ppath,
3356                                                        stripe_logical,
3357                                                        stripe_end);
3358                                                if (ret)
3359                                                        goto out;
3360                                                goto loop;
3361                                        }
3362                                } else {
3363                                        physical += map->stripe_len;
3364                                        logical += increment;
3365                                }
3366                                if (logical < key.objectid + bytes) {
3367                                        cond_resched();
3368                                        goto again;
3369                                }
3370
3371                                if (physical >= physical_end) {
3372                                        stop_loop = 1;
3373                                        break;
3374                                }
3375                        }
3376next:
3377                        path->slots[0]++;
3378                }
3379                btrfs_release_path(path);
3380skip:
3381                logical += increment;
3382                physical += map->stripe_len;
3383                spin_lock(&sctx->stat_lock);
3384                if (stop_loop)
3385                        sctx->stat.last_physical = map->stripes[num].physical +
3386                                                   length;
3387                else
3388                        sctx->stat.last_physical = physical;
3389                spin_unlock(&sctx->stat_lock);
3390                if (stop_loop)
3391                        break;
3392        }
3393out:
3394        /* push queued extents */
3395        scrub_submit(sctx);
3396        mutex_lock(&sctx->wr_lock);
3397        scrub_wr_submit(sctx);
3398        mutex_unlock(&sctx->wr_lock);
3399
3400        blk_finish_plug(&plug);
3401        btrfs_free_path(path);
3402        btrfs_free_path(ppath);
3403        return ret < 0 ? ret : 0;
3404}
3405
3406static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3407                                          struct btrfs_device *scrub_dev,
3408                                          u64 chunk_offset, u64 length,
3409                                          u64 dev_offset,
3410                                          struct btrfs_block_group_cache *cache)
3411{
3412        struct btrfs_fs_info *fs_info = sctx->fs_info;
3413        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3414        struct map_lookup *map;
3415        struct extent_map *em;
3416        int i;
3417        int ret = 0;
3418
3419        read_lock(&map_tree->map_tree.lock);
3420        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3421        read_unlock(&map_tree->map_tree.lock);
3422
3423        if (!em) {
3424                /*
3425                 * Might have been an unused block group deleted by the cleaner
3426                 * kthread or relocation.
3427                 */
3428                spin_lock(&cache->lock);
3429                if (!cache->removed)
3430                        ret = -EINVAL;
3431                spin_unlock(&cache->lock);
3432
3433                return ret;
3434        }
3435
3436        map = em->map_lookup;
3437        if (em->start != chunk_offset)
3438                goto out;
3439
3440        if (em->len < length)
3441                goto out;
3442
3443        for (i = 0; i < map->num_stripes; ++i) {
3444                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3445                    map->stripes[i].physical == dev_offset) {
3446                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3447                                           chunk_offset, length);
3448                        if (ret)
3449                                goto out;
3450                }
3451        }
3452out:
3453        free_extent_map(em);
3454
3455        return ret;
3456}
3457
3458static noinline_for_stack
3459int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3460                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3461{
3462        struct btrfs_dev_extent *dev_extent = NULL;
3463        struct btrfs_path *path;
3464        struct btrfs_fs_info *fs_info = sctx->fs_info;
3465        struct btrfs_root *root = fs_info->dev_root;
3466        u64 length;
3467        u64 chunk_offset;
3468        int ret = 0;
3469        int ro_set;
3470        int slot;
3471        struct extent_buffer *l;
3472        struct btrfs_key key;
3473        struct btrfs_key found_key;
3474        struct btrfs_block_group_cache *cache;
3475        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3476
3477        path = btrfs_alloc_path();
3478        if (!path)
3479                return -ENOMEM;
3480
3481        path->reada = READA_FORWARD;
3482        path->search_commit_root = 1;
3483        path->skip_locking = 1;
3484
3485        key.objectid = scrub_dev->devid;
3486        key.offset = 0ull;
3487        key.type = BTRFS_DEV_EXTENT_KEY;
3488
3489        while (1) {
3490                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3491                if (ret < 0)
3492                        break;
3493                if (ret > 0) {
