linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26
  27/*
  28 * A fs_path is a helper to dynamically build path names with unknown size.
  29 * It reallocates the internal buffer on demand.
  30 * It allows fast adding of path elements on the right side (normal path) and
  31 * fast adding to the left side (reversed path). A reversed path can also be
  32 * unreversed if needed.
  33 */
  34struct fs_path {
  35        union {
  36                struct {
  37                        char *start;
  38                        char *end;
  39
  40                        char *buf;
  41                        unsigned short buf_len:15;
  42                        unsigned short reversed:1;
  43                        char inline_buf[];
  44                };
  45                /*
  46                 * Average path length does not exceed 200 bytes, we'll have
  47                 * better packing in the slab and higher chance to satisfy
  48                 * a allocation later during send.
  49                 */
  50                char pad[256];
  51        };
  52};
  53#define FS_PATH_INLINE_SIZE \
  54        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  55
  56
  57/* reused for each extent */
  58struct clone_root {
  59        struct btrfs_root *root;
  60        u64 ino;
  61        u64 offset;
  62
  63        u64 found_refs;
  64};
  65
  66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  68
  69struct send_ctx {
  70        struct file *send_filp;
  71        loff_t send_off;
  72        char *send_buf;
  73        u32 send_size;
  74        u32 send_max_size;
  75        u64 total_send_size;
  76        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  77        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  78
  79        struct btrfs_root *send_root;
  80        struct btrfs_root *parent_root;
  81        struct clone_root *clone_roots;
  82        int clone_roots_cnt;
  83
  84        /* current state of the compare_tree call */
  85        struct btrfs_path *left_path;
  86        struct btrfs_path *right_path;
  87        struct btrfs_key *cmp_key;
  88
  89        /*
  90         * infos of the currently processed inode. In case of deleted inodes,
  91         * these are the values from the deleted inode.
  92         */
  93        u64 cur_ino;
  94        u64 cur_inode_gen;
  95        int cur_inode_new;
  96        int cur_inode_new_gen;
  97        int cur_inode_deleted;
  98        u64 cur_inode_size;
  99        u64 cur_inode_mode;
 100        u64 cur_inode_rdev;
 101        u64 cur_inode_last_extent;
 102        u64 cur_inode_next_write_offset;
 103        bool ignore_cur_inode;
 104
 105        u64 send_progress;
 106
 107        struct list_head new_refs;
 108        struct list_head deleted_refs;
 109
 110        struct radix_tree_root name_cache;
 111        struct list_head name_cache_list;
 112        int name_cache_size;
 113
 114        struct file_ra_state ra;
 115
 116        char *read_buf;
 117
 118        /*
 119         * We process inodes by their increasing order, so if before an
 120         * incremental send we reverse the parent/child relationship of
 121         * directories such that a directory with a lower inode number was
 122         * the parent of a directory with a higher inode number, and the one
 123         * becoming the new parent got renamed too, we can't rename/move the
 124         * directory with lower inode number when we finish processing it - we
 125         * must process the directory with higher inode number first, then
 126         * rename/move it and then rename/move the directory with lower inode
 127         * number. Example follows.
 128         *
 129         * Tree state when the first send was performed:
 130         *
 131         * .
 132         * |-- a                   (ino 257)
 133         *     |-- b               (ino 258)
 134         *         |
 135         *         |
 136         *         |-- c           (ino 259)
 137         *         |   |-- d       (ino 260)
 138         *         |
 139         *         |-- c2          (ino 261)
 140         *
 141         * Tree state when the second (incremental) send is performed:
 142         *
 143         * .
 144         * |-- a                   (ino 257)
 145         *     |-- b               (ino 258)
 146         *         |-- c2          (ino 261)
 147         *             |-- d2      (ino 260)
 148         *                 |-- cc  (ino 259)
 149         *
 150         * The sequence of steps that lead to the second state was:
 151         *
 152         * mv /a/b/c/d /a/b/c2/d2
 153         * mv /a/b/c /a/b/c2/d2/cc
 154         *
 155         * "c" has lower inode number, but we can't move it (2nd mv operation)
 156         * before we move "d", which has higher inode number.
 157         *
 158         * So we just memorize which move/rename operations must be performed
 159         * later when their respective parent is processed and moved/renamed.
 160         */
 161
 162        /* Indexed by parent directory inode number. */
 163        struct rb_root pending_dir_moves;
 164
 165        /*
 166         * Reverse index, indexed by the inode number of a directory that
 167         * is waiting for the move/rename of its immediate parent before its
 168         * own move/rename can be performed.
 169         */
 170        struct rb_root waiting_dir_moves;
 171
 172        /*
 173         * A directory that is going to be rm'ed might have a child directory
 174         * which is in the pending directory moves index above. In this case,
 175         * the directory can only be removed after the move/rename of its child
 176         * is performed. Example:
 177         *
 178         * Parent snapshot:
 179         *
 180         * .                        (ino 256)
 181         * |-- a/                   (ino 257)
 182         *     |-- b/               (ino 258)
 183         *         |-- c/           (ino 259)
 184         *         |   |-- x/       (ino 260)
 185         *         |
 186         *         |-- y/           (ino 261)
 187         *
 188         * Send snapshot:
 189         *
 190         * .                        (ino 256)
 191         * |-- a/                   (ino 257)
 192         *     |-- b/               (ino 258)
 193         *         |-- YY/          (ino 261)
 194         *              |-- x/      (ino 260)
 195         *
 196         * Sequence of steps that lead to the send snapshot:
 197         * rm -f /a/b/c/foo.txt
 198         * mv /a/b/y /a/b/YY
 199         * mv /a/b/c/x /a/b/YY
 200         * rmdir /a/b/c
 201         *
 202         * When the child is processed, its move/rename is delayed until its
 203         * parent is processed (as explained above), but all other operations
 204         * like update utimes, chown, chgrp, etc, are performed and the paths
 205         * that it uses for those operations must use the orphanized name of
 206         * its parent (the directory we're going to rm later), so we need to
 207         * memorize that name.
 208         *
 209         * Indexed by the inode number of the directory to be deleted.
 210         */
 211        struct rb_root orphan_dirs;
 212};
 213
 214struct pending_dir_move {
 215        struct rb_node node;
 216        struct list_head list;
 217        u64 parent_ino;
 218        u64 ino;
 219        u64 gen;
 220        struct list_head update_refs;
 221};
 222
 223struct waiting_dir_move {
 224        struct rb_node node;
 225        u64 ino;
 226        /*
 227         * There might be some directory that could not be removed because it
 228         * was waiting for this directory inode to be moved first. Therefore
 229         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 230         */
 231        u64 rmdir_ino;
 232        bool orphanized;
 233};
 234
 235struct orphan_dir_info {
 236        struct rb_node node;
 237        u64 ino;
 238        u64 gen;
 239        u64 last_dir_index_offset;
 240};
 241
 242struct name_cache_entry {
 243        struct list_head list;
 244        /*
 245         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 246         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 247         * more then one inum would fall into the same entry, we use radix_list
 248         * to store the additional entries. radix_list is also used to store
 249         * entries where two entries have the same inum but different
 250         * generations.
 251         */
 252        struct list_head radix_list;
 253        u64 ino;
 254        u64 gen;
 255        u64 parent_ino;
 256        u64 parent_gen;
 257        int ret;
 258        int need_later_update;
 259        int name_len;
 260        char name[];
 261};
 262
 263__cold
 264static void inconsistent_snapshot_error(struct send_ctx *sctx,
 265                                        enum btrfs_compare_tree_result result,
 266                                        const char *what)
 267{
 268        const char *result_string;
 269
 270        switch (result) {
 271        case BTRFS_COMPARE_TREE_NEW:
 272                result_string = "new";
 273                break;
 274        case BTRFS_COMPARE_TREE_DELETED:
 275                result_string = "deleted";
 276                break;
 277        case BTRFS_COMPARE_TREE_CHANGED:
 278                result_string = "updated";
 279                break;
 280        case BTRFS_COMPARE_TREE_SAME:
 281                ASSERT(0);
 282                result_string = "unchanged";
 283                break;
 284        default:
 285                ASSERT(0);
 286                result_string = "unexpected";
 287        }
 288
 289        btrfs_err(sctx->send_root->fs_info,
 290                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 291                  result_string, what, sctx->cmp_key->objectid,
 292                  sctx->send_root->root_key.objectid,
 293                  (sctx->parent_root ?
 294                   sctx->parent_root->root_key.objectid : 0));
 295}
 296
 297static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 298
 299static struct waiting_dir_move *
 300get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 301
 302static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 303
 304static int need_send_hole(struct send_ctx *sctx)
 305{
 306        return (sctx->parent_root && !sctx->cur_inode_new &&
 307                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 308                S_ISREG(sctx->cur_inode_mode));
 309}
 310
 311static void fs_path_reset(struct fs_path *p)
 312{
 313        if (p->reversed) {
 314                p->start = p->buf + p->buf_len - 1;
 315                p->end = p->start;
 316                *p->start = 0;
 317        } else {
 318                p->start = p->buf;
 319                p->end = p->start;
 320                *p->start = 0;
 321        }
 322}
 323
 324static struct fs_path *fs_path_alloc(void)
 325{
 326        struct fs_path *p;
 327
 328        p = kmalloc(sizeof(*p), GFP_KERNEL);
 329        if (!p)
 330                return NULL;
 331        p->reversed = 0;
 332        p->buf = p->inline_buf;
 333        p->buf_len = FS_PATH_INLINE_SIZE;
 334        fs_path_reset(p);
 335        return p;
 336}
 337
 338static struct fs_path *fs_path_alloc_reversed(void)
 339{
 340        struct fs_path *p;
 341
 342        p = fs_path_alloc();
 343        if (!p)
 344                return NULL;
 345        p->reversed = 1;
 346        fs_path_reset(p);
 347        return p;
 348}
 349
 350static void fs_path_free(struct fs_path *p)
 351{
 352        if (!p)
 353                return;
 354        if (p->buf != p->inline_buf)
 355                kfree(p->buf);
 356        kfree(p);
 357}
 358
 359static int fs_path_len(struct fs_path *p)
 360{
 361        return p->end - p->start;
 362}
 363
 364static int fs_path_ensure_buf(struct fs_path *p, int len)
 365{
 366        char *tmp_buf;
 367        int path_len;
 368        int old_buf_len;
 369
 370        len++;
 371
 372        if (p->buf_len >= len)
 373                return 0;
 374
 375        if (len > PATH_MAX) {
 376                WARN_ON(1);
 377                return -ENOMEM;
 378        }
 379
 380        path_len = p->end - p->start;
 381        old_buf_len = p->buf_len;
 382
 383        /*
 384         * First time the inline_buf does not suffice
 385         */
 386        if (p->buf == p->inline_buf) {
 387                tmp_buf = kmalloc(len, GFP_KERNEL);
 388                if (tmp_buf)
 389                        memcpy(tmp_buf, p->buf, old_buf_len);
 390        } else {
 391                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 392        }
 393        if (!tmp_buf)
 394                return -ENOMEM;
 395        p->buf = tmp_buf;
 396        /*
 397         * The real size of the buffer is bigger, this will let the fast path
 398         * happen most of the time
 399         */
 400        p->buf_len = ksize(p->buf);
 401
 402        if (p->reversed) {
 403                tmp_buf = p->buf + old_buf_len - path_len - 1;
 404                p->end = p->buf + p->buf_len - 1;
 405                p->start = p->end - path_len;
 406                memmove(p->start, tmp_buf, path_len + 1);
 407        } else {
 408                p->start = p->buf;
 409                p->end = p->start + path_len;
 410        }
 411        return 0;
 412}
 413
 414static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 415                                   char **prepared)
 416{
 417        int ret;
 418        int new_len;
 419
 420        new_len = p->end - p->start + name_len;
 421        if (p->start != p->end)
 422                new_len++;
 423        ret = fs_path_ensure_buf(p, new_len);
 424        if (ret < 0)
 425                goto out;
 426
 427        if (p->reversed) {
 428                if (p->start != p->end)
 429                        *--p->start = '/';
 430                p->start -= name_len;
 431                *prepared = p->start;
 432        } else {
 433                if (p->start != p->end)
 434                        *p->end++ = '/';
 435                *prepared = p->end;
 436                p->end += name_len;
 437                *p->end = 0;
 438        }
 439
 440out:
 441        return ret;
 442}
 443
 444static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 445{
 446        int ret;
 447        char *prepared;
 448
 449        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 450        if (ret < 0)
 451                goto out;
 452        memcpy(prepared, name, name_len);
 453
 454out:
 455        return ret;
 456}
 457
 458static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 459{
 460        int ret;
 461        char *prepared;
 462
 463        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 464        if (ret < 0)
 465                goto out;
 466        memcpy(prepared, p2->start, p2->end - p2->start);
 467
 468out:
 469        return ret;
 470}
 471
 472static int fs_path_add_from_extent_buffer(struct fs_path *p,
 473                                          struct extent_buffer *eb,
 474                                          unsigned long off, int len)
 475{
 476        int ret;
 477        char *prepared;
 478
 479        ret = fs_path_prepare_for_add(p, len, &prepared);
 480        if (ret < 0)
 481                goto out;
 482
 483        read_extent_buffer(eb, prepared, off, len);
 484
 485out:
 486        return ret;
 487}
 488
 489static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 490{
 491        int ret;
 492
 493        p->reversed = from->reversed;
 494        fs_path_reset(p);
 495
 496        ret = fs_path_add_path(p, from);
 497
 498        return ret;
 499}
 500
 501
 502static void fs_path_unreverse(struct fs_path *p)
 503{
 504        char *tmp;
 505        int len;
 506
 507        if (!p->reversed)
 508                return;
 509
 510        tmp = p->start;
 511        len = p->end - p->start;
 512        p->start = p->buf;
 513        p->end = p->start + len;
 514        memmove(p->start, tmp, len + 1);
 515        p->reversed = 0;
 516}
 517
 518static struct btrfs_path *alloc_path_for_send(void)
 519{
 520        struct btrfs_path *path;
 521
 522        path = btrfs_alloc_path();
 523        if (!path)
 524                return NULL;
 525        path->search_commit_root = 1;
 526        path->skip_locking = 1;
 527        path->need_commit_sem = 1;
 528        return path;
 529}
 530
 531static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 532{
 533        int ret;
 534        u32 pos = 0;
 535
 536        while (pos < len) {
 537                ret = kernel_write(filp, buf + pos, len - pos, off);
 538                /* TODO handle that correctly */
 539                /*if (ret == -ERESTARTSYS) {
 540                        continue;
 541                }*/
 542                if (ret < 0)
 543                        return ret;
 544                if (ret == 0) {
 545                        return -EIO;
 546                }
 547                pos += ret;
 548        }
 549
 550        return 0;
 551}
 552
 553static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 554{
 555        struct btrfs_tlv_header *hdr;
 556        int total_len = sizeof(*hdr) + len;
 557        int left = sctx->send_max_size - sctx->send_size;
 558
 559        if (unlikely(left < total_len))
 560                return -EOVERFLOW;
 561
 562        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 563        hdr->tlv_type = cpu_to_le16(attr);
 564        hdr->tlv_len = cpu_to_le16(len);
 565        memcpy(hdr + 1, data, len);
 566        sctx->send_size += total_len;
 567
 568        return 0;
 569}
 570
 571#define TLV_PUT_DEFINE_INT(bits) \
 572        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 573                        u##bits attr, u##bits value)                    \
 574        {                                                               \
 575                __le##bits __tmp = cpu_to_le##bits(value);              \
 576                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 577        }
 578
 579TLV_PUT_DEFINE_INT(64)
 580
 581static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 582                          const char *str, int len)
 583{
 584        if (len == -1)
 585                len = strlen(str);
 586        return tlv_put(sctx, attr, str, len);
 587}
 588
 589static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 590                        const u8 *uuid)
 591{
 592        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 593}
 594
 595static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 596                                  struct extent_buffer *eb,
 597                                  struct btrfs_timespec *ts)
 598{
 599        struct btrfs_timespec bts;
 600        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 601        return tlv_put(sctx, attr, &bts, sizeof(bts));
 602}
 603
 604
 605#define TLV_PUT(sctx, attrtype, data, attrlen) \
 606        do { \
 607                ret = tlv_put(sctx, attrtype, data, attrlen); \
 608                if (ret < 0) \
 609                        goto tlv_put_failure; \
 610        } while (0)
 611
 612#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 613        do { \
 614                ret = tlv_put_u##bits(sctx, attrtype, value); \
 615                if (ret < 0) \
 616                        goto tlv_put_failure; \
 617        } while (0)
 618
 619#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 620#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 621#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 622#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 623#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 624        do { \
 625                ret = tlv_put_string(sctx, attrtype, str, len); \
 626                if (ret < 0) \
 627                        goto tlv_put_failure; \
 628        } while (0)
 629#define TLV_PUT_PATH(sctx, attrtype, p) \
 630        do { \
 631                ret = tlv_put_string(sctx, attrtype, p->start, \
 632                        p->end - p->start); \
 633                if (ret < 0) \
 634                        goto tlv_put_failure; \
 635        } while(0)
 636#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 637        do { \
 638                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 639                if (ret < 0) \
 640                        goto tlv_put_failure; \
 641        } while (0)
 642#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 643        do { \
 644                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 645                if (ret < 0) \
 646                        goto tlv_put_failure; \
 647        } while (0)
 648
 649static int send_header(struct send_ctx *sctx)
 650{
 651        struct btrfs_stream_header hdr;
 652
 653        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 654        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 655
 656        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 657                                        &sctx->send_off);
 658}
 659
 660/*
 661 * For each command/item we want to send to userspace, we call this function.
 662 */
 663static int begin_cmd(struct send_ctx *sctx, int cmd)
 664{
 665        struct btrfs_cmd_header *hdr;
 666
 667        if (WARN_ON(!sctx->send_buf))
 668                return -EINVAL;
 669
 670        BUG_ON(sctx->send_size);
 671
 672        sctx->send_size += sizeof(*hdr);
 673        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 674        hdr->cmd = cpu_to_le16(cmd);
 675
 676        return 0;
 677}
 678
 679static int send_cmd(struct send_ctx *sctx)
 680{
 681        int ret;
 682        struct btrfs_cmd_header *hdr;
 683        u32 crc;
 684
 685        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 686        hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 687        hdr->crc = 0;
 688
 689        crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 690        hdr->crc = cpu_to_le32(crc);
 691
 692        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 693                                        &sctx->send_off);
 694
 695        sctx->total_send_size += sctx->send_size;
 696        sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 697        sctx->send_size = 0;
 698
 699        return ret;
 700}
 701
 702/*
 703 * Sends a move instruction to user space
 704 */
 705static int send_rename(struct send_ctx *sctx,
 706                     struct fs_path *from, struct fs_path *to)
 707{
 708        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 709        int ret;
 710
 711        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 712
 713        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 714        if (ret < 0)
 715                goto out;
 716
 717        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 718        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 719
 720        ret = send_cmd(sctx);
 721
 722tlv_put_failure:
 723out:
 724        return ret;
 725}
 726
 727/*
 728 * Sends a link instruction to user space
 729 */
 730static int send_link(struct send_ctx *sctx,
 731                     struct fs_path *path, struct fs_path *lnk)
 732{
 733        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 734        int ret;
 735
 736        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 737
 738        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 739        if (ret < 0)
 740                goto out;
 741
 742        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 743        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 744
 745        ret = send_cmd(sctx);
 746
 747tlv_put_failure:
 748out:
 749        return ret;
 750}
 751
 752/*
 753 * Sends an unlink instruction to user space
 754 */
 755static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 756{
 757        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 758        int ret;
 759
 760        btrfs_debug(fs_info, "send_unlink %s", path->start);
 761
 762        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 763        if (ret < 0)
 764                goto out;
 765
 766        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 767
 768        ret = send_cmd(sctx);
 769
 770tlv_put_failure:
 771out:
 772        return ret;
 773}
 774
 775/*
 776 * Sends a rmdir instruction to user space
 777 */
 778static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 779{
 780        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 781        int ret;
 782
 783        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 784
 785        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 786        if (ret < 0)
 787                goto out;
 788
 789        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 790
 791        ret = send_cmd(sctx);
 792
 793tlv_put_failure:
 794out:
 795        return ret;
 796}
 797
 798/*
 799 * Helper function to retrieve some fields from an inode item.
 800 */
 801static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 802                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 803                          u64 *gid, u64 *rdev)
 804{
 805        int ret;
 806        struct btrfs_inode_item *ii;
 807        struct btrfs_key key;
 808
 809        key.objectid = ino;
 810        key.type = BTRFS_INODE_ITEM_KEY;
 811        key.offset = 0;
 812        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 813        if (ret) {
 814                if (ret > 0)
 815                        ret = -ENOENT;
 816                return ret;
 817        }
 818
 819        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 820                        struct btrfs_inode_item);
 821        if (size)
 822                *size = btrfs_inode_size(path->nodes[0], ii);
 823        if (gen)
 824                *gen = btrfs_inode_generation(path->nodes[0], ii);
 825        if (mode)
 826                *mode = btrfs_inode_mode(path->nodes[0], ii);
 827        if (uid)
 828                *uid = btrfs_inode_uid(path->nodes[0], ii);
 829        if (gid)
 830                *gid = btrfs_inode_gid(path->nodes[0], ii);
 831        if (rdev)
 832                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 833
 834        return ret;
 835}
 836
 837static int get_inode_info(struct btrfs_root *root,
 838                          u64 ino, u64 *size, u64 *gen,
 839                          u64 *mode, u64 *uid, u64 *gid,
 840                          u64 *rdev)
 841{
 842        struct btrfs_path *path;
 843        int ret;
 844
 845        path = alloc_path_for_send();
 846        if (!path)
 847                return -ENOMEM;
 848        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 849                               rdev);
 850        btrfs_free_path(path);
 851        return ret;
 852}
 853
 854typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 855                                   struct fs_path *p,
 856                                   void *ctx);
 857
 858/*
 859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 860 * btrfs_inode_extref.
 861 * The iterate callback may return a non zero value to stop iteration. This can
 862 * be a negative value for error codes or 1 to simply stop it.
 863 *
 864 * path must point to the INODE_REF or INODE_EXTREF when called.
 865 */
 866static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 867                             struct btrfs_key *found_key, int resolve,
 868                             iterate_inode_ref_t iterate, void *ctx)
 869{
 870        struct extent_buffer *eb = path->nodes[0];
 871        struct btrfs_item *item;
 872        struct btrfs_inode_ref *iref;
 873        struct btrfs_inode_extref *extref;
 874        struct btrfs_path *tmp_path;
 875        struct fs_path *p;
 876        u32 cur = 0;
 877        u32 total;
 878        int slot = path->slots[0];
 879        u32 name_len;
 880        char *start;
 881        int ret = 0;
 882        int num = 0;
 883        int index;
 884        u64 dir;
 885        unsigned long name_off;
 886        unsigned long elem_size;
 887        unsigned long ptr;
 888
 889        p = fs_path_alloc_reversed();
 890        if (!p)
 891                return -ENOMEM;
 892
 893        tmp_path = alloc_path_for_send();
 894        if (!tmp_path) {
 895                fs_path_free(p);
 896                return -ENOMEM;
 897        }
 898
 899
 900        if (found_key->type == BTRFS_INODE_REF_KEY) {
 901                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 902                                                    struct btrfs_inode_ref);
 903                item = btrfs_item_nr(slot);
 904                total = btrfs_item_size(eb, item);
 905                elem_size = sizeof(*iref);
 906        } else {
 907                ptr = btrfs_item_ptr_offset(eb, slot);
 908                total = btrfs_item_size_nr(eb, slot);
 909                elem_size = sizeof(*extref);
 910        }
 911
 912        while (cur < total) {
 913                fs_path_reset(p);
 914
 915                if (found_key->type == BTRFS_INODE_REF_KEY) {
 916                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 917                        name_len = btrfs_inode_ref_name_len(eb, iref);
 918                        name_off = (unsigned long)(iref + 1);
 919                        index = btrfs_inode_ref_index(eb, iref);
 920                        dir = found_key->offset;
 921                } else {
 922                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 923                        name_len = btrfs_inode_extref_name_len(eb, extref);
 924                        name_off = (unsigned long)&extref->name;
 925                        index = btrfs_inode_extref_index(eb, extref);
 926                        dir = btrfs_inode_extref_parent(eb, extref);
 927                }
 928
 929                if (resolve) {
 930                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 931                                                  name_off, eb, dir,
 932                                                  p->buf, p->buf_len);
 933                        if (IS_ERR(start)) {
 934                                ret = PTR_ERR(start);
 935                                goto out;
 936                        }
 937                        if (start < p->buf) {
 938                                /* overflow , try again with larger buffer */
 939                                ret = fs_path_ensure_buf(p,
 940                                                p->buf_len + p->buf - start);
 941                                if (ret < 0)
 942                                        goto out;
 943                                start = btrfs_ref_to_path(root, tmp_path,
 944                                                          name_len, name_off,
 945                                                          eb, dir,
 946                                                          p->buf, p->buf_len);
 947                                if (IS_ERR(start)) {
 948                                        ret = PTR_ERR(start);
 949                                        goto out;
 950                                }
 951                                BUG_ON(start < p->buf);
 952                        }
 953                        p->start = start;
 954                } else {
 955                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 956                                                             name_len);
 957                        if (ret < 0)
 958                                goto out;
 959                }
 960
 961                cur += elem_size + name_len;
 962                ret = iterate(num, dir, index, p, ctx);
 963                if (ret)
 964                        goto out;
 965                num++;
 966        }
 967
 968out:
 969        btrfs_free_path(tmp_path);
 970        fs_path_free(p);
 971        return ret;
 972}
 973
 974typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 975                                  const char *name, int name_len,
 976                                  const char *data, int data_len,
 977                                  u8 type, void *ctx);
 978
 979/*
 980 * Helper function to iterate the entries in ONE btrfs_dir_item.
