linux/fs/f2fs/extent_cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * f2fs extent cache support
   4 *
   5 * Copyright (c) 2015 Motorola Mobility
   6 * Copyright (c) 2015 Samsung Electronics
   7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
   8 *          Chao Yu <chao2.yu@samsung.com>
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13
  14#include "f2fs.h"
  15#include "node.h"
  16#include <trace/events/f2fs.h>
  17
  18static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
  19                                                        unsigned int ofs)
  20{
  21        if (cached_re) {
  22                if (cached_re->ofs <= ofs &&
  23                                cached_re->ofs + cached_re->len > ofs) {
  24                        return cached_re;
  25                }
  26        }
  27        return NULL;
  28}
  29
  30static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
  31                                                        unsigned int ofs)
  32{
  33        struct rb_node *node = root->rb_root.rb_node;
  34        struct rb_entry *re;
  35
  36        while (node) {
  37                re = rb_entry(node, struct rb_entry, rb_node);
  38
  39                if (ofs < re->ofs)
  40                        node = node->rb_left;
  41                else if (ofs >= re->ofs + re->len)
  42                        node = node->rb_right;
  43                else
  44                        return re;
  45        }
  46        return NULL;
  47}
  48
  49struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
  50                                struct rb_entry *cached_re, unsigned int ofs)
  51{
  52        struct rb_entry *re;
  53
  54        re = __lookup_rb_tree_fast(cached_re, ofs);
  55        if (!re)
  56                return __lookup_rb_tree_slow(root, ofs);
  57
  58        return re;
  59}
  60
  61struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
  62                                struct rb_root_cached *root,
  63                                struct rb_node **parent,
  64                                unsigned int ofs, bool *leftmost)
  65{
  66        struct rb_node **p = &root->rb_root.rb_node;
  67        struct rb_entry *re;
  68
  69        while (*p) {
  70                *parent = *p;
  71                re = rb_entry(*parent, struct rb_entry, rb_node);
  72
  73                if (ofs < re->ofs) {
  74                        p = &(*p)->rb_left;
  75                } else if (ofs >= re->ofs + re->len) {
  76                        p = &(*p)->rb_right;
  77                        *leftmost = false;
  78                } else {
  79                        f2fs_bug_on(sbi, 1);
  80                }
  81        }
  82
  83        return p;
  84}
  85
  86/*
  87 * lookup rb entry in position of @ofs in rb-tree,
  88 * if hit, return the entry, otherwise, return NULL
  89 * @prev_ex: extent before ofs
  90 * @next_ex: extent after ofs
  91 * @insert_p: insert point for new extent at ofs
  92 * in order to simpfy the insertion after.
  93 * tree must stay unchanged between lookup and insertion.
  94 */
  95struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
  96                                struct rb_entry *cached_re,
  97                                unsigned int ofs,
  98                                struct rb_entry **prev_entry,
  99                                struct rb_entry **next_entry,
 100                                struct rb_node ***insert_p,
 101                                struct rb_node **insert_parent,
 102                                bool force, bool *leftmost)
 103{
 104        struct rb_node **pnode = &root->rb_root.rb_node;
 105        struct rb_node *parent = NULL, *tmp_node;
 106        struct rb_entry *re = cached_re;
 107
 108        *insert_p = NULL;
 109        *insert_parent = NULL;
 110        *prev_entry = NULL;
 111        *next_entry = NULL;
 112
 113        if (RB_EMPTY_ROOT(&root->rb_root))
 114                return NULL;
 115
 116        if (re) {
 117                if (re->ofs <= ofs && re->ofs + re->len > ofs)
 118                        goto lookup_neighbors;
 119        }
 120
 121        if (leftmost)
 122                *leftmost = true;
 123
 124        while (*pnode) {