3494                        if (path->slots[0] >=
3495                            btrfs_header_nritems(path->nodes[0])) {
3496                                ret = btrfs_next_leaf(root, path);
3497                                if (ret < 0)
3498                                        break;
3499                                if (ret > 0) {
3500                                        ret = 0;
3501                                        break;
3502                                }
3503                        } else {
3504                                ret = 0;
3505                        }
3506                }
3507
3508                l = path->nodes[0];
3509                slot = path->slots[0];
3510
3511                btrfs_item_key_to_cpu(l, &found_key, slot);
3512
3513                if (found_key.objectid != scrub_dev->devid)
3514                        break;
3515
3516                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3517                        break;
3518
3519                if (found_key.offset >= end)
3520                        break;
3521
3522                if (found_key.offset < key.offset)
3523                        break;
3524
3525                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3526                length = btrfs_dev_extent_length(l, dev_extent);
3527
3528                if (found_key.offset + length <= start)
3529                        goto skip;
3530
3531                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3532
3533                /*
3534                 * get a reference on the corresponding block group to prevent
3535                 * the chunk from going away while we scrub it
3536                 */
3537                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3538
3539                /* some chunks are removed but not committed to disk yet,
3540                 * continue scrubbing */
3541                if (!cache)
3542                        goto skip;
3543
3544                /*
3545                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3546                 * to avoid deadlock caused by:
3547                 * btrfs_inc_block_group_ro()
3548                 * -> btrfs_wait_for_commit()
3549                 * -> btrfs_commit_transaction()
3550                 * -> btrfs_scrub_pause()
3551                 */
3552                scrub_pause_on(fs_info);
3553                ret = btrfs_inc_block_group_ro(cache);
3554                if (!ret && sctx->is_dev_replace) {
3555                        /*
3556                         * If we are doing a device replace wait for any tasks
3557                         * that started delalloc right before we set the block
3558                         * group to RO mode, as they might have just allocated
3559                         * an extent from it or decided they could do a nocow
3560                         * write. And if any such tasks did that, wait for their
3561                         * ordered extents to complete and then commit the
3562                         * current transaction, so that we can later see the new
3563                         * extent items in the extent tree - the ordered extents
3564                         * create delayed data references (for cow writes) when
3565                         * they complete, which will be run and insert the
3566                         * corresponding extent items into the extent tree when
3567                         * we commit the transaction they used when running
3568                         * inode.c:btrfs_finish_ordered_io(). We later use
3569                         * the commit root of the extent tree to find extents
3570                         * to copy from the srcdev into the tgtdev, and we don't
3571                         * want to miss any new extents.
3572                         */
3573                        btrfs_wait_block_group_reservations(cache);
3574                        btrfs_wait_nocow_writers(cache);
3575                        ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3576                                                       cache->key.objectid,
3577                                                       cache->key.offset);
3578                        if (ret > 0) {
3579                                struct btrfs_trans_handle *trans;
3580
3581                                trans = btrfs_join_transaction(root);
3582                                if (IS_ERR(trans))
3583                                        ret = PTR_ERR(trans);
3584                                else
3585                                        ret = btrfs_commit_transaction(trans);
3586                                if (ret) {
3587                                        scrub_pause_off(fs_info);
3588                                        btrfs_put_block_group(cache);
3589                                        break;
3590                                }
3591                        }
3592                }
3593                scrub_pause_off(fs_info);
3594
3595                if (ret == 0) {
3596                        ro_set = 1;
3597                } else if (ret == -ENOSPC) {
3598                        /*
3599                         * btrfs_inc_block_group_ro return -ENOSPC when it
3600                         * failed in creating new chunk for metadata.