 981 * The iterate callback may return a non zero value to stop iteration. This can
 982 * be a negative value for error codes or 1 to simply stop it.
 983 *
 984 * path must point to the dir item when called.
 985 */
 986static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 987                            iterate_dir_item_t iterate, void *ctx)
 988{
 989        int ret = 0;
 990        struct extent_buffer *eb;
 991        struct btrfs_item *item;
 992        struct btrfs_dir_item *di;
 993        struct btrfs_key di_key;
 994        char *buf = NULL;
 995        int buf_len;
 996        u32 name_len;
 997        u32 data_len;
 998        u32 cur;
 999        u32 len;
1000        u32 total;
1001        int slot;
1002        int num;
1003        u8 type;
1004
1005        /*
1006         * Start with a small buffer (1 page). If later we end up needing more
1007         * space, which can happen for xattrs on a fs with a leaf size greater
1008         * then the page size, attempt to increase the buffer. Typically xattr
1009         * values are small.
1010         */
1011        buf_len = PATH_MAX;
1012        buf = kmalloc(buf_len, GFP_KERNEL);
1013        if (!buf) {
1014                ret = -ENOMEM;
1015                goto out;
1016        }
1017
1018        eb = path->nodes[0];
1019        slot = path->slots[0];
1020        item = btrfs_item_nr(slot);
1021        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022        cur = 0;
1023        len = 0;
1024        total = btrfs_item_size(eb, item);
1025
1026        num = 0;
1027        while (cur < total) {
1028                name_len = btrfs_dir_name_len(eb, di);
1029                data_len = btrfs_dir_data_len(eb, di);
1030                type = btrfs_dir_type(eb, di);
1031                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1032
1033                if (type == BTRFS_FT_XATTR) {
1034                        if (name_len > XATTR_NAME_MAX) {
1035                                ret = -ENAMETOOLONG;
1036                                goto out;
1037                        }
1038                        if (name_len + data_len >
1039                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1040                                ret = -E2BIG;
1041                                goto out;
1042                        }
1043                } else {
1044                        /*
1045                         * Path too long
1046                         */
1047                        if (name_len + data_len > PATH_MAX) {
1048                                ret = -ENAMETOOLONG;
1049                                goto out;
1050                        }
1051                }
1052
1053                if (name_len + data_len > buf_len) {
1054                        buf_len = name_len + data_len;
1055                        if (is_vmalloc_addr(buf)) {
1056                                vfree(buf);
1057                                buf = NULL;
1058                        } else {
1059                                char *tmp = krealloc(buf, buf_len,
1060                                                GFP_KERNEL | __GFP_NOWARN);
1061
1062                                if (!tmp)
1063                                        kfree(buf);
1064                                buf = tmp;
1065                        }
1066                        if (!buf) {
1067                                buf = kvmalloc(buf_len, GFP_KERNEL);
1068                                if (!buf) {
1069                                        ret = -ENOMEM;
1070                                        goto out;
1071                                }
1072                        }
1073                }
1074
1075                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076                                name_len + data_len);
1077
1078                len = sizeof(*di) + name_len + data_len;
1079                di = (struct btrfs_dir_item *)((char *)di + len);
1080                cur += len;
1081
1082                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083                                data_len, type, ctx);
1084                if (ret < 0)
1085                        goto out;
1086                if (ret) {
1087                        ret = 0;
1088                        goto out;
1089                }
1090
1091                num++;
1092        }
1093
1094out:
1095        kvfree(buf);
1096        return ret;
1097}
1098
1099static int __copy_first_ref(int num, u64 dir, int index,
1100                            struct fs_path *p, void *ctx)
1101{
1102        int ret;
1103        struct fs_path *pt = ctx;
1104
1105        ret = fs_path_copy(pt, p);
1106        if (ret < 0)
1107                return ret;
1108
1109        /* we want the first only */
1110        return 1;
1111}
1112
1113/*
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1116 */
1117static int get_inode_path(struct btrfs_root *root,
1118                          u64 ino, struct fs_path *path)
1119{
1120        int ret;
1121        struct btrfs_key key, found_key;
1122        struct btrfs_path *p;
1123
1124        p = alloc_path_for_send();
1125        if (!p)
1126                return -ENOMEM;
1127
1128        fs_path_reset(path);
1129
1130        key.objectid = ino;
1131        key.type = BTRFS_INODE_REF_KEY;
1132        key.offset = 0;
1133
1134        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135        if (ret < 0)
1136                goto out;
1137        if (ret) {
1138                ret = 1;
1139                goto out;
1140        }
1141        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142        if (found_key.objectid != ino ||
1143            (found_key.type != BTRFS_INODE_REF_KEY &&
1144             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1145                ret = -ENOENT;
1146                goto out;
1147        }
1148
1149        ret = iterate_inode_ref(root, p, &found_key, 1,
1150                                __copy_first_ref, path);
1151        if (ret < 0)
1152                goto out;
1153        ret = 0;
1154
1155out:
1156        btrfs_free_path(p);
1157        return ret;
1158}
1159
1160struct backref_ctx {
1161        struct send_ctx *sctx;
1162
1163        struct btrfs_path *path;
1164        /* number of total found references */
1165        u64 found;
1166
1167        /*
1168         * used for clones found in send_root. clones found behind cur_objectid
1169         * and cur_offset are not considered as allowed clones.
1170         */
1171        u64 cur_objectid;
1172        u64 cur_offset;
1173
1174        /* may be truncated in case it's the last extent in a file */
1175        u64 extent_len;
1176
1177        /* data offset in the file extent item */
1178        u64 data_offset;
1179
1180        /* Just to check for bugs in backref resolving */
1181        int found_itself;
1182};
1183
1184static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1185{
1186        u64 root = (u64)(uintptr_t)key;
1187        struct clone_root *cr = (struct clone_root *)elt;
1188
1189        if (root < cr->root->root_key.objectid)
1190                return -1;
1191        if (root > cr->root->root_key.objectid)
1192                return 1;
1193        return 0;
1194}
1195
1196static int __clone_root_cmp_sort(const void *e1, const void *e2)
1197{
1198        struct clone_root *cr1 = (struct clone_root *)e1;
1199        struct clone_root *cr2 = (struct clone_root *)e2;
1200
1201        if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1202                return -1;
1203        if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1204                return 1;
1205        return 0;
1206}
1207
1208/*
1209 * Called for every backref that is found for the current extent.
1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1211 */
1212static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1213{
1214        struct backref_ctx *bctx = ctx_;
1215        struct clone_root *found;
1216        int ret;
1217        u64 i_size;
1218
1219        /* First check if the root is in the list of accepted clone sources */
1220        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221                        bctx->sctx->clone_roots_cnt,
1222                        sizeof(struct clone_root),
1223                        __clone_root_cmp_bsearch);
1224        if (!found)
1225                return 0;
1226
1227        if (found->root == bctx->sctx->send_root &&
1228            ino == bctx->cur_objectid &&
1229            offset == bctx->cur_offset) {
1230                bctx->found_itself = 1;
1231        }
1232
1233        /*
1234         * There are inodes that have extents that lie behind its i_size. Don't
1235         * accept clones from these extents.
1236         */
1237        ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1238                               NULL, NULL, NULL);
1239        btrfs_release_path(bctx->path);
1240        if (ret < 0)
1241                return ret;
1242
1243        if (offset + bctx->data_offset + bctx->extent_len > i_size)
1244                return 0;
1245
1246        /*
1247         * Make sure we don't consider clones from send_root that are
1248         * behind the current inode/offset.
1249         */
1250        if (found->root == bctx->sctx->send_root) {
1251                /*
1252                 * TODO for the moment we don't accept clones from the inode
1253                 * that is currently send. We may change this when
1254                 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1255                 * file.
1256                 */
1257                if (ino >= bctx->cur_objectid)
1258                        return 0;
1259        }
1260
1261        bctx->found++;
1262        found->found_refs++;
1263        if (ino < found->ino) {
1264                found->ino = ino;
1265                found->offset = offset;
1266        } else if (found->ino == ino) {
1267                /*
1268                 * same extent found more then once in the same file.
1269                 */
1270                if (found->offset > offset + bctx->extent_len)
1271                        found->offset = offset;
1272        }
1273
1274        return 0;
1275}
1276
1277/*
1278 * Given an inode, offset and extent item, it finds a good clone for a clone
1279 * instruction. Returns -ENOENT when none could be found. The function makes
1280 * sure that the returned clone is usable at the point where sending is at the
1281 * moment. This means, that no clones are accepted which lie behind the current
1282 * inode+offset.
1283 *
1284 * path must point to the extent item when called.
1285 */
1286static int find_extent_clone(struct send_ctx *sctx,
1287                             struct btrfs_path *path,
1288                             u64 ino, u64 data_offset,
1289                             u64 ino_size,
1290                             struct clone_root **found)
1291{
1292        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1293        int ret;
1294        int extent_type;
1295        u64 logical;
1296        u64 disk_byte;
1297        u64 num_bytes;
1298        u64 extent_item_pos;
1299        u64 flags = 0;
1300        struct btrfs_file_extent_item *fi;
1301        struct extent_buffer *eb = path->nodes[0];
1302        struct backref_ctx *backref_ctx = NULL;
1303        struct clone_root *cur_clone_root;
1304        struct btrfs_key found_key;
1305        struct btrfs_path *tmp_path;
1306        int compressed;
1307        u32 i;
1308
1309        tmp_path = alloc_path_for_send();
1310        if (!tmp_path)
1311                return -ENOMEM;
1312
1313        /* We only use this path under the commit sem */
1314        tmp_path->need_commit_sem = 0;
1315
1316        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1317        if (!backref_ctx) {
1318                ret = -ENOMEM;
1319                goto out;
1320        }
1321
1322        backref_ctx->path = tmp_path;
1323
1324        if (data_offset >= ino_size) {
1325                /*
1326                 * There may be extents that lie behind the file's size.
1327                 * I at least had this in combination with snapshotting while
1328                 * writing large files.
1329                 */
1330                ret = 0;
1331                goto out;
1332        }
1333
1334        fi = btrfs_item_ptr(eb, path->slots[0],
1335                        struct btrfs_file_extent_item);
1336        extent_type = btrfs_file_extent_type(eb, fi);
1337        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338                ret = -ENOENT;
1339                goto out;
1340        }
1341        compressed = btrfs_file_extent_compression(eb, fi);
1342
1343        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345        if (disk_byte == 0) {
1346                ret = -ENOENT;
1347                goto out;
1348        }
1349        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1350
1351        down_read(&fs_info->commit_root_sem);
1352        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353                                  &found_key, &flags);
1354        up_read(&fs_info->commit_root_sem);
1355        btrfs_release_path(tmp_path);
1356
1357        if (ret < 0)
1358                goto out;
1359        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1360                ret = -EIO;
1361                goto out;
1362        }
1363
1364        /*
1365         * Setup the clone roots.
1366         */
1367        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368                cur_clone_root = sctx->clone_roots + i;
1369                cur_clone_root->ino = (u64)-1;
1370                cur_clone_root->offset = 0;
1371                cur_clone_root->found_refs = 0;
1372        }
1373
1374        backref_ctx->sctx = sctx;
1375        backref_ctx->found = 0;
1376        backref_ctx->cur_objectid = ino;
1377        backref_ctx->cur_offset = data_offset;
1378        backref_ctx->found_itself = 0;
1379        backref_ctx->extent_len = num_bytes;
1380        /*
1381         * For non-compressed extents iterate_extent_inodes() gives us extent
1382         * offsets that already take into account the data offset, but not for
1383         * compressed extents, since the offset is logical and not relative to
1384         * the physical extent locations. We must take this into account to
1385         * avoid sending clone offsets that go beyond the source file's size,
1386         * which would result in the clone ioctl failing with -EINVAL on the
1387         * receiving end.
1388         */
1389        if (compressed == BTRFS_COMPRESS_NONE)
1390                backref_ctx->data_offset = 0;
1391        else
1392                backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1393
1394        /*
1395         * The last extent of a file may be too large due to page alignment.
1396         * We need to adjust extent_len in this case so that the checks in
1397         * __iterate_backrefs work.
1398         */
1399        if (data_offset + num_bytes >= ino_size)
1400                backref_ctx->extent_len = ino_size - data_offset;
1401
1402        /*
1403         * Now collect all backrefs.
1404         */
1405        if (compressed == BTRFS_COMPRESS_NONE)
1406                extent_item_pos = logical - found_key.objectid;
1407        else
1408                extent_item_pos = 0;
1409        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410                                    extent_item_pos, 1, __iterate_backrefs,
1411                                    backref_ctx, false);
1412
1413        if (ret < 0)
1414                goto out;
1415
1416        if (!backref_ctx->found_itself) {
1417                /* found a bug in backref code? */
1418                ret = -EIO;
1419                btrfs_err(fs_info,
1420                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421                          ino, data_offset, disk_byte, found_key.objectid);
1422                goto out;
1423        }
1424
1425        btrfs_debug(fs_info,
1426                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427                    data_offset, ino, num_bytes, logical);
1428
1429        if (!backref_ctx->found)
1430                btrfs_debug(fs_info, "no clones found");
1431
1432        cur_clone_root = NULL;
1433        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434                if (sctx->clone_roots[i].found_refs) {
1435                        if (!cur_clone_root)
1436                                cur_clone_root = sctx->clone_roots + i;
1437                        else if (sctx->clone_roots[i].root == sctx->send_root)
1438                                /* prefer clones from send_root over others */
1439                                cur_clone_root = sctx->clone_roots + i;
1440                }
1441
1442        }
1443
1444        if (cur_clone_root) {
1445                *found = cur_clone_root;
1446                ret = 0;
1447        } else {
1448                ret = -ENOENT;
1449        }
1450
1451out:
1452        btrfs_free_path(tmp_path);
1453        kfree(backref_ctx);
1454        return ret;
1455}
1456
1457static int read_symlink(struct btrfs_root *root,
1458                        u64 ino,
1459                        struct fs_path *dest)
1460{
1461        int ret;
1462        struct btrfs_path *path;
1463        struct btrfs_key key;
1464        struct btrfs_file_extent_item *ei;
1465        u8 type;
1466        u8 compression;
1467        unsigned long off;
1468        int len;
1469
1470        path = alloc_path_for_send();
1471        if (!path)
1472                return -ENOMEM;
1473
1474        key.objectid = ino;
1475        key.type = BTRFS_EXTENT_DATA_KEY;
1476        key.offset = 0;
1477        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1478        if (ret < 0)
1479                goto out;
1480        if (ret) {
1481                /*
1482                 * An empty symlink inode. Can happen in rare error paths when
1483                 * creating a symlink (transaction committed before the inode
1484                 * eviction handler removed the symlink inode items and a crash
1485                 * happened in between or the subvol was snapshoted in between).
1486                 * Print an informative message to dmesg/syslog so that the user
1487                 * can delete the symlink.
1488                 */
1489                btrfs_err(root->fs_info,
1490                          "Found empty symlink inode %llu at root %llu",
1491                          ino, root->root_key.objectid);
1492                ret = -EIO;
1493                goto out;
1494        }
1495
1496        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497                        struct btrfs_file_extent_item);
1498        type = btrfs_file_extent_type(path->nodes[0], ei);
1499        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501        BUG_ON(compression);
1502
1503        off = btrfs_file_extent_inline_start(ei);
1504        len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1505
1506        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1507
1508out:
1509        btrfs_free_path(path);
1510        return ret;
1511}
1512
1513/*
1514 * Helper function to generate a file name that is unique in the root of
1515 * send_root and parent_root. This is used to generate names for orphan inodes.
1516 */
1517static int gen_unique_name(struct send_ctx *sctx,
1518                           u64 ino, u64 gen,
1519                           struct fs_path *dest)
1520{
1521        int ret = 0;
1522        struct btrfs_path *path;
1523        struct btrfs_dir_item *di;
1524        char tmp[64];
1525        int len;
1526        u64 idx = 0;
1527
1528        path = alloc_path_for_send();
1529        if (!path)
1530                return -ENOMEM;
1531
1532        while (1) {
1533                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1534                                ino, gen, idx);
1535                ASSERT(len < sizeof(tmp));
1536
1537                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538                                path, BTRFS_FIRST_FREE_OBJECTID,
1539                                tmp, strlen(tmp), 0);
1540                btrfs_release_path(path);
1541                if (IS_ERR(di)) {
1542                        ret = PTR_ERR(di);
1543                        goto out;
1544                }
1545                if (di) {
1546                        /* not unique, try again */
1547                        idx++;
1548                        continue;
1549                }
1550
1551                if (!sctx->parent_root) {
1552                        /* unique */
1553                        ret = 0;
1554                        break;
1555                }
1556
1557                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558                                path, BTRFS_FIRST_FREE_OBJECTID,
1559                                tmp, strlen(tmp), 0);
1560                btrfs_release_path(path);
1561                if (IS_ERR(di)) {
1562                        ret = PTR_ERR(di);
1563                        goto out;
1564                }
1565                if (di) {
1566                        /* not unique, try again */
1567                        idx++;
1568                        continue;
1569                }
1570                /* unique */
1571                break;
1572        }
1573
1574        ret = fs_path_add(dest, tmp, strlen(tmp));
1575
1576out:
1577        btrfs_free_path(path);
1578        return ret;
1579}
1580
1581enum inode_state {
1582        inode_state_no_change,
1583        inode_state_will_create,
1584        inode_state_did_create,
1585        inode_state_will_delete,
1586        inode_state_did_delete,
1587};
1588
1589static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1590{
1591        int ret;
1592        int left_ret;
1593        int right_ret;
1594        u64 left_gen;
1595        u64 right_gen;
1596
1597        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1598                        NULL, NULL);
1599        if (ret < 0 && ret != -ENOENT)
1600                goto out;
1601        left_ret = ret;
1602
1603        if (!sctx->parent_root) {
1604                right_ret = -ENOENT;
1605        } else {
1606                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607                                NULL, NULL, NULL, NULL);
1608                if (ret < 0 && ret != -ENOENT)
1609                        goto out;
1610                right_ret = ret;
1611        }
1612
1613        if (!left_ret && !right_ret) {
1614                if (left_gen == gen && right_gen == gen) {
1615                        ret = inode_state_no_change;
1616                } else if (left_gen == gen) {
1617                        if (ino < sctx->send_progress)
1618                                ret = inode_state_did_create;
1619                        else
1620                                ret = inode_state_will_create;
1621                } else if (right_gen == gen) {
1622                        if (ino < sctx->send_progress)
1623                                ret = inode_state_did_delete;
1624                        else
1625                                ret = inode_state_will_delete;
1626                } else  {
1627                        ret = -ENOENT;
1628                }
1629        } else if (!left_ret) {
1630                if (left_gen == gen) {
1631                        if (ino < sctx->send_progress)
1632                                ret = inode_state_did_create;
1633                        else
1634                                ret = inode_state_will_create;
1635                } else {
1636                        ret = -ENOENT;
1637                }
1638        } else if (!right_ret) {
1639                if (right_gen == gen) {
1640                        if (ino < sctx->send_progress)
1641                                ret = inode_state_did_delete;
1642                        else
1643                                ret = inode_state_will_delete;
1644                } else {
1645                        ret = -ENOENT;
1646                }
1647        } else {
1648                ret = -ENOENT;
1649        }
1650
1651out:
1652        return ret;
1653}
1654
1655static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1656{
1657        int ret;
1658
1659        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1660                return 1;
1661
1662        ret = get_cur_inode_state(sctx, ino, gen);
1663        if (ret < 0)
1664                goto out;
1665
1666        if (ret == inode_state_no_change ||
1667            ret == inode_state_did_create ||
1668            ret == inode_state_will_delete)
1669                ret = 1;
1670        else
1671                ret = 0;
1672
1673out:
1674        return ret;
1675}
1676
1677/*
1678 * Helper function to lookup a dir item in a dir.
1679 */
1680static int lookup_dir_item_inode(struct btrfs_root *root,
1681                                 u64 dir, const char *name, int name_len,
1682                                 u64 *found_inode,
1683                                 u8 *found_type)
1684{
1685        int ret = 0;
1686        struct btrfs_dir_item *di;
1687        struct btrfs_key key;
1688        struct btrfs_path *path;
1689
1690        path = alloc_path_for_send();
1691        if (!path)
1692                return -ENOMEM;
1693
1694        di = btrfs_lookup_dir_item(NULL, root, path,
1695                        dir, name, name_len, 0);
1696        if (IS_ERR_OR_NULL(di)) {
1697                ret = di ? PTR_ERR(di) : -ENOENT;
1698                goto out;
1699        }
1700        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1701        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1702                ret = -ENOENT;
1703                goto out;
1704        }
1705        *found_inode = key.objectid;
1706        *found_type = btrfs_dir_type(path->nodes[0], di);
1707
1708out:
1709        btrfs_free_path(path);
1710        return ret;
1711}
1712
1713/*
1714 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1715 * generation of the parent dir and the name of the dir entry.
1716 */
1717static int get_first_ref(struct btrfs_root *root, u64 ino,
1718                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1719{
1720        int ret;
1721        struct btrfs_key key;
1722        struct btrfs_key found_key;
1723        struct btrfs_path *path;
1724        int len;
1725        u64 parent_dir;
1726
1727        path = alloc_path_for_send();
1728        if (!path)
1729                return -ENOMEM;
1730
1731        key.objectid = ino;
1732        key.type = BTRFS_INODE_REF_KEY;
1733        key.offset = 0;
1734
1735        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1736        if (ret < 0)
1737                goto out;
1738        if (!ret)
1739                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1740                                path->slots[0]);
1741        if (ret || found_key.objectid != ino ||
1742            (found_key.type != BTRFS_INODE_REF_KEY &&
1743             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1744                ret = -ENOENT;
1745                goto out;
1746        }
1747
1748        if (found_key.type == BTRFS_INODE_REF_KEY) {
1749                struct btrfs_inode_ref *iref;
1750                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1751                                      struct btrfs_inode_ref);
1752                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1753                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1754                                                     (unsigned long)(iref + 1),
1755                                                     len);
1756                parent_dir = found_key.offset;
1757        } else {
1758                struct btrfs_inode_extref *extref;
1759                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1760                                        struct btrfs_inode_extref);
1761                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1762                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1763                                        (unsigned long)&extref->name, len);
1764                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1765        }
1766        if (ret < 0)
1767                goto out;
1768        btrfs_release_path(path);
1769
1770        if (dir_gen) {
1771                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1772                                     NULL, NULL, NULL);
1773                if (ret < 0)
1774                        goto out;
1775        }
1776
1777        *dir = parent_dir;
1778
1779out:
1780        btrfs_free_path(path);
1781        return ret;
1782}
1783
1784static int is_first_ref(struct btrfs_root *root,
1785                        u64 ino, u64 dir,
1786                        const char *name, int name_len)
1787{
1788        int ret;
1789        struct fs_path *tmp_name;
1790        u64 tmp_dir;
1791
1792        tmp_name = fs_path_alloc();
1793        if (!tmp_name)
1794                return -ENOMEM;
1795
1796        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1797        if (ret < 0)
1798                goto out;
1799
1800        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1801                ret = 0;
1802                goto out;
1803        }
1804
1805        ret = !memcmp(tmp_name->start, name, name_len);
1806
1807out:
1808        fs_path_free(tmp_name);
1809        return ret;
1810}
1811
1812/*
1813 * Used by process_recorded_refs to determine if a new ref would overwrite an
1814 * already existing ref. In case it detects an overwrite, it returns the
1815 * inode/gen in who_ino/who_gen.
1816 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1817 * to make sure later references to the overwritten inode are possible.
1818 * Orphanizing is however only required for the first ref of an inode.
1819 * process_recorded_refs does an additional is_first_ref check to see if
1820 * orphanizing is really required.
