linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39        J_ASSERT(!transaction_cache);
  40        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41                                        sizeof(transaction_t),
  42                                        0,
  43                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44                                        NULL);
  45        if (transaction_cache)
  46                return 0;
  47        return -ENOMEM;
  48}
  49
  50void jbd2_journal_destroy_transaction_cache(void)
  51{
  52        kmem_cache_destroy(transaction_cache);
  53        transaction_cache = NULL;
  54}
  55
  56void jbd2_journal_free_transaction(transaction_t *transaction)
  57{
  58        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  59                return;
  60        kmem_cache_free(transaction_cache, transaction);
  61}
  62
  63/*
  64 * jbd2_get_transaction: obtain a new transaction_t object.
  65 *
  66 * Simply initialise a new transaction. Initialize it in
  67 * RUNNING state and add it to the current journal (which should not
  68 * have an existing running transaction: we only make a new transaction
  69 * once we have started to commit the old one).
  70 *
  71 * Preconditions:
  72 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  73 *      new transaction and we can't block without protecting against other
  74 *      processes trying to touch the journal while it is in transition.
  75 *
  76 */
  77
  78static void jbd2_get_transaction(journal_t *journal,
  79                                transaction_t *transaction)
  80{
  81        transaction->t_journal = journal;
  82        transaction->t_state = T_RUNNING;
  83        transaction->t_start_time = ktime_get();
  84        transaction->t_tid = journal->j_transaction_sequence++;
  85        transaction->t_expires = jiffies + journal->j_commit_interval;
  86        spin_lock_init(&transaction->t_handle_lock);
  87        atomic_set(&transaction->t_updates, 0);
  88        atomic_set(&transaction->t_outstanding_credits,
  89                   atomic_read(&journal->j_reserved_credits));
  90        atomic_set(&transaction->t_handle_count, 0);
  91        INIT_LIST_HEAD(&transaction->t_inode_list);
  92        INIT_LIST_HEAD(&transaction->t_private_list);
  93
  94        /* Set up the commit timer for the new transaction. */
  95        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  96        add_timer(&journal->j_commit_timer);
  97
  98        J_ASSERT(journal->j_running_transaction == NULL);
  99        journal->j_running_transaction = transaction;
 100        transaction->t_max_wait = 0;
 101        transaction->t_start = jiffies;
 102        transaction->t_requested = 0;
 103}
 104
 105/*
 106 * Handle management.
 107 *
 108 * A handle_t is an object which represents a single atomic update to a
 109 * filesystem, and which tracks all of the modifications which form part
 110 * of that one update.
 111 */
 112
 113/*
 114 * Update transaction's maximum wait time, if debugging is enabled.
 115 *
 116 * In order for t_max_wait to be reliable, it must be protected by a
 117 * lock.  But doing so will mean that start_this_handle() can not be
 118 * run in parallel on SMP systems, which limits our scalability.  So
 119 * unless debugging is enabled, we no longer update t_max_wait, which
 120 * means that maximum wait time reported by the jbd2_run_stats
 121 * tracepoint will always be zero.
 122 */
 123static inline void update_t_max_wait(transaction_t *transaction,
 124                                     unsigned long ts)
 125{
 126#ifdef CONFIG_JBD2_DEBUG
 127        if (jbd2_journal_enable_debug &&
 128            time_after(transaction->t_start, ts)) {
 129                ts = jbd2_time_diff(ts, transaction->t_start);
 130                spin_lock(&transaction->t_handle_lock);
 131                if (ts > transaction->t_max_wait)
 132                        transaction->t_max_wait = ts;
 133                spin_unlock(&transaction->t_handle_lock);
 134        }
 135#endif
 136}
 137
 138/*
 139 * Wait until running transaction passes to T_FLUSH state and new transaction
 140 * can thus be started. Also starts the commit if needed. The function expects
 141 * running transaction to exist and releases j_state_lock.
 142 */
 143static void wait_transaction_locked(journal_t *journal)
 144        __releases(journal->j_state_lock)
 145{
 146        DEFINE_WAIT(wait);
 147        int need_to_start;
 148        tid_t tid = journal->j_running_transaction->t_tid;
 149
 150        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 151                        TASK_UNINTERRUPTIBLE);
 152        need_to_start = !tid_geq(journal->j_commit_request, tid);
 153        read_unlock(&journal->j_state_lock);
 154        if (need_to_start)
 155                jbd2_log_start_commit(journal, tid);
 156        jbd2_might_wait_for_commit(journal);
 157        schedule();
 158        finish_wait(&journal->j_wait_transaction_locked, &wait);
 159}
 160
 161/*
 162 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 163 * state and new transaction can thus be started. The function releases
 164 * j_state_lock.
 165 */
 166static void wait_transaction_switching(journal_t *journal)
 167        __releases(journal->j_state_lock)
 168{
 169        DEFINE_WAIT(wait);
 170
 171        if (WARN_ON(!journal->j_running_transaction ||
 172                    journal->j_running_transaction->t_state != T_SWITCH))
 173                return;
 174        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 175                        TASK_UNINTERRUPTIBLE);
 176        read_unlock(&journal->j_state_lock);
 177        /*
 178         * We don't call jbd2_might_wait_for_commit() here as there's no
 179         * waiting for outstanding handles happening anymore in T_SWITCH state
 180         * and handling of reserved handles actually relies on that for
 181         * correctness.
 182         */
 183        schedule();
 184        finish_wait(&journal->j_wait_transaction_locked, &wait);
 185}
 186
 187static void sub_reserved_credits(journal_t *journal, int blocks)
 188{
 189        atomic_sub(blocks, &journal->j_reserved_credits);
 190        wake_up(&journal->j_wait_reserved);
 191}
 192
 193/*
 194 * Wait until we can add credits for handle to the running transaction.  Called
 195 * with j_state_lock held for reading. Returns 0 if handle joined the running
 196 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 197 * caller must retry.
 198 */
 199static int add_transaction_credits(journal_t *journal, int blocks,
 200                                   int rsv_blocks)
 201{
 202        transaction_t *t = journal->j_running_transaction;
 203        int needed;
 204        int total = blocks + rsv_blocks;
 205
 206        /*
 207         * If the current transaction is locked down for commit, wait
 208         * for the lock to be released.
 209         */
 210        if (t->t_state != T_RUNNING) {
 211                WARN_ON_ONCE(t->t_state >= T_FLUSH);
 212                wait_transaction_locked(journal);
 213                return 1;
 214        }
 215
 216        /*
 217         * If there is not enough space left in the log to write all
 218         * potential buffers requested by this operation, we need to
 219         * stall pending a log checkpoint to free some more log space.
 220         */
 221        needed = atomic_add_return(total, &t->t_outstanding_credits);
 222        if (needed > journal->j_max_transaction_buffers) {
 223                /*
 224                 * If the current transaction is already too large,
 225                 * then start to commit it: we can then go back and
 226                 * attach this handle to a new transaction.
 227                 */
 228                atomic_sub(total, &t->t_outstanding_credits);
 229
 230                /*
 231                 * Is the number of reserved credits in the current transaction too
 232                 * big to fit this handle? Wait until reserved credits are freed.
 233                 */
 234                if (atomic_read(&journal->j_reserved_credits) + total >
 235                    journal->j_max_transaction_buffers) {
 236                        read_unlock(&journal->j_state_lock);
 237                        jbd2_might_wait_for_commit(journal);
 238                        wait_event(journal->j_wait_reserved,
 239                                   atomic_read(&journal->j_reserved_credits) + total <=
 240                                   journal->j_max_transaction_buffers);
 241                        return 1;
 242                }
 243
 244                wait_transaction_locked(journal);
 245                return 1;
 246        }
 247
 248        /*
 249         * The commit code assumes that it can get enough log space
 250         * without forcing a checkpoint.  This is *critical* for
 251         * correctness: a checkpoint of a buffer which is also
 252         * associated with a committing transaction creates a deadlock,
 253         * so commit simply cannot force through checkpoints.
 254         *
 255         * We must therefore ensure the necessary space in the journal
 256         * *before* starting to dirty potentially checkpointed buffers
 257         * in the new transaction.
 258         */
 259        if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 260                atomic_sub(total, &t->t_outstanding_credits);
 261                read_unlock(&journal->j_state_lock);
 262                jbd2_might_wait_for_commit(journal);
 263                write_lock(&journal->j_state_lock);
 264                if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 265                        __jbd2_log_wait_for_space(journal);
 266                write_unlock(&journal->j_state_lock);
 267                return 1;
 268        }
 269
 270        /* No reservation? We are done... */
 271        if (!rsv_blocks)
 272                return 0;
 273
 274        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 275        /* We allow at most half of a transaction to be reserved */
 276        if (needed > journal->j_max_transaction_buffers / 2) {
 277                sub_reserved_credits(journal, rsv_blocks);
 278                atomic_sub(total, &t->t_outstanding_credits);
 279                read_unlock(&journal->j_state_lock);
 280                jbd2_might_wait_for_commit(journal);
 281                wait_event(journal->j_wait_reserved,
 282                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 283                         <= journal->j_max_transaction_buffers / 2);
 284                return 1;
 285        }
 286        return 0;
 287}
 288
 289/*
 290 * start_this_handle: Given a handle, deal with any locking or stalling
 291 * needed to make sure that there is enough journal space for the handle
 292 * to begin.  Attach the handle to a transaction and set up the
 293 * transaction's buffer credits.
 294 */
 295
 296static int start_this_handle(journal_t *journal, handle_t *handle,
 297                             gfp_t gfp_mask)
 298{
 299        transaction_t   *transaction, *new_transaction = NULL;
 300        int             blocks = handle->h_buffer_credits;
 301        int             rsv_blocks = 0;
 302        unsigned long ts = jiffies;
 303
 304        if (handle->h_rsv_handle)
 305                rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 306
 307        /*
 308         * Limit the number of reserved credits to 1/2 of maximum transaction
 309         * size and limit the number of total credits to not exceed maximum
 310         * transaction size per operation.
 311         */
 312        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 313            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 314                printk(KERN_ERR "JBD2: %s wants too many credits "
 315                       "credits:%d rsv_credits:%d max:%d\n",
 316                       current->comm, blocks, rsv_blocks,
 317                       journal->j_max_transaction_buffers);
 318                WARN_ON(1);
 319                return -ENOSPC;
 320        }
 321
 322alloc_transaction:
 323        if (!journal->j_running_transaction) {
 324                /*
 325                 * If __GFP_FS is not present, then we may be being called from
 326                 * inside the fs writeback layer, so we MUST NOT fail.
 327                 */
 328                if ((gfp_mask & __GFP_FS) == 0)
 329                        gfp_mask |= __GFP_NOFAIL;
 330                new_transaction = kmem_cache_zalloc(transaction_cache,
 331                                                    gfp_mask);
 332                if (!new_transaction)
 333                        return -ENOMEM;
 334        }
 335
 336        jbd_debug(3, "New handle %p going live.\n", handle);
 337
 338        /*
 339         * We need to hold j_state_lock until t_updates has been incremented,
 340         * for proper journal barrier handling
 341         */
 342repeat:
 343        read_lock(&journal->j_state_lock);
 344        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 345        if (is_journal_aborted(journal) ||
 346            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 347                read_unlock(&journal->j_state_lock);
 348                jbd2_journal_free_transaction(new_transaction);
 349                return -EROFS;
 350        }
 351
 352        /*
 353         * Wait on the journal's transaction barrier if necessary. Specifically
 354         * we allow reserved handles to proceed because otherwise commit could
 355         * deadlock on page writeback not being able to complete.