 125                parent = *pnode;
 126                re = rb_entry(*pnode, struct rb_entry, rb_node);
 127
 128                if (ofs < re->ofs) {
 129                        pnode = &(*pnode)->rb_left;
 130                } else if (ofs >= re->ofs + re->len) {
 131                        pnode = &(*pnode)->rb_right;
 132                        if (leftmost)
 133                                *leftmost = false;
 134                } else {
 135                        goto lookup_neighbors;
 136                }
 137        }
 138
 139        *insert_p = pnode;
 140        *insert_parent = parent;
 141
 142        re = rb_entry(parent, struct rb_entry, rb_node);
 143        tmp_node = parent;
 144        if (parent && ofs > re->ofs)
 145                tmp_node = rb_next(parent);
 146        *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
 147
 148        tmp_node = parent;
 149        if (parent && ofs < re->ofs)
 150                tmp_node = rb_prev(parent);
 151        *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
 152        return NULL;
 153
 154lookup_neighbors:
 155        if (ofs == re->ofs || force) {
 156                /* lookup prev node for merging backward later */
 157                tmp_node = rb_prev(&re->rb_node);
 158                *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
 159        }
 160        if (ofs == re->ofs + re->len - 1 || force) {
 161                /* lookup next node for merging frontward later */
 162                tmp_node = rb_next(&re->rb_node);
 163                *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
 164        }
 165        return re;
 166}
 167
 168bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
 169                                                struct rb_root_cached *root)
 170{
 171#ifdef CONFIG_F2FS_CHECK_FS
 172        struct rb_node *cur = rb_first_cached(root), *next;
 173        struct rb_entry *cur_re, *next_re;
 174
 175        if (!cur)
 176                return true;
 177
 178        while (cur) {
 179                next = rb_next(cur);
 180                if (!next)
 181                        return true;
 182
 183                cur_re = rb_entry(cur, struct rb_entry, rb_node);
 184                next_re = rb_entry(next, struct rb_entry, rb_node);
 185
 186                if (cur_re->ofs + cur_re->len > next_re->ofs) {
 187                        f2fs_msg(sbi->sb, KERN_INFO, "inconsistent rbtree, "
 188                                "cur(%u, %u) next(%u, %u)",
 189                                cur_re->ofs, cur_re->len,
 190                                next_re->ofs, next_re->len);
 191                        return false;
 192                }
 193
 194                cur = next;
 195        }
 196#endif
 197        return true;
 198}
 199
 200static struct kmem_cache *extent_tree_slab;
 201static struct kmem_cache *extent_node_slab;
 202
 203static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
 204                                struct extent_tree *et, struct extent_info *ei,
 205                                struct rb_node *parent, struct rb_node **p,
 206                                bool leftmost)
 207{
 208        struct extent_node *en;
 209
 210        en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
 211        if (!en)
 212                return NULL;
 213
 214        en->ei = *ei;
 215        INIT_LIST_HEAD(&en->list);
 216        en->et = et;
 217
 218        rb_link_node(&en->rb_node, parent, p);
 219        rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
 220        atomic_inc(&et->node_cnt);
 221        atomic_inc(&sbi->total_ext_node);
 222        return en;
 223}
 224
 225static void __detach_extent_node(struct f2fs_sb_info *sbi,
 226                                struct extent_tree *et, struct extent_node *en)
 227{
 228        rb_erase_cached(&en->rb_node, &et->root);
 229        atomic_dec(&et->node_cnt);
 230        atomic_dec(&sbi->total_ext_node);
 231
 232        if (et->cached_en == en)
 233                et->cached_en = NULL;
 234        kmem_cache_free(extent_node_slab, en);
 235}
 236
 237/*
 238 * Flow to release an extent_node:
 239 * 1. list_del_init
 240 * 2. __detach_extent_node
 241 * 3. kmem_cache_free.