1821 */
1822static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1823                              const char *name, int name_len,
1824                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1825{
1826        int ret = 0;
1827        u64 gen;
1828        u64 other_inode = 0;
1829        u8 other_type = 0;
1830
1831        if (!sctx->parent_root)
1832                goto out;
1833
1834        ret = is_inode_existent(sctx, dir, dir_gen);
1835        if (ret <= 0)
1836                goto out;
1837
1838        /*
1839         * If we have a parent root we need to verify that the parent dir was
1840         * not deleted and then re-created, if it was then we have no overwrite
1841         * and we can just unlink this entry.
1842         */
1843        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1844                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1845                                     NULL, NULL, NULL);
1846                if (ret < 0 && ret != -ENOENT)
1847                        goto out;
1848                if (ret) {
1849                        ret = 0;
1850                        goto out;
1851                }
1852                if (gen != dir_gen)
1853                        goto out;
1854        }
1855
1856        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1857                        &other_inode, &other_type);
1858        if (ret < 0 && ret != -ENOENT)
1859                goto out;
1860        if (ret) {
1861                ret = 0;
1862                goto out;
1863        }
1864
1865        /*
1866         * Check if the overwritten ref was already processed. If yes, the ref
1867         * was already unlinked/moved, so we can safely assume that we will not
1868         * overwrite anything at this point in time.
1869         */
1870        if (other_inode > sctx->send_progress ||
1871            is_waiting_for_move(sctx, other_inode)) {
1872                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1873                                who_gen, who_mode, NULL, NULL, NULL);
1874                if (ret < 0)
1875                        goto out;
1876
1877                ret = 1;
1878                *who_ino = other_inode;
1879        } else {
1880                ret = 0;
1881        }
1882
1883out:
1884        return ret;
1885}
1886
1887/*
1888 * Checks if the ref was overwritten by an already processed inode. This is
1889 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1890 * thus the orphan name needs be used.
1891 * process_recorded_refs also uses it to avoid unlinking of refs that were
1892 * overwritten.
1893 */
1894static int did_overwrite_ref(struct send_ctx *sctx,
1895                            u64 dir, u64 dir_gen,
1896                            u64 ino, u64 ino_gen,
1897                            const char *name, int name_len)
1898{
1899        int ret = 0;
1900        u64 gen;
1901        u64 ow_inode;
1902        u8 other_type;
1903
1904        if (!sctx->parent_root)
1905                goto out;
1906
1907        ret = is_inode_existent(sctx, dir, dir_gen);
1908        if (ret <= 0)
1909                goto out;
1910
1911        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1912                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1913                                     NULL, NULL, NULL);
1914                if (ret < 0 && ret != -ENOENT)
1915                        goto out;
1916                if (ret) {
1917                        ret = 0;
1918                        goto out;
1919                }
1920                if (gen != dir_gen)
1921                        goto out;
1922        }
1923
1924        /* check if the ref was overwritten by another ref */
1925        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1926                        &ow_inode, &other_type);
1927        if (ret < 0 && ret != -ENOENT)
1928                goto out;
1929        if (ret) {
1930                /* was never and will never be overwritten */
1931                ret = 0;
1932                goto out;
1933        }
1934
1935        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1936                        NULL, NULL);
1937        if (ret < 0)
1938                goto out;
1939
1940        if (ow_inode == ino && gen == ino_gen) {
1941                ret = 0;
1942                goto out;
1943        }
1944
1945        /*
1946         * We know that it is or will be overwritten. Check this now.
1947         * The current inode being processed might have been the one that caused
1948         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1949         * the current inode being processed.
1950         */
1951        if ((ow_inode < sctx->send_progress) ||
1952            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1953             gen == sctx->cur_inode_gen))
1954                ret = 1;
1955        else
1956                ret = 0;
1957
1958out:
1959        return ret;
1960}
1961
1962/*
1963 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1964 * that got overwritten. This is used by process_recorded_refs to determine
1965 * if it has to use the path as returned by get_cur_path or the orphan name.
1966 */
1967static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1968{
1969        int ret = 0;
1970        struct fs_path *name = NULL;
1971        u64 dir;
1972        u64 dir_gen;
1973
1974        if (!sctx->parent_root)
1975                goto out;
1976
1977        name = fs_path_alloc();
1978        if (!name)
1979                return -ENOMEM;
1980
1981        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1982        if (ret < 0)
1983                goto out;
1984
1985        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1986                        name->start, fs_path_len(name));
1987
1988out:
1989        fs_path_free(name);
1990        return ret;
1991}
1992
1993/*
1994 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1995 * so we need to do some special handling in case we have clashes. This function
1996 * takes care of this with the help of name_cache_entry::radix_list.
1997 * In case of error, nce is kfreed.
1998 */
1999static int name_cache_insert(struct send_ctx *sctx,
2000                             struct name_cache_entry *nce)
2001{
2002        int ret = 0;
2003        struct list_head *nce_head;
2004
2005        nce_head = radix_tree_lookup(&sctx->name_cache,
2006                        (unsigned long)nce->ino);
2007        if (!nce_head) {
2008                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2009                if (!nce_head) {
2010                        kfree(nce);
2011                        return -ENOMEM;
2012                }
2013                INIT_LIST_HEAD(nce_head);
2014
2015                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2016                if (ret < 0) {
2017                        kfree(nce_head);
2018                        kfree(nce);
2019                        return ret;
2020                }
2021        }
2022        list_add_tail(&nce->radix_list, nce_head);
2023        list_add_tail(&nce->list, &sctx->name_cache_list);
2024        sctx->name_cache_size++;
2025
2026        return ret;
2027}
2028
2029static void name_cache_delete(struct send_ctx *sctx,
2030                              struct name_cache_entry *nce)
2031{
2032        struct list_head *nce_head;
2033
2034        nce_head = radix_tree_lookup(&sctx->name_cache,
2035                        (unsigned long)nce->ino);
2036        if (!nce_head) {
2037                btrfs_err(sctx->send_root->fs_info,
2038              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2039                        nce->ino, sctx->name_cache_size);
2040        }
2041
2042        list_del(&nce->radix_list);
2043        list_del(&nce->list);
2044        sctx->name_cache_size--;
2045
2046        /*
2047         * We may not get to the final release of nce_head if the lookup fails
2048         */
2049        if (nce_head && list_empty(nce_head)) {
2050                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2051                kfree(nce_head);
2052        }
2053}
2054
2055static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2056                                                    u64 ino, u64 gen)
2057{
2058        struct list_head *nce_head;
2059        struct name_cache_entry *cur;
2060
2061        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2062        if (!nce_head)
2063                return NULL;
2064
2065        list_for_each_entry(cur, nce_head, radix_list) {
2066                if (cur->ino == ino && cur->gen == gen)
2067                        return cur;
2068        }
2069        return NULL;
2070}
2071
2072/*
2073 * Removes the entry from the list and adds it back to the end. This marks the
2074 * entry as recently used so that name_cache_clean_unused does not remove it.
2075 */
2076static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2077{
2078        list_del(&nce->list);
2079        list_add_tail(&nce->list, &sctx->name_cache_list);
2080}
2081
2082/*
2083 * Remove some entries from the beginning of name_cache_list.
2084 */
2085static void name_cache_clean_unused(struct send_ctx *sctx)
2086{
2087        struct name_cache_entry *nce;
2088
2089        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2090                return;
2091
2092        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2093                nce = list_entry(sctx->name_cache_list.next,
2094                                struct name_cache_entry, list);
2095                name_cache_delete(sctx, nce);
2096                kfree(nce);
2097        }
2098}
2099
2100static void name_cache_free(struct send_ctx *sctx)
2101{
2102        struct name_cache_entry *nce;
2103
2104        while (!list_empty(&sctx->name_cache_list)) {
2105                nce = list_entry(sctx->name_cache_list.next,
2106                                struct name_cache_entry, list);
2107                name_cache_delete(sctx, nce);
2108                kfree(nce);
2109        }
2110}
2111
2112/*
2113 * Used by get_cur_path for each ref up to the root.
2114 * Returns 0 if it succeeded.
2115 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2116 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2117 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2118 * Returns <0 in case of error.
2119 */
2120static int __get_cur_name_and_parent(struct send_ctx *sctx,
2121                                     u64 ino, u64 gen,
2122                                     u64 *parent_ino,
2123                                     u64 *parent_gen,
2124                                     struct fs_path *dest)
2125{
2126        int ret;
2127        int nce_ret;
2128        struct name_cache_entry *nce = NULL;
2129
2130        /*
2131         * First check if we already did a call to this function with the same
2132         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2133         * return the cached result.
2134         */
2135        nce = name_cache_search(sctx, ino, gen);
2136        if (nce) {
2137                if (ino < sctx->send_progress && nce->need_later_update) {
2138                        name_cache_delete(sctx, nce);
2139                        kfree(nce);
2140                        nce = NULL;
2141                } else {
2142                        name_cache_used(sctx, nce);
2143                        *parent_ino = nce->parent_ino;
2144                        *parent_gen = nce->parent_gen;
2145                        ret = fs_path_add(dest, nce->name, nce->name_len);
2146                        if (ret < 0)
2147                                goto out;
2148                        ret = nce->ret;
2149                        goto out;
2150                }
2151        }
2152
2153        /*
2154         * If the inode is not existent yet, add the orphan name and return 1.
2155         * This should only happen for the parent dir that we determine in
2156         * __record_new_ref
2157         */
2158        ret = is_inode_existent(sctx, ino, gen);
2159        if (ret < 0)
2160                goto out;
2161
2162        if (!ret) {
2163                ret = gen_unique_name(sctx, ino, gen, dest);
2164                if (ret < 0)
2165                        goto out;
2166                ret = 1;
2167                goto out_cache;
2168        }
2169
2170        /*
2171         * Depending on whether the inode was already processed or not, use
2172         * send_root or parent_root for ref lookup.
2173         */
2174        if (ino < sctx->send_progress)
2175                ret = get_first_ref(sctx->send_root, ino,
2176                                    parent_ino, parent_gen, dest);
2177        else
2178                ret = get_first_ref(sctx->parent_root, ino,
2179                                    parent_ino, parent_gen, dest);
2180        if (ret < 0)
2181                goto out;
2182
2183        /*
2184         * Check if the ref was overwritten by an inode's ref that was processed
2185         * earlier. If yes, treat as orphan and return 1.
2186         */
2187        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2188                        dest->start, dest->end - dest->start);
2189        if (ret < 0)
2190                goto out;
2191        if (ret) {
2192                fs_path_reset(dest);
2193                ret = gen_unique_name(sctx, ino, gen, dest);
2194                if (ret < 0)
2195                        goto out;
2196                ret = 1;
2197        }
2198
2199out_cache:
2200        /*
2201         * Store the result of the lookup in the name cache.
2202         */
2203        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2204        if (!nce) {
2205                ret = -ENOMEM;
2206                goto out;
2207        }
2208
2209        nce->ino = ino;
2210        nce->gen = gen;
2211        nce->parent_ino = *parent_ino;
2212        nce->parent_gen = *parent_gen;
2213        nce->name_len = fs_path_len(dest);
2214        nce->ret = ret;
2215        strcpy(nce->name, dest->start);
2216
2217        if (ino < sctx->send_progress)
2218                nce->need_later_update = 0;
2219        else
2220                nce->need_later_update = 1;
2221
2222        nce_ret = name_cache_insert(sctx, nce);
2223        if (nce_ret < 0)
2224                ret = nce_ret;
2225        name_cache_clean_unused(sctx);
2226
2227out:
2228        return ret;
2229}
2230
2231/*
2232 * Magic happens here. This function returns the first ref to an inode as it
2233 * would look like while receiving the stream at this point in time.
2234 * We walk the path up to the root. For every inode in between, we check if it
2235 * was already processed/sent. If yes, we continue with the parent as found
2236 * in send_root. If not, we continue with the parent as found in parent_root.
2237 * If we encounter an inode that was deleted at this point in time, we use the
2238 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2239 * that were not created yet and overwritten inodes/refs.
2240 *
2241 * When do we have orphan inodes:
2242 * 1. When an inode is freshly created and thus no valid refs are available yet
2243 * 2. When a directory lost all it's refs (deleted) but still has dir items
2244 *    inside which were not processed yet (pending for move/delete). If anyone
2245 *    tried to get the path to the dir items, it would get a path inside that
2246 *    orphan directory.
2247 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2248 *    of an unprocessed inode. If in that case the first ref would be
2249 *    overwritten, the overwritten inode gets "orphanized". Later when we
2250 *    process this overwritten inode, it is restored at a new place by moving
2251 *    the orphan inode.
2252 *
2253 * sctx->send_progress tells this function at which point in time receiving
2254 * would be.
2255 */
2256static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2257                        struct fs_path *dest)
2258{
2259        int ret = 0;
2260        struct fs_path *name = NULL;
2261        u64 parent_inode = 0;
2262        u64 parent_gen = 0;
2263        int stop = 0;
2264
2265        name = fs_path_alloc();
2266        if (!name) {
2267                ret = -ENOMEM;
2268                goto out;
2269        }
2270
2271        dest->reversed = 1;
2272        fs_path_reset(dest);
2273
2274        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2275                struct waiting_dir_move *wdm;
2276
2277                fs_path_reset(name);
2278
2279                if (is_waiting_for_rm(sctx, ino)) {
2280                        ret = gen_unique_name(sctx, ino, gen, name);
2281                        if (ret < 0)
2282                                goto out;
2283                        ret = fs_path_add_path(dest, name);
2284                        break;
2285                }
2286
2287                wdm = get_waiting_dir_move(sctx, ino);
2288                if (wdm && wdm->orphanized) {
2289                        ret = gen_unique_name(sctx, ino, gen, name);
2290                        stop = 1;
2291                } else if (wdm) {
2292                        ret = get_first_ref(sctx->parent_root, ino,
2293                                            &parent_inode, &parent_gen, name);
2294                } else {
2295                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2296                                                        &parent_inode,
2297                                                        &parent_gen, name);
2298                        if (ret)
2299                                stop = 1;
2300                }
2301
2302                if (ret < 0)
2303                        goto out;
2304
2305                ret = fs_path_add_path(dest, name);
2306                if (ret < 0)
2307                        goto out;
2308
2309                ino = parent_inode;
2310                gen = parent_gen;
2311        }
2312
2313out:
2314        fs_path_free(name);
2315        if (!ret)
2316                fs_path_unreverse(dest);
2317        return ret;
2318}
2319
2320/*
2321 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2322 */
2323static int send_subvol_begin(struct send_ctx *sctx)
2324{
2325        int ret;
2326        struct btrfs_root *send_root = sctx->send_root;
2327        struct btrfs_root *parent_root = sctx->parent_root;
2328        struct btrfs_path *path;
2329        struct btrfs_key key;
2330        struct btrfs_root_ref *ref;
2331        struct extent_buffer *leaf;
2332        char *name = NULL;
2333        int namelen;
2334
2335        path = btrfs_alloc_path();
2336        if (!path)
2337                return -ENOMEM;
2338
2339        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2340        if (!name) {
2341                btrfs_free_path(path);
2342                return -ENOMEM;
2343        }
2344
2345        key.objectid = send_root->root_key.objectid;
2346        key.type = BTRFS_ROOT_BACKREF_KEY;
2347        key.offset = 0;
2348
2349        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2350                                &key, path, 1, 0);
2351        if (ret < 0)
2352                goto out;
2353        if (ret) {
2354                ret = -ENOENT;
2355                goto out;
2356        }
2357
2358        leaf = path->nodes[0];
2359        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2360        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2361            key.objectid != send_root->root_key.objectid) {
2362                ret = -ENOENT;
2363                goto out;
2364        }
2365        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2366        namelen = btrfs_root_ref_name_len(leaf, ref);
2367        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2368        btrfs_release_path(path);
2369
2370        if (parent_root) {
2371                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2372                if (ret < 0)
2373                        goto out;
2374        } else {
2375                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2376                if (ret < 0)
2377                        goto out;
2378        }
2379
2380        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2381
2382        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2383                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384                            sctx->send_root->root_item.received_uuid);
2385        else
2386                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2387                            sctx->send_root->root_item.uuid);
2388
2389        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2390                    le64_to_cpu(sctx->send_root->root_item.ctransid));
2391        if (parent_root) {
2392                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2393                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394                                     parent_root->root_item.received_uuid);
2395                else
2396                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2397                                     parent_root->root_item.uuid);
2398                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2399                            le64_to_cpu(sctx->parent_root->root_item.ctransid));
2400        }
2401
2402        ret = send_cmd(sctx);
2403
2404tlv_put_failure:
2405out:
2406        btrfs_free_path(path);
2407        kfree(name);
2408        return ret;
2409}
2410
2411static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2412{
2413        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2414        int ret = 0;
2415        struct fs_path *p;
2416
2417        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2418
2419        p = fs_path_alloc();
2420        if (!p)
2421                return -ENOMEM;
2422
2423        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2424        if (ret < 0)
2425                goto out;
2426
2427        ret = get_cur_path(sctx, ino, gen, p);
2428        if (ret < 0)
2429                goto out;
2430        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2431        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2432
2433        ret = send_cmd(sctx);
2434
2435tlv_put_failure:
2436out:
2437        fs_path_free(p);
2438        return ret;
2439}
2440
2441static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2442{
2443        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2444        int ret = 0;
2445        struct fs_path *p;
2446
2447        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2448
2449        p = fs_path_alloc();
2450        if (!p)
2451                return -ENOMEM;
2452
2453        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2454        if (ret < 0)
2455                goto out;
2456
2457        ret = get_cur_path(sctx, ino, gen, p);
2458        if (ret < 0)
2459                goto out;
2460        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2462
2463        ret = send_cmd(sctx);
2464
2465tlv_put_failure:
2466out:
2467        fs_path_free(p);
2468        return ret;
2469}
2470
2471static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2472{
2473        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2474        int ret = 0;
2475        struct fs_path *p;
2476
2477        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2478                    ino, uid, gid);
2479
2480        p = fs_path_alloc();
2481        if (!p)
2482                return -ENOMEM;
2483
2484        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2485        if (ret < 0)
2486                goto out;
2487
2488        ret = get_cur_path(sctx, ino, gen, p);
2489        if (ret < 0)
2490                goto out;
2491        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2492        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2493        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2494
2495        ret = send_cmd(sctx);
2496
2497tlv_put_failure:
2498out:
2499        fs_path_free(p);
2500        return ret;
2501}
2502
2503static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2504{
2505        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2506        int ret = 0;
2507        struct fs_path *p = NULL;
2508        struct btrfs_inode_item *ii;
2509        struct btrfs_path *path = NULL;
2510        struct extent_buffer *eb;
2511        struct btrfs_key key;
2512        int slot;
2513
2514        btrfs_debug(fs_info, "send_utimes %llu", ino);
2515
2516        p = fs_path_alloc();
2517        if (!p)
2518                return -ENOMEM;
2519
2520        path = alloc_path_for_send();
2521        if (!path) {
2522                ret = -ENOMEM;
2523                goto out;
2524        }
2525
2526        key.objectid = ino;
2527        key.type = BTRFS_INODE_ITEM_KEY;
2528        key.offset = 0;
2529        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2530        if (ret > 0)
2531                ret = -ENOENT;
2532        if (ret < 0)
2533                goto out;
2534
2535        eb = path->nodes[0];
2536        slot = path->slots[0];
2537        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2538
2539        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2540        if (ret < 0)
2541                goto out;
2542
2543        ret = get_cur_path(sctx, ino, gen, p);
2544        if (ret < 0)
2545                goto out;
2546        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2547        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2548        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2549        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2550        /* TODO Add otime support when the otime patches get into upstream */
2551
2552        ret = send_cmd(sctx);
2553
2554tlv_put_failure:
2555out:
2556        fs_path_free(p);
2557        btrfs_free_path(path);
2558        return ret;
2559}
2560
2561/*
2562 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2563 * a valid path yet because we did not process the refs yet. So, the inode
2564 * is created as orphan.
2565 */
2566static int send_create_inode(struct send_ctx *sctx, u64 ino)
2567{
2568        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2569        int ret = 0;
2570        struct fs_path *p;
2571        int cmd;
2572        u64 gen;
2573        u64 mode;
2574        u64 rdev;
2575
2576        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2577
2578        p = fs_path_alloc();
2579        if (!p)
2580                return -ENOMEM;
2581
2582        if (ino != sctx->cur_ino) {
2583                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2584                                     NULL, NULL, &rdev);
2585                if (ret < 0)
2586                        goto out;
2587        } else {
2588                gen = sctx->cur_inode_gen;
2589                mode = sctx->cur_inode_mode;
2590                rdev = sctx->cur_inode_rdev;
2591        }
2592
2593        if (S_ISREG(mode)) {
2594                cmd = BTRFS_SEND_C_MKFILE;
2595        } else if (S_ISDIR(mode)) {
2596                cmd = BTRFS_SEND_C_MKDIR;
2597        } else if (S_ISLNK(mode)) {
2598                cmd = BTRFS_SEND_C_SYMLINK;
2599        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2600                cmd = BTRFS_SEND_C_MKNOD;
2601        } else if (S_ISFIFO(mode)) {
2602                cmd = BTRFS_SEND_C_MKFIFO;
2603        } else if (S_ISSOCK(mode)) {
2604                cmd = BTRFS_SEND_C_MKSOCK;
2605        } else {
2606                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2607                                (int)(mode & S_IFMT));
2608                ret = -EOPNOTSUPP;
2609                goto out;
2610        }
2611
2612        ret = begin_cmd(sctx, cmd);
2613        if (ret < 0)
2614                goto out;
2615
2616        ret = gen_unique_name(sctx, ino, gen, p);
2617        if (ret < 0)
2618                goto out;
2619
2620        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2622
2623        if (S_ISLNK(mode)) {
2624                fs_path_reset(p);
2625                ret = read_symlink(sctx->send_root, ino, p);
2626                if (ret < 0)
2627                        goto out;
2628                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2629        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2630                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2631                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2632                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2633        }
2634
2635        ret = send_cmd(sctx);
2636        if (ret < 0)
2637                goto out;
2638
2639
2640tlv_put_failure:
2641out:
2642        fs_path_free(p);
2643        return ret;
2644}
2645
2646/*
2647 * We need some special handling for inodes that get processed before the parent
2648 * directory got created. See process_recorded_refs for details.
2649 * This function does the check if we already created the dir out of order.
2650 */
2651static int did_create_dir(struct send_ctx *sctx, u64 dir)
2652{
2653        int ret = 0;
2654        struct btrfs_path *path = NULL;
2655        struct btrfs_key key;
2656        struct btrfs_key found_key;
2657        struct btrfs_key di_key;
2658        struct extent_buffer *eb;
2659        struct btrfs_dir_item *di;
2660        int slot;
2661
2662        path = alloc_path_for_send();
2663        if (!path) {
2664                ret = -ENOMEM;
2665                goto out;
2666        }
2667
2668        key.objectid = dir;
2669        key.type = BTRFS_DIR_INDEX_KEY;
2670        key.offset = 0;
2671        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2672        if (ret < 0)
2673                goto out;
2674
2675        while (1) {
2676                eb = path->nodes[0];
2677                slot = path->slots[0];
2678                if (slot >= btrfs_header_nritems(eb)) {
2679                        ret = btrfs_next_leaf(sctx->send_root, path);
2680                        if (ret < 0) {
2681                                goto out;
2682                        } else if (ret > 0) {
2683                                ret = 0;
2684                                break;
2685                        }
2686                        continue;
2687                }
2688
2689                btrfs_item_key_to_cpu(eb, &found_key, slot);
2690                if (found_key.objectid != key.objectid ||
2691                    found_key.type != key.type) {
2692                        ret = 0;
2693                        goto out;
2694                }
2695
2696                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2697                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2698
2699                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2700                    di_key.objectid < sctx->send_progress) {
2701                        ret = 1;
2702                        goto out;
2703                }
2704
2705                path->slots[0]++;
2706        }
2707
2708out:
2709        btrfs_free_path(path);
2710        return ret;
2711}
2712
2713/*
2714 * Only creates the inode if it is:
2715 * 1. Not a directory
2716 * 2. Or a directory which was not created already due to out of order
2717 *    directories. See did_create_dir and process_recorded_refs for details.
2718 */
2719static int send_create_inode_if_needed(struct send_ctx *sctx)
2720{
2721        int ret;
2722
2723        if (S_ISDIR(sctx->cur_inode_mode)) {
2724                ret = did_create_dir(sctx, sctx->cur_ino);
2725                if (ret < 0)
2726                        goto out;
2727                if (ret) {
2728                        ret = 0;
2729                        goto out;
2730                }
2731        }
2732
2733        ret = send_create_inode(sctx, sctx->cur_ino);
2734        if (ret < 0)
2735                goto out;
2736
2737out:
2738        return ret;
2739}
2740
2741struct recorded_ref {
2742        struct list_head list;
2743        char *name;
2744        struct fs_path *full_path;
2745        u64 dir;
2746        u64 dir_gen;
2747        int name_len;
2748};
2749
2750static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2751{
2752        ref->full_path = path;
2753        ref->name = (char *)kbasename(ref->full_path->start);
2754        ref->name_len = ref->full_path->end - ref->name;
2755}
2756
2757/*
2758 * We need to process new refs before deleted refs, but compare_tree gives us
2759 * everything mixed. So we first record all refs and later process them.