 356         */
 357        if (!handle->h_reserved && journal->j_barrier_count) {
 358                read_unlock(&journal->j_state_lock);
 359                wait_event(journal->j_wait_transaction_locked,
 360                                journal->j_barrier_count == 0);
 361                goto repeat;
 362        }
 363
 364        if (!journal->j_running_transaction) {
 365                read_unlock(&journal->j_state_lock);
 366                if (!new_transaction)
 367                        goto alloc_transaction;
 368                write_lock(&journal->j_state_lock);
 369                if (!journal->j_running_transaction &&
 370                    (handle->h_reserved || !journal->j_barrier_count)) {
 371                        jbd2_get_transaction(journal, new_transaction);
 372                        new_transaction = NULL;
 373                }
 374                write_unlock(&journal->j_state_lock);
 375                goto repeat;
 376        }
 377
 378        transaction = journal->j_running_transaction;
 379
 380        if (!handle->h_reserved) {
 381                /* We may have dropped j_state_lock - restart in that case */
 382                if (add_transaction_credits(journal, blocks, rsv_blocks))
 383                        goto repeat;
 384        } else {
 385                /*
 386                 * We have handle reserved so we are allowed to join T_LOCKED
 387                 * transaction and we don't have to check for transaction size
 388                 * and journal space. But we still have to wait while running
 389                 * transaction is being switched to a committing one as it
 390                 * won't wait for any handles anymore.
 391                 */
 392                if (transaction->t_state == T_SWITCH) {
 393                        wait_transaction_switching(journal);
 394                        goto repeat;
 395                }
 396                sub_reserved_credits(journal, blocks);
 397                handle->h_reserved = 0;
 398        }
 399
 400        /* OK, account for the buffers that this operation expects to
 401         * use and add the handle to the running transaction. 
 402         */
 403        update_t_max_wait(transaction, ts);
 404        handle->h_transaction = transaction;
 405        handle->h_requested_credits = blocks;
 406        handle->h_start_jiffies = jiffies;
 407        atomic_inc(&transaction->t_updates);
 408        atomic_inc(&transaction->t_handle_count);
 409        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 410                  handle, blocks,
 411                  atomic_read(&transaction->t_outstanding_credits),
 412                  jbd2_log_space_left(journal));
 413        read_unlock(&journal->j_state_lock);
 414        current->journal_info = handle;
 415
 416        rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 417        jbd2_journal_free_transaction(new_transaction);
 418        /*
 419         * Ensure that no allocations done while the transaction is open are
 420         * going to recurse back to the fs layer.
 421         */
 422        handle->saved_alloc_context = memalloc_nofs_save();
 423        return 0;
 424}
 425
 426/* Allocate a new handle.  This should probably be in a slab... */
 427static handle_t *new_handle(int nblocks)
 428{
 429        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 430        if (!handle)
 431                return NULL;
 432        handle->h_buffer_credits = nblocks;
 433        handle->h_ref = 1;
 434
 435        return handle;
 436}
 437
 438handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 439                              gfp_t gfp_mask, unsigned int type,
 440                              unsigned int line_no)
 441{
 442        handle_t *handle = journal_current_handle();
 443        int err;
 444
 445        if (!journal)
 446                return ERR_PTR(-EROFS);
 447
 448        if (handle) {
 449                J_ASSERT(handle->h_transaction->t_journal == journal);
 450                handle->h_ref++;
 451                return handle;
 452        }
 453
 454        handle = new_handle(nblocks);
 455        if (!handle)
 456                return ERR_PTR(-ENOMEM);
 457        if (rsv_blocks) {
 458                handle_t *rsv_handle;
 459
 460                rsv_handle = new_handle(rsv_blocks);
 461                if (!rsv_handle) {
 462                        jbd2_free_handle(handle);
 463                        return ERR_PTR(-ENOMEM);
 464                }
 465                rsv_handle->h_reserved = 1;
 466                rsv_handle->h_journal = journal;
 467                handle->h_rsv_handle = rsv_handle;
 468        }
 469
 470        err = start_this_handle(journal, handle, gfp_mask);
 471        if (err < 0) {
 472                if (handle->h_rsv_handle)
 473                        jbd2_free_handle(handle->h_rsv_handle);
 474                jbd2_free_handle(handle);
 475                return ERR_PTR(err);
 476        }
 477        handle->h_type = type;
 478        handle->h_line_no = line_no;
 479        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 480                                handle->h_transaction->t_tid, type,
 481                                line_no, nblocks);
 482
 483        return handle;
 484}
 485EXPORT_SYMBOL(jbd2__journal_start);
 486
 487
 488/**
 489 * handle_t *jbd2_journal_start() - Obtain a new handle.
 490 * @journal: Journal to start transaction on.
 491 * @nblocks: number of block buffer we might modify
 492 *
 493 * We make sure that the transaction can guarantee at least nblocks of
 494 * modified buffers in the log.  We block until the log can guarantee
 495 * that much space. Additionally, if rsv_blocks > 0, we also create another
 496 * handle with rsv_blocks reserved blocks in the journal. This handle is
 497 * is stored in h_rsv_handle. It is not attached to any particular transaction
 498 * and thus doesn't block transaction commit. If the caller uses this reserved
 499 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 500 * on the parent handle will dispose the reserved one. Reserved handle has to
 501 * be converted to a normal handle using jbd2_journal_start_reserved() before
 502 * it can be used.
 503 *
 504 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 505 * on failure.
 506 */
 507handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 508{
 509        return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 510}
 511EXPORT_SYMBOL(jbd2_journal_start);
 512
 513void jbd2_journal_free_reserved(handle_t *handle)
 514{
 515        journal_t *journal = handle->h_journal;
 516
 517        WARN_ON(!handle->h_reserved);
 518        sub_reserved_credits(journal, handle->h_buffer_credits);
 519        jbd2_free_handle(handle);
 520}
 521EXPORT_SYMBOL(jbd2_journal_free_reserved);
 522
 523/**
 524 * int jbd2_journal_start_reserved() - start reserved handle
 525 * @handle: handle to start
 526 * @type: for handle statistics
 527 * @line_no: for handle statistics
 528 *
 529 * Start handle that has been previously reserved with jbd2_journal_reserve().
 530 * This attaches @handle to the running transaction (or creates one if there's
 531 * not transaction running). Unlike jbd2_journal_start() this function cannot
 532 * block on journal commit, checkpointing, or similar stuff. It can block on
 533 * memory allocation or frozen journal though.
 534 *
 535 * Return 0 on success, non-zero on error - handle is freed in that case.
 536 */
 537int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 538                                unsigned int line_no)
 539{
 540        journal_t *journal = handle->h_journal;
 541        int ret = -EIO;
 542
 543        if (WARN_ON(!handle->h_reserved)) {
 544                /* Someone passed in normal handle? Just stop it. */
 545                jbd2_journal_stop(handle);
 546                return ret;
 547        }
 548        /*
 549         * Usefulness of mixing of reserved and unreserved handles is
 550         * questionable. So far nobody seems to need it so just error out.
 551         */
 552        if (WARN_ON(current->journal_info)) {
 553                jbd2_journal_free_reserved(handle);
 554                return ret;
 555        }
 556
 557        handle->h_journal = NULL;
 558        /*
 559         * GFP_NOFS is here because callers are likely from writeback or
 560         * similarly constrained call sites
 561         */
 562        ret = start_this_handle(journal, handle, GFP_NOFS);
 563        if (ret < 0) {
 564                handle->h_journal = journal;
 565                jbd2_journal_free_reserved(handle);
 566                return ret;
 567        }
 568        handle->h_type = type;
 569        handle->h_line_no = line_no;
 570        return 0;
 571}
 572EXPORT_SYMBOL(jbd2_journal_start_reserved);
 573
 574/**
 575 * int jbd2_journal_extend() - extend buffer credits.
 576 * @handle:  handle to 'extend'
 577 * @nblocks: nr blocks to try to extend by.
 578 *
 579 * Some transactions, such as large extends and truncates, can be done
 580 * atomically all at once or in several stages.  The operation requests
 581 * a credit for a number of buffer modifications in advance, but can
 582 * extend its credit if it needs more.
 583 *
 584 * jbd2_journal_extend tries to give the running handle more buffer credits.
 585 * It does not guarantee that allocation - this is a best-effort only.
 586 * The calling process MUST be able to deal cleanly with a failure to
 587 * extend here.
 588 *
 589 * Return 0 on success, non-zero on failure.
 590 *
 591 * return code < 0 implies an error
 592 * return code > 0 implies normal transaction-full status.
 593 */
 594int jbd2_journal_extend(handle_t *handle, int nblocks)
 595{
 596        transaction_t *transaction = handle->h_transaction;
 597        journal_t *journal;
 598        int result;
 599        int wanted;
 600
 601        if (is_handle_aborted(handle))
 602                return -EROFS;
 603        journal = transaction->t_journal;
 604
 605        result = 1;
 606
 607        read_lock(&journal->j_state_lock);
 608
 609        /* Don't extend a locked-down transaction! */
 610        if (transaction->t_state != T_RUNNING) {
 611                jbd_debug(3, "denied handle %p %d blocks: "
 612                          "transaction not running\n", handle, nblocks);
 613                goto error_out;
 614        }
 615
 616        spin_lock(&transaction->t_handle_lock);
 617        wanted = atomic_add_return(nblocks,
 618                                   &transaction->t_outstanding_credits);
 619
 620        if (wanted > journal->j_max_transaction_buffers) {
 621                jbd_debug(3, "denied handle %p %d blocks: "
 622                          "transaction too large\n", handle, nblocks);
 623                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 624                goto unlock;
 625        }
 626
 627        if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 628            jbd2_log_space_left(journal)) {
 629                jbd_debug(3, "denied handle %p %d blocks: "
 630                          "insufficient log space\n", handle, nblocks);
 631                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 632                goto unlock;
 633        }
 634
 635        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 636                                 transaction->t_tid,
 637                                 handle->h_type, handle->h_line_no,
 638                                 handle->h_buffer_credits,
 639                                 nblocks);
 640
 641        handle->h_buffer_credits += nblocks;
 642        handle->h_requested_credits += nblocks;
 643        result = 0;
 644
 645        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 646unlock:
 647        spin_unlock(&transaction->t_handle_lock);
 648error_out:
 649        read_unlock(&journal->j_state_lock);
 650        return result;
 651}
 652
 653
 654/**
 655 * int jbd2_journal_restart() - restart a handle .
 656 * @handle:  handle to restart
 657 * @nblocks: nr credits requested
 658 * @gfp_mask: memory allocation flags (for start_this_handle)
 659 *
 660 * Restart a handle for a multi-transaction filesystem
 661 * operation.
 662 *
 663 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 664 * to a running handle, a call to jbd2_journal_restart will commit the
 665 * handle's transaction so far and reattach the handle to a new
 666 * transaction capable of guaranteeing the requested number of
 667 * credits. We preserve reserved handle if there's any attached to the
 668 * passed in handle.
 669 */
 670int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 671{
 672        transaction_t *transaction = handle->h_transaction;
 673        journal_t *journal;
 674        tid_t           tid;
 675        int             need_to_start, ret;
 676
 677        /* If we've had an abort of any type, don't even think about
 678         * actually doing the restart! */
 679        if (is_handle_aborted(handle))
 680                return 0;
 681        journal = transaction->t_journal;
 682
 683        /*
 684         * First unlink the handle from its current transaction, and start the
 685         * commit on that.