3601                         * It is not a problem for scrub/replace, because
3602                         * metadata are always cowed, and our scrub paused
3603                         * commit_transactions.
3604                         */
3605                        ro_set = 0;
3606                } else {
3607                        btrfs_warn(fs_info,
3608                                   "failed setting block group ro: %d", ret);
3609                        btrfs_put_block_group(cache);
3610                        break;
3611                }
3612
3613                down_write(&fs_info->dev_replace.rwsem);
3614                dev_replace->cursor_right = found_key.offset + length;
3615                dev_replace->cursor_left = found_key.offset;
3616                dev_replace->item_needs_writeback = 1;
3617                up_write(&dev_replace->rwsem);
3618
3619                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3620                                  found_key.offset, cache);
3621
3622                /*
3623                 * flush, submit all pending read and write bios, afterwards
3624                 * wait for them.
3625                 * Note that in the dev replace case, a read request causes
3626                 * write requests that are submitted in the read completion
3627                 * worker. Therefore in the current situation, it is required
3628                 * that all write requests are flushed, so that all read and
3629                 * write requests are really completed when bios_in_flight
3630                 * changes to 0.
3631                 */
3632                sctx->flush_all_writes = true;
3633                scrub_submit(sctx);
3634                mutex_lock(&sctx->wr_lock);
3635                scrub_wr_submit(sctx);
3636                mutex_unlock(&sctx->wr_lock);
3637
3638                wait_event(sctx->list_wait,
3639                           atomic_read(&sctx->bios_in_flight) == 0);
3640
3641                scrub_pause_on(fs_info);
3642
3643                /*
3644                 * must be called before we decrease @scrub_paused.
3645                 * make sure we don't block transaction commit while
3646                 * we are waiting pending workers finished.
3647                 */
3648                wait_event(sctx->list_wait,
3649                           atomic_read(&sctx->workers_pending) == 0);
3650                sctx->flush_all_writes = false;
3651
3652                scrub_pause_off(fs_info);
3653
3654                down_write(&fs_info->dev_replace.rwsem);
3655                dev_replace->cursor_left = dev_replace->cursor_right;
3656                dev_replace->item_needs_writeback = 1;
3657                up_write(&fs_info->dev_replace.rwsem);
3658
3659                if (ro_set)
3660                        btrfs_dec_block_group_ro(cache);
3661
3662                /*
3663                 * We might have prevented the cleaner kthread from deleting
3664                 * this block group if it was already unused because we raced
3665                 * and set it to RO mode first. So add it back to the unused
3666                 * list, otherwise it might not ever be deleted unless a manual
3667                 * balance is triggered or it becomes used and unused again.
3668                 */
3669                spin_lock(&cache->lock);
3670                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3671                    btrfs_block_group_used(&cache->item) == 0) {
3672                        spin_unlock(&cache->lock);
3673                        btrfs_mark_bg_unused(cache);
3674                } else {
3675                        spin_unlock(&cache->lock);
3676                }
3677
3678                btrfs_put_block_group(cache);
3679                if (ret)
3680                        break;
3681                if (sctx->is_dev_replace &&
3682                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3683                        ret = -EIO;
3684                        break;
3685                }
3686                if (sctx->stat.malloc_errors > 0) {
3687                        ret = -ENOMEM;
3688                        break;
3689                }
3690skip:
3691                key.offset = found_key.offset + length;
3692                btrfs_release_path(path);
3693        }
3694