2760 * This function is a helper to record one ref.
2761 */
2762static int __record_ref(struct list_head *head, u64 dir,
2763                      u64 dir_gen, struct fs_path *path)
2764{
2765        struct recorded_ref *ref;
2766
2767        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2768        if (!ref)
2769                return -ENOMEM;
2770
2771        ref->dir = dir;
2772        ref->dir_gen = dir_gen;
2773        set_ref_path(ref, path);
2774        list_add_tail(&ref->list, head);
2775        return 0;
2776}
2777
2778static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2779{
2780        struct recorded_ref *new;
2781
2782        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2783        if (!new)
2784                return -ENOMEM;
2785
2786        new->dir = ref->dir;
2787        new->dir_gen = ref->dir_gen;
2788        new->full_path = NULL;
2789        INIT_LIST_HEAD(&new->list);
2790        list_add_tail(&new->list, list);
2791        return 0;
2792}
2793
2794static void __free_recorded_refs(struct list_head *head)
2795{
2796        struct recorded_ref *cur;
2797
2798        while (!list_empty(head)) {
2799                cur = list_entry(head->next, struct recorded_ref, list);
2800                fs_path_free(cur->full_path);
2801                list_del(&cur->list);
2802                kfree(cur);
2803        }
2804}
2805
2806static void free_recorded_refs(struct send_ctx *sctx)
2807{
2808        __free_recorded_refs(&sctx->new_refs);
2809        __free_recorded_refs(&sctx->deleted_refs);
2810}
2811
2812/*
2813 * Renames/moves a file/dir to its orphan name. Used when the first
2814 * ref of an unprocessed inode gets overwritten and for all non empty
2815 * directories.
2816 */
2817static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2818                          struct fs_path *path)
2819{
2820        int ret;
2821        struct fs_path *orphan;
2822
2823        orphan = fs_path_alloc();
2824        if (!orphan)
2825                return -ENOMEM;
2826
2827        ret = gen_unique_name(sctx, ino, gen, orphan);
2828        if (ret < 0)
2829                goto out;
2830
2831        ret = send_rename(sctx, path, orphan);
2832
2833out:
2834        fs_path_free(orphan);
2835        return ret;
2836}
2837
2838static struct orphan_dir_info *
2839add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2840{
2841        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2842        struct rb_node *parent = NULL;
2843        struct orphan_dir_info *entry, *odi;
2844
2845        while (*p) {
2846                parent = *p;
2847                entry = rb_entry(parent, struct orphan_dir_info, node);
2848                if (dir_ino < entry->ino) {
2849                        p = &(*p)->rb_left;
2850                } else if (dir_ino > entry->ino) {
2851                        p = &(*p)->rb_right;
2852                } else {
2853                        return entry;
2854                }
2855        }
2856
2857        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2858        if (!odi)
2859                return ERR_PTR(-ENOMEM);
2860        odi->ino = dir_ino;
2861        odi->gen = 0;
2862        odi->last_dir_index_offset = 0;
2863
2864        rb_link_node(&odi->node, parent, p);
2865        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2866        return odi;
2867}
2868
2869static struct orphan_dir_info *
2870get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2871{
2872        struct rb_node *n = sctx->orphan_dirs.rb_node;
2873        struct orphan_dir_info *entry;
2874
2875        while (n) {
2876                entry = rb_entry(n, struct orphan_dir_info, node);
2877                if (dir_ino < entry->ino)
2878                        n = n->rb_left;
2879                else if (dir_ino > entry->ino)
2880                        n = n->rb_right;
2881                else
2882                        return entry;
2883        }
2884        return NULL;
2885}
2886
2887static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2888{
2889        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2890
2891        return odi != NULL;
2892}
2893
2894static void free_orphan_dir_info(struct send_ctx *sctx,
2895                                 struct orphan_dir_info *odi)
2896{
2897        if (!odi)
2898                return;
2899        rb_erase(&odi->node, &sctx->orphan_dirs);
2900        kfree(odi);
2901}
2902
2903/*
2904 * Returns 1 if a directory can be removed at this point in time.
2905 * We check this by iterating all dir items and checking if the inode behind
2906 * the dir item was already processed.
2907 */
2908static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2909                     u64 send_progress)
2910{
2911        int ret = 0;
2912        struct btrfs_root *root = sctx->parent_root;
2913        struct btrfs_path *path;
2914        struct btrfs_key key;
2915        struct btrfs_key found_key;
2916        struct btrfs_key loc;
2917        struct btrfs_dir_item *di;
2918        struct orphan_dir_info *odi = NULL;
2919
2920        /*
2921         * Don't try to rmdir the top/root subvolume dir.
2922         */
2923        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2924                return 0;
2925
2926        path = alloc_path_for_send();
2927        if (!path)
2928                return -ENOMEM;
2929
2930        key.objectid = dir;
2931        key.type = BTRFS_DIR_INDEX_KEY;
2932        key.offset = 0;
2933
2934        odi = get_orphan_dir_info(sctx, dir);
2935        if (odi)
2936                key.offset = odi->last_dir_index_offset;
2937
2938        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2939        if (ret < 0)
2940                goto out;
2941
2942        while (1) {
2943                struct waiting_dir_move *dm;
2944
2945                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2946                        ret = btrfs_next_leaf(root, path);
2947                        if (ret < 0)
2948                                goto out;
2949                        else if (ret > 0)
2950                                break;
2951                        continue;
2952                }
2953                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2954                                      path->slots[0]);
2955                if (found_key.objectid != key.objectid ||
2956                    found_key.type != key.type)
2957                        break;
2958
2959                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2960                                struct btrfs_dir_item);
2961                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2962
2963                dm = get_waiting_dir_move(sctx, loc.objectid);
2964                if (dm) {
2965                        odi = add_orphan_dir_info(sctx, dir);
2966                        if (IS_ERR(odi)) {
2967                                ret = PTR_ERR(odi);
2968                                goto out;
2969                        }
2970                        odi->gen = dir_gen;
2971                        odi->last_dir_index_offset = found_key.offset;
2972                        dm->rmdir_ino = dir;
2973                        ret = 0;
2974                        goto out;
2975                }
2976
2977                if (loc.objectid > send_progress) {
2978                        odi = add_orphan_dir_info(sctx, dir);
2979                        if (IS_ERR(odi)) {
2980                                ret = PTR_ERR(odi);
2981                                goto out;
2982                        }
2983                        odi->gen = dir_gen;
2984                        odi->last_dir_index_offset = found_key.offset;
2985                        ret = 0;
2986                        goto out;
2987                }
2988
2989                path->slots[0]++;
2990        }
2991        free_orphan_dir_info(sctx, odi);
2992
2993        ret = 1;
2994
2995out:
2996        btrfs_free_path(path);
2997        return ret;
2998}
2999
3000static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3001{
3002        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3003
3004        return entry != NULL;
3005}
3006
3007static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3008{
3009        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3010        struct rb_node *parent = NULL;
3011        struct waiting_dir_move *entry, *dm;
3012
3013        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3014        if (!dm)
3015                return -ENOMEM;
3016        dm->ino = ino;
3017        dm->rmdir_ino = 0;
3018        dm->orphanized = orphanized;
3019
3020        while (*p) {
3021                parent = *p;
3022                entry = rb_entry(parent, struct waiting_dir_move, node);
3023                if (ino < entry->ino) {
3024                        p = &(*p)->rb_left;
3025                } else if (ino > entry->ino) {
3026                        p = &(*p)->rb_right;
3027                } else {
3028                        kfree(dm);
3029                        return -EEXIST;
3030                }
3031        }
3032
3033        rb_link_node(&dm->node, parent, p);
3034        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3035        return 0;
3036}
3037
3038static struct waiting_dir_move *
3039get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3040{
3041        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3042        struct waiting_dir_move *entry;
3043
3044        while (n) {
3045                entry = rb_entry(n, struct waiting_dir_move, node);
3046                if (ino < entry->ino)
3047                        n = n->rb_left;
3048                else if (ino > entry->ino)
3049                        n = n->rb_right;
3050                else
3051                        return entry;
3052        }
3053        return NULL;
3054}
3055
3056static void free_waiting_dir_move(struct send_ctx *sctx,
3057                                  struct waiting_dir_move *dm)
3058{
3059        if (!dm)
3060                return;
3061        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3062        kfree(dm);
3063}
3064
3065static int add_pending_dir_move(struct send_ctx *sctx,
3066                                u64 ino,
3067                                u64 ino_gen,
3068                                u64 parent_ino,
3069                                struct list_head *new_refs,
3070                                struct list_head *deleted_refs,
3071                                const bool is_orphan)
3072{
3073        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3074        struct rb_node *parent = NULL;
3075        struct pending_dir_move *entry = NULL, *pm;
3076        struct recorded_ref *cur;
3077        int exists = 0;
3078        int ret;
3079
3080        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3081        if (!pm)
3082                return -ENOMEM;
3083        pm->parent_ino = parent_ino;
3084        pm->ino = ino;
3085        pm->gen = ino_gen;
3086        INIT_LIST_HEAD(&pm->list);
3087        INIT_LIST_HEAD(&pm->update_refs);
3088        RB_CLEAR_NODE(&pm->node);
3089
3090        while (*p) {
3091                parent = *p;
3092                entry = rb_entry(parent, struct pending_dir_move, node);
3093                if (parent_ino < entry->parent_ino) {
3094                        p = &(*p)->rb_left;
3095                } else if (parent_ino > entry->parent_ino) {
3096                        p = &(*p)->rb_right;
3097                } else {
3098                        exists = 1;
3099                        break;
3100                }
3101        }
3102
3103        list_for_each_entry(cur, deleted_refs, list) {
3104                ret = dup_ref(cur, &pm->update_refs);
3105                if (ret < 0)
3106                        goto out;
3107        }
3108        list_for_each_entry(cur, new_refs, list) {
3109                ret = dup_ref(cur, &pm->update_refs);
3110                if (ret < 0)
3111                        goto out;
3112        }
3113
3114        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3115        if (ret)
3116                goto out;
3117
3118        if (exists) {
3119                list_add_tail(&pm->list, &entry->list);
3120        } else {
3121                rb_link_node(&pm->node, parent, p);
3122                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3123        }
3124        ret = 0;
3125out:
3126        if (ret) {
3127                __free_recorded_refs(&pm->update_refs);
3128                kfree(pm);
3129        }
3130        return ret;
3131}
3132
3133static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3134                                                      u64 parent_ino)
3135{
3136        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3137        struct pending_dir_move *entry;
3138
3139        while (n) {
3140                entry = rb_entry(n, struct pending_dir_move, node);
3141                if (parent_ino < entry->parent_ino)
3142                        n = n->rb_left;
3143                else if (parent_ino > entry->parent_ino)
3144                        n = n->rb_right;
3145                else
3146                        return entry;
3147        }
3148        return NULL;
3149}
3150
3151static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3152                     u64 ino, u64 gen, u64 *ancestor_ino)
3153{
3154        int ret = 0;
3155        u64 parent_inode = 0;
3156        u64 parent_gen = 0;
3157        u64 start_ino = ino;
3158
3159        *ancestor_ino = 0;
3160        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3161                fs_path_reset(name);
3162
3163                if (is_waiting_for_rm(sctx, ino))
3164                        break;
3165                if (is_waiting_for_move(sctx, ino)) {
3166                        if (*ancestor_ino == 0)
3167                                *ancestor_ino = ino;
3168                        ret = get_first_ref(sctx->parent_root, ino,
3169                                            &parent_inode, &parent_gen, name);
3170                } else {
3171                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3172                                                        &parent_inode,
3173                                                        &parent_gen, name);
3174                        if (ret > 0) {
3175                                ret = 0;
3176                                break;
3177                        }
3178                }
3179                if (ret < 0)
3180                        break;
3181                if (parent_inode == start_ino) {
3182                        ret = 1;
3183                        if (*ancestor_ino == 0)
3184                                *ancestor_ino = ino;
3185                        break;
3186                }
3187                ino = parent_inode;
3188                gen = parent_gen;
3189        }
3190        return ret;
3191}
3192
3193static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3194{
3195        struct fs_path *from_path = NULL;
3196        struct fs_path *to_path = NULL;
3197        struct fs_path *name = NULL;
3198        u64 orig_progress = sctx->send_progress;
3199        struct recorded_ref *cur;
3200        u64 parent_ino, parent_gen;
3201        struct waiting_dir_move *dm = NULL;
3202        u64 rmdir_ino = 0;
3203        u64 ancestor;
3204        bool is_orphan;
3205        int ret;
3206
3207        name = fs_path_alloc();
3208        from_path = fs_path_alloc();
3209        if (!name || !from_path) {
3210                ret = -ENOMEM;
3211                goto out;
3212        }
3213
3214        dm = get_waiting_dir_move(sctx, pm->ino);
3215        ASSERT(dm);
3216        rmdir_ino = dm->rmdir_ino;
3217        is_orphan = dm->orphanized;
3218        free_waiting_dir_move(sctx, dm);
3219
3220        if (is_orphan) {
3221                ret = gen_unique_name(sctx, pm->ino,
3222                                      pm->gen, from_path);
3223        } else {
3224                ret = get_first_ref(sctx->parent_root, pm->ino,
3225                                    &parent_ino, &parent_gen, name);
3226                if (ret < 0)
3227                        goto out;
3228                ret = get_cur_path(sctx, parent_ino, parent_gen,
3229                                   from_path);
3230                if (ret < 0)
3231                        goto out;
3232                ret = fs_path_add_path(from_path, name);
3233        }
3234        if (ret < 0)
3235                goto out;
3236
3237        sctx->send_progress = sctx->cur_ino + 1;
3238        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3239        if (ret < 0)
3240                goto out;
3241        if (ret) {
3242                LIST_HEAD(deleted_refs);
3243                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3244                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3245                                           &pm->update_refs, &deleted_refs,
3246                                           is_orphan);
3247                if (ret < 0)
3248                        goto out;
3249                if (rmdir_ino) {
3250                        dm = get_waiting_dir_move(sctx, pm->ino);
3251                        ASSERT(dm);
3252                        dm->rmdir_ino = rmdir_ino;
3253                }
3254                goto out;
3255        }
3256        fs_path_reset(name);
3257        to_path = name;
3258        name = NULL;
3259        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3260        if (ret < 0)
3261                goto out;
3262
3263        ret = send_rename(sctx, from_path, to_path);
3264        if (ret < 0)
3265                goto out;
3266
3267        if (rmdir_ino) {
3268                struct orphan_dir_info *odi;
3269                u64 gen;
3270
3271                odi = get_orphan_dir_info(sctx, rmdir_ino);
3272                if (!odi) {
3273                        /* already deleted */
3274                        goto finish;
3275                }
3276                gen = odi->gen;
3277
3278                ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3279                if (ret < 0)
3280                        goto out;
3281                if (!ret)
3282                        goto finish;
3283
3284                name = fs_path_alloc();
3285                if (!name) {
3286                        ret = -ENOMEM;
3287                        goto out;
3288                }
3289                ret = get_cur_path(sctx, rmdir_ino, gen, name);
3290                if (ret < 0)
3291                        goto out;
3292                ret = send_rmdir(sctx, name);
3293                if (ret < 0)
3294                        goto out;
3295        }
3296
3297finish:
3298        ret = send_utimes(sctx, pm->ino, pm->gen);
3299        if (ret < 0)
3300                goto out;
3301
3302        /*
3303         * After rename/move, need to update the utimes of both new parent(s)
3304         * and old parent(s).
3305         */
3306        list_for_each_entry(cur, &pm->update_refs, list) {
3307                /*
3308                 * The parent inode might have been deleted in the send snapshot
3309                 */
3310                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3311                                     NULL, NULL, NULL, NULL, NULL);
3312                if (ret == -ENOENT) {
3313                        ret = 0;
3314                        continue;
3315                }
3316                if (ret < 0)
3317                        goto out;
3318
3319                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3320                if (ret < 0)
3321                        goto out;
3322        }
3323
3324out:
3325        fs_path_free(name);
3326        fs_path_free(from_path);
3327        fs_path_free(to_path);
3328        sctx->send_progress = orig_progress;
3329
3330        return ret;
3331}
3332
3333static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3334{
3335        if (!list_empty(&m->list))
3336                list_del(&m->list);
3337        if (!RB_EMPTY_NODE(&m->node))
3338                rb_erase(&m->node, &sctx->pending_dir_moves);
3339        __free_recorded_refs(&m->update_refs);
3340        kfree(m);
3341}
3342
3343static void tail_append_pending_moves(struct send_ctx *sctx,
3344                                      struct pending_dir_move *moves,
3345                                      struct list_head *stack)
3346{
3347        if (list_empty(&moves->list)) {
3348                list_add_tail(&moves->list, stack);
3349        } else {
3350                LIST_HEAD(list);
3351                list_splice_init(&moves->list, &list);
3352                list_add_tail(&moves->list, stack);
3353                list_splice_tail(&list, stack);
3354        }
3355        if (!RB_EMPTY_NODE(&moves->node)) {
3356                rb_erase(&moves->node, &sctx->pending_dir_moves);
3357                RB_CLEAR_NODE(&moves->node);
3358        }
3359}
3360
3361static int apply_children_dir_moves(struct send_ctx *sctx)
3362{
3363        struct pending_dir_move *pm;
3364        struct list_head stack;
3365        u64 parent_ino = sctx->cur_ino;
3366        int ret = 0;
3367
3368        pm = get_pending_dir_moves(sctx, parent_ino);
3369        if (!pm)
3370                return 0;
3371
3372        INIT_LIST_HEAD(&stack);
3373        tail_append_pending_moves(sctx, pm, &stack);
3374
3375        while (!list_empty(&stack)) {
3376                pm = list_first_entry(&stack, struct pending_dir_move, list);
3377                parent_ino = pm->ino;
3378                ret = apply_dir_move(sctx, pm);
3379                free_pending_move(sctx, pm);
3380                if (ret)
3381                        goto out;
3382                pm = get_pending_dir_moves(sctx, parent_ino);
3383                if (pm)
3384                        tail_append_pending_moves(sctx, pm, &stack);
3385        }
3386        return 0;
3387
3388out:
3389        while (!list_empty(&stack)) {
3390                pm = list_first_entry(&stack, struct pending_dir_move, list);
3391                free_pending_move(sctx, pm);
3392        }
3393        return ret;
3394}
3395
3396/*
3397 * We might need to delay a directory rename even when no ancestor directory
3398 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3399 * renamed. This happens when we rename a directory to the old name (the name
3400 * in the parent root) of some other unrelated directory that got its rename
3401 * delayed due to some ancestor with higher number that got renamed.
3402 *
3403 * Example:
3404 *
3405 * Parent snapshot:
3406 * .                                       (ino 256)
3407 * |---- a/                                (ino 257)
3408 * |     |---- file                        (ino 260)
3409 * |
3410 * |---- b/                                (ino 258)
3411 * |---- c/                                (ino 259)
3412 *
3413 * Send snapshot:
3414 * .                                       (ino 256)
3415 * |---- a/                                (ino 258)
3416 * |---- x/                                (ino 259)
3417 *       |---- y/                          (ino 257)
3418 *             |----- file                 (ino 260)
3419 *
3420 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3421 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3422 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3423 * must issue is:
3424 *
3425 * 1 - rename 259 from 'c' to 'x'
3426 * 2 - rename 257 from 'a' to 'x/y'
3427 * 3 - rename 258 from 'b' to 'a'
3428 *
3429 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3430 * be done right away and < 0 on error.
3431 */
3432static int wait_for_dest_dir_move(struct send_ctx *sctx,
3433                                  struct recorded_ref *parent_ref,
3434                                  const bool is_orphan)
3435{
3436        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3437        struct btrfs_path *path;
3438        struct btrfs_key key;
3439        struct btrfs_key di_key;
3440        struct btrfs_dir_item *di;
3441        u64 left_gen;
3442        u64 right_gen;
3443        int ret = 0;
3444        struct waiting_dir_move *wdm;
3445
3446        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3447                return 0;
3448
3449        path = alloc_path_for_send();
3450        if (!path)
3451                return -ENOMEM;
3452
3453        key.objectid = parent_ref->dir;
3454        key.type = BTRFS_DIR_ITEM_KEY;
3455        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3456
3457        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3458        if (ret < 0) {
3459                goto out;
3460        } else if (ret > 0) {
3461                ret = 0;
3462                goto out;
3463        }
3464
3465        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3466                                       parent_ref->name_len);
3467        if (!di) {
3468                ret = 0;
3469                goto out;
3470        }
3471        /*
3472         * di_key.objectid has the number of the inode that has a dentry in the
3473         * parent directory with the same name that sctx->cur_ino is being
3474         * renamed to. We need to check if that inode is in the send root as
3475         * well and if it is currently marked as an inode with a pending rename,
3476         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3477         * that it happens after that other inode is renamed.
3478         */
3479        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3480        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3481                ret = 0;
3482                goto out;
3483        }
3484
3485        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3486                             &left_gen, NULL, NULL, NULL, NULL);
3487        if (ret < 0)
3488                goto out;
3489        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3490                             &right_gen, NULL, NULL, NULL, NULL);
3491        if (ret < 0) {
3492                if (ret == -ENOENT)
3493                        ret = 0;
3494                goto out;
3495        }
3496
3497        /* Different inode, no need to delay the rename of sctx->cur_ino */
3498        if (right_gen != left_gen) {
3499                ret = 0;
3500                goto out;
3501        }
3502
3503        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3504        if (wdm && !wdm->orphanized) {
3505                ret = add_pending_dir_move(sctx,
3506                                           sctx->cur_ino,
3507                                           sctx->cur_inode_gen,
3508                                           di_key.objectid,
3509                                           &sctx->new_refs,
3510                                           &sctx->deleted_refs,
3511                                           is_orphan);
3512                if (!ret)
3513                        ret = 1;
3514        }
3515out:
3516        btrfs_free_path(path);
3517        return ret;
3518}
3519
3520/*
3521 * Check if inode ino2, or any of its ancestors, is inode ino1.
3522 * Return 1 if true, 0 if false and < 0 on error.
3523 */
3524static int check_ino_in_path(struct btrfs_root *root,
3525                             const u64 ino1,
3526                             const u64 ino1_gen,
3527                             const u64 ino2,
3528                             const u64 ino2_gen,
3529                             struct fs_path *fs_path)
3530{
3531        u64 ino = ino2;
3532
3533        if (ino1 == ino2)
3534                return ino1_gen == ino2_gen;
3535
3536        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3537                u64 parent;
3538                u64 parent_gen;
3539                int ret;
3540
3541                fs_path_reset(fs_path);
3542                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3543                if (ret < 0)
3544                        return ret;
3545                if (parent == ino1)
3546                        return parent_gen == ino1_gen;
3547                ino = parent;
3548        }
3549        return 0;
3550}
3551
3552/*
3553 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3554 * possible path (in case ino2 is not a directory and has multiple hard links).
3555 * Return 1 if true, 0 if false and < 0 on error.