 686         */
 687        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 688        J_ASSERT(journal_current_handle() == handle);
 689
 690        read_lock(&journal->j_state_lock);
 691        spin_lock(&transaction->t_handle_lock);
 692        atomic_sub(handle->h_buffer_credits,
 693                   &transaction->t_outstanding_credits);
 694        if (handle->h_rsv_handle) {
 695                sub_reserved_credits(journal,
 696                                     handle->h_rsv_handle->h_buffer_credits);
 697        }
 698        if (atomic_dec_and_test(&transaction->t_updates))
 699                wake_up(&journal->j_wait_updates);
 700        tid = transaction->t_tid;
 701        spin_unlock(&transaction->t_handle_lock);
 702        handle->h_transaction = NULL;
 703        current->journal_info = NULL;
 704
 705        jbd_debug(2, "restarting handle %p\n", handle);
 706        need_to_start = !tid_geq(journal->j_commit_request, tid);
 707        read_unlock(&journal->j_state_lock);
 708        if (need_to_start)
 709                jbd2_log_start_commit(journal, tid);
 710
 711        rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
 712        handle->h_buffer_credits = nblocks;
 713        /*
 714         * Restore the original nofs context because the journal restart
 715         * is basically the same thing as journal stop and start.
 716         * start_this_handle will start a new nofs context.
 717         */
 718        memalloc_nofs_restore(handle->saved_alloc_context);
 719        ret = start_this_handle(journal, handle, gfp_mask);
 720        return ret;
 721}
 722EXPORT_SYMBOL(jbd2__journal_restart);
 723
 724
 725int jbd2_journal_restart(handle_t *handle, int nblocks)
 726{
 727        return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 728}
 729EXPORT_SYMBOL(jbd2_journal_restart);
 730
 731/**
 732 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 733 * @journal:  Journal to establish a barrier on.
 734 *
 735 * This locks out any further updates from being started, and blocks
 736 * until all existing updates have completed, returning only once the
 737 * journal is in a quiescent state with no updates running.
 738 *
 739 * The journal lock should not be held on entry.
 740 */
 741void jbd2_journal_lock_updates(journal_t *journal)
 742{
 743        DEFINE_WAIT(wait);
 744
 745        jbd2_might_wait_for_commit(journal);
 746
 747        write_lock(&journal->j_state_lock);
 748        ++journal->j_barrier_count;
 749
 750        /* Wait until there are no reserved handles */
 751        if (atomic_read(&journal->j_reserved_credits)) {
 752                write_unlock(&journal->j_state_lock);
 753                wait_event(journal->j_wait_reserved,
 754                           atomic_read(&journal->j_reserved_credits) == 0);
 755                write_lock(&journal->j_state_lock);
 756        }
 757
 758        /* Wait until there are no running updates */
 759        while (1) {
 760                transaction_t *transaction = journal->j_running_transaction;
 761
 762                if (!transaction)
 763                        break;
 764
 765                spin_lock(&transaction->t_handle_lock);
 766                prepare_to_wait(&journal->j_wait_updates, &wait,
 767                                TASK_UNINTERRUPTIBLE);
 768                if (!atomic_read(&transaction->t_updates)) {
 769                        spin_unlock(&transaction->t_handle_lock);
 770                        finish_wait(&journal->j_wait_updates, &wait);
 771                        break;
 772                }
 773                spin_unlock(&transaction->t_handle_lock);
 774                write_unlock(&journal->j_state_lock);
 775                schedule();
 776                finish_wait(&journal->j_wait_updates, &wait);
 777                write_lock(&journal->j_state_lock);
 778        }
 779        write_unlock(&journal->j_state_lock);
 780
 781        /*
 782         * We have now established a barrier against other normal updates, but
 783         * we also need to barrier against other jbd2_journal_lock_updates() calls
 784         * to make sure that we serialise special journal-locked operations
 785         * too.
 786         */
 787        mutex_lock(&journal->j_barrier);
 788}
 789
 790/**
 791 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 792 * @journal:  Journal to release the barrier on.
 793 *
 794 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 795 *
 796 * Should be called without the journal lock held.
 797 */
 798void jbd2_journal_unlock_updates (journal_t *journal)
 799{
 800        J_ASSERT(journal->j_barrier_count != 0);
 801
 802        mutex_unlock(&journal->j_barrier);
 803        write_lock(&journal->j_state_lock);
 804        --journal->j_barrier_count;
 805        write_unlock(&journal->j_state_lock);
 806        wake_up(&journal->j_wait_transaction_locked);
 807}
 808
 809static void warn_dirty_buffer(struct buffer_head *bh)
 810{
 811        printk(KERN_WARNING
 812               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 813               "There's a risk of filesystem corruption in case of system "
 814               "crash.\n",
 815               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 816}
 817
 818/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 819static void jbd2_freeze_jh_data(struct journal_head *jh)
 820{
 821        struct page *page;
 822        int offset;
 823        char *source;
 824        struct buffer_head *bh = jh2bh(jh);
 825
 826        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 827        page = bh->b_page;
 828        offset = offset_in_page(bh->b_data);
 829        source = kmap_atomic(page);
 830        /* Fire data frozen trigger just before we copy the data */
 831        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 832        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 833        kunmap_atomic(source);
 834
 835        /*
 836         * Now that the frozen data is saved off, we need to store any matching
 837         * triggers.
 838         */
 839        jh->b_frozen_triggers = jh->b_triggers;
 840}
 841
 842/*
 843 * If the buffer is already part of the current transaction, then there
 844 * is nothing we need to do.  If it is already part of a prior
 845 * transaction which we are still committing to disk, then we need to
 846 * make sure that we do not overwrite the old copy: we do copy-out to
 847 * preserve the copy going to disk.  We also account the buffer against
 848 * the handle's metadata buffer credits (unless the buffer is already
 849 * part of the transaction, that is).
 850 *
 851 */
 852static int
 853do_get_write_access(handle_t *handle, struct journal_head *jh,
 854                        int force_copy)
 855{
 856        struct buffer_head *bh;
 857        transaction_t *transaction = handle->h_transaction;
 858        journal_t *journal;
 859        int error;
 860        char *frozen_buffer = NULL;
 861        unsigned long start_lock, time_lock;
 862
 863        if (is_handle_aborted(handle))
 864                return -EROFS;
 865        journal = transaction->t_journal;
 866
 867        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 868
 869        JBUFFER_TRACE(jh, "entry");
 870repeat:
 871        bh = jh2bh(jh);
 872
 873        /* @@@ Need to check for errors here at some point. */
 874
 875        start_lock = jiffies;
 876        lock_buffer(bh);
 877        jbd_lock_bh_state(bh);
 878
 879        /* If it takes too long to lock the buffer, trace it */
 880        time_lock = jbd2_time_diff(start_lock, jiffies);
 881        if (time_lock > HZ/10)
 882                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 883                        jiffies_to_msecs(time_lock));
 884
 885        /* We now hold the buffer lock so it is safe to query the buffer
 886         * state.  Is the buffer dirty?
 887         *
 888         * If so, there are two possibilities.  The buffer may be
 889         * non-journaled, and undergoing a quite legitimate writeback.
 890         * Otherwise, it is journaled, and we don't expect dirty buffers
 891         * in that state (the buffers should be marked JBD_Dirty
 892         * instead.)  So either the IO is being done under our own
 893         * control and this is a bug, or it's a third party IO such as
 894         * dump(8) (which may leave the buffer scheduled for read ---
 895         * ie. locked but not dirty) or tune2fs (which may actually have
 896         * the buffer dirtied, ugh.)  */
 897
 898        if (buffer_dirty(bh)) {
 899                /*
 900                 * First question: is this buffer already part of the current
 901                 * transaction or the existing committing transaction?
 902                 */
 903                if (jh->b_transaction) {
 904                        J_ASSERT_JH(jh,
 905                                jh->b_transaction == transaction ||
 906                                jh->b_transaction ==
 907                                        journal->j_committing_transaction);
 908                        if (jh->b_next_transaction)
 909                                J_ASSERT_JH(jh, jh->b_next_transaction ==
 910                                                        transaction);
 911                        warn_dirty_buffer(bh);
 912                }
 913                /*
 914                 * In any case we need to clean the dirty flag and we must
 915                 * do it under the buffer lock to be sure we don't race
 916                 * with running write-out.
 917                 */
 918                JBUFFER_TRACE(jh, "Journalling dirty buffer");
 919                clear_buffer_dirty(bh);
 920                set_buffer_jbddirty(bh);
 921        }
 922
 923        unlock_buffer(bh);
 924
 925        error = -EROFS;
 926        if (is_handle_aborted(handle)) {
 927                jbd_unlock_bh_state(bh);
 928                goto out;
 929        }
 930        error = 0;
 931
 932        /*
 933         * The buffer is already part of this transaction if b_transaction or
 934         * b_next_transaction points to it
 935         */
 936        if (jh->b_transaction == transaction ||
 937            jh->b_next_transaction == transaction)
 938                goto done;
 939
 940        /*
 941         * this is the first time this transaction is touching this buffer,
 942         * reset the modified flag
 943         */
 944        jh->b_modified = 0;
 945
 946        /*
 947         * If the buffer is not journaled right now, we need to make sure it
 948         * doesn't get written to disk before the caller actually commits the
 949         * new data
 950         */
 951        if (!jh->b_transaction) {
 952                JBUFFER_TRACE(jh, "no transaction");
 953                J_ASSERT_JH(jh, !jh->b_next_transaction);
 954                JBUFFER_TRACE(jh, "file as BJ_Reserved");
 955                /*
 956                 * Make sure all stores to jh (b_modified, b_frozen_data) are
 957                 * visible before attaching it to the running transaction.
 958                 * Paired with barrier in jbd2_write_access_granted()
 959                 */
 960                smp_wmb();
 961                spin_lock(&journal->j_list_lock);
 962                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 963                spin_unlock(&journal->j_list_lock);
 964                goto done;
 965        }
 966        /*
 967         * If there is already a copy-out version of this buffer, then we don't
 968         * need to make another one
 969         */
 970        if (jh->b_frozen_data) {
 971                JBUFFER_TRACE(jh, "has frozen data");
 972                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 973                goto attach_next;
 974        }
 975
 976        JBUFFER_TRACE(jh, "owned by older transaction");
 977        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 978        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 979
 980        /*
 981         * There is one case we have to be very careful about.  If the
 982         * committing transaction is currently writing this buffer out to disk
 983         * and has NOT made a copy-out, then we cannot modify the buffer
 984         * contents at all right now.  The essence of copy-out is that it is
 985         * the extra copy, not the primary copy, which gets journaled.  If the
 986         * primary copy is already going to disk then we cannot do copy-out
 987         * here.
 988         */
 989        if (buffer_shadow(bh)) {
 990                JBUFFER_TRACE(jh, "on shadow: sleep");
 991                jbd_unlock_bh_state(bh);
 992                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 993                goto repeat;
 994        }
 995
 996        /*
 997         * Only do the copy if the currently-owning transaction still needs it.
 998         * If buffer isn't on BJ_Metadata list, the committing transaction is
 999         * past that stage (here we use the fact that BH_Shadow is set under
1000         * bh_state lock together with refiling to BJ_Shadow list and at this
1001         * point we know the buffer doesn't have BH_Shadow set).
1002         *
1003         * Subtle point, though: if this is a get_undo_access, then we will be
1004         * relying on the frozen_data to contain the new value of the
1005         * committed_data record after the transaction, so we HAVE to force the
1006         * frozen_data copy in that case.