3695        btrfs_free_path(path);
3696
3697        return ret;
3698}
3699
3700static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3701                                           struct btrfs_device *scrub_dev)
3702{
3703        int     i;
3704        u64     bytenr;
3705        u64     gen;
3706        int     ret;
3707        struct btrfs_fs_info *fs_info = sctx->fs_info;
3708
3709        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3710                return -EIO;
3711
3712        /* Seed devices of a new filesystem has their own generation. */
3713        if (scrub_dev->fs_devices != fs_info->fs_devices)
3714                gen = scrub_dev->generation;
3715        else
3716                gen = fs_info->last_trans_committed;
3717
3718        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3719                bytenr = btrfs_sb_offset(i);
3720                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3721                    scrub_dev->commit_total_bytes)
3722                        break;
3723
3724                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3725                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3726                                  NULL, 1, bytenr);
3727                if (ret)
3728                        return ret;
3729        }
3730        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3731
3732        return 0;
3733}
3734
3735/*
3736 * get a reference count on fs_info->scrub_workers. start worker if necessary
3737 */
3738static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3739                                                int is_dev_replace)
3740{
3741        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3742        int max_active = fs_info->thread_pool_size;
3743
3744        lockdep_assert_held(&fs_info->scrub_lock);
3745
3746        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3747                ASSERT(fs_info->scrub_workers == NULL);
3748                fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3749                                flags, is_dev_replace ? 1 : max_active, 4);
3750                if (!fs_info->scrub_workers)
3751                        goto fail_scrub_workers;
3752
3753                ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3754                fs_info->scrub_wr_completion_workers =
3755                        btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3756                                              max_active, 2);
3757                if (!fs_info->scrub_wr_completion_workers)
3758                        goto fail_scrub_wr_completion_workers;
3759
3760                ASSERT(fs_info->scrub_parity_workers == NULL);
3761                fs_info->scrub_parity_workers =
3762                        btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3763                                              max_active, 2);
3764                if (!fs_info->scrub_parity_workers)
3765                        goto fail_scrub_parity_workers;
3766
3767                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3768        } else {
3769                refcount_inc(&fs_info->scrub_workers_refcnt);
3770        }
3771        return 0;
3772
3773fail_scrub_parity_workers:
3774        btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3775fail_scrub_wr_completion_workers:
3776        btrfs_destroy_workqueue(fs_info->scrub_workers);
3777fail_scrub_workers:
3778        return -ENOMEM;
3779}
3780
3781int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3782                    u64 end, struct btrfs_scrub_progress *progress,
3783                    int readonly, int is_dev_replace)
3784{
3785        struct scrub_ctx *sctx;
3786        int ret;
3787        struct btrfs_device *dev;
3788        unsigned int nofs_flag;
3789        struct btrfs_workqueue *scrub_workers = NULL;
3790        struct btrfs_workqueue *scrub_wr_comp = NULL;
3791        struct btrfs_workqueue *scrub_parity = NULL;
3792
3793        if (btrfs_fs_closing(fs_info))
3794                return -EINVAL;
3795
3796        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3797                /*
3798                 * in this case scrub is unable to calculate the checksum
3799                 * the way scrub is implemented. Do not handle this
3800                 * situation at all because it won't ever happen.