3556 */
3557static int is_ancestor(struct btrfs_root *root,
3558                       const u64 ino1,
3559                       const u64 ino1_gen,
3560                       const u64 ino2,
3561                       struct fs_path *fs_path)
3562{
3563        bool free_fs_path = false;
3564        int ret = 0;
3565        struct btrfs_path *path = NULL;
3566        struct btrfs_key key;
3567
3568        if (!fs_path) {
3569                fs_path = fs_path_alloc();
3570                if (!fs_path)
3571                        return -ENOMEM;
3572                free_fs_path = true;
3573        }
3574
3575        path = alloc_path_for_send();
3576        if (!path) {
3577                ret = -ENOMEM;
3578                goto out;
3579        }
3580
3581        key.objectid = ino2;
3582        key.type = BTRFS_INODE_REF_KEY;
3583        key.offset = 0;
3584
3585        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3586        if (ret < 0)
3587                goto out;
3588
3589        while (true) {
3590                struct extent_buffer *leaf = path->nodes[0];
3591                int slot = path->slots[0];
3592                u32 cur_offset = 0;
3593                u32 item_size;
3594
3595                if (slot >= btrfs_header_nritems(leaf)) {
3596                        ret = btrfs_next_leaf(root, path);
3597                        if (ret < 0)
3598                                goto out;
3599                        if (ret > 0)
3600                                break;
3601                        continue;
3602                }
3603
3604                btrfs_item_key_to_cpu(leaf, &key, slot);
3605                if (key.objectid != ino2)
3606                        break;
3607                if (key.type != BTRFS_INODE_REF_KEY &&
3608                    key.type != BTRFS_INODE_EXTREF_KEY)
3609                        break;
3610
3611                item_size = btrfs_item_size_nr(leaf, slot);
3612                while (cur_offset < item_size) {
3613                        u64 parent;
3614                        u64 parent_gen;
3615
3616                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3617                                unsigned long ptr;
3618                                struct btrfs_inode_extref *extref;
3619
3620                                ptr = btrfs_item_ptr_offset(leaf, slot);
3621                                extref = (struct btrfs_inode_extref *)
3622                                        (ptr + cur_offset);
3623                                parent = btrfs_inode_extref_parent(leaf,
3624                                                                   extref);
3625                                cur_offset += sizeof(*extref);
3626                                cur_offset += btrfs_inode_extref_name_len(leaf,
3627                                                                  extref);
3628                        } else {
3629                                parent = key.offset;
3630                                cur_offset = item_size;
3631                        }
3632
3633                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3634                                             NULL, NULL, NULL, NULL);
3635                        if (ret < 0)
3636                                goto out;
3637                        ret = check_ino_in_path(root, ino1, ino1_gen,
3638                                                parent, parent_gen, fs_path);
3639                        if (ret)
3640                                goto out;
3641                }
3642                path->slots[0]++;
3643        }
3644        ret = 0;
3645 out:
3646        btrfs_free_path(path);
3647        if (free_fs_path)
3648                fs_path_free(fs_path);
3649        return ret;
3650}
3651
3652static int wait_for_parent_move(struct send_ctx *sctx,
3653                                struct recorded_ref *parent_ref,
3654                                const bool is_orphan)
3655{
3656        int ret = 0;
3657        u64 ino = parent_ref->dir;
3658        u64 ino_gen = parent_ref->dir_gen;
3659        u64 parent_ino_before, parent_ino_after;
3660        struct fs_path *path_before = NULL;
3661        struct fs_path *path_after = NULL;
3662        int len1, len2;
3663
3664        path_after = fs_path_alloc();
3665        path_before = fs_path_alloc();
3666        if (!path_after || !path_before) {
3667                ret = -ENOMEM;
3668                goto out;
3669        }
3670
3671        /*
3672         * Our current directory inode may not yet be renamed/moved because some
3673         * ancestor (immediate or not) has to be renamed/moved first. So find if
3674         * such ancestor exists and make sure our own rename/move happens after
3675         * that ancestor is processed to avoid path build infinite loops (done
3676         * at get_cur_path()).
3677         */
3678        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3679                u64 parent_ino_after_gen;
3680
3681                if (is_waiting_for_move(sctx, ino)) {
3682                        /*
3683                         * If the current inode is an ancestor of ino in the
3684                         * parent root, we need to delay the rename of the
3685                         * current inode, otherwise don't delayed the rename
3686                         * because we can end up with a circular dependency
3687                         * of renames, resulting in some directories never
3688                         * getting the respective rename operations issued in
3689                         * the send stream or getting into infinite path build
3690                         * loops.
3691                         */
3692                        ret = is_ancestor(sctx->parent_root,
3693                                          sctx->cur_ino, sctx->cur_inode_gen,
3694                                          ino, path_before);
3695                        if (ret)
3696                                break;
3697                }
3698
3699                fs_path_reset(path_before);
3700                fs_path_reset(path_after);
3701
3702                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3703                                    &parent_ino_after_gen, path_after);
3704                if (ret < 0)
3705                        goto out;
3706                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3707                                    NULL, path_before);
3708                if (ret < 0 && ret != -ENOENT) {
3709                        goto out;
3710                } else if (ret == -ENOENT) {
3711                        ret = 0;
3712                        break;
3713                }
3714
3715                len1 = fs_path_len(path_before);
3716                len2 = fs_path_len(path_after);
3717                if (ino > sctx->cur_ino &&
3718                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3719                     memcmp(path_before->start, path_after->start, len1))) {
3720                        u64 parent_ino_gen;
3721
3722                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3723                                             &parent_ino_gen, NULL, NULL, NULL,
3724                                             NULL);
3725                        if (ret < 0)
3726                                goto out;
3727                        if (ino_gen == parent_ino_gen) {
3728                                ret = 1;
3729                                break;
3730                        }
3731                }
3732                ino = parent_ino_after;
3733                ino_gen = parent_ino_after_gen;
3734        }
3735
3736out:
3737        fs_path_free(path_before);
3738        fs_path_free(path_after);
3739
3740        if (ret == 1) {
3741                ret = add_pending_dir_move(sctx,
3742                                           sctx->cur_ino,
3743                                           sctx->cur_inode_gen,
3744                                           ino,
3745                                           &sctx->new_refs,
3746                                           &sctx->deleted_refs,
3747                                           is_orphan);
3748                if (!ret)
3749                        ret = 1;
3750        }
3751
3752        return ret;
3753}
3754
3755static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3756{
3757        int ret;
3758        struct fs_path *new_path;
3759
3760        /*
3761         * Our reference's name member points to its full_path member string, so
3762         * we use here a new path.
3763         */
3764        new_path = fs_path_alloc();
3765        if (!new_path)
3766                return -ENOMEM;
3767
3768        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3769        if (ret < 0) {
3770                fs_path_free(new_path);
3771                return ret;
3772        }
3773        ret = fs_path_add(new_path, ref->name, ref->name_len);
3774        if (ret < 0) {
3775                fs_path_free(new_path);
3776                return ret;
3777        }
3778
3779        fs_path_free(ref->full_path);
3780        set_ref_path(ref, new_path);
3781
3782        return 0;
3783}
3784
3785/*
3786 * This does all the move/link/unlink/rmdir magic.
3787 */
3788static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3789{
3790        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3791        int ret = 0;
3792        struct recorded_ref *cur;
3793        struct recorded_ref *cur2;
3794        struct list_head check_dirs;
3795        struct fs_path *valid_path = NULL;
3796        u64 ow_inode = 0;
3797        u64 ow_gen;
3798        u64 ow_mode;
3799        int did_overwrite = 0;
3800        int is_orphan = 0;
3801        u64 last_dir_ino_rm = 0;
3802        bool can_rename = true;
3803        bool orphanized_dir = false;
3804        bool orphanized_ancestor = false;
3805
3806        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3807
3808        /*
3809         * This should never happen as the root dir always has the same ref
3810         * which is always '..'
3811         */
3812        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3813        INIT_LIST_HEAD(&check_dirs);
3814
3815        valid_path = fs_path_alloc();
3816        if (!valid_path) {
3817                ret = -ENOMEM;
3818                goto out;
3819        }
3820
3821        /*
3822         * First, check if the first ref of the current inode was overwritten
3823         * before. If yes, we know that the current inode was already orphanized
3824         * and thus use the orphan name. If not, we can use get_cur_path to
3825         * get the path of the first ref as it would like while receiving at
3826         * this point in time.
3827         * New inodes are always orphan at the beginning, so force to use the
3828         * orphan name in this case.
3829         * The first ref is stored in valid_path and will be updated if it
3830         * gets moved around.
3831         */
3832        if (!sctx->cur_inode_new) {
3833                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3834                                sctx->cur_inode_gen);
3835                if (ret < 0)
3836                        goto out;
3837                if (ret)
3838                        did_overwrite = 1;
3839        }
3840        if (sctx->cur_inode_new || did_overwrite) {
3841                ret = gen_unique_name(sctx, sctx->cur_ino,
3842                                sctx->cur_inode_gen, valid_path);
3843                if (ret < 0)
3844                        goto out;
3845                is_orphan = 1;
3846        } else {
3847                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3848                                valid_path);
3849                if (ret < 0)
3850                        goto out;
3851        }
3852
3853        list_for_each_entry(cur, &sctx->new_refs, list) {
3854                /*
3855                 * We may have refs where the parent directory does not exist
3856                 * yet. This happens if the parent directories inum is higher
3857                 * than the current inum. To handle this case, we create the
3858                 * parent directory out of order. But we need to check if this
3859                 * did already happen before due to other refs in the same dir.
3860                 */
3861                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3862                if (ret < 0)
3863                        goto out;
3864                if (ret == inode_state_will_create) {
3865                        ret = 0;
3866                        /*
3867                         * First check if any of the current inodes refs did
3868                         * already create the dir.
3869                         */
3870                        list_for_each_entry(cur2, &sctx->new_refs, list) {
3871                                if (cur == cur2)
3872                                        break;
3873                                if (cur2->dir == cur->dir) {
3874                                        ret = 1;
3875                                        break;
3876                                }
3877                        }
3878
3879                        /*
3880                         * If that did not happen, check if a previous inode
3881                         * did already create the dir.
3882                         */
3883                        if (!ret)
3884                                ret = did_create_dir(sctx, cur->dir);
3885                        if (ret < 0)
3886                                goto out;
3887                        if (!ret) {
3888                                ret = send_create_inode(sctx, cur->dir);
3889                                if (ret < 0)
3890                                        goto out;
3891                        }
3892                }
3893
3894                /*
3895                 * Check if this new ref would overwrite the first ref of
3896                 * another unprocessed inode. If yes, orphanize the
3897                 * overwritten inode. If we find an overwritten ref that is
3898                 * not the first ref, simply unlink it.
3899                 */
3900                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3901                                cur->name, cur->name_len,
3902                                &ow_inode, &ow_gen, &ow_mode);
3903                if (ret < 0)
3904                        goto out;
3905                if (ret) {
3906                        ret = is_first_ref(sctx->parent_root,
3907                                           ow_inode, cur->dir, cur->name,
3908                                           cur->name_len);
3909                        if (ret < 0)
3910                                goto out;
3911                        if (ret) {
3912                                struct name_cache_entry *nce;
3913                                struct waiting_dir_move *wdm;
3914
3915                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
3916                                                cur->full_path);
3917                                if (ret < 0)
3918                                        goto out;
3919                                if (S_ISDIR(ow_mode))
3920                                        orphanized_dir = true;
3921
3922                                /*
3923                                 * If ow_inode has its rename operation delayed
3924                                 * make sure that its orphanized name is used in
3925                                 * the source path when performing its rename
3926                                 * operation.
3927                                 */
3928                                if (is_waiting_for_move(sctx, ow_inode)) {
3929                                        wdm = get_waiting_dir_move(sctx,
3930                                                                   ow_inode);
3931                                        ASSERT(wdm);
3932                                        wdm->orphanized = true;
3933                                }
3934
3935                                /*
3936                                 * Make sure we clear our orphanized inode's
3937                                 * name from the name cache. This is because the
3938                                 * inode ow_inode might be an ancestor of some
3939                                 * other inode that will be orphanized as well
3940                                 * later and has an inode number greater than
3941                                 * sctx->send_progress. We need to prevent
3942                                 * future name lookups from using the old name
3943                                 * and get instead the orphan name.
3944                                 */
3945                                nce = name_cache_search(sctx, ow_inode, ow_gen);
3946                                if (nce) {
3947                                        name_cache_delete(sctx, nce);
3948                                        kfree(nce);
3949                                }
3950
3951                                /*
3952                                 * ow_inode might currently be an ancestor of
3953                                 * cur_ino, therefore compute valid_path (the
3954                                 * current path of cur_ino) again because it
3955                                 * might contain the pre-orphanization name of
3956                                 * ow_inode, which is no longer valid.
3957                                 */
3958                                ret = is_ancestor(sctx->parent_root,
3959                                                  ow_inode, ow_gen,
3960                                                  sctx->cur_ino, NULL);
3961                                if (ret > 0) {
3962                                        orphanized_ancestor = true;
3963                                        fs_path_reset(valid_path);
3964                                        ret = get_cur_path(sctx, sctx->cur_ino,
3965                                                           sctx->cur_inode_gen,
3966                                                           valid_path);
3967                                }
3968                                if (ret < 0)
3969                                        goto out;
3970                        } else {
3971                                ret = send_unlink(sctx, cur->full_path);
3972                                if (ret < 0)
3973                                        goto out;
3974                        }
3975                }
3976
3977                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3978                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3979                        if (ret < 0)
3980                                goto out;
3981                        if (ret == 1) {
3982                                can_rename = false;
3983                                *pending_move = 1;
3984                        }
3985                }
3986
3987                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3988                    can_rename) {
3989                        ret = wait_for_parent_move(sctx, cur, is_orphan);
3990                        if (ret < 0)
3991                                goto out;
3992                        if (ret == 1) {
3993                                can_rename = false;
3994                                *pending_move = 1;
3995                        }
3996                }
3997
3998                /*
3999                 * link/move the ref to the new place. If we have an orphan
4000                 * inode, move it and update valid_path. If not, link or move
4001                 * it depending on the inode mode.
4002                 */
4003                if (is_orphan && can_rename) {
4004                        ret = send_rename(sctx, valid_path, cur->full_path);
4005                        if (ret < 0)
4006                                goto out;
4007                        is_orphan = 0;
4008                        ret = fs_path_copy(valid_path, cur->full_path);
4009                        if (ret < 0)
4010                                goto out;
4011                } else if (can_rename) {
4012                        if (S_ISDIR(sctx->cur_inode_mode)) {
4013                                /*
4014                                 * Dirs can't be linked, so move it. For moved
4015                                 * dirs, we always have one new and one deleted
4016                                 * ref. The deleted ref is ignored later.
4017                                 */
4018                                ret = send_rename(sctx, valid_path,
4019                                                  cur->full_path);
4020                                if (!ret)
4021                                        ret = fs_path_copy(valid_path,
4022                                                           cur->full_path);
4023                                if (ret < 0)
4024                                        goto out;
4025                        } else {
4026                                /*
4027                                 * We might have previously orphanized an inode
4028                                 * which is an ancestor of our current inode,
4029                                 * so our reference's full path, which was
4030                                 * computed before any such orphanizations, must
4031                                 * be updated.
4032                                 */
4033                                if (orphanized_dir) {
4034                                        ret = update_ref_path(sctx, cur);
4035                                        if (ret < 0)
4036                                                goto out;
4037                                }
4038                                ret = send_link(sctx, cur->full_path,
4039                                                valid_path);
4040                                if (ret < 0)
4041                                        goto out;
4042                        }
4043                }
4044                ret = dup_ref(cur, &check_dirs);
4045                if (ret < 0)
4046                        goto out;
4047        }
4048
4049        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4050                /*
4051                 * Check if we can already rmdir the directory. If not,
4052                 * orphanize it. For every dir item inside that gets deleted
4053                 * later, we do this check again and rmdir it then if possible.
4054                 * See the use of check_dirs for more details.
4055                 */
4056                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4057                                sctx->cur_ino);
4058                if (ret < 0)
4059                        goto out;
4060                if (ret) {
4061                        ret = send_rmdir(sctx, valid_path);
4062                        if (ret < 0)
4063                                goto out;
4064                } else if (!is_orphan) {
4065                        ret = orphanize_inode(sctx, sctx->cur_ino,
4066                                        sctx->cur_inode_gen, valid_path);
4067                        if (ret < 0)
4068                                goto out;
4069                        is_orphan = 1;
4070                }
4071
4072                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4073                        ret = dup_ref(cur, &check_dirs);
4074                        if (ret < 0)
4075                                goto out;
4076                }
4077        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4078                   !list_empty(&sctx->deleted_refs)) {
4079                /*
4080                 * We have a moved dir. Add the old parent to check_dirs
4081                 */
4082                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4083                                list);
4084                ret = dup_ref(cur, &check_dirs);
4085                if (ret < 0)
4086                        goto out;
4087        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4088                /*
4089                 * We have a non dir inode. Go through all deleted refs and
4090                 * unlink them if they were not already overwritten by other
4091                 * inodes.
4092                 */
4093                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4094                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4095                                        sctx->cur_ino, sctx->cur_inode_gen,
4096                                        cur->name, cur->name_len);
4097                        if (ret < 0)
4098                                goto out;
4099                        if (!ret) {
4100                                /*
4101                                 * If we orphanized any ancestor before, we need
4102                                 * to recompute the full path for deleted names,
4103                                 * since any such path was computed before we
4104                                 * processed any references and orphanized any
4105                                 * ancestor inode.
4106                                 */
4107                                if (orphanized_ancestor) {
4108                                        ret = update_ref_path(sctx, cur);
4109                                        if (ret < 0)
4110                                                goto out;
4111                                }
4112                                ret = send_unlink(sctx, cur->full_path);
4113                                if (ret < 0)
4114                                        goto out;
4115                        }
4116                        ret = dup_ref(cur, &check_dirs);
4117                        if (ret < 0)
4118                                goto out;
4119                }
4120                /*
4121                 * If the inode is still orphan, unlink the orphan. This may
4122                 * happen when a previous inode did overwrite the first ref
4123                 * of this inode and no new refs were added for the current
4124                 * inode. Unlinking does not mean that the inode is deleted in
4125                 * all cases. There may still be links to this inode in other
4126                 * places.
4127                 */
4128                if (is_orphan) {
4129                        ret = send_unlink(sctx, valid_path);
4130                        if (ret < 0)
4131                                goto out;
4132                }
4133        }
4134
4135        /*
4136         * We did collect all parent dirs where cur_inode was once located. We
4137         * now go through all these dirs and check if they are pending for
4138         * deletion and if it's finally possible to perform the rmdir now.
4139         * We also update the inode stats of the parent dirs here.
4140         */
4141        list_for_each_entry(cur, &check_dirs, list) {
4142                /*
4143                 * In case we had refs into dirs that were not processed yet,
4144                 * we don't need to do the utime and rmdir logic for these dirs.
4145                 * The dir will be processed later.
4146                 */
4147                if (cur->dir > sctx->cur_ino)
4148                        continue;
4149
4150                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4151                if (ret < 0)
4152                        goto out;
4153
4154                if (ret == inode_state_did_create ||
4155                    ret == inode_state_no_change) {
4156                        /* TODO delayed utimes */
4157                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4158                        if (ret < 0)
4159                                goto out;
4160                } else if (ret == inode_state_did_delete &&
4161                           cur->dir != last_dir_ino_rm) {
4162                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4163                                        sctx->cur_ino);
4164                        if (ret < 0)
4165                                goto out;
4166                        if (ret) {
4167                                ret = get_cur_path(sctx, cur->dir,
4168                                                   cur->dir_gen, valid_path);
4169                                if (ret < 0)
4170                                        goto out;
4171                                ret = send_rmdir(sctx, valid_path);
4172                                if (ret < 0)
4173                                        goto out;
4174                                last_dir_ino_rm = cur->dir;
4175                        }
4176                }
4177        }
4178
4179        ret = 0;
4180
4181out:
4182        __free_recorded_refs(&check_dirs);
4183        free_recorded_refs(sctx);
4184        fs_path_free(valid_path);
4185        return ret;
4186}
4187
4188static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4189                      void *ctx, struct list_head *refs)
4190{
4191        int ret = 0;
4192        struct send_ctx *sctx = ctx;
4193        struct fs_path *p;
4194        u64 gen;
4195
4196        p = fs_path_alloc();
4197        if (!p)
4198                return -ENOMEM;
4199
4200        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4201                        NULL, NULL);
4202        if (ret < 0)
4203                goto out;
4204
4205        ret = get_cur_path(sctx, dir, gen, p);
4206        if (ret < 0)
4207                goto out;
4208        ret = fs_path_add_path(p, name);
4209        if (ret < 0)
4210                goto out;
4211
4212        ret = __record_ref(refs, dir, gen, p);
4213
4214out:
4215        if (ret)
4216                fs_path_free(p);
4217        return ret;
4218}
4219
4220static int __record_new_ref(int num, u64 dir, int index,
4221                            struct fs_path *name,
4222                            void *ctx)
4223{
4224        struct send_ctx *sctx = ctx;
4225        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4226}
4227
4228
4229static int __record_deleted_ref(int num, u64 dir, int index,
4230                                struct fs_path *name,
4231                                void *ctx)
4232{
4233        struct send_ctx *sctx = ctx;
4234        return record_ref(sctx->parent_root, dir, name, ctx,
4235                          &sctx->deleted_refs);
4236}
4237
4238static int record_new_ref(struct send_ctx *sctx)
4239{
4240        int ret;
4241
4242        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4243                                sctx->cmp_key, 0, __record_new_ref, sctx);
4244        if (ret < 0)
4245                goto out;
4246        ret = 0;
4247
4248out:
4249        return ret;
4250}
4251
4252static int record_deleted_ref(struct send_ctx *sctx)
4253{
4254        int ret;
4255
4256        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4257                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4258        if (ret < 0)
4259                goto out;
4260        ret = 0;
4261
4262out:
4263        return ret;
4264}
4265
4266struct find_ref_ctx {
4267        u64 dir;
4268        u64 dir_gen;
4269        struct btrfs_root *root;
4270        struct fs_path *name;
4271        int found_idx;
4272};
4273
4274static int __find_iref(int num, u64 dir, int index,
4275                       struct fs_path *name,
4276                       void *ctx_)
4277{
4278        struct find_ref_ctx *ctx = ctx_;
4279        u64 dir_gen;
4280        int ret;
4281
4282        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4283            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4284                /*
4285                 * To avoid doing extra lookups we'll only do this if everything
4286                 * else matches.
4287                 */
4288                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4289                                     NULL, NULL, NULL);
4290                if (ret)
4291                        return ret;
4292                if (dir_gen != ctx->dir_gen)
4293                        return 0;
4294                ctx->found_idx = num;
4295                return 1;
4296        }
4297        return 0;
4298}
4299
4300static int find_iref(struct btrfs_root *root,
4301                     struct btrfs_path *path,
4302                     struct btrfs_key *key,
4303                     u64 dir, u64 dir_gen, struct fs_path *name)
4304{
4305        int ret;
4306        struct find_ref_ctx ctx;
4307
4308        ctx.dir = dir;
4309        ctx.name = name;
4310        ctx.dir_gen = dir_gen;
4311        ctx.found_idx = -1;
4312        ctx.root = root;
4313
4314        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4315        if (ret < 0)
4316                return ret;
4317
4318        if (ctx.found_idx == -1)
4319                return -ENOENT;
4320
4321        return ctx.found_idx;
4322}
4323
4324static int __record_changed_new_ref(int num, u64 dir, int index,
4325                                    struct fs_path *name,
4326                                    void *ctx)
4327{
4328        u64 dir_gen;
4329        int ret;
4330        struct send_ctx *sctx = ctx;
4331
4332        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4333                             NULL, NULL, NULL);
4334        if (ret)
4335                return ret;
4336
4337        ret = find_iref(sctx->parent_root, sctx->right_path,
4338                        sctx->cmp_key, dir, dir_gen, name);
4339        if (ret == -ENOENT)
4340                ret = __record_new_ref(num, dir, index, name, sctx);
4341        else if (ret > 0)
4342                ret = 0;
4343
4344        return ret;
4345}
4346
4347static int __record_changed_deleted_ref(int num, u64 dir, int index,
4348                                        struct fs_path *name,
4349                                        void *ctx)
4350{
4351        u64 dir_gen;
4352        int ret;
4353        struct send_ctx *sctx = ctx;
4354
4355        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4356                             NULL, NULL, NULL);
4357        if (ret)
4358                return ret;
4359
4360        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4361                        dir, dir_gen, name);
4362        if (ret == -ENOENT)
4363                ret = __record_deleted_ref(num, dir, index, name, sctx);
4364        else if (ret > 0)
4365                ret = 0;
4366
4367        return ret;
4368}
4369
4370static int record_changed_ref(struct send_ctx *sctx)
4371{
4372        int ret = 0;
4373
4374        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4375                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4376        if (ret < 0)
4377                goto out;
4378        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4379                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4380        if (ret < 0)
4381                goto out;
4382        ret = 0;
4383
4384out:
4385        return ret;
4386}
4387
4388/*
4389 * Record and process all refs at once. Needed when an inode changes the
4390 * generation number, which means that it was deleted and recreated.
4391 */
4392static int process_all_refs(struct send_ctx *sctx,
4393                            enum btrfs_compare_tree_result cmd)
4394{
4395        int ret;
4396        struct btrfs_root *root;
4397        struct btrfs_path *path;
4398        struct btrfs_key key;
4399        struct btrfs_key found_key;
4400        struct extent_buffer *eb;
4401        int slot;
4402        iterate_inode_ref_t cb;
4403        int pending_move = 0;
4404
4405        path = alloc_path_for_send();
4406        if (!path)
4407                return -ENOMEM;
4408
4409        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4410                root = sctx->send_root;
4411                cb = __record_new_ref;
4412        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4413                root = sctx->parent_root;
4414                cb = __record_deleted_ref;
4415        } else {
4416                btrfs_err(sctx->send_root->fs_info,
4417                                "Wrong command %d in process_all_refs", cmd);
4418                ret = -EINVAL;
4419                goto out;
4420        }
4421
4422        key.objectid = sctx->cmp_key->objectid;
4423        key.type = BTRFS_INODE_REF_KEY;
4424        key.offset = 0;
4425        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426        if (ret < 0)
4427                goto out;
4428
4429        while (1) {
4430                eb = path->nodes[0];
4431                slot = path->slots[0];
4432                if (slot >= btrfs_header_nritems(eb)) {
4433                        ret = btrfs_next_leaf(root, path);
4434                        if (ret < 0)
4435                                goto out;
4436                        else if (ret > 0)
4437                                break;
4438                        continue;
4439                }
4440
4441                btrfs_item_key_to_cpu(eb, &found_key, slot);
4442
4443                if (found_key.objectid != key.objectid ||
4444                    (found_key.type != BTRFS_INODE_REF_KEY &&
4445                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4446                        break;
4447
4448                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4449                if (ret < 0)
4450                        goto out;
4451
4452                path->slots[0]++;
4453        }
4454        btrfs_release_path(path);
4455
4456        /*
4457         * We don't actually care about pending_move as we are simply
4458         * re-creating this inode and will be rename'ing it into place once we
4459         * rename the parent directory.