 242 */
 243static void __release_extent_node(struct f2fs_sb_info *sbi,
 244                        struct extent_tree *et, struct extent_node *en)
 245{
 246        spin_lock(&sbi->extent_lock);
 247        f2fs_bug_on(sbi, list_empty(&en->list));
 248        list_del_init(&en->list);
 249        spin_unlock(&sbi->extent_lock);
 250
 251        __detach_extent_node(sbi, et, en);
 252}
 253
 254static struct extent_tree *__grab_extent_tree(struct inode *inode)
 255{
 256        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 257        struct extent_tree *et;
 258        nid_t ino = inode->i_ino;
 259
 260        mutex_lock(&sbi->extent_tree_lock);
 261        et = radix_tree_lookup(&sbi->extent_tree_root, ino);
 262        if (!et) {
 263                et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
 264                f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
 265                memset(et, 0, sizeof(struct extent_tree));
 266                et->ino = ino;
 267                et->root = RB_ROOT_CACHED;
 268                et->cached_en = NULL;
 269                rwlock_init(&et->lock);
 270                INIT_LIST_HEAD(&et->list);
 271                atomic_set(&et->node_cnt, 0);
 272                atomic_inc(&sbi->total_ext_tree);
 273        } else {
 274                atomic_dec(&sbi->total_zombie_tree);
 275                list_del_init(&et->list);
 276        }
 277        mutex_unlock(&sbi->extent_tree_lock);
 278
 279        /* never died until evict_inode */
 280        F2FS_I(inode)->extent_tree = et;
 281
 282        return et;
 283}
 284
 285static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
 286                                struct extent_tree *et, struct extent_info *ei)
 287{
 288        struct rb_node **p = &et->root.rb_root.rb_node;
 289        struct extent_node *en;
 290
 291        en = __attach_extent_node(sbi, et, ei, NULL, p, true);
 292        if (!en)
 293                return NULL;
 294
 295        et->largest = en->ei;
 296        et->cached_en = en;
 297        return en;
 298}
 299
 300static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
 301                                        struct extent_tree *et)
 302{
 303        struct rb_node *node, *next;
 304        struct extent_node *en;
 305        unsigned int count = atomic_read(&et->node_cnt);
 306
 307        node = rb_first_cached(&et->root);
 308        while (node) {
 309                next = rb_next(node);
 310                en = rb_entry(node, struct extent_node, rb_node);
 311                __release_extent_node(sbi, et, en);
 312                node = next;
 313        }
 314
 315        return count - atomic_read(&et->node_cnt);
 316}
 317
 318static void __drop_largest_extent(struct extent_tree *et,
 319                                        pgoff_t fofs, unsigned int len)
 320{
 321        if (fofs < et->largest.fofs + et->largest.len &&
 322                        fofs + len > et->largest.fofs) {
 323                et->largest.len = 0;
 324                et->largest_updated = true;
 325        }
 326}
 327
 328/* return true, if inode page is changed */
 329static bool __f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
 330{
 331        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 332        struct extent_tree *et;
 333        struct extent_node *en;
 334        struct extent_info ei;
 335
 336        if (!f2fs_may_extent_tree(inode)) {
 337                /* drop largest extent */
 338                if (i_ext && i_ext->len) {
 339                        i_ext->len = 0;
 340                        return true;
 341                }
 342                return false;
 343        }
 344
 345        et = __grab_extent_tree(inode);
 346
 347        if (!i_ext || !i_ext->len)
 348                return false;
 349
 350        get_extent_info(&ei, i_ext);
 351
 352        write_lock(&et->lock);
 353        if (atomic_read(&et->node_cnt))
 354                goto out;
 355
 356        en = __init_extent_tree(sbi, et, &ei);
 357        if (en) {
 358                spin_lock(&sbi->extent_lock);
 359                list_add_tail(&en->list, &sbi->extent_list);
 360                spin_unlock(&sbi->extent_lock);
 361        }
 362out:
 363        write_unlock(&et->lock);
 364        return false;