1007         */
1008        if (jh->b_jlist == BJ_Metadata || force_copy) {
1009                JBUFFER_TRACE(jh, "generate frozen data");
1010                if (!frozen_buffer) {
1011                        JBUFFER_TRACE(jh, "allocate memory for buffer");
1012                        jbd_unlock_bh_state(bh);
1013                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1014                                                   GFP_NOFS | __GFP_NOFAIL);
1015                        goto repeat;
1016                }
1017                jh->b_frozen_data = frozen_buffer;
1018                frozen_buffer = NULL;
1019                jbd2_freeze_jh_data(jh);
1020        }
1021attach_next:
1022        /*
1023         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1024         * before attaching it to the running transaction. Paired with barrier
1025         * in jbd2_write_access_granted()
1026         */
1027        smp_wmb();
1028        jh->b_next_transaction = transaction;
1029
1030done:
1031        jbd_unlock_bh_state(bh);
1032
1033        /*
1034         * If we are about to journal a buffer, then any revoke pending on it is
1035         * no longer valid
1036         */
1037        jbd2_journal_cancel_revoke(handle, jh);
1038
1039out:
1040        if (unlikely(frozen_buffer))    /* It's usually NULL */
1041                jbd2_free(frozen_buffer, bh->b_size);
1042
1043        JBUFFER_TRACE(jh, "exit");
1044        return error;
1045}
1046
1047/* Fast check whether buffer is already attached to the required transaction */
1048static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1049                                                        bool undo)
1050{
1051        struct journal_head *jh;
1052        bool ret = false;
1053
1054        /* Dirty buffers require special handling... */
1055        if (buffer_dirty(bh))
1056                return false;
1057
1058        /*
1059         * RCU protects us from dereferencing freed pages. So the checks we do
1060         * are guaranteed not to oops. However the jh slab object can get freed
1061         * & reallocated while we work with it. So we have to be careful. When
1062         * we see jh attached to the running transaction, we know it must stay
1063         * so until the transaction is committed. Thus jh won't be freed and
1064         * will be attached to the same bh while we run.  However it can
1065         * happen jh gets freed, reallocated, and attached to the transaction
1066         * just after we get pointer to it from bh. So we have to be careful
1067         * and recheck jh still belongs to our bh before we return success.
1068         */
1069        rcu_read_lock();
1070        if (!buffer_jbd(bh))
1071                goto out;
1072        /* This should be bh2jh() but that doesn't work with inline functions */
1073        jh = READ_ONCE(bh->b_private);
1074        if (!jh)
1075                goto out;
1076        /* For undo access buffer must have data copied */
1077        if (undo && !jh->b_committed_data)
1078                goto out;
1079        if (jh->b_transaction != handle->h_transaction &&
1080            jh->b_next_transaction != handle->h_transaction)
1081                goto out;
1082        /*
1083         * There are two reasons for the barrier here:
1084         * 1) Make sure to fetch b_bh after we did previous checks so that we
1085         * detect when jh went through free, realloc, attach to transaction
1086         * while we were checking. Paired with implicit barrier in that path.
1087         * 2) So that access to bh done after jbd2_write_access_granted()
1088         * doesn't get reordered and see inconsistent state of concurrent
1089         * do_get_write_access().
1090         */
1091        smp_mb();
1092        if (unlikely(jh->b_bh != bh))
1093                goto out;
1094        ret = true;
1095out:
1096        rcu_read_unlock();
1097        return ret;
1098}
1099
1100/**
1101 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1102 * @handle: transaction to add buffer modifications to
1103 * @bh:     bh to be used for metadata writes
1104 *
1105 * Returns: error code or 0 on success.
1106 *
1107 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1108 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1109 */
1110
1111int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1112{
1113        struct journal_head *jh;
1114        int rc;
1115
1116        if (jbd2_write_access_granted(handle, bh, false))
1117                return 0;
1118
1119        jh = jbd2_journal_add_journal_head(bh);
1120        /* We do not want to get caught playing with fields which the
1121         * log thread also manipulates.  Make sure that the buffer
1122         * completes any outstanding IO before proceeding. */
1123        rc = do_get_write_access(handle, jh, 0);
1124        jbd2_journal_put_journal_head(jh);
1125        return rc;
1126}
1127
1128
1129/*
1130 * When the user wants to journal a newly created buffer_head
1131 * (ie. getblk() returned a new buffer and we are going to populate it
1132 * manually rather than reading off disk), then we need to keep the
1133 * buffer_head locked until it has been completely filled with new
1134 * data.  In this case, we should be able to make the assertion that
1135 * the bh is not already part of an existing transaction.
1136 *
1137 * The buffer should already be locked by the caller by this point.
1138 * There is no lock ranking violation: it was a newly created,
1139 * unlocked buffer beforehand. */
1140
1141/**
1142 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1143 * @handle: transaction to new buffer to
1144 * @bh: new buffer.
1145 *
1146 * Call this if you create a new bh.
1147 */
1148int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1149{
1150        transaction_t *transaction = handle->h_transaction;
1151        journal_t *journal;
1152        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1153        int err;
1154
1155        jbd_debug(5, "journal_head %p\n", jh);
1156        err = -EROFS;
1157        if (is_handle_aborted(handle))
1158                goto out;
1159        journal = transaction->t_journal;
1160        err = 0;
1161
1162        JBUFFER_TRACE(jh, "entry");
1163        /*
1164         * The buffer may already belong to this transaction due to pre-zeroing
1165         * in the filesystem's new_block code.  It may also be on the previous,
1166         * committing transaction's lists, but it HAS to be in Forget state in
1167         * that case: the transaction must have deleted the buffer for it to be
1168         * reused here.
1169         */
1170        jbd_lock_bh_state(bh);
1171        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1172                jh->b_transaction == NULL ||
1173                (jh->b_transaction == journal->j_committing_transaction &&
1174                          jh->b_jlist == BJ_Forget)));
1175
1176        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1177        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1178
1179        if (jh->b_transaction == NULL) {
1180                /*
1181                 * Previous jbd2_journal_forget() could have left the buffer
1182                 * with jbddirty bit set because it was being committed. When
1183                 * the commit finished, we've filed the buffer for
1184                 * checkpointing and marked it dirty. Now we are reallocating
1185                 * the buffer so the transaction freeing it must have
1186                 * committed and so it's safe to clear the dirty bit.
1187                 */
1188                clear_buffer_dirty(jh2bh(jh));
1189                /* first access by this transaction */
1190                jh->b_modified = 0;
1191
1192                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1193                spin_lock(&journal->j_list_lock);
1194                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1195                spin_unlock(&journal->j_list_lock);
1196        } else if (jh->b_transaction == journal->j_committing_transaction) {
1197                /* first access by this transaction */
1198                jh->b_modified = 0;
1199
1200                JBUFFER_TRACE(jh, "set next transaction");
1201                spin_lock(&journal->j_list_lock);
1202                jh->b_next_transaction = transaction;
1203                spin_unlock(&journal->j_list_lock);
1204        }
1205        jbd_unlock_bh_state(bh);
1206
1207        /*
1208         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1209         * blocks which contain freed but then revoked metadata.  We need
1210         * to cancel the revoke in case we end up freeing it yet again
1211         * and the reallocating as data - this would cause a second revoke,
1212         * which hits an assertion error.
1213         */
1214        JBUFFER_TRACE(jh, "cancelling revoke");
1215        jbd2_journal_cancel_revoke(handle, jh);
1216out:
1217        jbd2_journal_put_journal_head(jh);
1218        return err;
1219}
1220
1221/**
1222 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1223 *     non-rewindable consequences
1224 * @handle: transaction
1225 * @bh: buffer to undo
1226 *
1227 * Sometimes there is a need to distinguish between metadata which has
1228 * been committed to disk and that which has not.  The ext3fs code uses
1229 * this for freeing and allocating space, we have to make sure that we
1230 * do not reuse freed space until the deallocation has been committed,
1231 * since if we overwrote that space we would make the delete
1232 * un-rewindable in case of a crash.
1233 *
1234 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1235 * buffer for parts of non-rewindable operations such as delete
1236 * operations on the bitmaps.  The journaling code must keep a copy of
1237 * the buffer's contents prior to the undo_access call until such time
1238 * as we know that the buffer has definitely been committed to disk.
1239 *
1240 * We never need to know which transaction the committed data is part
1241 * of, buffers touched here are guaranteed to be dirtied later and so
1242 * will be committed to a new transaction in due course, at which point
1243 * we can discard the old committed data pointer.
1244 *
1245 * Returns error number or 0 on success.
1246 */
1247int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1248{
1249        int err;
1250        struct journal_head *jh;
1251        char *committed_data = NULL;
1252
1253        if (jbd2_write_access_granted(handle, bh, true))
1254                return 0;
1255
1256        jh = jbd2_journal_add_journal_head(bh);
1257        JBUFFER_TRACE(jh, "entry");
1258
1259        /*
1260         * Do this first --- it can drop the journal lock, so we want to
1261         * make sure that obtaining the committed_data is done
1262         * atomically wrt. completion of any outstanding commits.
1263         */
1264        err = do_get_write_access(handle, jh, 1);
1265        if (err)
1266                goto out;
1267
1268repeat:
1269        if (!jh->b_committed_data)
1270                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1271                                            GFP_NOFS|__GFP_NOFAIL);
1272
1273        jbd_lock_bh_state(bh);
1274        if (!jh->b_committed_data) {
1275                /* Copy out the current buffer contents into the
1276                 * preserved, committed copy. */
1277                JBUFFER_TRACE(jh, "generate b_committed data");
1278                if (!committed_data) {
1279                        jbd_unlock_bh_state(bh);
1280                        goto repeat;
1281                }
1282
1283                jh->b_committed_data = committed_data;
1284                committed_data = NULL;
1285                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1286        }
1287        jbd_unlock_bh_state(bh);
1288out:
1289        jbd2_journal_put_journal_head(jh);
1290        if (unlikely(committed_data))
1291                jbd2_free(committed_data, bh->b_size);
1292        return err;
1293}
1294
1295/**
1296 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1297 * @bh: buffer to trigger on
1298 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1299 *
1300 * Set any triggers on this journal_head.  This is always safe, because
1301 * triggers for a committing buffer will be saved off, and triggers for
1302 * a running transaction will match the buffer in that transaction.
1303 *
1304 * Call with NULL to clear the triggers.
1305 */
1306void jbd2_journal_set_triggers(struct buffer_head *bh,
1307                               struct jbd2_buffer_trigger_type *type)
1308{
1309        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1310
1311        if (WARN_ON(!jh))
1312                return;
1313        jh->b_triggers = type;
1314        jbd2_journal_put_journal_head(jh);
1315}
1316
1317void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1318                                struct jbd2_buffer_trigger_type *triggers)
1319{
1320        struct buffer_head *bh = jh2bh(jh);
1321
1322        if (!triggers || !triggers->t_frozen)
1323                return;
1324
1325        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1326}
1327
1328void jbd2_buffer_abort_trigger(struct journal_head *jh,
1329                               struct jbd2_buffer_trigger_type *triggers)
1330{
1331        if (!triggers || !triggers->t_abort)
1332                return;
1333
1334        triggers->t_abort(triggers, jh2bh(jh));
1335}
1336
1337/**
1338 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1339 * @handle: transaction to add buffer to.
1340 * @bh: buffer to mark
1341 *
1342 * mark dirty metadata which needs to be journaled as part of the current
1343 * transaction.