4460         */
4461        ret = process_recorded_refs(sctx, &pending_move);
4462out:
4463        btrfs_free_path(path);
4464        return ret;
4465}
4466
4467static int send_set_xattr(struct send_ctx *sctx,
4468                          struct fs_path *path,
4469                          const char *name, int name_len,
4470                          const char *data, int data_len)
4471{
4472        int ret = 0;
4473
4474        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4475        if (ret < 0)
4476                goto out;
4477
4478        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4479        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4480        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4481
4482        ret = send_cmd(sctx);
4483
4484tlv_put_failure:
4485out:
4486        return ret;
4487}
4488
4489static int send_remove_xattr(struct send_ctx *sctx,
4490                          struct fs_path *path,
4491                          const char *name, int name_len)
4492{
4493        int ret = 0;
4494
4495        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4496        if (ret < 0)
4497                goto out;
4498
4499        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4500        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4501
4502        ret = send_cmd(sctx);
4503
4504tlv_put_failure:
4505out:
4506        return ret;
4507}
4508
4509static int __process_new_xattr(int num, struct btrfs_key *di_key,
4510                               const char *name, int name_len,
4511                               const char *data, int data_len,
4512                               u8 type, void *ctx)
4513{
4514        int ret;
4515        struct send_ctx *sctx = ctx;
4516        struct fs_path *p;
4517        struct posix_acl_xattr_header dummy_acl;
4518
4519        p = fs_path_alloc();
4520        if (!p)
4521                return -ENOMEM;
4522
4523        /*
4524         * This hack is needed because empty acls are stored as zero byte
4525         * data in xattrs. Problem with that is, that receiving these zero byte
4526         * acls will fail later. To fix this, we send a dummy acl list that
4527         * only contains the version number and no entries.
4528         */
4529        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4530            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4531                if (data_len == 0) {
4532                        dummy_acl.a_version =
4533                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4534                        data = (char *)&dummy_acl;
4535                        data_len = sizeof(dummy_acl);
4536                }
4537        }
4538
4539        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4540        if (ret < 0)
4541                goto out;
4542
4543        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4544
4545out:
4546        fs_path_free(p);
4547        return ret;
4548}
4549
4550static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4551                                   const char *name, int name_len,
4552                                   const char *data, int data_len,
4553                                   u8 type, void *ctx)
4554{
4555        int ret;
4556        struct send_ctx *sctx = ctx;
4557        struct fs_path *p;
4558
4559        p = fs_path_alloc();
4560        if (!p)
4561                return -ENOMEM;
4562
4563        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4564        if (ret < 0)
4565                goto out;
4566
4567        ret = send_remove_xattr(sctx, p, name, name_len);
4568
4569out:
4570        fs_path_free(p);
4571        return ret;
4572}
4573
4574static int process_new_xattr(struct send_ctx *sctx)
4575{
4576        int ret = 0;
4577
4578        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4579                               __process_new_xattr, sctx);
4580
4581        return ret;
4582}
4583
4584static int process_deleted_xattr(struct send_ctx *sctx)
4585{
4586        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4587                                __process_deleted_xattr, sctx);
4588}
4589
4590struct find_xattr_ctx {
4591        const char *name;
4592        int name_len;
4593        int found_idx;
4594        char *found_data;
4595        int found_data_len;
4596};
4597
4598static int __find_xattr(int num, struct btrfs_key *di_key,
4599                        const char *name, int name_len,
4600                        const char *data, int data_len,
4601                        u8 type, void *vctx)
4602{
4603        struct find_xattr_ctx *ctx = vctx;
4604
4605        if (name_len == ctx->name_len &&
4606            strncmp(name, ctx->name, name_len) == 0) {
4607                ctx->found_idx = num;
4608                ctx->found_data_len = data_len;
4609                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4610                if (!ctx->found_data)
4611                        return -ENOMEM;
4612                return 1;
4613        }
4614        return 0;
4615}
4616
4617static int find_xattr(struct btrfs_root *root,
4618                      struct btrfs_path *path,
4619                      struct btrfs_key *key,
4620                      const char *name, int name_len,
4621                      char **data, int *data_len)
4622{
4623        int ret;
4624        struct find_xattr_ctx ctx;
4625
4626        ctx.name = name;
4627        ctx.name_len = name_len;
4628        ctx.found_idx = -1;
4629        ctx.found_data = NULL;
4630        ctx.found_data_len = 0;
4631
4632        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4633        if (ret < 0)
4634                return ret;
4635
4636        if (ctx.found_idx == -1)
4637                return -ENOENT;
4638        if (data) {
4639                *data = ctx.found_data;
4640                *data_len = ctx.found_data_len;
4641        } else {
4642                kfree(ctx.found_data);
4643        }
4644        return ctx.found_idx;
4645}
4646
4647
4648static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4649                                       const char *name, int name_len,
4650                                       const char *data, int data_len,
4651                                       u8 type, void *ctx)
4652{
4653        int ret;
4654        struct send_ctx *sctx = ctx;
4655        char *found_data = NULL;
4656        int found_data_len  = 0;
4657
4658        ret = find_xattr(sctx->parent_root, sctx->right_path,
4659                         sctx->cmp_key, name, name_len, &found_data,
4660                         &found_data_len);
4661        if (ret == -ENOENT) {
4662                ret = __process_new_xattr(num, di_key, name, name_len, data,
4663                                data_len, type, ctx);
4664        } else if (ret >= 0) {
4665                if (data_len != found_data_len ||
4666                    memcmp(data, found_data, data_len)) {
4667                        ret = __process_new_xattr(num, di_key, name, name_len,
4668                                        data, data_len, type, ctx);
4669                } else {
4670                        ret = 0;
4671                }
4672        }
4673
4674        kfree(found_data);
4675        return ret;
4676}
4677
4678static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4679                                           const char *name, int name_len,
4680                                           const char *data, int data_len,
4681                                           u8 type, void *ctx)
4682{
4683        int ret;
4684        struct send_ctx *sctx = ctx;
4685
4686        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4687                         name, name_len, NULL, NULL);
4688        if (ret == -ENOENT)
4689                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4690                                data_len, type, ctx);
4691        else if (ret >= 0)
4692                ret = 0;
4693
4694        return ret;
4695}
4696
4697static int process_changed_xattr(struct send_ctx *sctx)
4698{
4699        int ret = 0;
4700
4701        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4702                        __process_changed_new_xattr, sctx);
4703        if (ret < 0)
4704                goto out;
4705        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4706                        __process_changed_deleted_xattr, sctx);
4707
4708out:
4709        return ret;
4710}
4711
4712static int process_all_new_xattrs(struct send_ctx *sctx)
4713{
4714        int ret;
4715        struct btrfs_root *root;
4716        struct btrfs_path *path;
4717        struct btrfs_key key;
4718        struct btrfs_key found_key;
4719        struct extent_buffer *eb;
4720        int slot;
4721
4722        path = alloc_path_for_send();
4723        if (!path)
4724                return -ENOMEM;
4725
4726        root = sctx->send_root;
4727
4728        key.objectid = sctx->cmp_key->objectid;
4729        key.type = BTRFS_XATTR_ITEM_KEY;
4730        key.offset = 0;
4731        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4732        if (ret < 0)
4733                goto out;
4734
4735        while (1) {
4736                eb = path->nodes[0];
4737                slot = path->slots[0];
4738                if (slot >= btrfs_header_nritems(eb)) {
4739                        ret = btrfs_next_leaf(root, path);
4740                        if (ret < 0) {
4741                                goto out;
4742                        } else if (ret > 0) {
4743                                ret = 0;
4744                                break;
4745                        }
4746                        continue;
4747                }
4748
4749                btrfs_item_key_to_cpu(eb, &found_key, slot);
4750                if (found_key.objectid != key.objectid ||
4751                    found_key.type != key.type) {
4752                        ret = 0;
4753                        goto out;
4754                }
4755
4756                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4757                if (ret < 0)
4758                        goto out;
4759
4760                path->slots[0]++;
4761        }
4762
4763out:
4764        btrfs_free_path(path);
4765        return ret;
4766}
4767
4768static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4769{
4770        struct btrfs_root *root = sctx->send_root;
4771        struct btrfs_fs_info *fs_info = root->fs_info;
4772        struct inode *inode;
4773        struct page *page;
4774        char *addr;
4775        struct btrfs_key key;
4776        pgoff_t index = offset >> PAGE_SHIFT;
4777        pgoff_t last_index;
4778        unsigned pg_offset = offset_in_page(offset);
4779        ssize_t ret = 0;
4780
4781        key.objectid = sctx->cur_ino;
4782        key.type = BTRFS_INODE_ITEM_KEY;
4783        key.offset = 0;
4784
4785        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4786        if (IS_ERR(inode))
4787                return PTR_ERR(inode);
4788
4789        if (offset + len > i_size_read(inode)) {
4790                if (offset > i_size_read(inode))
4791                        len = 0;
4792                else
4793                        len = offset - i_size_read(inode);
4794        }
4795        if (len == 0)
4796                goto out;
4797
4798        last_index = (offset + len - 1) >> PAGE_SHIFT;
4799
4800        /* initial readahead */
4801        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4802        file_ra_state_init(&sctx->ra, inode->i_mapping);
4803
4804        while (index <= last_index) {
4805                unsigned cur_len = min_t(unsigned, len,
4806                                         PAGE_SIZE - pg_offset);
4807
4808                page = find_lock_page(inode->i_mapping, index);
4809                if (!page) {
4810                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4811                                NULL, index, last_index + 1 - index);
4812
4813                        page = find_or_create_page(inode->i_mapping, index,
4814                                        GFP_KERNEL);
4815                        if (!page) {
4816                                ret = -ENOMEM;
4817                                break;
4818                        }
4819                }
4820
4821                if (PageReadahead(page)) {
4822                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4823                                NULL, page, index, last_index + 1 - index);
4824                }
4825
4826                if (!PageUptodate(page)) {
4827                        btrfs_readpage(NULL, page);
4828                        lock_page(page);
4829                        if (!PageUptodate(page)) {
4830                                unlock_page(page);
4831                                put_page(page);
4832                                ret = -EIO;
4833                                break;
4834                        }
4835                }
4836
4837                addr = kmap(page);
4838                memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4839                kunmap(page);
4840                unlock_page(page);
4841                put_page(page);
4842                index++;
4843                pg_offset = 0;
4844                len -= cur_len;
4845                ret += cur_len;
4846        }
4847out:
4848        iput(inode);
4849        return ret;
4850}
4851
4852/*
4853 * Read some bytes from the current inode/file and send a write command to
4854 * user space.
4855 */
4856static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4857{
4858        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4859        int ret = 0;
4860        struct fs_path *p;
4861        ssize_t num_read = 0;
4862
4863        p = fs_path_alloc();
4864        if (!p)
4865                return -ENOMEM;
4866
4867        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4868
4869        num_read = fill_read_buf(sctx, offset, len);
4870        if (num_read <= 0) {
4871                if (num_read < 0)
4872                        ret = num_read;
4873                goto out;
4874        }
4875
4876        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4877        if (ret < 0)
4878                goto out;
4879
4880        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4881        if (ret < 0)
4882                goto out;
4883
4884        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4885        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4886        TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4887
4888        ret = send_cmd(sctx);
4889
4890tlv_put_failure:
4891out:
4892        fs_path_free(p);
4893        if (ret < 0)
4894                return ret;
4895        return num_read;
4896}
4897
4898/*
4899 * Send a clone command to user space.
4900 */
4901static int send_clone(struct send_ctx *sctx,
4902                      u64 offset, u32 len,
4903                      struct clone_root *clone_root)
4904{
4905        int ret = 0;
4906        struct fs_path *p;
4907        u64 gen;
4908
4909        btrfs_debug(sctx->send_root->fs_info,
4910                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4911                    offset, len, clone_root->root->root_key.objectid,
4912                    clone_root->ino, clone_root->offset);
4913
4914        p = fs_path_alloc();
4915        if (!p)
4916                return -ENOMEM;
4917
4918        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4919        if (ret < 0)
4920                goto out;
4921
4922        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4923        if (ret < 0)
4924                goto out;
4925
4926        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4927        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4928        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4929
4930        if (clone_root->root == sctx->send_root) {
4931                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4932                                &gen, NULL, NULL, NULL, NULL);
4933                if (ret < 0)
4934                        goto out;
4935                ret = get_cur_path(sctx, clone_root->ino, gen, p);
4936        } else {
4937                ret = get_inode_path(clone_root->root, clone_root->ino, p);
4938        }
4939        if (ret < 0)
4940                goto out;
4941
4942        /*
4943         * If the parent we're using has a received_uuid set then use that as
4944         * our clone source as that is what we will look for when doing a
4945         * receive.
4946         *
4947         * This covers the case that we create a snapshot off of a received
4948         * subvolume and then use that as the parent and try to receive on a
4949         * different host.
4950         */
4951        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4952                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953                             clone_root->root->root_item.received_uuid);
4954        else
4955                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4956                             clone_root->root->root_item.uuid);
4957        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4958                    le64_to_cpu(clone_root->root->root_item.ctransid));
4959        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4960        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4961                        clone_root->offset);
4962
4963        ret = send_cmd(sctx);
4964
4965tlv_put_failure:
4966out:
4967        fs_path_free(p);
4968        return ret;
4969}
4970
4971/*
4972 * Send an update extent command to user space.
4973 */
4974static int send_update_extent(struct send_ctx *sctx,
4975                              u64 offset, u32 len)
4976{
4977        int ret = 0;
4978        struct fs_path *p;
4979
4980        p = fs_path_alloc();
4981        if (!p)
4982                return -ENOMEM;
4983
4984        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4985        if (ret < 0)
4986                goto out;
4987
4988        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4989        if (ret < 0)
4990                goto out;
4991
4992        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4993        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4994        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4995
4996        ret = send_cmd(sctx);
4997
4998tlv_put_failure:
4999out:
5000        fs_path_free(p);
5001        return ret;
5002}
5003
5004static int send_hole(struct send_ctx *sctx, u64 end)
5005{
5006        struct fs_path *p = NULL;
5007        u64 offset = sctx->cur_inode_last_extent;
5008        u64 len;
5009        int ret = 0;
5010
5011        /*
5012         * A hole that starts at EOF or beyond it. Since we do not yet support
5013         * fallocate (for extent preallocation and hole punching), sending a
5014         * write of zeroes starting at EOF or beyond would later require issuing
5015         * a truncate operation which would undo the write and achieve nothing.
5016         */
5017        if (offset >= sctx->cur_inode_size)
5018                return 0;
5019
5020        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5021                return send_update_extent(sctx, offset, end - offset);
5022
5023        p = fs_path_alloc();
5024        if (!p)
5025                return -ENOMEM;
5026        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5027        if (ret < 0)
5028                goto tlv_put_failure;
5029        memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5030        while (offset < end) {
5031                len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5032
5033                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5034                if (ret < 0)
5035                        break;
5036                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5037                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5038                TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5039                ret = send_cmd(sctx);
5040                if (ret < 0)
5041                        break;
5042                offset += len;
5043        }
5044        sctx->cur_inode_next_write_offset = offset;
5045tlv_put_failure:
5046        fs_path_free(p);
5047        return ret;
5048}
5049
5050static int send_extent_data(struct send_ctx *sctx,
5051                            const u64 offset,
5052                            const u64 len)
5053{
5054        u64 sent = 0;
5055
5056        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5057                return send_update_extent(sctx, offset, len);
5058
5059        while (sent < len) {
5060                u64 size = len - sent;
5061                int ret;
5062
5063                if (size > BTRFS_SEND_READ_SIZE)
5064                        size = BTRFS_SEND_READ_SIZE;
5065                ret = send_write(sctx, offset + sent, size);
5066                if (ret < 0)
5067                        return ret;
5068                if (!ret)
5069                        break;
5070                sent += ret;
5071        }
5072        return 0;
5073}
5074
5075static int clone_range(struct send_ctx *sctx,
5076                       struct clone_root *clone_root,
5077                       const u64 disk_byte,
5078                       u64 data_offset,
5079                       u64 offset,
5080                       u64 len)
5081{
5082        struct btrfs_path *path;
5083        struct btrfs_key key;
5084        int ret;
5085
5086        /*
5087         * Prevent cloning from a zero offset with a length matching the sector
5088         * size because in some scenarios this will make the receiver fail.
5089         *
5090         * For example, if in the source filesystem the extent at offset 0
5091         * has a length of sectorsize and it was written using direct IO, then
5092         * it can never be an inline extent (even if compression is enabled).
5093         * Then this extent can be cloned in the original filesystem to a non
5094         * zero file offset, but it may not be possible to clone in the
5095         * destination filesystem because it can be inlined due to compression
5096         * on the destination filesystem (as the receiver's write operations are
5097         * always done using buffered IO). The same happens when the original
5098         * filesystem does not have compression enabled but the destination
5099         * filesystem has.
5100         */
5101        if (clone_root->offset == 0 &&
5102            len == sctx->send_root->fs_info->sectorsize)
5103                return send_extent_data(sctx, offset, len);
5104
5105        path = alloc_path_for_send();
5106        if (!path)
5107                return -ENOMEM;
5108
5109        /*
5110         * We can't send a clone operation for the entire range if we find
5111         * extent items in the respective range in the source file that
5112         * refer to different extents or if we find holes.
5113         * So check for that and do a mix of clone and regular write/copy
5114         * operations if needed.
5115         *
5116         * Example:
5117         *
5118         * mkfs.btrfs -f /dev/sda
5119         * mount /dev/sda /mnt
5120         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5121         * cp --reflink=always /mnt/foo /mnt/bar
5122         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5123         * btrfs subvolume snapshot -r /mnt /mnt/snap
5124         *
5125         * If when we send the snapshot and we are processing file bar (which
5126         * has a higher inode number than foo) we blindly send a clone operation
5127         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5128         * a file bar that matches the content of file foo - iow, doesn't match
5129         * the content from bar in the original filesystem.
5130         */
5131        key.objectid = clone_root->ino;
5132        key.type = BTRFS_EXTENT_DATA_KEY;
5133        key.offset = clone_root->offset;
5134        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5135        if (ret < 0)
5136                goto out;
5137        if (ret > 0 && path->slots[0] > 0) {
5138                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5139                if (key.objectid == clone_root->ino &&
5140                    key.type == BTRFS_EXTENT_DATA_KEY)
5141                        path->slots[0]--;
5142        }
5143
5144        while (true) {
5145                struct extent_buffer *leaf = path->nodes[0];
5146                int slot = path->slots[0];
5147                struct btrfs_file_extent_item *ei;
5148                u8 type;
5149                u64 ext_len;
5150                u64 clone_len;
5151
5152                if (slot >= btrfs_header_nritems(leaf)) {
5153                        ret = btrfs_next_leaf(clone_root->root, path);
5154                        if (ret < 0)
5155                                goto out;
5156                        else if (ret > 0)
5157                                break;
5158                        continue;
5159                }
5160
5161                btrfs_item_key_to_cpu(leaf, &key, slot);
5162
5163                /*
5164                 * We might have an implicit trailing hole (NO_HOLES feature
5165                 * enabled). We deal with it after leaving this loop.
5166                 */
5167                if (key.objectid != clone_root->ino ||
5168                    key.type != BTRFS_EXTENT_DATA_KEY)
5169                        break;
5170
5171                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5172                type = btrfs_file_extent_type(leaf, ei);
5173                if (type == BTRFS_FILE_EXTENT_INLINE) {
5174                        ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5175                        ext_len = PAGE_ALIGN(ext_len);
5176                } else {
5177                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5178                }
5179
5180                if (key.offset + ext_len <= clone_root->offset)
5181                        goto next;
5182
5183                if (key.offset > clone_root->offset) {
5184                        /* Implicit hole, NO_HOLES feature enabled. */
5185                        u64 hole_len = key.offset - clone_root->offset;
5186
5187                        if (hole_len > len)
5188                                hole_len = len;
5189                        ret = send_extent_data(sctx, offset, hole_len);
5190                        if (ret < 0)
5191                                goto out;
5192
5193                        len -= hole_len;
5194                        if (len == 0)
5195                                break;
5196                        offset += hole_len;
5197                        clone_root->offset += hole_len;
5198                        data_offset += hole_len;
5199                }
5200
5201                if (key.offset >= clone_root->offset + len)
5202                        break;
5203
5204                clone_len = min_t(u64, ext_len, len);
5205
5206                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5207                    btrfs_file_extent_offset(leaf, ei) == data_offset)
5208                        ret = send_clone(sctx, offset, clone_len, clone_root);
5209                else
5210                        ret = send_extent_data(sctx, offset, clone_len);
5211
5212                if (ret < 0)
5213                        goto out;
5214
5215                len -= clone_len;
5216                if (len == 0)
5217                        break;
5218                offset += clone_len;
5219                clone_root->offset += clone_len;
5220                data_offset += clone_len;
5221next:
5222                path->slots[0]++;
5223        }
5224
5225        if (len > 0)
5226                ret = send_extent_data(sctx, offset, len);
5227        else
5228                ret = 0;
5229out:
5230        btrfs_free_path(path);
5231        return ret;
5232}
5233
5234static int send_write_or_clone(struct send_ctx *sctx,
5235                               struct btrfs_path *path,
5236                               struct btrfs_key *key,
5237                               struct clone_root *clone_root)
5238{
5239        int ret = 0;
5240        struct btrfs_file_extent_item *ei;
5241        u64 offset = key->offset;
5242        u64 len;
5243        u8 type;
5244        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5245
5246        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5247                        struct btrfs_file_extent_item);
5248        type = btrfs_file_extent_type(path->nodes[0], ei);
5249        if (type == BTRFS_FILE_EXTENT_INLINE) {
5250                len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5251                /*
5252                 * it is possible the inline item won't cover the whole page,
5253                 * but there may be items after this page.  Make
5254                 * sure to send the whole thing
5255                 */
5256                len = PAGE_ALIGN(len);
5257        } else {
5258                len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5259        }
5260
5261        if (offset >= sctx->cur_inode_size) {
5262                ret = 0;
5263                goto out;
5264        }
5265        if (offset + len > sctx->cur_inode_size)
5266                len = sctx->cur_inode_size - offset;
5267        if (len == 0) {
5268                ret = 0;
5269                goto out;
5270        }
5271
5272        if (clone_root && IS_ALIGNED(offset + len, bs)) {
5273                u64 disk_byte;
5274                u64 data_offset;
5275
5276                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5277                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5278                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5279                                  offset, len);
5280        } else {
5281                ret = send_extent_data(sctx, offset, len);
5282        }
5283        sctx->cur_inode_next_write_offset = offset + len;
5284out:
5285        return ret;
5286}
5287
5288static int is_extent_unchanged(struct send_ctx *sctx,
5289                               struct btrfs_path *left_path,
5290                               struct btrfs_key *ekey)
5291{
5292        int ret = 0;
5293        struct btrfs_key key;
5294        struct btrfs_path *path = NULL;
5295        struct extent_buffer *eb;
5296        int slot;
5297        struct btrfs_key found_key;
5298        struct btrfs_file_extent_item *ei;
5299        u64 left_disknr;
5300        u64 right_disknr;
5301        u64 left_offset;
5302        u64 right_offset;
5303        u64 left_offset_fixed;
5304        u64 left_len;
5305        u64 right_len;
5306        u64 left_gen;
5307        u64 right_gen;
5308        u8 left_type;
5309        u8 right_type;
5310
5311        path = alloc_path_for_send();
5312        if (!path)
5313                return -ENOMEM;
5314
5315        eb = left_path->nodes[0];
5316        slot = left_path->slots[0];
5317        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5318        left_type = btrfs_file_extent_type(eb, ei);
5319
5320        if (left_type != BTRFS_FILE_EXTENT_REG) {
5321                ret = 0;
5322                goto out;
5323        }
5324        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5325        left_len = btrfs_file_extent_num_bytes(eb, ei);
5326        left_offset = btrfs_file_extent_offset(eb, ei);
5327        left_gen = btrfs_file_extent_generation(eb, ei);
5328
5329        /*
5330         * Following comments will refer to these graphics. L is the left
5331         * extents which we are checking at the moment. 1-8 are the right
5332         * extents that we iterate.