 365}
 366
 367bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
 368{
 369        bool ret =  __f2fs_init_extent_tree(inode, i_ext);
 370
 371        if (!F2FS_I(inode)->extent_tree)
 372                set_inode_flag(inode, FI_NO_EXTENT);
 373
 374        return ret;
 375}
 376
 377static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
 378                                                        struct extent_info *ei)
 379{
 380        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 381        struct extent_tree *et = F2FS_I(inode)->extent_tree;
 382        struct extent_node *en;
 383        bool ret = false;
 384
 385        f2fs_bug_on(sbi, !et);
 386
 387        trace_f2fs_lookup_extent_tree_start(inode, pgofs);
 388
 389        read_lock(&et->lock);
 390
 391        if (et->largest.fofs <= pgofs &&
 392                        et->largest.fofs + et->largest.len > pgofs) {
 393                *ei = et->largest;
 394                ret = true;
 395                stat_inc_largest_node_hit(sbi);
 396                goto out;
 397        }
 398
 399        en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
 400                                (struct rb_entry *)et->cached_en, pgofs);
 401        if (!en)
 402                goto out;
 403
 404        if (en == et->cached_en)
 405                stat_inc_cached_node_hit(sbi);
 406        else
 407                stat_inc_rbtree_node_hit(sbi);
 408
 409        *ei = en->ei;
 410        spin_lock(&sbi->extent_lock);
 411        if (!list_empty(&en->list)) {
 412                list_move_tail(&en->list, &sbi->extent_list);
 413                et->cached_en = en;
 414        }
 415        spin_unlock(&sbi->extent_lock);
 416        ret = true;
 417out:
 418        stat_inc_total_hit(sbi);
 419        read_unlock(&et->lock);
 420
 421        trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
 422        return ret;
 423}
 424
 425static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
 426                                struct extent_tree *et, struct extent_info *ei,
 427                                struct extent_node *prev_ex,
 428                                struct extent_node *next_ex)
 429{
 430        struct extent_node *en = NULL;
 431
 432        if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
 433                prev_ex->ei.len += ei->len;
 434                ei = &prev_ex->ei;
 435                en = prev_ex;
 436        }
 437
 438        if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
 439                next_ex->ei.fofs = ei->fofs;
 440                next_ex->ei.blk = ei->blk;
 441                next_ex->ei.len += ei->len;
 442                if (en)
 443                        __release_extent_node(sbi, et, prev_ex);
 444
 445                en = next_ex;
 446        }
 447
 448        if (!en)
 449                return NULL;
 450
 451        __try_update_largest_extent(et, en);
 452
 453        spin_lock(&sbi->extent_lock);
 454        if (!list_empty(&en->list)) {
 455                list_move_tail(&en->list, &sbi->extent_list);
 456                et->cached_en = en;
 457        }
 458        spin_unlock(&sbi->extent_lock);
 459        return en;
 460}
 461
 462static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
 463                                struct extent_tree *et, struct extent_info *ei,
 464                                struct rb_node **insert_p,
 465                                struct rb_node *insert_parent,
 466                                bool leftmost)
 467{
 468        struct rb_node **p;
 469        struct rb_node *parent = NULL;
 470        struct extent_node *en = NULL;
 471
 472        if (insert_p && insert_parent) {
 473                parent = insert_parent;
 474                p = insert_p;
 475                goto do_insert;
 476        }
 477
 478        leftmost = true;
 479
 480        p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
 481                                                ei->fofs, &leftmost);
 482do_insert:
 483        en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
 484        if (!en)
 485                return NULL;
 486
 487        __try_update_largest_extent(et, en);
 488
 489        /* update in global extent list */
 490        spin_lock(&sbi->extent_lock);