1344 *
1345 * The buffer must have previously had jbd2_journal_get_write_access()
1346 * called so that it has a valid journal_head attached to the buffer
1347 * head.
1348 *
1349 * The buffer is placed on the transaction's metadata list and is marked
1350 * as belonging to the transaction.
1351 *
1352 * Returns error number or 0 on success.
1353 *
1354 * Special care needs to be taken if the buffer already belongs to the
1355 * current committing transaction (in which case we should have frozen
1356 * data present for that commit).  In that case, we don't relink the
1357 * buffer: that only gets done when the old transaction finally
1358 * completes its commit.
1359 */
1360int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1361{
1362        transaction_t *transaction = handle->h_transaction;
1363        journal_t *journal;
1364        struct journal_head *jh;
1365        int ret = 0;
1366
1367        if (is_handle_aborted(handle))
1368                return -EROFS;
1369        if (!buffer_jbd(bh))
1370                return -EUCLEAN;
1371
1372        /*
1373         * We don't grab jh reference here since the buffer must be part
1374         * of the running transaction.
1375         */
1376        jh = bh2jh(bh);
1377        jbd_debug(5, "journal_head %p\n", jh);
1378        JBUFFER_TRACE(jh, "entry");
1379
1380        /*
1381         * This and the following assertions are unreliable since we may see jh
1382         * in inconsistent state unless we grab bh_state lock. But this is
1383         * crucial to catch bugs so let's do a reliable check until the
1384         * lockless handling is fully proven.
1385         */
1386        if (jh->b_transaction != transaction &&
1387            jh->b_next_transaction != transaction) {
1388                jbd_lock_bh_state(bh);
1389                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1390                                jh->b_next_transaction == transaction);
1391                jbd_unlock_bh_state(bh);
1392        }
1393        if (jh->b_modified == 1) {
1394                /* If it's in our transaction it must be in BJ_Metadata list. */
1395                if (jh->b_transaction == transaction &&
1396                    jh->b_jlist != BJ_Metadata) {
1397                        jbd_lock_bh_state(bh);
1398                        if (jh->b_transaction == transaction &&
1399                            jh->b_jlist != BJ_Metadata)
1400                                pr_err("JBD2: assertion failure: h_type=%u "
1401                                       "h_line_no=%u block_no=%llu jlist=%u\n",
1402                                       handle->h_type, handle->h_line_no,
1403                                       (unsigned long long) bh->b_blocknr,
1404                                       jh->b_jlist);
1405                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1406                                        jh->b_jlist == BJ_Metadata);
1407                        jbd_unlock_bh_state(bh);
1408                }
1409                goto out;
1410        }
1411
1412        journal = transaction->t_journal;
1413        jbd_lock_bh_state(bh);
1414
1415        if (jh->b_modified == 0) {
1416                /*
1417                 * This buffer's got modified and becoming part
1418                 * of the transaction. This needs to be done
1419                 * once a transaction -bzzz
1420                 */
1421                if (handle->h_buffer_credits <= 0) {
1422                        ret = -ENOSPC;
1423                        goto out_unlock_bh;
1424                }
1425                jh->b_modified = 1;
1426                handle->h_buffer_credits--;
1427        }
1428
1429        /*
1430         * fastpath, to avoid expensive locking.  If this buffer is already
1431         * on the running transaction's metadata list there is nothing to do.
1432         * Nobody can take it off again because there is a handle open.
1433         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1434         * result in this test being false, so we go in and take the locks.
1435         */
1436        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1437                JBUFFER_TRACE(jh, "fastpath");
1438                if (unlikely(jh->b_transaction !=
1439                             journal->j_running_transaction)) {
1440                        printk(KERN_ERR "JBD2: %s: "
1441                               "jh->b_transaction (%llu, %p, %u) != "
1442                               "journal->j_running_transaction (%p, %u)\n",
1443                               journal->j_devname,
1444                               (unsigned long long) bh->b_blocknr,
1445                               jh->b_transaction,
1446                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1447                               journal->j_running_transaction,
1448                               journal->j_running_transaction ?
1449                               journal->j_running_transaction->t_tid : 0);
1450                        ret = -EINVAL;
1451                }
1452                goto out_unlock_bh;
1453        }
1454
1455        set_buffer_jbddirty(bh);
1456
1457        /*
1458         * Metadata already on the current transaction list doesn't
1459         * need to be filed.  Metadata on another transaction's list must
1460         * be committing, and will be refiled once the commit completes:
1461         * leave it alone for now.
1462         */
1463        if (jh->b_transaction != transaction) {
1464                JBUFFER_TRACE(jh, "already on other transaction");
1465                if (unlikely(((jh->b_transaction !=
1466                               journal->j_committing_transaction)) ||
1467                             (jh->b_next_transaction != transaction))) {
1468                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1469                               "bad jh for block %llu: "
1470                               "transaction (%p, %u), "
1471                               "jh->b_transaction (%p, %u), "
1472                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1473                               journal->j_devname,
1474                               (unsigned long long) bh->b_blocknr,
1475                               transaction, transaction->t_tid,
1476                               jh->b_transaction,
1477                               jh->b_transaction ?
1478                               jh->b_transaction->t_tid : 0,
1479                               jh->b_next_transaction,
1480                               jh->b_next_transaction ?
1481                               jh->b_next_transaction->t_tid : 0,
1482                               jh->b_jlist);
1483                        WARN_ON(1);
1484                        ret = -EINVAL;
1485                }
1486                /* And this case is illegal: we can't reuse another
1487                 * transaction's data buffer, ever. */
1488                goto out_unlock_bh;
1489        }
1490
1491        /* That test should have eliminated the following case: */
1492        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1493
1494        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1495        spin_lock(&journal->j_list_lock);
1496        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1497        spin_unlock(&journal->j_list_lock);
1498out_unlock_bh:
1499        jbd_unlock_bh_state(bh);
1500out:
1501        JBUFFER_TRACE(jh, "exit");
1502        return ret;
1503}
1504
1505/**
1506 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1507 * @handle: transaction handle
1508 * @bh:     bh to 'forget'
1509 *
1510 * We can only do the bforget if there are no commits pending against the
1511 * buffer.  If the buffer is dirty in the current running transaction we
1512 * can safely unlink it.
1513 *
1514 * bh may not be a journalled buffer at all - it may be a non-JBD
1515 * buffer which came off the hashtable.  Check for this.
1516 *
1517 * Decrements bh->b_count by one.
1518 *
1519 * Allow this call even if the handle has aborted --- it may be part of
1520 * the caller's cleanup after an abort.
1521 */
1522int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1523{
1524        transaction_t *transaction = handle->h_transaction;
1525        journal_t *journal;
1526        struct journal_head *jh;
1527        int drop_reserve = 0;
1528        int err = 0;
1529        int was_modified = 0;
1530
1531        if (is_handle_aborted(handle))
1532                return -EROFS;
1533        journal = transaction->t_journal;
1534
1535        BUFFER_TRACE(bh, "entry");
1536
1537        jbd_lock_bh_state(bh);
1538
1539        if (!buffer_jbd(bh))
1540                goto not_jbd;
1541        jh = bh2jh(bh);
1542
1543        /* Critical error: attempting to delete a bitmap buffer, maybe?
1544         * Don't do any jbd operations, and return an error. */
1545        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1546                         "inconsistent data on disk")) {
1547                err = -EIO;
1548                goto not_jbd;
1549        }
1550
1551        /* keep track of whether or not this transaction modified us */
1552        was_modified = jh->b_modified;
1553
1554        /*
1555         * The buffer's going from the transaction, we must drop
1556         * all references -bzzz
1557         */
1558        jh->b_modified = 0;
1559
1560        if (jh->b_transaction == transaction) {
1561                J_ASSERT_JH(jh, !jh->b_frozen_data);
1562
1563                /* If we are forgetting a buffer which is already part
1564                 * of this transaction, then we can just drop it from
1565                 * the transaction immediately. */
1566                clear_buffer_dirty(bh);
1567                clear_buffer_jbddirty(bh);
1568
1569                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1570
1571                /*
1572                 * we only want to drop a reference if this transaction
1573                 * modified the buffer
1574                 */
1575                if (was_modified)
1576                        drop_reserve = 1;
1577
1578                /*
1579                 * We are no longer going to journal this buffer.
1580                 * However, the commit of this transaction is still
1581                 * important to the buffer: the delete that we are now
1582                 * processing might obsolete an old log entry, so by
1583                 * committing, we can satisfy the buffer's checkpoint.
1584                 *
1585                 * So, if we have a checkpoint on the buffer, we should
1586                 * now refile the buffer on our BJ_Forget list so that
1587                 * we know to remove the checkpoint after we commit.
1588                 */
1589
1590                spin_lock(&journal->j_list_lock);
1591                if (jh->b_cp_transaction) {
1592                        __jbd2_journal_temp_unlink_buffer(jh);
1593                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1594                } else {
1595                        __jbd2_journal_unfile_buffer(jh);
1596                        if (!buffer_jbd(bh)) {
1597                                spin_unlock(&journal->j_list_lock);
1598                                goto not_jbd;
1599                        }
1600                }
1601                spin_unlock(&journal->j_list_lock);
1602        } else if (jh->b_transaction) {
1603                J_ASSERT_JH(jh, (jh->b_transaction ==
1604                                 journal->j_committing_transaction));
1605                /* However, if the buffer is still owned by a prior
1606                 * (committing) transaction, we can't drop it yet... */
1607                JBUFFER_TRACE(jh, "belongs to older transaction");
1608                /* ... but we CAN drop it from the new transaction through
1609                 * marking the buffer as freed and set j_next_transaction to
1610                 * the new transaction, so that not only the commit code
1611                 * knows it should clear dirty bits when it is done with the
1612                 * buffer, but also the buffer can be checkpointed only
1613                 * after the new transaction commits. */
1614
1615                set_buffer_freed(bh);
1616
1617                if (!jh->b_next_transaction) {
1618                        spin_lock(&journal->j_list_lock);
1619                        jh->b_next_transaction = transaction;
1620                        spin_unlock(&journal->j_list_lock);
1621                } else {
1622                        J_ASSERT(jh->b_next_transaction == transaction);
1623
1624                        /*
1625                         * only drop a reference if this transaction modified
1626                         * the buffer
1627                         */
1628                        if (was_modified)
1629                                drop_reserve = 1;
1630                }
1631        } else {
1632                /*
1633                 * Finally, if the buffer is not belongs to any
1634                 * transaction, we can just drop it now if it has no
1635                 * checkpoint.
1636                 */
1637                spin_lock(&journal->j_list_lock);
1638                if (!jh->b_cp_transaction) {
1639                        JBUFFER_TRACE(jh, "belongs to none transaction");
1640                        spin_unlock(&journal->j_list_lock);
1641                        goto not_jbd;
1642                }
1643
1644                /*
1645                 * Otherwise, if the buffer has been written to disk,
1646                 * it is safe to remove the checkpoint and drop it.
1647                 */
1648                if (!buffer_dirty(bh)) {
1649                        __jbd2_journal_remove_checkpoint(jh);
1650                        spin_unlock(&journal->j_list_lock);
1651                        goto not_jbd;
1652                }
1653
1654                /*
1655                 * The buffer is still not written to disk, we should
1656                 * attach this buffer to current transaction so that the
1657                 * buffer can be checkpointed only after the current
1658                 * transaction commits.