3801                 */
3802                btrfs_err(fs_info,
3803                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3804                       fs_info->nodesize,
3805                       BTRFS_STRIPE_LEN);
3806                return -EINVAL;
3807        }
3808
3809        if (fs_info->sectorsize != PAGE_SIZE) {
3810                /* not supported for data w/o checksums */
3811                btrfs_err_rl(fs_info,
3812                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3813                       fs_info->sectorsize, PAGE_SIZE);
3814                return -EINVAL;
3815        }
3816
3817        if (fs_info->nodesize >
3818            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3819            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3820                /*
3821                 * would exhaust the array bounds of pagev member in
3822                 * struct scrub_block
3823                 */
3824                btrfs_err(fs_info,
3825                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3826                       fs_info->nodesize,
3827                       SCRUB_MAX_PAGES_PER_BLOCK,
3828                       fs_info->sectorsize,
3829                       SCRUB_MAX_PAGES_PER_BLOCK);
3830                return -EINVAL;
3831        }
3832
3833        /* Allocate outside of device_list_mutex */
3834        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3835        if (IS_ERR(sctx))
3836                return PTR_ERR(sctx);
3837
3838        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3839        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3840        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3841                     !is_dev_replace)) {
3842                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843                ret = -ENODEV;
3844                goto out_free_ctx;
3845        }
3846
3847        if (!is_dev_replace && !readonly &&
3848            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3849                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3850                btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3851                                rcu_str_deref(dev->name));
3852                ret = -EROFS;
3853                goto out_free_ctx;
3854        }
3855
3856        mutex_lock(&fs_info->scrub_lock);
3857        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3858            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3859                mutex_unlock(&fs_info->scrub_lock);
3860                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3861                ret = -EIO;
3862                goto out_free_ctx;
3863        }
3864
3865        down_read(&fs_info->dev_replace.rwsem);
3866        if (dev->scrub_ctx ||
3867            (!is_dev_replace &&
3868             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3869                up_read(&fs_info->dev_replace.rwsem);
3870                mutex_unlock(&fs_info->scrub_lock);
3871                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3872                ret = -EINPROGRESS;
3873                goto out_free_ctx;
3874        }
3875        up_read(&fs_info->dev_replace.rwsem);
3876
3877        ret = scrub_workers_get(fs_info, is_dev_replace);
3878        if (ret) {
3879                mutex_unlock(&fs_info->scrub_lock);
3880                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881                goto out_free_ctx;
3882        }
3883
3884        sctx->readonly = readonly;
3885        dev->scrub_ctx = sctx;
3886        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3887
3888        /*
3889         * checking @scrub_pause_req here, we can avoid
3890         * race between committing transaction and scrubbing.
3891         */
3892        __scrub_blocked_if_needed(fs_info);
3893        atomic_inc(&fs_info->scrubs_running);
3894        mutex_unlock(&fs_info->scrub_lock);
3895
3896        /*
3897         * In order to avoid deadlock with reclaim when there is a transaction
3898         * trying to pause scrub, make sure we use GFP_NOFS for all the
3899         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3900         * invoked by our callees. The pausing request is done when the
3901         * transaction commit starts, and it blocks the transaction until scrub
3902         * is paused (done at specific points at scrub_stripe() or right above
3903         * before incrementing fs_info->scrubs_running).
3904         */
3905        nofs_flag = memalloc_nofs_save();
3906        if (!is_dev_replace) {
3907                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3908                /*
3909                 * by holding device list mutex, we can
3910                 * kick off writing super in log tree sync.
3911                 */
3912                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3913                ret = scrub_supers(sctx, dev);
3914                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3915        }
3916
3917        if (!ret)
3918                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3919        memalloc_nofs_restore(nofs_flag);
3920
3921        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3922        atomic_dec(&fs_info->scrubs_running);