5333         *
5334         *       |-----L-----|
5335         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5336         *
5337         *       |-----L-----|
5338         * |--1--|-2b-|...(same as above)
5339         *
5340         * Alternative situation. Happens on files where extents got split.
5341         *       |-----L-----|
5342         * |-----------7-----------|-6-|
5343         *
5344         * Alternative situation. Happens on files which got larger.
5345         *       |-----L-----|
5346         * |-8-|
5347         * Nothing follows after 8.
5348         */
5349
5350        key.objectid = ekey->objectid;
5351        key.type = BTRFS_EXTENT_DATA_KEY;
5352        key.offset = ekey->offset;
5353        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5354        if (ret < 0)
5355                goto out;
5356        if (ret) {
5357                ret = 0;
5358                goto out;
5359        }
5360
5361        /*
5362         * Handle special case where the right side has no extents at all.
5363         */
5364        eb = path->nodes[0];
5365        slot = path->slots[0];
5366        btrfs_item_key_to_cpu(eb, &found_key, slot);
5367        if (found_key.objectid != key.objectid ||
5368            found_key.type != key.type) {
5369                /* If we're a hole then just pretend nothing changed */
5370                ret = (left_disknr) ? 0 : 1;
5371                goto out;
5372        }
5373
5374        /*
5375         * We're now on 2a, 2b or 7.
5376         */
5377        key = found_key;
5378        while (key.offset < ekey->offset + left_len) {
5379                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5380                right_type = btrfs_file_extent_type(eb, ei);
5381                if (right_type != BTRFS_FILE_EXTENT_REG &&
5382                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5383                        ret = 0;
5384                        goto out;
5385                }
5386
5387                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5388                        right_len = btrfs_file_extent_ram_bytes(eb, ei);
5389                        right_len = PAGE_ALIGN(right_len);
5390                } else {
5391                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5392                }
5393
5394                /*
5395                 * Are we at extent 8? If yes, we know the extent is changed.
5396                 * This may only happen on the first iteration.
5397                 */
5398                if (found_key.offset + right_len <= ekey->offset) {
5399                        /* If we're a hole just pretend nothing changed */
5400                        ret = (left_disknr) ? 0 : 1;
5401                        goto out;
5402                }
5403
5404                /*
5405                 * We just wanted to see if when we have an inline extent, what
5406                 * follows it is a regular extent (wanted to check the above
5407                 * condition for inline extents too). This should normally not
5408                 * happen but it's possible for example when we have an inline
5409                 * compressed extent representing data with a size matching
5410                 * the page size (currently the same as sector size).
5411                 */
5412                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5413                        ret = 0;
5414                        goto out;
5415                }
5416
5417                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5418                right_offset = btrfs_file_extent_offset(eb, ei);
5419                right_gen = btrfs_file_extent_generation(eb, ei);
5420
5421                left_offset_fixed = left_offset;
5422                if (key.offset < ekey->offset) {
5423                        /* Fix the right offset for 2a and 7. */
5424                        right_offset += ekey->offset - key.offset;
5425                } else {
5426                        /* Fix the left offset for all behind 2a and 2b */
5427                        left_offset_fixed += key.offset - ekey->offset;
5428                }
5429
5430                /*
5431                 * Check if we have the same extent.
5432                 */
5433                if (left_disknr != right_disknr ||
5434                    left_offset_fixed != right_offset ||
5435                    left_gen != right_gen) {
5436                        ret = 0;
5437                        goto out;
5438                }
5439
5440                /*
5441                 * Go to the next extent.
5442                 */
5443                ret = btrfs_next_item(sctx->parent_root, path);
5444                if (ret < 0)
5445                        goto out;
5446                if (!ret) {
5447                        eb = path->nodes[0];
5448                        slot = path->slots[0];
5449                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5450                }
5451                if (ret || found_key.objectid != key.objectid ||
5452                    found_key.type != key.type) {
5453                        key.offset += right_len;
5454                        break;
5455                }
5456                if (found_key.offset != key.offset + right_len) {
5457                        ret = 0;
5458                        goto out;
5459                }
5460                key = found_key;
5461        }
5462
5463        /*
5464         * We're now behind the left extent (treat as unchanged) or at the end
5465         * of the right side (treat as changed).
5466         */
5467        if (key.offset >= ekey->offset + left_len)
5468                ret = 1;
5469        else
5470                ret = 0;
5471
5472
5473out:
5474        btrfs_free_path(path);
5475        return ret;
5476}
5477
5478static int get_last_extent(struct send_ctx *sctx, u64 offset)
5479{
5480        struct btrfs_path *path;
5481        struct btrfs_root *root = sctx->send_root;
5482        struct btrfs_file_extent_item *fi;
5483        struct btrfs_key key;
5484        u64 extent_end;
5485        u8 type;
5486        int ret;
5487
5488        path = alloc_path_for_send();
5489        if (!path)
5490                return -ENOMEM;
5491
5492        sctx->cur_inode_last_extent = 0;
5493
5494        key.objectid = sctx->cur_ino;
5495        key.type = BTRFS_EXTENT_DATA_KEY;
5496        key.offset = offset;
5497        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5498        if (ret < 0)
5499                goto out;
5500        ret = 0;
5501        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5502        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5503                goto out;
5504
5505        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5506                            struct btrfs_file_extent_item);
5507        type = btrfs_file_extent_type(path->nodes[0], fi);
5508        if (type == BTRFS_FILE_EXTENT_INLINE) {
5509                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5510                extent_end = ALIGN(key.offset + size,
5511                                   sctx->send_root->fs_info->sectorsize);
5512        } else {
5513                extent_end = key.offset +
5514                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5515        }
5516        sctx->cur_inode_last_extent = extent_end;
5517out:
5518        btrfs_free_path(path);
5519        return ret;
5520}
5521
5522static int range_is_hole_in_parent(struct send_ctx *sctx,
5523                                   const u64 start,
5524                                   const u64 end)
5525{
5526        struct btrfs_path *path;
5527        struct btrfs_key key;
5528        struct btrfs_root *root = sctx->parent_root;
5529        u64 search_start = start;
5530        int ret;
5531
5532        path = alloc_path_for_send();
5533        if (!path)
5534                return -ENOMEM;
5535
5536        key.objectid = sctx->cur_ino;
5537        key.type = BTRFS_EXTENT_DATA_KEY;
5538        key.offset = search_start;
5539        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5540        if (ret < 0)
5541                goto out;
5542        if (ret > 0 && path->slots[0] > 0)
5543                path->slots[0]--;
5544
5545        while (search_start < end) {
5546                struct extent_buffer *leaf = path->nodes[0];
5547                int slot = path->slots[0];
5548                struct btrfs_file_extent_item *fi;
5549                u64 extent_end;
5550
5551                if (slot >= btrfs_header_nritems(leaf)) {
5552                        ret = btrfs_next_leaf(root, path);
5553                        if (ret < 0)
5554                                goto out;
5555                        else if (ret > 0)
5556                                break;
5557                        continue;
5558                }
5559
5560                btrfs_item_key_to_cpu(leaf, &key, slot);
5561                if (key.objectid < sctx->cur_ino ||
5562                    key.type < BTRFS_EXTENT_DATA_KEY)
5563                        goto next;
5564                if (key.objectid > sctx->cur_ino ||
5565                    key.type > BTRFS_EXTENT_DATA_KEY ||
5566                    key.offset >= end)
5567                        break;
5568
5569                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5570                if (btrfs_file_extent_type(leaf, fi) ==
5571                    BTRFS_FILE_EXTENT_INLINE) {
5572                        u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5573
5574                        extent_end = ALIGN(key.offset + size,
5575                                           root->fs_info->sectorsize);
5576                } else {
5577                        extent_end = key.offset +
5578                                btrfs_file_extent_num_bytes(leaf, fi);
5579                }
5580                if (extent_end <= start)
5581                        goto next;
5582                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5583                        search_start = extent_end;
5584                        goto next;
5585                }
5586                ret = 0;
5587                goto out;
5588next:
5589                path->slots[0]++;
5590        }
5591        ret = 1;
5592out:
5593        btrfs_free_path(path);
5594        return ret;
5595}
5596
5597static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5598                           struct btrfs_key *key)
5599{
5600        struct btrfs_file_extent_item *fi;
5601        u64 extent_end;
5602        u8 type;
5603        int ret = 0;
5604
5605        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5606                return 0;
5607
5608        if (sctx->cur_inode_last_extent == (u64)-1) {
5609                ret = get_last_extent(sctx, key->offset - 1);
5610                if (ret)
5611                        return ret;
5612        }
5613
5614        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5615                            struct btrfs_file_extent_item);
5616        type = btrfs_file_extent_type(path->nodes[0], fi);
5617        if (type == BTRFS_FILE_EXTENT_INLINE) {
5618                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5619                extent_end = ALIGN(key->offset + size,
5620                                   sctx->send_root->fs_info->sectorsize);
5621        } else {
5622                extent_end = key->offset +
5623                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5624        }
5625
5626        if (path->slots[0] == 0 &&
5627            sctx->cur_inode_last_extent < key->offset) {
5628                /*
5629                 * We might have skipped entire leafs that contained only
5630                 * file extent items for our current inode. These leafs have
5631                 * a generation number smaller (older) than the one in the
5632                 * current leaf and the leaf our last extent came from, and
5633                 * are located between these 2 leafs.
5634                 */
5635                ret = get_last_extent(sctx, key->offset - 1);
5636                if (ret)
5637                        return ret;
5638        }
5639
5640        if (sctx->cur_inode_last_extent < key->offset) {
5641                ret = range_is_hole_in_parent(sctx,
5642                                              sctx->cur_inode_last_extent,
5643                                              key->offset);
5644                if (ret < 0)
5645                        return ret;
5646                else if (ret == 0)
5647                        ret = send_hole(sctx, key->offset);
5648                else
5649                        ret = 0;
5650        }
5651        sctx->cur_inode_last_extent = extent_end;
5652        return ret;
5653}
5654
5655static int process_extent(struct send_ctx *sctx,
5656                          struct btrfs_path *path,
5657                          struct btrfs_key *key)
5658{
5659        struct clone_root *found_clone = NULL;
5660        int ret = 0;
5661
5662        if (S_ISLNK(sctx->cur_inode_mode))
5663                return 0;
5664
5665        if (sctx->parent_root && !sctx->cur_inode_new) {
5666                ret = is_extent_unchanged(sctx, path, key);
5667                if (ret < 0)
5668                        goto out;
5669                if (ret) {
5670                        ret = 0;
5671                        goto out_hole;
5672                }
5673        } else {
5674                struct btrfs_file_extent_item *ei;
5675                u8 type;
5676
5677                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5678                                    struct btrfs_file_extent_item);
5679                type = btrfs_file_extent_type(path->nodes[0], ei);
5680                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5681                    type == BTRFS_FILE_EXTENT_REG) {
5682                        /*
5683                         * The send spec does not have a prealloc command yet,
5684                         * so just leave a hole for prealloc'ed extents until
5685                         * we have enough commands queued up to justify rev'ing
5686                         * the send spec.
5687                         */
5688                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5689                                ret = 0;
5690                                goto out;
5691                        }
5692
5693                        /* Have a hole, just skip it. */
5694                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5695                                ret = 0;
5696                                goto out;
5697                        }
5698                }
5699        }
5700
5701        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5702                        sctx->cur_inode_size, &found_clone);
5703        if (ret != -ENOENT && ret < 0)
5704                goto out;
5705
5706        ret = send_write_or_clone(sctx, path, key, found_clone);
5707        if (ret)
5708                goto out;
5709out_hole:
5710        ret = maybe_send_hole(sctx, path, key);
5711out:
5712        return ret;
5713}
5714
5715static int process_all_extents(struct send_ctx *sctx)
5716{
5717        int ret;
5718        struct btrfs_root *root;
5719        struct btrfs_path *path;
5720        struct btrfs_key key;
5721        struct btrfs_key found_key;
5722        struct extent_buffer *eb;
5723        int slot;
5724
5725        root = sctx->send_root;
5726        path = alloc_path_for_send();
5727        if (!path)
5728                return -ENOMEM;
5729
5730        key.objectid = sctx->cmp_key->objectid;
5731        key.type = BTRFS_EXTENT_DATA_KEY;
5732        key.offset = 0;
5733        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5734        if (ret < 0)
5735                goto out;
5736
5737        while (1) {
5738                eb = path->nodes[0];
5739                slot = path->slots[0];
5740
5741                if (slot >= btrfs_header_nritems(eb)) {
5742                        ret = btrfs_next_leaf(root, path);
5743                        if (ret < 0) {
5744                                goto out;
5745                        } else if (ret > 0) {
5746                                ret = 0;
5747                                break;
5748                        }
5749                        continue;
5750                }
5751
5752                btrfs_item_key_to_cpu(eb, &found_key, slot);
5753
5754                if (found_key.objectid != key.objectid ||
5755                    found_key.type != key.type) {
5756                        ret = 0;
5757                        goto out;
5758                }
5759
5760                ret = process_extent(sctx, path, &found_key);
5761                if (ret < 0)
5762                        goto out;
5763
5764                path->slots[0]++;
5765        }
5766
5767out:
5768        btrfs_free_path(path);
5769        return ret;
5770}
5771
5772static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5773                                           int *pending_move,
5774                                           int *refs_processed)
5775{
5776        int ret = 0;
5777
5778        if (sctx->cur_ino == 0)
5779                goto out;
5780        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5781            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5782                goto out;
5783        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5784                goto out;
5785
5786        ret = process_recorded_refs(sctx, pending_move);
5787        if (ret < 0)
5788                goto out;
5789
5790        *refs_processed = 1;
5791out:
5792        return ret;
5793}
5794
5795static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5796{
5797        int ret = 0;
5798        u64 left_mode;
5799        u64 left_uid;
5800        u64 left_gid;
5801        u64 right_mode;
5802        u64 right_uid;
5803        u64 right_gid;
5804        int need_chmod = 0;
5805        int need_chown = 0;
5806        int need_truncate = 1;
5807        int pending_move = 0;
5808        int refs_processed = 0;
5809
5810        if (sctx->ignore_cur_inode)
5811                return 0;
5812
5813        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5814                                              &refs_processed);
5815        if (ret < 0)
5816                goto out;
5817
5818        /*
5819         * We have processed the refs and thus need to advance send_progress.
5820         * Now, calls to get_cur_xxx will take the updated refs of the current
5821         * inode into account.
5822         *
5823         * On the other hand, if our current inode is a directory and couldn't
5824         * be moved/renamed because its parent was renamed/moved too and it has
5825         * a higher inode number, we can only move/rename our current inode
5826         * after we moved/renamed its parent. Therefore in this case operate on
5827         * the old path (pre move/rename) of our current inode, and the
5828         * move/rename will be performed later.
5829         */
5830        if (refs_processed && !pending_move)
5831                sctx->send_progress = sctx->cur_ino + 1;
5832
5833        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5834                goto out;
5835        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5836                goto out;
5837
5838        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5839                        &left_mode, &left_uid, &left_gid, NULL);
5840        if (ret < 0)
5841                goto out;
5842
5843        if (!sctx->parent_root || sctx->cur_inode_new) {
5844                need_chown = 1;
5845                if (!S_ISLNK(sctx->cur_inode_mode))
5846                        need_chmod = 1;
5847                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5848                        need_truncate = 0;
5849        } else {
5850                u64 old_size;
5851
5852                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5853                                &old_size, NULL, &right_mode, &right_uid,
5854                                &right_gid, NULL);
5855                if (ret < 0)
5856                        goto out;
5857
5858                if (left_uid != right_uid || left_gid != right_gid)
5859                        need_chown = 1;
5860                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5861                        need_chmod = 1;
5862                if ((old_size == sctx->cur_inode_size) ||
5863                    (sctx->cur_inode_size > old_size &&
5864                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5865                        need_truncate = 0;
5866        }
5867
5868        if (S_ISREG(sctx->cur_inode_mode)) {
5869                if (need_send_hole(sctx)) {
5870                        if (sctx->cur_inode_last_extent == (u64)-1 ||
5871                            sctx->cur_inode_last_extent <
5872                            sctx->cur_inode_size) {
5873                                ret = get_last_extent(sctx, (u64)-1);
5874                                if (ret)
5875                                        goto out;
5876                        }
5877                        if (sctx->cur_inode_last_extent <
5878                            sctx->cur_inode_size) {
5879                                ret = send_hole(sctx, sctx->cur_inode_size);
5880                                if (ret)
5881                                        goto out;
5882                        }
5883                }
5884                if (need_truncate) {
5885                        ret = send_truncate(sctx, sctx->cur_ino,
5886                                            sctx->cur_inode_gen,
5887                                            sctx->cur_inode_size);
5888                        if (ret < 0)
5889                                goto out;
5890                }
5891        }
5892
5893        if (need_chown) {
5894                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5895                                left_uid, left_gid);
5896                if (ret < 0)
5897                        goto out;
5898        }
5899        if (need_chmod) {
5900                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5901                                left_mode);
5902                if (ret < 0)
5903                        goto out;
5904        }
5905
5906        /*
5907         * If other directory inodes depended on our current directory
5908         * inode's move/rename, now do their move/rename operations.
5909         */
5910        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5911                ret = apply_children_dir_moves(sctx);
5912                if (ret)
5913                        goto out;
5914                /*
5915                 * Need to send that every time, no matter if it actually
5916                 * changed between the two trees as we have done changes to
5917                 * the inode before. If our inode is a directory and it's
5918                 * waiting to be moved/renamed, we will send its utimes when
5919                 * it's moved/renamed, therefore we don't need to do it here.
5920                 */
5921                sctx->send_progress = sctx->cur_ino + 1;
5922                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5923                if (ret < 0)
5924                        goto out;
5925        }
5926
5927out:
5928        return ret;
5929}
5930
5931struct parent_paths_ctx {
5932        struct list_head *refs;
5933        struct send_ctx *sctx;
5934};
5935
5936static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5937                             void *ctx)
5938{
5939        struct parent_paths_ctx *ppctx = ctx;
5940
5941        return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5942                          ppctx->refs);
5943}
5944
5945/*
5946 * Issue unlink operations for all paths of the current inode found in the
5947 * parent snapshot.
5948 */
5949static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5950{
5951        LIST_HEAD(deleted_refs);
5952        struct btrfs_path *path;
5953        struct btrfs_key key;
5954        struct parent_paths_ctx ctx;
5955        int ret;
5956
5957        path = alloc_path_for_send();
5958        if (!path)
5959                return -ENOMEM;
5960
5961        key.objectid = sctx->cur_ino;
5962        key.type = BTRFS_INODE_REF_KEY;
5963        key.offset = 0;
5964        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5965        if (ret < 0)
5966                goto out;
5967
5968        ctx.refs = &deleted_refs;
5969        ctx.sctx = sctx;
5970
5971        while (true) {
5972                struct extent_buffer *eb = path->nodes[0];
5973                int slot = path->slots[0];
5974
5975                if (slot >= btrfs_header_nritems(eb)) {
5976                        ret = btrfs_next_leaf(sctx->parent_root, path);
5977                        if (ret < 0)
5978                                goto out;
5979                        else if (ret > 0)
5980                                break;
5981                        continue;
5982                }
5983
5984                btrfs_item_key_to_cpu(eb, &key, slot);
5985                if (key.objectid != sctx->cur_ino)
5986                        break;
5987                if (key.type != BTRFS_INODE_REF_KEY &&
5988                    key.type != BTRFS_INODE_EXTREF_KEY)
5989                        break;
5990
5991                ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5992                                        record_parent_ref, &ctx);
5993                if (ret < 0)
5994                        goto out;
5995
5996                path->slots[0]++;
5997        }
5998
5999        while (!list_empty(&deleted_refs)) {
6000                struct recorded_ref *ref;
6001
6002                ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6003                ret = send_unlink(sctx, ref->full_path);
6004                if (ret < 0)
6005                        goto out;
6006                fs_path_free(ref->full_path);
6007                list_del(&ref->list);
6008                kfree(ref);
6009        }
6010        ret = 0;
6011out:
6012        btrfs_free_path(path);
6013        if (ret)
6014                __free_recorded_refs(&deleted_refs);
6015        return ret;
6016}
6017
6018static int changed_inode(struct send_ctx *sctx,
6019                         enum btrfs_compare_tree_result result)
6020{
6021        int ret = 0;
6022        struct btrfs_key *key = sctx->cmp_key;
6023        struct btrfs_inode_item *left_ii = NULL;
6024        struct btrfs_inode_item *right_ii = NULL;
6025        u64 left_gen = 0;
6026        u64 right_gen = 0;
6027
6028        sctx->cur_ino = key->objectid;
6029        sctx->cur_inode_new_gen = 0;
6030        sctx->cur_inode_last_extent = (u64)-1;
6031        sctx->cur_inode_next_write_offset = 0;
6032        sctx->ignore_cur_inode = false;
6033
6034        /*
6035         * Set send_progress to current inode. This will tell all get_cur_xxx
6036         * functions that the current inode's refs are not updated yet. Later,
6037         * when process_recorded_refs is finished, it is set to cur_ino + 1.
6038         */
6039        sctx->send_progress = sctx->cur_ino;
6040
6041        if (result == BTRFS_COMPARE_TREE_NEW ||
6042            result == BTRFS_COMPARE_TREE_CHANGED) {
6043                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6044                                sctx->left_path->slots[0],
6045                                struct btrfs_inode_item);
6046                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6047                                left_ii);
6048        } else {
6049                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6050                                sctx->right_path->slots[0],
6051                                struct btrfs_inode_item);
6052                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6053                                right_ii);
6054        }
6055        if (result == BTRFS_COMPARE_TREE_CHANGED) {
6056                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6057                                sctx->right_path->slots[0],
6058                                struct btrfs_inode_item);
6059
6060                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6061                                right_ii);
6062
6063                /*
6064                 * The cur_ino = root dir case is special here. We can't treat
6065                 * the inode as deleted+reused because it would generate a
6066                 * stream that tries to delete/mkdir the root dir.
6067                 */
6068                if (left_gen != right_gen &&
6069                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6070                        sctx->cur_inode_new_gen = 1;
6071        }
6072
6073        /*
6074         * Normally we do not find inodes with a link count of zero (orphans)
6075         * because the most common case is to create a snapshot and use it
6076         * for a send operation. However other less common use cases involve
6077         * using a subvolume and send it after turning it to RO mode just
6078         * after deleting all hard links of a file while holding an open
6079         * file descriptor against it or turning a RO snapshot into RW mode,
6080         * keep an open file descriptor against a file, delete it and then
6081         * turn the snapshot back to RO mode before using it for a send
6082         * operation. So if we find such cases, ignore the inode and all its
6083         * items completely if it's a new inode, or if it's a changed inode
6084         * make sure all its previous paths (from the parent snapshot) are all
6085         * unlinked and all other the inode items are ignored.
6086         */
6087        if (result == BTRFS_COMPARE_TREE_NEW ||
6088            result == BTRFS_COMPARE_TREE_CHANGED) {
6089                u32 nlinks;
6090
6091                nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6092                if (nlinks == 0) {
6093                        sctx->ignore_cur_inode = true;
6094                        if (result == BTRFS_COMPARE_TREE_CHANGED)
6095                                ret = btrfs_unlink_all_paths(sctx);
6096                        goto out;
6097                }
6098        }
6099
6100        if (result == BTRFS_COMPARE_TREE_NEW) {
6101                sctx->cur_inode_gen = left_gen;
6102                sctx->cur_inode_new = 1;
6103                sctx->cur_inode_deleted = 0;
6104                sctx->cur_inode_size = btrfs_inode_size(
6105                                sctx->left_path->nodes[0], left_ii);
6106                sctx->cur_inode_mode = btrfs_inode_mode(
6107                                sctx->left_path->nodes[0], left_ii);
6108                sctx->cur_inode_rdev = btrfs_inode_rdev(
6109                                sctx->left_path->nodes[0], left_ii);
6110                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6111                        ret = send_create_inode_if_needed(sctx);
6112        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6113                sctx->cur_inode_gen = right_gen;
6114                sctx->cur_inode_new = 0;
6115                sctx->cur_inode_deleted = 1;
6116                sctx->cur_inode_size = btrfs_inode_size(
6117                                sctx->right_path->nodes[0], right_ii);
6118                sctx->cur_inode_mode = btrfs_inode_mode(
6119                                sctx->right_path->nodes[0], right_ii);
6120        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6121                /*
6122                 * We need to do some special handling in case the inode was
6123                 * reported as changed with a changed generation number. This
6124                 * means that the original inode was deleted and new inode
6125                 * reused the same inum. So we have to treat the old inode as
6126                 * deleted and the new one as new.