1659                 */
1660                clear_buffer_dirty(bh);
1661                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1662                spin_unlock(&journal->j_list_lock);
1663        }
1664
1665        jbd_unlock_bh_state(bh);
1666        __brelse(bh);
1667drop:
1668        if (drop_reserve) {
1669                /* no need to reserve log space for this block -bzzz */
1670                handle->h_buffer_credits++;
1671        }
1672        return err;
1673
1674not_jbd:
1675        jbd_unlock_bh_state(bh);
1676        __bforget(bh);
1677        goto drop;
1678}
1679
1680/**
1681 * int jbd2_journal_stop() - complete a transaction
1682 * @handle: transaction to complete.
1683 *
1684 * All done for a particular handle.
1685 *
1686 * There is not much action needed here.  We just return any remaining
1687 * buffer credits to the transaction and remove the handle.  The only
1688 * complication is that we need to start a commit operation if the
1689 * filesystem is marked for synchronous update.
1690 *
1691 * jbd2_journal_stop itself will not usually return an error, but it may
1692 * do so in unusual circumstances.  In particular, expect it to
1693 * return -EIO if a jbd2_journal_abort has been executed since the
1694 * transaction began.
1695 */
1696int jbd2_journal_stop(handle_t *handle)
1697{
1698        transaction_t *transaction = handle->h_transaction;
1699        journal_t *journal;
1700        int err = 0, wait_for_commit = 0;
1701        tid_t tid;
1702        pid_t pid;
1703
1704        if (!transaction) {
1705                /*
1706                 * Handle is already detached from the transaction so
1707                 * there is nothing to do other than decrease a refcount,
1708                 * or free the handle if refcount drops to zero
1709                 */
1710                if (--handle->h_ref > 0) {
1711                        jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1712                                                         handle->h_ref);
1713                        return err;
1714                } else {
1715                        if (handle->h_rsv_handle)
1716                                jbd2_free_handle(handle->h_rsv_handle);
1717                        goto free_and_exit;
1718                }
1719        }
1720        journal = transaction->t_journal;
1721
1722        J_ASSERT(journal_current_handle() == handle);
1723
1724        if (is_handle_aborted(handle))
1725                err = -EIO;
1726        else
1727                J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1728
1729        if (--handle->h_ref > 0) {
1730                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1731                          handle->h_ref);
1732                return err;
1733        }
1734
1735        jbd_debug(4, "Handle %p going down\n", handle);
1736        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1737                                transaction->t_tid,
1738                                handle->h_type, handle->h_line_no,
1739                                jiffies - handle->h_start_jiffies,
1740                                handle->h_sync, handle->h_requested_credits,
1741                                (handle->h_requested_credits -
1742                                 handle->h_buffer_credits));
1743
1744        /*
1745         * Implement synchronous transaction batching.  If the handle
1746         * was synchronous, don't force a commit immediately.  Let's
1747         * yield and let another thread piggyback onto this
1748         * transaction.  Keep doing that while new threads continue to
1749         * arrive.  It doesn't cost much - we're about to run a commit
1750         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1751         * operations by 30x or more...
1752         *
1753         * We try and optimize the sleep time against what the
1754         * underlying disk can do, instead of having a static sleep
1755         * time.  This is useful for the case where our storage is so
1756         * fast that it is more optimal to go ahead and force a flush
1757         * and wait for the transaction to be committed than it is to
1758         * wait for an arbitrary amount of time for new writers to
1759         * join the transaction.  We achieve this by measuring how
1760         * long it takes to commit a transaction, and compare it with
1761         * how long this transaction has been running, and if run time
1762         * < commit time then we sleep for the delta and commit.  This
1763         * greatly helps super fast disks that would see slowdowns as
1764         * more threads started doing fsyncs.
1765         *
1766         * But don't do this if this process was the most recent one
1767         * to perform a synchronous write.  We do this to detect the
1768         * case where a single process is doing a stream of sync
1769         * writes.  No point in waiting for joiners in that case.
1770         *
1771         * Setting max_batch_time to 0 disables this completely.
1772         */
1773        pid = current->pid;
1774        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1775            journal->j_max_batch_time) {
1776                u64 commit_time, trans_time;
1777
1778                journal->j_last_sync_writer = pid;
1779
1780                read_lock(&journal->j_state_lock);
1781                commit_time = journal->j_average_commit_time;
1782                read_unlock(&journal->j_state_lock);
1783
1784                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1785                                                   transaction->t_start_time));
1786
1787                commit_time = max_t(u64, commit_time,
1788                                    1000*journal->j_min_batch_time);
1789                commit_time = min_t(u64, commit_time,
1790                                    1000*journal->j_max_batch_time);
1791
1792                if (trans_time < commit_time) {
1793                        ktime_t expires = ktime_add_ns(ktime_get(),
1794                                                       commit_time);
1795                        set_current_state(TASK_UNINTERRUPTIBLE);
1796                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1797                }
1798        }
1799
1800        if (handle->h_sync)
1801                transaction->t_synchronous_commit = 1;
1802        current->journal_info = NULL;
1803        atomic_sub(handle->h_buffer_credits,
1804                   &transaction->t_outstanding_credits);
1805
1806        /*
1807         * If the handle is marked SYNC, we need to set another commit
1808         * going!  We also want to force a commit if the current
1809         * transaction is occupying too much of the log, or if the
1810         * transaction is too old now.
1811         */
1812        if (handle->h_sync ||
1813            (atomic_read(&transaction->t_outstanding_credits) >
1814             journal->j_max_transaction_buffers) ||
1815            time_after_eq(jiffies, transaction->t_expires)) {
1816                /* Do this even for aborted journals: an abort still
1817                 * completes the commit thread, it just doesn't write
1818                 * anything to disk. */
1819
1820                jbd_debug(2, "transaction too old, requesting commit for "
1821                                        "handle %p\n", handle);
1822                /* This is non-blocking */
1823                jbd2_log_start_commit(journal, transaction->t_tid);
1824
1825                /*
1826                 * Special case: JBD2_SYNC synchronous updates require us
1827                 * to wait for the commit to complete.
1828                 */
1829                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1830                        wait_for_commit = 1;
1831        }
1832
1833        /*
1834         * Once we drop t_updates, if it goes to zero the transaction
1835         * could start committing on us and eventually disappear.  So
1836         * once we do this, we must not dereference transaction
1837         * pointer again.
1838         */
1839        tid = transaction->t_tid;
1840        if (atomic_dec_and_test(&transaction->t_updates)) {
1841                wake_up(&journal->j_wait_updates);
1842                if (journal->j_barrier_count)
1843                        wake_up(&journal->j_wait_transaction_locked);
1844        }
1845
1846        rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1847
1848        if (wait_for_commit)
1849                err = jbd2_log_wait_commit(journal, tid);
1850
1851        if (handle->h_rsv_handle)
1852                jbd2_journal_free_reserved(handle->h_rsv_handle);
1853free_and_exit:
1854        /*
1855         * Scope of the GFP_NOFS context is over here and so we can restore the
1856         * original alloc context.
1857         */
1858        memalloc_nofs_restore(handle->saved_alloc_context);
1859        jbd2_free_handle(handle);
1860        return err;
1861}
1862
1863/*
1864 *
1865 * List management code snippets: various functions for manipulating the
1866 * transaction buffer lists.
1867 *
1868 */
1869
1870/*
1871 * Append a buffer to a transaction list, given the transaction's list head
1872 * pointer.
1873 *
1874 * j_list_lock is held.
1875 *
1876 * jbd_lock_bh_state(jh2bh(jh)) is held.
1877 */
1878
1879static inline void
1880__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1881{
1882        if (!*list) {
1883                jh->b_tnext = jh->b_tprev = jh;
1884                *list = jh;
1885        } else {
1886                /* Insert at the tail of the list to preserve order */
1887                struct journal_head *first = *list, *last = first->b_tprev;
1888                jh->b_tprev = last;
1889                jh->b_tnext = first;
1890                last->b_tnext = first->b_tprev = jh;
1891        }
1892}
1893
1894/*
1895 * Remove a buffer from a transaction list, given the transaction's list
1896 * head pointer.
1897 *
1898 * Called with j_list_lock held, and the journal may not be locked.
1899 *
1900 * jbd_lock_bh_state(jh2bh(jh)) is held.
1901 */
1902
1903static inline void
1904__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1905{
1906        if (*list == jh) {
1907                *list = jh->b_tnext;
1908                if (*list == jh)
1909                        *list = NULL;
1910        }
1911        jh->b_tprev->b_tnext = jh->b_tnext;
1912        jh->b_tnext->b_tprev = jh->b_tprev;
1913}
1914
1915/*
1916 * Remove a buffer from the appropriate transaction list.
1917 *
1918 * Note that this function can *change* the value of
1919 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1920 * t_reserved_list.  If the caller is holding onto a copy of one of these
1921 * pointers, it could go bad.  Generally the caller needs to re-read the
1922 * pointer from the transaction_t.
1923 *
1924 * Called under j_list_lock.
1925 */
1926static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1927{
1928        struct journal_head **list = NULL;
1929        transaction_t *transaction;
1930        struct buffer_head *bh = jh2bh(jh);
1931
1932        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1933        transaction = jh->b_transaction;
1934        if (transaction)
1935                assert_spin_locked(&transaction->t_journal->j_list_lock);
1936
1937        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1938        if (jh->b_jlist != BJ_None)
1939                J_ASSERT_JH(jh, transaction != NULL);
1940
1941        switch (jh->b_jlist) {
1942        case BJ_None:
1943                return;
1944        case BJ_Metadata:
1945                transaction->t_nr_buffers--;
1946                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1947                list = &transaction->t_buffers;
1948                break;
1949        case BJ_Forget:
1950                list = &transaction->t_forget;
1951                break;
1952        case BJ_Shadow:
1953                list = &transaction->t_shadow_list;
1954                break;
1955        case BJ_Reserved:
1956                list = &transaction->t_reserved_list;
1957                break;
1958        }
1959
1960        __blist_del_buffer(list, jh);
1961        jh->b_jlist = BJ_None;
1962        if (transaction && is_journal_aborted(transaction->t_journal))
1963                clear_buffer_jbddirty(bh);
1964        else if (test_clear_buffer_jbddirty(bh))
1965                mark_buffer_dirty(bh);  /* Expose it to the VM */
1966}
1967
1968/*
1969 * Remove buffer from all transactions.
1970 *
1971 * Called with bh_state lock and j_list_lock
1972 *
1973 * jh and bh may be already freed when this function returns.
1974 */
1975static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1976{
1977        __jbd2_journal_temp_unlink_buffer(jh);
1978        jh->b_transaction = NULL;
1979        jbd2_journal_put_journal_head(jh);
1980}
1981
1982void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1983{
1984        struct buffer_head *bh = jh2bh(jh);
1985
1986        /* Get reference so that buffer cannot be freed before we unlock it */
1987        get_bh(bh);
1988        jbd_lock_bh_state(bh);
1989        spin_lock(&journal->j_list_lock);
1990        __jbd2_journal_unfile_buffer(jh);
1991        spin_unlock(&journal->j_list_lock);
1992        jbd_unlock_bh_state(bh);
1993        __brelse(bh);
1994}
1995
1996/*
1997 * Called from jbd2_journal_try_to_free_buffers().