3923        wake_up(&fs_info->scrub_pause_wait);
3924
3925        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3926
3927        if (progress)
3928                memcpy(progress, &sctx->stat, sizeof(*progress));
3929
3930        if (!is_dev_replace)
3931                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3932                        ret ? "not finished" : "finished", devid, ret);
3933
3934        mutex_lock(&fs_info->scrub_lock);
3935        dev->scrub_ctx = NULL;
3936        if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3937                scrub_workers = fs_info->scrub_workers;
3938                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3939                scrub_parity = fs_info->scrub_parity_workers;
3940
3941                fs_info->scrub_workers = NULL;
3942                fs_info->scrub_wr_completion_workers = NULL;
3943                fs_info->scrub_parity_workers = NULL;
3944        }
3945        mutex_unlock(&fs_info->scrub_lock);
3946
3947        btrfs_destroy_workqueue(scrub_workers);
3948        btrfs_destroy_workqueue(scrub_wr_comp);
3949        btrfs_destroy_workqueue(scrub_parity);
3950        scrub_put_ctx(sctx);
3951
3952        return ret;
3953
3954out_free_ctx:
3955        scrub_free_ctx(sctx);
3956
3957        return ret;
3958}
3959
3960void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3961{
3962        mutex_lock(&fs_info->scrub_lock);
3963        atomic_inc(&fs_info->scrub_pause_req);
3964        while (atomic_read(&fs_info->scrubs_paused) !=
3965               atomic_read(&fs_info->scrubs_running)) {
3966                mutex_unlock(&fs_info->scrub_lock);
3967                wait_event(fs_info->scrub_pause_wait,
3968                           atomic_read(&fs_info->scrubs_paused) ==
3969                           atomic_read(&fs_info->scrubs_running));
3970                mutex_lock(&fs_info->scrub_lock);
3971        }
3972        mutex_unlock(&fs_info->scrub_lock);
3973}
3974
3975void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3976{
3977        atomic_dec(&fs_info->scrub_pause_req);
3978        wake_up(&fs_info->scrub_pause_wait);
3979}
3980
3981int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3982{
3983        mutex_lock(&fs_info->scrub_lock);
3984        if (!atomic_read(&fs_info->scrubs_running)) {
3985                mutex_unlock(&fs_info->scrub_lock);
3986                return -ENOTCONN;
3987        }
3988
3989        atomic_inc(&fs_info->scrub_cancel_req);
3990        while (atomic_read(&fs_info->scrubs_running)) {
3991                mutex_unlock(&fs_info->scrub_lock);
3992                wait_event(fs_info->scrub_pause_wait,
3993                           atomic_read(&fs_info->scrubs_running) == 0);
3994                mutex_lock(&fs_info->scrub_lock);
3995        }
3996        atomic_dec(&fs_info->scrub_cancel_req);
3997        mutex_unlock(&fs_info->scrub_lock);
3998
3999        return 0;
4000}
4001
4002int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4003                           struct btrfs_device *dev)
4004{
4005        struct scrub_ctx *sctx;
4006
4007        mutex_lock(&fs_info->scrub_lock);
4008        sctx = dev->scrub_ctx;
4009        if (!sctx) {
4010                mutex_unlock(&fs_info->scrub_lock);
4011                return -ENOTCONN;
4012        }
4013        atomic_inc(&sctx->cancel_req);
4014        while (dev->scrub_ctx) {
4015                mutex_unlock(&fs_info->scrub_lock);
4016                wait_event(fs_info->scrub_pause_wait,
4017                           dev->scrub_ctx == NULL);
4018                mutex_lock(&fs_info->scrub_lock);
4019        }
4020        mutex_unlock(&fs_info->scrub_lock);
4021
4022        return 0;
4023}
4024
4025int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4026                         struct btrfs_scrub_progress *progress)
4027{
4028        struct btrfs_device *dev;
4029        struct scrub_ctx *sctx = NULL;
4030
4031        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4032        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4033        if (dev)
4034                sctx = dev->scrub_ctx;
4035        if (sctx)
4036                memcpy(progress, &sctx->stat, sizeof(*progress));
4037        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4038
4039        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4040}
4041
4042static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4043                               u64 extent_logical, u64 extent_len,
4044                               u64 *extent_physical,
4045                               struct btrfs_device **extent_dev,
4046                               int *extent_mirror_num)
4047{
4048        u64 mapped_length;
4049        struct btrfs_bio *bbio = NULL;
4050        int ret;
4051
4052        mapped_length = extent_len;
4053        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4054                              &mapped_length, &bbio, 0);
4055        if (ret || !bbio || mapped_length < extent_len ||
4056            !bbio->stripes[0].dev->bdev) {
4057                btrfs_put_bbio(bbio);
4058                return;
4059        }
4060
4061        *extent_physical = bbio->stripes[0].physical;
4062        *extent_mirror_num = bbio->mirror_num;
4063        *extent_dev = bbio->stripes[0].dev;
4064        btrfs_put_bbio(bbio);
4065}
4066