 491        list_add_tail(&en->list, &sbi->extent_list);
 492        et->cached_en = en;
 493        spin_unlock(&sbi->extent_lock);
 494        return en;
 495}
 496
 497static void f2fs_update_extent_tree_range(struct inode *inode,
 498                                pgoff_t fofs, block_t blkaddr, unsigned int len)
 499{
 500        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 501        struct extent_tree *et = F2FS_I(inode)->extent_tree;
 502        struct extent_node *en = NULL, *en1 = NULL;
 503        struct extent_node *prev_en = NULL, *next_en = NULL;
 504        struct extent_info ei, dei, prev;
 505        struct rb_node **insert_p = NULL, *insert_parent = NULL;
 506        unsigned int end = fofs + len;
 507        unsigned int pos = (unsigned int)fofs;
 508        bool updated = false;
 509        bool leftmost = false;
 510
 511        if (!et)
 512                return;
 513
 514        trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
 515
 516        write_lock(&et->lock);
 517
 518        if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
 519                write_unlock(&et->lock);
 520                return;
 521        }
 522
 523        prev = et->largest;
 524        dei.len = 0;
 525
 526        /*
 527         * drop largest extent before lookup, in case it's already
 528         * been shrunk from extent tree
 529         */
 530        __drop_largest_extent(et, fofs, len);
 531
 532        /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
 533        en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
 534                                        (struct rb_entry *)et->cached_en, fofs,
 535                                        (struct rb_entry **)&prev_en,
 536                                        (struct rb_entry **)&next_en,
 537                                        &insert_p, &insert_parent, false,
 538                                        &leftmost);
 539        if (!en)
 540                en = next_en;
 541
 542        /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
 543        while (en && en->ei.fofs < end) {
 544                unsigned int org_end;
 545                int parts = 0;  /* # of parts current extent split into */
 546
 547                next_en = en1 = NULL;
 548
 549                dei = en->ei;
 550                org_end = dei.fofs + dei.len;
 551                f2fs_bug_on(sbi, pos >= org_end);
 552
 553                if (pos > dei.fofs &&   pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
 554                        en->ei.len = pos - en->ei.fofs;
 555                        prev_en = en;
 556                        parts = 1;
 557                }
 558
 559                if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
 560                        if (parts) {
 561                                set_extent_info(&ei, end,
 562                                                end - dei.fofs + dei.blk,
 563                                                org_end - end);
 564                                en1 = __insert_extent_tree(sbi, et, &ei,
 565                                                        NULL, NULL, true);
 566                                next_en = en1;
 567                        } else {
 568                                en->ei.fofs = end;
 569                                en->ei.blk += end - dei.fofs;
 570                                en->ei.len -= end - dei.fofs;
 571                                next_en = en;
 572                        }
 573                        parts++;
 574                }
 575
 576                if (!next_en) {
 577                        struct rb_node *node = rb_next(&en->rb_node);
 578
 579                        next_en = rb_entry_safe(node, struct extent_node,
 580                                                rb_node);
 581                }
 582
 583                if (parts)
 584                        __try_update_largest_extent(et, en);
 585                else
 586                        __release_extent_node(sbi, et, en);
 587
 588                /*
 589                 * if original extent is split into zero or two parts, extent
 590                 * tree has been altered by deletion or insertion, therefore
 591                 * invalidate pointers regard to tree.