1998 *
1999 * Called under jbd_lock_bh_state(bh)
2000 */
2001static void
2002__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2003{
2004        struct journal_head *jh;
2005
2006        jh = bh2jh(bh);
2007
2008        if (buffer_locked(bh) || buffer_dirty(bh))
2009                goto out;
2010
2011        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2012                goto out;
2013
2014        spin_lock(&journal->j_list_lock);
2015        if (jh->b_cp_transaction != NULL) {
2016                /* written-back checkpointed metadata buffer */
2017                JBUFFER_TRACE(jh, "remove from checkpoint list");
2018                __jbd2_journal_remove_checkpoint(jh);
2019        }
2020        spin_unlock(&journal->j_list_lock);
2021out:
2022        return;
2023}
2024
2025/**
2026 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2027 * @journal: journal for operation
2028 * @page: to try and free
2029 * @gfp_mask: we use the mask to detect how hard should we try to release
2030 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2031 * code to release the buffers.
2032 *
2033 *
2034 * For all the buffers on this page,
2035 * if they are fully written out ordered data, move them onto BUF_CLEAN
2036 * so try_to_free_buffers() can reap them.
2037 *
2038 * This function returns non-zero if we wish try_to_free_buffers()
2039 * to be called. We do this if the page is releasable by try_to_free_buffers().
2040 * We also do it if the page has locked or dirty buffers and the caller wants
2041 * us to perform sync or async writeout.
2042 *
2043 * This complicates JBD locking somewhat.  We aren't protected by the
2044 * BKL here.  We wish to remove the buffer from its committing or
2045 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2046 *
2047 * This may *change* the value of transaction_t->t_datalist, so anyone
2048 * who looks at t_datalist needs to lock against this function.
2049 *
2050 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2051 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2052 * will come out of the lock with the buffer dirty, which makes it
2053 * ineligible for release here.
2054 *
2055 * Who else is affected by this?  hmm...  Really the only contender
2056 * is do_get_write_access() - it could be looking at the buffer while
2057 * journal_try_to_free_buffer() is changing its state.  But that
2058 * cannot happen because we never reallocate freed data as metadata
2059 * while the data is part of a transaction.  Yes?
2060 *
2061 * Return 0 on failure, 1 on success
2062 */
2063int jbd2_journal_try_to_free_buffers(journal_t *journal,
2064                                struct page *page, gfp_t gfp_mask)
2065{
2066        struct buffer_head *head;
2067        struct buffer_head *bh;
2068        int ret = 0;
2069
2070        J_ASSERT(PageLocked(page));
2071
2072        head = page_buffers(page);
2073        bh = head;
2074        do {
2075                struct journal_head *jh;
2076
2077                /*
2078                 * We take our own ref against the journal_head here to avoid
2079                 * having to add tons of locking around each instance of
2080                 * jbd2_journal_put_journal_head().
2081                 */
2082                jh = jbd2_journal_grab_journal_head(bh);
2083                if (!jh)
2084                        continue;
2085
2086                jbd_lock_bh_state(bh);
2087                __journal_try_to_free_buffer(journal, bh);
2088                jbd2_journal_put_journal_head(jh);
2089                jbd_unlock_bh_state(bh);
2090                if (buffer_jbd(bh))
2091                        goto busy;
2092        } while ((bh = bh->b_this_page) != head);
2093
2094        ret = try_to_free_buffers(page);
2095
2096busy:
2097        return ret;
2098}
2099
2100/*
2101 * This buffer is no longer needed.  If it is on an older transaction's
2102 * checkpoint list we need to record it on this transaction's forget list
2103 * to pin this buffer (and hence its checkpointing transaction) down until
2104 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2105 * release it.
2106 * Returns non-zero if JBD no longer has an interest in the buffer.
2107 *
2108 * Called under j_list_lock.
2109 *
2110 * Called under jbd_lock_bh_state(bh).
2111 */
2112static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2113{
2114        int may_free = 1;
2115        struct buffer_head *bh = jh2bh(jh);
2116
2117        if (jh->b_cp_transaction) {
2118                JBUFFER_TRACE(jh, "on running+cp transaction");
2119                __jbd2_journal_temp_unlink_buffer(jh);
2120                /*
2121                 * We don't want to write the buffer anymore, clear the
2122                 * bit so that we don't confuse checks in
2123                 * __journal_file_buffer
2124                 */
2125                clear_buffer_dirty(bh);
2126                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2127                may_free = 0;
2128        } else {
2129                JBUFFER_TRACE(jh, "on running transaction");
2130                __jbd2_journal_unfile_buffer(jh);
2131        }
2132        return may_free;
2133}
2134
2135/*
2136 * jbd2_journal_invalidatepage
2137 *
2138 * This code is tricky.  It has a number of cases to deal with.
2139 *
2140 * There are two invariants which this code relies on:
2141 *
2142 * i_size must be updated on disk before we start calling invalidatepage on the
2143 * data.
2144 *
2145 *  This is done in ext3 by defining an ext3_setattr method which
2146 *  updates i_size before truncate gets going.  By maintaining this
2147 *  invariant, we can be sure that it is safe to throw away any buffers
2148 *  attached to the current transaction: once the transaction commits,
2149 *  we know that the data will not be needed.
2150 *
2151 *  Note however that we can *not* throw away data belonging to the
2152 *  previous, committing transaction!
2153 *
2154 * Any disk blocks which *are* part of the previous, committing
2155 * transaction (and which therefore cannot be discarded immediately) are
2156 * not going to be reused in the new running transaction
2157 *
2158 *  The bitmap committed_data images guarantee this: any block which is
2159 *  allocated in one transaction and removed in the next will be marked
2160 *  as in-use in the committed_data bitmap, so cannot be reused until
2161 *  the next transaction to delete the block commits.  This means that
2162 *  leaving committing buffers dirty is quite safe: the disk blocks
2163 *  cannot be reallocated to a different file and so buffer aliasing is
2164 *  not possible.
2165 *
2166 *
2167 * The above applies mainly to ordered data mode.  In writeback mode we
2168 * don't make guarantees about the order in which data hits disk --- in
2169 * particular we don't guarantee that new dirty data is flushed before
2170 * transaction commit --- so it is always safe just to discard data
2171 * immediately in that mode.  --sct
2172 */
2173
2174/*
2175 * The journal_unmap_buffer helper function returns zero if the buffer
2176 * concerned remains pinned as an anonymous buffer belonging to an older
2177 * transaction.
2178 *
2179 * We're outside-transaction here.  Either or both of j_running_transaction
2180 * and j_committing_transaction may be NULL.
2181 */
2182static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2183                                int partial_page)
2184{
2185        transaction_t *transaction;
2186        struct journal_head *jh;
2187        int may_free = 1;
2188
2189        BUFFER_TRACE(bh, "entry");
2190
2191        /*
2192         * It is safe to proceed here without the j_list_lock because the
2193         * buffers cannot be stolen by try_to_free_buffers as long as we are
2194         * holding the page lock. --sct
2195         */
2196
2197        if (!buffer_jbd(bh))
2198                goto zap_buffer_unlocked;
2199
2200        /* OK, we have data buffer in journaled mode */
2201        write_lock(&journal->j_state_lock);
2202        jbd_lock_bh_state(bh);
2203        spin_lock(&journal->j_list_lock);
2204
2205        jh = jbd2_journal_grab_journal_head(bh);
2206        if (!jh)
2207                goto zap_buffer_no_jh;
2208
2209        /*
2210         * We cannot remove the buffer from checkpoint lists until the
2211         * transaction adding inode to orphan list (let's call it T)
2212         * is committed.  Otherwise if the transaction changing the
2213         * buffer would be cleaned from the journal before T is
2214         * committed, a crash will cause that the correct contents of
2215         * the buffer will be lost.  On the other hand we have to
2216         * clear the buffer dirty bit at latest at the moment when the
2217         * transaction marking the buffer as freed in the filesystem
2218         * structures is committed because from that moment on the
2219         * block can be reallocated and used by a different page.
2220         * Since the block hasn't been freed yet but the inode has
2221         * already been added to orphan list, it is safe for us to add
2222         * the buffer to BJ_Forget list of the newest transaction.
2223         *
2224         * Also we have to clear buffer_mapped flag of a truncated buffer
2225         * because the buffer_head may be attached to the page straddling
2226         * i_size (can happen only when blocksize < pagesize) and thus the
2227         * buffer_head can be reused when the file is extended again. So we end
2228         * up keeping around invalidated buffers attached to transactions'
2229         * BJ_Forget list just to stop checkpointing code from cleaning up
2230         * the transaction this buffer was modified in.
2231         */
2232        transaction = jh->b_transaction;
2233        if (transaction == NULL) {
2234                /* First case: not on any transaction.  If it
2235                 * has no checkpoint link, then we can zap it:
2236                 * it's a writeback-mode buffer so we don't care
2237                 * if it hits disk safely. */
2238                if (!jh->b_cp_transaction) {
2239                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2240                        goto zap_buffer;
2241                }
2242
2243                if (!buffer_dirty(bh)) {
2244                        /* bdflush has written it.  We can drop it now */
2245                        __jbd2_journal_remove_checkpoint(jh);
2246                        goto zap_buffer;
2247                }
2248
2249                /* OK, it must be in the journal but still not
2250                 * written fully to disk: it's metadata or
2251                 * journaled data... */
2252
2253                if (journal->j_running_transaction) {
2254                        /* ... and once the current transaction has
2255                         * committed, the buffer won't be needed any
2256                         * longer. */
2257                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2258                        may_free = __dispose_buffer(jh,
2259                                        journal->j_running_transaction);
2260                        goto zap_buffer;
2261                } else {
2262                        /* There is no currently-running transaction. So the
2263                         * orphan record which we wrote for this file must have
2264                         * passed into commit.  We must attach this buffer to
2265                         * the committing transaction, if it exists. */
2266                        if (journal->j_committing_transaction) {
2267                                JBUFFER_TRACE(jh, "give to committing trans");
2268                                may_free = __dispose_buffer(jh,
2269                                        journal->j_committing_transaction);
2270                                goto zap_buffer;
2271                        } else {
2272                                /* The orphan record's transaction has
2273                                 * committed.  We can cleanse this buffer */
2274                                clear_buffer_jbddirty(bh);
2275                                __jbd2_journal_remove_checkpoint(jh);
2276                                goto zap_buffer;
2277                        }
2278                }
2279        } else if (transaction == journal->j_committing_transaction) {
2280                JBUFFER_TRACE(jh, "on committing transaction");
2281                /*
2282                 * The buffer is committing, we simply cannot touch
2283                 * it. If the page is straddling i_size we have to wait
2284                 * for commit and try again.
2285                 */
2286                if (partial_page) {
2287                        jbd2_journal_put_journal_head(jh);
2288                        spin_unlock(&journal->j_list_lock);
2289                        jbd_unlock_bh_state(bh);
2290                        write_unlock(&journal->j_state_lock);
2291                        return -EBUSY;
2292                }
2293                /*
2294                 * OK, buffer won't be reachable after truncate. We just set
2295                 * j_next_transaction to the running transaction (if there is
2296                 * one) and mark buffer as freed so that commit code knows it
2297                 * should clear dirty bits when it is done with the buffer.
2298                 */
2299                set_buffer_freed(bh);
2300                if (journal->j_running_transaction && buffer_jbddirty(bh))
2301                        jh->b_next_transaction = journal->j_running_transaction;
2302                jbd2_journal_put_journal_head(jh);
2303                spin_unlock(&journal->j_list_lock);
2304                jbd_unlock_bh_state(bh);
2305                write_unlock(&journal->j_state_lock);
2306                return 0;
2307        } else {
2308                /* Good, the buffer belongs to the running transaction.