6127                 */
6128                if (sctx->cur_inode_new_gen) {
6129                        /*
6130                         * First, process the inode as if it was deleted.
6131                         */
6132                        sctx->cur_inode_gen = right_gen;
6133                        sctx->cur_inode_new = 0;
6134                        sctx->cur_inode_deleted = 1;
6135                        sctx->cur_inode_size = btrfs_inode_size(
6136                                        sctx->right_path->nodes[0], right_ii);
6137                        sctx->cur_inode_mode = btrfs_inode_mode(
6138                                        sctx->right_path->nodes[0], right_ii);
6139                        ret = process_all_refs(sctx,
6140                                        BTRFS_COMPARE_TREE_DELETED);
6141                        if (ret < 0)
6142                                goto out;
6143
6144                        /*
6145                         * Now process the inode as if it was new.
6146                         */
6147                        sctx->cur_inode_gen = left_gen;
6148                        sctx->cur_inode_new = 1;
6149                        sctx->cur_inode_deleted = 0;
6150                        sctx->cur_inode_size = btrfs_inode_size(
6151                                        sctx->left_path->nodes[0], left_ii);
6152                        sctx->cur_inode_mode = btrfs_inode_mode(
6153                                        sctx->left_path->nodes[0], left_ii);
6154                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6155                                        sctx->left_path->nodes[0], left_ii);
6156                        ret = send_create_inode_if_needed(sctx);
6157                        if (ret < 0)
6158                                goto out;
6159
6160                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6161                        if (ret < 0)
6162                                goto out;
6163                        /*
6164                         * Advance send_progress now as we did not get into
6165                         * process_recorded_refs_if_needed in the new_gen case.
6166                         */
6167                        sctx->send_progress = sctx->cur_ino + 1;
6168
6169                        /*
6170                         * Now process all extents and xattrs of the inode as if
6171                         * they were all new.
6172                         */
6173                        ret = process_all_extents(sctx);
6174                        if (ret < 0)
6175                                goto out;
6176                        ret = process_all_new_xattrs(sctx);
6177                        if (ret < 0)
6178                                goto out;
6179                } else {
6180                        sctx->cur_inode_gen = left_gen;
6181                        sctx->cur_inode_new = 0;
6182                        sctx->cur_inode_new_gen = 0;
6183                        sctx->cur_inode_deleted = 0;
6184                        sctx->cur_inode_size = btrfs_inode_size(
6185                                        sctx->left_path->nodes[0], left_ii);
6186                        sctx->cur_inode_mode = btrfs_inode_mode(
6187                                        sctx->left_path->nodes[0], left_ii);
6188                }
6189        }
6190
6191out:
6192        return ret;
6193}
6194
6195/*
6196 * We have to process new refs before deleted refs, but compare_trees gives us
6197 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6198 * first and later process them in process_recorded_refs.
6199 * For the cur_inode_new_gen case, we skip recording completely because
6200 * changed_inode did already initiate processing of refs. The reason for this is
6201 * that in this case, compare_tree actually compares the refs of 2 different
6202 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6203 * refs of the right tree as deleted and all refs of the left tree as new.
6204 */
6205static int changed_ref(struct send_ctx *sctx,
6206                       enum btrfs_compare_tree_result result)
6207{
6208        int ret = 0;
6209
6210        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6211                inconsistent_snapshot_error(sctx, result, "reference");
6212                return -EIO;
6213        }
6214
6215        if (!sctx->cur_inode_new_gen &&
6216            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6217                if (result == BTRFS_COMPARE_TREE_NEW)
6218                        ret = record_new_ref(sctx);
6219                else if (result == BTRFS_COMPARE_TREE_DELETED)
6220                        ret = record_deleted_ref(sctx);
6221                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6222                        ret = record_changed_ref(sctx);
6223        }
6224
6225        return ret;
6226}
6227
6228/*
6229 * Process new/deleted/changed xattrs. We skip processing in the
6230 * cur_inode_new_gen case because changed_inode did already initiate processing
6231 * of xattrs. The reason is the same as in changed_ref
6232 */
6233static int changed_xattr(struct send_ctx *sctx,
6234                         enum btrfs_compare_tree_result result)
6235{
6236        int ret = 0;
6237
6238        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6239                inconsistent_snapshot_error(sctx, result, "xattr");
6240                return -EIO;
6241        }
6242
6243        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6244                if (result == BTRFS_COMPARE_TREE_NEW)
6245                        ret = process_new_xattr(sctx);
6246                else if (result == BTRFS_COMPARE_TREE_DELETED)
6247                        ret = process_deleted_xattr(sctx);
6248                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6249                        ret = process_changed_xattr(sctx);
6250        }
6251
6252        return ret;
6253}
6254
6255/*
6256 * Process new/deleted/changed extents. We skip processing in the
6257 * cur_inode_new_gen case because changed_inode did already initiate processing
6258 * of extents. The reason is the same as in changed_ref
6259 */
6260static int changed_extent(struct send_ctx *sctx,
6261                          enum btrfs_compare_tree_result result)
6262{
6263        int ret = 0;
6264
6265        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6266
6267                if (result == BTRFS_COMPARE_TREE_CHANGED) {
6268                        struct extent_buffer *leaf_l;
6269                        struct extent_buffer *leaf_r;
6270                        struct btrfs_file_extent_item *ei_l;
6271                        struct btrfs_file_extent_item *ei_r;
6272
6273                        leaf_l = sctx->left_path->nodes[0];
6274                        leaf_r = sctx->right_path->nodes[0];
6275                        ei_l = btrfs_item_ptr(leaf_l,
6276                                              sctx->left_path->slots[0],
6277                                              struct btrfs_file_extent_item);
6278                        ei_r = btrfs_item_ptr(leaf_r,
6279                                              sctx->right_path->slots[0],
6280                                              struct btrfs_file_extent_item);
6281
6282                        /*
6283                         * We may have found an extent item that has changed
6284                         * only its disk_bytenr field and the corresponding
6285                         * inode item was not updated. This case happens due to
6286                         * very specific timings during relocation when a leaf
6287                         * that contains file extent items is COWed while
6288                         * relocation is ongoing and its in the stage where it
6289                         * updates data pointers. So when this happens we can
6290                         * safely ignore it since we know it's the same extent,
6291                         * but just at different logical and physical locations
6292                         * (when an extent is fully replaced with a new one, we
6293                         * know the generation number must have changed too,
6294                         * since snapshot creation implies committing the current
6295                         * transaction, and the inode item must have been updated
6296                         * as well).
6297                         * This replacement of the disk_bytenr happens at
6298                         * relocation.c:replace_file_extents() through
6299                         * relocation.c:btrfs_reloc_cow_block().
6300                         */
6301                        if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6302                            btrfs_file_extent_generation(leaf_r, ei_r) &&
6303                            btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6304                            btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6305                            btrfs_file_extent_compression(leaf_l, ei_l) ==
6306                            btrfs_file_extent_compression(leaf_r, ei_r) &&
6307                            btrfs_file_extent_encryption(leaf_l, ei_l) ==
6308                            btrfs_file_extent_encryption(leaf_r, ei_r) &&
6309                            btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6310                            btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6311                            btrfs_file_extent_type(leaf_l, ei_l) ==
6312                            btrfs_file_extent_type(leaf_r, ei_r) &&
6313                            btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6314                            btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6315                            btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6316                            btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6317                            btrfs_file_extent_offset(leaf_l, ei_l) ==
6318                            btrfs_file_extent_offset(leaf_r, ei_r) &&
6319                            btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6320                            btrfs_file_extent_num_bytes(leaf_r, ei_r))
6321                                return 0;
6322                }
6323
6324                inconsistent_snapshot_error(sctx, result, "extent");
6325                return -EIO;
6326        }
6327
6328        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6329                if (result != BTRFS_COMPARE_TREE_DELETED)
6330                        ret = process_extent(sctx, sctx->left_path,
6331                                        sctx->cmp_key);
6332        }
6333
6334        return ret;
6335}
6336
6337static int dir_changed(struct send_ctx *sctx, u64 dir)
6338{
6339        u64 orig_gen, new_gen;
6340        int ret;
6341
6342        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6343                             NULL, NULL);
6344        if (ret)
6345                return ret;
6346
6347        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6348                             NULL, NULL, NULL);
6349        if (ret)
6350                return ret;
6351
6352        return (orig_gen != new_gen) ? 1 : 0;
6353}
6354
6355static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6356                        struct btrfs_key *key)
6357{
6358        struct btrfs_inode_extref *extref;
6359        struct extent_buffer *leaf;
6360        u64 dirid = 0, last_dirid = 0;
6361        unsigned long ptr;
6362        u32 item_size;
6363        u32 cur_offset = 0;
6364        int ref_name_len;
6365        int ret = 0;
6366
6367        /* Easy case, just check this one dirid */
6368        if (key->type == BTRFS_INODE_REF_KEY) {
6369                dirid = key->offset;
6370
6371                ret = dir_changed(sctx, dirid);
6372                goto out;
6373        }
6374
6375        leaf = path->nodes[0];
6376        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6377        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6378        while (cur_offset < item_size) {
6379                extref = (struct btrfs_inode_extref *)(ptr +
6380                                                       cur_offset);
6381                dirid = btrfs_inode_extref_parent(leaf, extref);
6382                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6383                cur_offset += ref_name_len + sizeof(*extref);
6384                if (dirid == last_dirid)
6385                        continue;
6386                ret = dir_changed(sctx, dirid);
6387                if (ret)
6388                        break;
6389                last_dirid = dirid;
6390        }
6391out:
6392        return ret;
6393}
6394
6395/*
6396 * Updates compare related fields in sctx and simply forwards to the actual
6397 * changed_xxx functions.
6398 */
6399static int changed_cb(struct btrfs_path *left_path,
6400                      struct btrfs_path *right_path,
6401                      struct btrfs_key *key,
6402                      enum btrfs_compare_tree_result result,
6403                      void *ctx)
6404{
6405        int ret = 0;
6406        struct send_ctx *sctx = ctx;
6407
6408        if (result == BTRFS_COMPARE_TREE_SAME) {
6409                if (key->type == BTRFS_INODE_REF_KEY ||
6410                    key->type == BTRFS_INODE_EXTREF_KEY) {
6411                        ret = compare_refs(sctx, left_path, key);
6412                        if (!ret)
6413                                return 0;
6414                        if (ret < 0)
6415                                return ret;
6416                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6417                        return maybe_send_hole(sctx, left_path, key);
6418                } else {
6419                        return 0;
6420                }
6421                result = BTRFS_COMPARE_TREE_CHANGED;
6422                ret = 0;
6423        }
6424
6425        sctx->left_path = left_path;
6426        sctx->right_path = right_path;
6427        sctx->cmp_key = key;
6428
6429        ret = finish_inode_if_needed(sctx, 0);
6430        if (ret < 0)
6431                goto out;
6432
6433        /* Ignore non-FS objects */
6434        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6435            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6436                goto out;
6437
6438        if (key->type == BTRFS_INODE_ITEM_KEY) {
6439                ret = changed_inode(sctx, result);
6440        } else if (!sctx->ignore_cur_inode) {
6441                if (key->type == BTRFS_INODE_REF_KEY ||
6442                    key->type == BTRFS_INODE_EXTREF_KEY)
6443                        ret = changed_ref(sctx, result);
6444                else if (key->type == BTRFS_XATTR_ITEM_KEY)
6445                        ret = changed_xattr(sctx, result);
6446                else if (key->type == BTRFS_EXTENT_DATA_KEY)
6447                        ret = changed_extent(sctx, result);
6448        }
6449
6450out:
6451        return ret;
6452}
6453
6454static int full_send_tree(struct send_ctx *sctx)
6455{
6456        int ret;
6457        struct btrfs_root *send_root = sctx->send_root;
6458        struct btrfs_key key;
6459        struct btrfs_path *path;
6460        struct extent_buffer *eb;
6461        int slot;
6462
6463        path = alloc_path_for_send();
6464        if (!path)
6465                return -ENOMEM;
6466
6467        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6468        key.type = BTRFS_INODE_ITEM_KEY;
6469        key.offset = 0;
6470
6471        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6472        if (ret < 0)
6473                goto out;
6474        if (ret)
6475                goto out_finish;
6476
6477        while (1) {
6478                eb = path->nodes[0];
6479                slot = path->slots[0];
6480                btrfs_item_key_to_cpu(eb, &key, slot);
6481
6482                ret = changed_cb(path, NULL, &key,
6483                                 BTRFS_COMPARE_TREE_NEW, sctx);
6484                if (ret < 0)
6485                        goto out;
6486
6487                ret = btrfs_next_item(send_root, path);
6488                if (ret < 0)
6489                        goto out;
6490                if (ret) {
6491                        ret  = 0;
6492                        break;
6493                }
6494        }
6495
6496out_finish:
6497        ret = finish_inode_if_needed(sctx, 1);
6498
6499out:
6500        btrfs_free_path(path);
6501        return ret;
6502}
6503
6504static int send_subvol(struct send_ctx *sctx)
6505{
6506        int ret;
6507
6508        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6509                ret = send_header(sctx);
6510                if (ret < 0)
6511                        goto out;
6512        }
6513
6514        ret = send_subvol_begin(sctx);
6515        if (ret < 0)
6516                goto out;
6517
6518        if (sctx->parent_root) {
6519                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6520                                changed_cb, sctx);
6521                if (ret < 0)
6522                        goto out;
6523                ret = finish_inode_if_needed(sctx, 1);
6524                if (ret < 0)
6525                        goto out;
6526        } else {
6527                ret = full_send_tree(sctx);
6528                if (ret < 0)
6529                        goto out;
6530        }
6531
6532out:
6533        free_recorded_refs(sctx);
6534        return ret;
6535}
6536
6537/*
6538 * If orphan cleanup did remove any orphans from a root, it means the tree
6539 * was modified and therefore the commit root is not the same as the current
6540 * root anymore. This is a problem, because send uses the commit root and
6541 * therefore can see inode items that don't exist in the current root anymore,
6542 * and for example make calls to btrfs_iget, which will do tree lookups based
6543 * on the current root and not on the commit root. Those lookups will fail,
6544 * returning a -ESTALE error, and making send fail with that error. So make
6545 * sure a send does not see any orphans we have just removed, and that it will
6546 * see the same inodes regardless of whether a transaction commit happened
6547 * before it started (meaning that the commit root will be the same as the
6548 * current root) or not.
6549 */
6550static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6551{
6552        int i;
6553        struct btrfs_trans_handle *trans = NULL;
6554
6555again:
6556        if (sctx->parent_root &&
6557            sctx->parent_root->node != sctx->parent_root->commit_root)
6558                goto commit_trans;
6559
6560        for (i = 0; i < sctx->clone_roots_cnt; i++)
6561                if (sctx->clone_roots[i].root->node !=
6562                    sctx->clone_roots[i].root->commit_root)
6563                        goto commit_trans;
6564
6565        if (trans)
6566                return btrfs_end_transaction(trans);
6567
6568        return 0;
6569
6570commit_trans:
6571        /* Use any root, all fs roots will get their commit roots updated. */
6572        if (!trans) {
6573                trans = btrfs_join_transaction(sctx->send_root);
6574                if (IS_ERR(trans))
6575                        return PTR_ERR(trans);
6576                goto again;
6577        }
6578
6579        return btrfs_commit_transaction(trans);
6580}
6581
6582static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6583{
6584        spin_lock(&root->root_item_lock);
6585        root->send_in_progress--;
6586        /*
6587         * Not much left to do, we don't know why it's unbalanced and
6588         * can't blindly reset it to 0.
6589         */
6590        if (root->send_in_progress < 0)
6591                btrfs_err(root->fs_info,
6592                          "send_in_progress unbalanced %d root %llu",
6593                          root->send_in_progress, root->root_key.objectid);
6594        spin_unlock(&root->root_item_lock);
6595}
6596
6597long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6598{
6599        int ret = 0;
6600        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6601        struct btrfs_fs_info *fs_info = send_root->fs_info;
6602        struct btrfs_root *clone_root;
6603        struct btrfs_key key;
6604        struct send_ctx *sctx = NULL;
6605        u32 i;
6606        u64 *clone_sources_tmp = NULL;
6607        int clone_sources_to_rollback = 0;
6608        unsigned alloc_size;
6609        int sort_clone_roots = 0;
6610        int index;
6611
6612        if (!capable(CAP_SYS_ADMIN))
6613                return -EPERM;
6614
6615        /*
6616         * The subvolume must remain read-only during send, protect against
6617         * making it RW. This also protects against deletion.
6618         */
6619        spin_lock(&send_root->root_item_lock);
6620        send_root->send_in_progress++;
6621        spin_unlock(&send_root->root_item_lock);
6622
6623        /*
6624         * This is done when we lookup the root, it should already be complete
6625         * by the time we get here.
6626         */
6627        WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6628
6629        /*
6630         * Userspace tools do the checks and warn the user if it's
6631         * not RO.
6632         */
6633        if (!btrfs_root_readonly(send_root)) {
6634                ret = -EPERM;
6635                goto out;
6636        }
6637
6638        /*
6639         * Check that we don't overflow at later allocations, we request
6640         * clone_sources_count + 1 items, and compare to unsigned long inside
6641         * access_ok.
6642         */
6643        if (arg->clone_sources_count >
6644            ULONG_MAX / sizeof(struct clone_root) - 1) {
6645                ret = -EINVAL;
6646                goto out;
6647        }
6648
6649        if (!access_ok(arg->clone_sources,
6650                        sizeof(*arg->clone_sources) *
6651                        arg->clone_sources_count)) {
6652                ret = -EFAULT;
6653                goto out;
6654        }
6655
6656        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6657                ret = -EINVAL;
6658                goto out;
6659        }
6660
6661        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6662        if (!sctx) {
6663                ret = -ENOMEM;
6664                goto out;
6665        }
6666
6667        INIT_LIST_HEAD(&sctx->new_refs);
6668        INIT_LIST_HEAD(&sctx->deleted_refs);
6669        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6670        INIT_LIST_HEAD(&sctx->name_cache_list);
6671
6672        sctx->flags = arg->flags;
6673
6674        sctx->send_filp = fget(arg->send_fd);
6675        if (!sctx->send_filp) {
6676                ret = -EBADF;
6677                goto out;
6678        }
6679
6680        sctx->send_root = send_root;
6681        /*
6682         * Unlikely but possible, if the subvolume is marked for deletion but
6683         * is slow to remove the directory entry, send can still be started
6684         */
6685        if (btrfs_root_dead(sctx->send_root)) {
6686                ret = -EPERM;
6687                goto out;
6688        }
6689
6690        sctx->clone_roots_cnt = arg->clone_sources_count;
6691
6692        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6693        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6694        if (!sctx->send_buf) {
6695                ret = -ENOMEM;
6696                goto out;
6697        }
6698
6699        sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6700        if (!sctx->read_buf) {
6701                ret = -ENOMEM;
6702                goto out;
6703        }
6704
6705        sctx->pending_dir_moves = RB_ROOT;
6706        sctx->waiting_dir_moves = RB_ROOT;
6707        sctx->orphan_dirs = RB_ROOT;
6708
6709        alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6710
6711        sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6712        if (!sctx->clone_roots) {
6713                ret = -ENOMEM;
6714                goto out;
6715        }
6716
6717        alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6718
6719        if (arg->clone_sources_count) {
6720                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6721                if (!clone_sources_tmp) {
6722                        ret = -ENOMEM;
6723                        goto out;
6724                }
6725
6726                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6727                                alloc_size);
6728                if (ret) {
6729                        ret = -EFAULT;
6730                        goto out;
6731                }
6732
6733                for (i = 0; i < arg->clone_sources_count; i++) {
6734                        key.objectid = clone_sources_tmp[i];
6735                        key.type = BTRFS_ROOT_ITEM_KEY;
6736                        key.offset = (u64)-1;
6737
6738                        index = srcu_read_lock(&fs_info->subvol_srcu);
6739
6740                        clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6741                        if (IS_ERR(clone_root)) {
6742                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6743                                ret = PTR_ERR(clone_root);
6744                                goto out;
6745                        }
6746                        spin_lock(&clone_root->root_item_lock);
6747                        if (!btrfs_root_readonly(clone_root) ||
6748                            btrfs_root_dead(clone_root)) {
6749                                spin_unlock(&clone_root->root_item_lock);
6750                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6751                                ret = -EPERM;
6752                                goto out;
6753                        }
6754                        clone_root->send_in_progress++;
6755                        spin_unlock(&clone_root->root_item_lock);
6756                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6757
6758                        sctx->clone_roots[i].root = clone_root;
6759                        clone_sources_to_rollback = i + 1;
6760                }
6761                kvfree(clone_sources_tmp);
6762                clone_sources_tmp = NULL;
6763        }
6764
6765        if (arg->parent_root) {
6766                key.objectid = arg->parent_root;
6767                key.type = BTRFS_ROOT_ITEM_KEY;
6768                key.offset = (u64)-1;
6769
6770                index = srcu_read_lock(&fs_info->subvol_srcu);
6771
6772                sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6773                if (IS_ERR(sctx->parent_root)) {
6774                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6775                        ret = PTR_ERR(sctx->parent_root);
6776                        goto out;
6777                }
6778
6779                spin_lock(&sctx->parent_root->root_item_lock);
6780                sctx->parent_root->send_in_progress++;
6781                if (!btrfs_root_readonly(sctx->parent_root) ||
6782                                btrfs_root_dead(sctx->parent_root)) {
6783                        spin_unlock(&sctx->parent_root->root_item_lock);
6784                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6785                        ret = -EPERM;
6786                        goto out;
6787                }
6788                spin_unlock(&sctx->parent_root->root_item_lock);
6789
6790                srcu_read_unlock(&fs_info->subvol_srcu, index);
6791        }
6792
6793        /*
6794         * Clones from send_root are allowed, but only if the clone source
6795         * is behind the current send position. This is checked while searching
6796         * for possible clone sources.
6797         */
6798        sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6799
6800        /* We do a bsearch later */
6801        sort(sctx->clone_roots, sctx->clone_roots_cnt,
6802                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6803                        NULL);
6804        sort_clone_roots = 1;
6805
6806        ret = ensure_commit_roots_uptodate(sctx);
6807        if (ret)
6808                goto out;
6809
6810        current->journal_info = BTRFS_SEND_TRANS_STUB;
6811        ret = send_subvol(sctx);
6812        current->journal_info = NULL;
6813        if (ret < 0)
6814                goto out;
6815
6816        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6817                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6818                if (ret < 0)
6819                        goto out;
6820                ret = send_cmd(sctx);
6821                if (ret < 0)
6822                        goto out;
6823        }
6824
6825out:
6826        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6827        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6828                struct rb_node *n;
6829                struct pending_dir_move *pm;
6830
6831                n = rb_first(&sctx->pending_dir_moves);
6832                pm = rb_entry(n, struct pending_dir_move, node);
6833                while (!list_empty(&pm->list)) {
6834                        struct pending_dir_move *pm2;
6835
6836                        pm2 = list_first_entry(&pm->list,
6837                                               struct pending_dir_move, list);
6838                        free_pending_move(sctx, pm2);
6839                }
6840                free_pending_move(sctx, pm);
6841        }
6842
6843        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6844        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6845                struct rb_node *n;
6846                struct waiting_dir_move *dm;
6847
6848                n = rb_first(&sctx->waiting_dir_moves);
6849                dm = rb_entry(n, struct waiting_dir_move, node);
6850                rb_erase(&dm->node, &sctx->waiting_dir_moves);
6851                kfree(dm);
6852        }
6853
6854        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6855        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6856                struct rb_node *n;
6857                struct orphan_dir_info *odi;
6858
6859                n = rb_first(&sctx->orphan_dirs);
6860                odi = rb_entry(n, struct orphan_dir_info, node);
6861                free_orphan_dir_info(sctx, odi);
6862        }
6863
6864        if (sort_clone_roots) {
6865                for (i = 0; i < sctx->clone_roots_cnt; i++)
6866                        btrfs_root_dec_send_in_progress(
6867                                        sctx->clone_roots[i].root);
6868        } else {
6869                for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6870                        btrfs_root_dec_send_in_progress(
6871                                        sctx->clone_roots[i].root);
6872
6873                btrfs_root_dec_send_in_progress(send_root);
6874        }
6875        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6876                btrfs_root_dec_send_in_progress(sctx->parent_root);
6877
6878        kvfree(clone_sources_tmp);
6879
6880        if (sctx) {
6881                if (sctx->send_filp)
6882                        fput(sctx->send_filp);
6883
6884                kvfree(sctx->clone_roots);
6885                kvfree(sctx->send_buf);
6886                kvfree(sctx->read_buf);
6887
6888                name_cache_free(sctx);
6889
6890                kfree(sctx);
6891        }
6892
6893        return ret;
6894}
6895