 592                 */
 593                if (parts != 1) {
 594                        insert_p = NULL;
 595                        insert_parent = NULL;
 596                }
 597                en = next_en;
 598        }
 599
 600        /* 3. update extent in extent cache */
 601        if (blkaddr) {
 602
 603                set_extent_info(&ei, fofs, blkaddr, len);
 604                if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
 605                        __insert_extent_tree(sbi, et, &ei,
 606                                        insert_p, insert_parent, leftmost);
 607
 608                /* give up extent_cache, if split and small updates happen */
 609                if (dei.len >= 1 &&
 610                                prev.len < F2FS_MIN_EXTENT_LEN &&
 611                                et->largest.len < F2FS_MIN_EXTENT_LEN) {
 612                        et->largest.len = 0;
 613                        et->largest_updated = true;
 614                        set_inode_flag(inode, FI_NO_EXTENT);
 615                }
 616        }
 617
 618        if (is_inode_flag_set(inode, FI_NO_EXTENT))
 619                __free_extent_tree(sbi, et);
 620
 621        if (et->largest_updated) {
 622                et->largest_updated = false;
 623                updated = true;
 624        }
 625
 626        write_unlock(&et->lock);
 627
 628        if (updated)
 629                f2fs_mark_inode_dirty_sync(inode, true);
 630}
 631
 632unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
 633{
 634        struct extent_tree *et, *next;
 635        struct extent_node *en;
 636        unsigned int node_cnt = 0, tree_cnt = 0;
 637        int remained;
 638
 639        if (!test_opt(sbi, EXTENT_CACHE))
 640                return 0;
 641
 642        if (!atomic_read(&sbi->total_zombie_tree))
 643                goto free_node;
 644
 645        if (!mutex_trylock(&sbi->extent_tree_lock))
 646                goto out;
 647
 648        /* 1. remove unreferenced extent tree */
 649        list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
 650                if (atomic_read(&et->node_cnt)) {
 651                        write_lock(&et->lock);
 652                        node_cnt += __free_extent_tree(sbi, et);
 653                        write_unlock(&et->lock);
 654                }
 655                f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
 656                list_del_init(&et->list);
 657                radix_tree_delete(&sbi->extent_tree_root, et->ino);
 658                kmem_cache_free(extent_tree_slab, et);
 659                atomic_dec(&sbi->total_ext_tree);
 660                atomic_dec(&sbi->total_zombie_tree);
 661                tree_cnt++;
 662
 663                if (node_cnt + tree_cnt >= nr_shrink)
 664                        goto unlock_out;
 665                cond_resched();
 666        }
 667        mutex_unlock(&sbi->extent_tree_lock);
 668
 669free_node:
 670        /* 2. remove LRU extent entries */
 671        if (!mutex_trylock(&sbi->extent_tree_lock))
 672                goto out;
 673
 674        remained = nr_shrink - (node_cnt + tree_cnt);
 675
 676        spin_lock(&sbi->extent_lock);
 677        for (; remained > 0; remained--) {
 678                if (list_empty(&sbi->extent_list))
 679                        break;
 680                en = list_first_entry(&sbi->extent_list,
 681                                        struct extent_node, list);
 682                et = en->et;
 683                if (!write_trylock(&et->lock)) {
 684                        /* refresh this extent node's position in extent list */
 685                        list_move_tail(&en->list, &sbi->extent_list);
 686                        continue;
 687                }
 688
 689                list_del_init(&en->list);
 690                spin_unlock(&sbi->extent_lock);
 691
 692                __detach_extent_node(sbi, et, en);
 693
 694                write_unlock(&et->lock);
 695                node_cnt++;
 696                spin_lock(&sbi->extent_lock);
 697        }
 698        spin_unlock(&sbi->extent_lock);
 699
 700unlock_out:
 701        mutex_unlock(&sbi->extent_tree_lock);
 702out:
 703        trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
 704
 705        return node_cnt + tree_cnt;
 706}
 707
 708unsigned int f2fs_destroy_extent_node(struct inode *inode)
 709{
 710        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 711        struct extent_tree *et = F2FS_I(inode)->extent_tree;
 712        unsigned int node_cnt = 0;
 713
 714        if (!et || !atomic_read(&et->node_cnt))
 715                return 0;
 716
 717        write_lock(&et->lock);
 718        node_cnt = __free_extent_tree(sbi, et);
 719        write_unlock(&et->lock);
 720
 721        return node_cnt;
 722}
 723
 724void f2fs_drop_extent_tree(struct inode *inode)
 725{
 726        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 727        struct extent_tree *et = F2FS_I(inode)->extent_tree;
 728        bool updated = false;
 729
 730        if (!f2fs_may_extent_tree(inode))
 731                return;
 732
 733        set_inode_flag(inode, FI_NO_EXTENT);
 734
 735        write_lock(&et->lock);
 736        __free_extent_tree(sbi, et);
 737        if (et->largest.len) {
 738                et->largest.len = 0;
 739                updated = true;
 740        }
 741        write_unlock(&et->lock);
 742        if (updated)
 743                f2fs_mark_inode_dirty_sync(inode, true);
 744}
 745
 746void f2fs_destroy_extent_tree(struct inode *inode)
 747{
 748        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 749        struct extent_tree *et = F2FS_I(inode)->extent_tree;
 750        unsigned int node_cnt = 0;
 751
 752        if (!et)
 753                return;
 754
 755        if (inode->i_nlink && !is_bad_inode(inode) &&
 756                                        atomic_read(&et->node_cnt)) {
 757                mutex_lock(&sbi->extent_tree_lock);
 758                list_add_tail(&et->list, &sbi->zombie_list);
 759                atomic_inc(&sbi->total_zombie_tree);
 760                mutex_unlock(&sbi->extent_tree_lock);
 761                return;
 762        }
 763
 764        /* free all extent info belong to this extent tree */
 765        node_cnt = f2fs_destroy_extent_node(inode);
 766
 767        /* delete extent tree entry in radix tree */
 768        mutex_lock(&sbi->extent_tree_lock);
 769        f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
 770        radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
 771        kmem_cache_free(extent_tree_slab, et);
 772        atomic_dec(&sbi->total_ext_tree);
 773        mutex_unlock(&sbi->extent_tree_lock);
 774
 775        F2FS_I(inode)->extent_tree = NULL;
 776
 777        trace_f2fs_destroy_extent_tree(inode, node_cnt);
 778}
 779
 780bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
 781                                        struct extent_info *ei)
 782{
 783        if (!f2fs_may_extent_tree(inode))
 784                return false;
 785
 786        return f2fs_lookup_extent_tree(inode, pgofs, ei);
 787}
 788
 789void f2fs_update_extent_cache(struct dnode_of_data *dn)
 790{
 791        pgoff_t fofs;
 792        block_t blkaddr;
 793
 794        if (!f2fs_may_extent_tree(dn->inode))
 795                return;
 796
 797        if (dn->data_blkaddr == NEW_ADDR)
 798                blkaddr = NULL_ADDR;
 799        else
 800                blkaddr = dn->data_blkaddr;
 801
 802        fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
 803                                                                dn->ofs_in_node;
 804        f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
 805}
 806
 807void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
 808                                pgoff_t fofs, block_t blkaddr, unsigned int len)
 809
 810{
 811        if (!f2fs_may_extent_tree(dn->inode))
 812                return;
 813
 814        f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
 815}
 816
 817void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
 818{
 819        INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
 820        mutex_init(&sbi->extent_tree_lock);
 821        INIT_LIST_HEAD(&sbi->extent_list);
 822        spin_lock_init(&sbi->extent_lock);
 823        atomic_set(&sbi->total_ext_tree, 0);
 824        INIT_LIST_HEAD(&sbi->zombie_list);
 825        atomic_set(&sbi->total_zombie_tree, 0);
 826        atomic_set(&sbi->total_ext_node, 0);
 827}
 828
 829int __init f2fs_create_extent_cache(void)
 830{
 831        extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
 832                        sizeof(struct extent_tree));
 833        if (!extent_tree_slab)
 834                return -ENOMEM;
 835        extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
 836                        sizeof(struct extent_node));
 837        if (!extent_node_slab) {
 838                kmem_cache_destroy(extent_tree_slab);
 839                return -ENOMEM;
 840        }
 841        return 0;
 842}
 843
 844void f2fs_destroy_extent_cache(void)
 845{
 846        kmem_cache_destroy(extent_node_slab);
 847        kmem_cache_destroy(extent_tree_slab);
 848}
 849