2309                 * We are writing our own transaction's data, not any
2310                 * previous one's, so it is safe to throw it away
2311                 * (remember that we expect the filesystem to have set
2312                 * i_size already for this truncate so recovery will not
2313                 * expose the disk blocks we are discarding here.) */
2314                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2315                JBUFFER_TRACE(jh, "on running transaction");
2316                may_free = __dispose_buffer(jh, transaction);
2317        }
2318
2319zap_buffer:
2320        /*
2321         * This is tricky. Although the buffer is truncated, it may be reused
2322         * if blocksize < pagesize and it is attached to the page straddling
2323         * EOF. Since the buffer might have been added to BJ_Forget list of the
2324         * running transaction, journal_get_write_access() won't clear
2325         * b_modified and credit accounting gets confused. So clear b_modified
2326         * here.
2327         */
2328        jh->b_modified = 0;
2329        jbd2_journal_put_journal_head(jh);
2330zap_buffer_no_jh:
2331        spin_unlock(&journal->j_list_lock);
2332        jbd_unlock_bh_state(bh);
2333        write_unlock(&journal->j_state_lock);
2334zap_buffer_unlocked:
2335        clear_buffer_dirty(bh);
2336        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2337        clear_buffer_mapped(bh);
2338        clear_buffer_req(bh);
2339        clear_buffer_new(bh);
2340        clear_buffer_delay(bh);
2341        clear_buffer_unwritten(bh);
2342        bh->b_bdev = NULL;
2343        return may_free;
2344}
2345
2346/**
2347 * void jbd2_journal_invalidatepage()
2348 * @journal: journal to use for flush...
2349 * @page:    page to flush
2350 * @offset:  start of the range to invalidate
2351 * @length:  length of the range to invalidate
2352 *
2353 * Reap page buffers containing data after in the specified range in page.
2354 * Can return -EBUSY if buffers are part of the committing transaction and
2355 * the page is straddling i_size. Caller then has to wait for current commit
2356 * and try again.
2357 */
2358int jbd2_journal_invalidatepage(journal_t *journal,
2359                                struct page *page,
2360                                unsigned int offset,
2361                                unsigned int length)
2362{
2363        struct buffer_head *head, *bh, *next;
2364        unsigned int stop = offset + length;
2365        unsigned int curr_off = 0;
2366        int partial_page = (offset || length < PAGE_SIZE);
2367        int may_free = 1;
2368        int ret = 0;
2369
2370        if (!PageLocked(page))
2371                BUG();
2372        if (!page_has_buffers(page))
2373                return 0;
2374
2375        BUG_ON(stop > PAGE_SIZE || stop < length);
2376
2377        /* We will potentially be playing with lists other than just the
2378         * data lists (especially for journaled data mode), so be
2379         * cautious in our locking. */
2380
2381        head = bh = page_buffers(page);
2382        do {
2383                unsigned int next_off = curr_off + bh->b_size;
2384                next = bh->b_this_page;
2385
2386                if (next_off > stop)
2387                        return 0;
2388
2389                if (offset <= curr_off) {
2390                        /* This block is wholly outside the truncation point */
2391                        lock_buffer(bh);
2392                        ret = journal_unmap_buffer(journal, bh, partial_page);
2393                        unlock_buffer(bh);
2394                        if (ret < 0)
2395                                return ret;
2396                        may_free &= ret;
2397                }
2398                curr_off = next_off;
2399                bh = next;
2400
2401        } while (bh != head);
2402
2403        if (!partial_page) {
2404                if (may_free && try_to_free_buffers(page))
2405                        J_ASSERT(!page_has_buffers(page));
2406        }
2407        return 0;
2408}
2409
2410/*
2411 * File a buffer on the given transaction list.
2412 */
2413void __jbd2_journal_file_buffer(struct journal_head *jh,
2414                        transaction_t *transaction, int jlist)
2415{
2416        struct journal_head **list = NULL;
2417        int was_dirty = 0;
2418        struct buffer_head *bh = jh2bh(jh);
2419
2420        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2421        assert_spin_locked(&transaction->t_journal->j_list_lock);
2422
2423        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2424        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2425                                jh->b_transaction == NULL);
2426
2427        if (jh->b_transaction && jh->b_jlist == jlist)
2428                return;
2429
2430        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2431            jlist == BJ_Shadow || jlist == BJ_Forget) {
2432                /*
2433                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2434                 * instead of buffer_dirty. We should not see a dirty bit set
2435                 * here because we clear it in do_get_write_access but e.g.
2436                 * tune2fs can modify the sb and set the dirty bit at any time
2437                 * so we try to gracefully handle that.
2438                 */
2439                if (buffer_dirty(bh))
2440                        warn_dirty_buffer(bh);
2441                if (test_clear_buffer_dirty(bh) ||
2442                    test_clear_buffer_jbddirty(bh))
2443                        was_dirty = 1;
2444        }
2445
2446        if (jh->b_transaction)
2447                __jbd2_journal_temp_unlink_buffer(jh);
2448        else
2449                jbd2_journal_grab_journal_head(bh);
2450        jh->b_transaction = transaction;
2451
2452        switch (jlist) {
2453        case BJ_None:
2454                J_ASSERT_JH(jh, !jh->b_committed_data);
2455                J_ASSERT_JH(jh, !jh->b_frozen_data);
2456                return;
2457        case BJ_Metadata:
2458                transaction->t_nr_buffers++;
2459                list = &transaction->t_buffers;
2460                break;
2461        case BJ_Forget:
2462                list = &transaction->t_forget;
2463                break;
2464        case BJ_Shadow:
2465                list = &transaction->t_shadow_list;
2466                break;
2467        case BJ_Reserved:
2468                list = &transaction->t_reserved_list;
2469                break;
2470        }
2471
2472        __blist_add_buffer(list, jh);
2473        jh->b_jlist = jlist;
2474
2475        if (was_dirty)
2476                set_buffer_jbddirty(bh);
2477}
2478
2479void jbd2_journal_file_buffer(struct journal_head *jh,
2480                                transaction_t *transaction, int jlist)
2481{
2482        jbd_lock_bh_state(jh2bh(jh));
2483        spin_lock(&transaction->t_journal->j_list_lock);
2484        __jbd2_journal_file_buffer(jh, transaction, jlist);
2485        spin_unlock(&transaction->t_journal->j_list_lock);
2486        jbd_unlock_bh_state(jh2bh(jh));
2487}
2488
2489/*
2490 * Remove a buffer from its current buffer list in preparation for
2491 * dropping it from its current transaction entirely.  If the buffer has
2492 * already started to be used by a subsequent transaction, refile the
2493 * buffer on that transaction's metadata list.
2494 *
2495 * Called under j_list_lock
2496 * Called under jbd_lock_bh_state(jh2bh(jh))
2497 *
2498 * jh and bh may be already free when this function returns
2499 */
2500void __jbd2_journal_refile_buffer(struct journal_head *jh)
2501{
2502        int was_dirty, jlist;
2503        struct buffer_head *bh = jh2bh(jh);
2504
2505        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2506        if (jh->b_transaction)
2507                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2508
2509        /* If the buffer is now unused, just drop it. */
2510        if (jh->b_next_transaction == NULL) {
2511                __jbd2_journal_unfile_buffer(jh);
2512                return;
2513        }
2514
2515        /*
2516         * It has been modified by a later transaction: add it to the new
2517         * transaction's metadata list.
2518         */
2519
2520        was_dirty = test_clear_buffer_jbddirty(bh);
2521        __jbd2_journal_temp_unlink_buffer(jh);
2522        /*
2523         * We set b_transaction here because b_next_transaction will inherit
2524         * our jh reference and thus __jbd2_journal_file_buffer() must not
2525         * take a new one.
2526         */
2527        jh->b_transaction = jh->b_next_transaction;
2528        jh->b_next_transaction = NULL;
2529        if (buffer_freed(bh))
2530                jlist = BJ_Forget;
2531        else if (jh->b_modified)
2532                jlist = BJ_Metadata;
2533        else
2534                jlist = BJ_Reserved;
2535        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2536        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2537
2538        if (was_dirty)
2539                set_buffer_jbddirty(bh);
2540}
2541
2542/*
2543 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2544 * bh reference so that we can safely unlock bh.
2545 *
2546 * The jh and bh may be freed by this call.
2547 */
2548void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2549{
2550        struct buffer_head *bh = jh2bh(jh);
2551
2552        /* Get reference so that buffer cannot be freed before we unlock it */
2553        get_bh(bh);
2554        jbd_lock_bh_state(bh);
2555        spin_lock(&journal->j_list_lock);
2556        __jbd2_journal_refile_buffer(jh);
2557        jbd_unlock_bh_state(bh);
2558        spin_unlock(&journal->j_list_lock);
2559        __brelse(bh);
2560}
2561
2562/*
2563 * File inode in the inode list of the handle's transaction
2564 */
2565static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2566                                   unsigned long flags)
2567{
2568        transaction_t *transaction = handle->h_transaction;
2569        journal_t *journal;
2570
2571        if (is_handle_aborted(handle))
2572                return -EROFS;
2573        journal = transaction->t_journal;
2574
2575        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2576                        transaction->t_tid);
2577
2578        /*
2579         * First check whether inode isn't already on the transaction's
2580         * lists without taking the lock. Note that this check is safe
2581         * without the lock as we cannot race with somebody removing inode
2582         * from the transaction. The reason is that we remove inode from the
2583         * transaction only in journal_release_jbd_inode() and when we commit
2584         * the transaction. We are guarded from the first case by holding
2585         * a reference to the inode. We are safe against the second case
2586         * because if jinode->i_transaction == transaction, commit code
2587         * cannot touch the transaction because we hold reference to it,
2588         * and if jinode->i_next_transaction == transaction, commit code
2589         * will only file the inode where we want it.
2590         */
2591        if ((jinode->i_transaction == transaction ||
2592            jinode->i_next_transaction == transaction) &&
2593            (jinode->i_flags & flags) == flags)
2594                return 0;
2595
2596        spin_lock(&journal->j_list_lock);
2597        jinode->i_flags |= flags;
2598        /* Is inode already attached where we need it? */
2599        if (jinode->i_transaction == transaction ||
2600            jinode->i_next_transaction == transaction)
2601                goto done;
2602
2603        /*
2604         * We only ever set this variable to 1 so the test is safe. Since
2605         * t_need_data_flush is likely to be set, we do the test to save some
2606         * cacheline bouncing
2607         */
2608        if (!transaction->t_need_data_flush)
2609                transaction->t_need_data_flush = 1;
2610        /* On some different transaction's list - should be
2611         * the committing one */
2612        if (jinode->i_transaction) {
2613                J_ASSERT(jinode->i_next_transaction == NULL);
2614                J_ASSERT(jinode->i_transaction ==
2615                                        journal->j_committing_transaction);
2616                jinode->i_next_transaction = transaction;
2617                goto done;
2618        }
2619        /* Not on any transaction list... */
2620        J_ASSERT(!jinode->i_next_transaction);
2621        jinode->i_transaction = transaction;
2622        list_add(&jinode->i_list, &transaction->t_inode_list);
2623done:
2624        spin_unlock(&journal->j_list_lock);
2625
2626        return 0;
2627}
2628
2629int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2630{
2631        return jbd2_journal_file_inode(handle, jinode,
2632                                       JI_WRITE_DATA | JI_WAIT_DATA);
2633}
2634
2635int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2636{
2637        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2638}
2639
2640/*
2641 * File truncate and transaction commit interact with each other in a
2642 * non-trivial way.  If a transaction writing data block A is
2643 * committing, we cannot discard the data by truncate until we have
2644 * written them.  Otherwise if we crashed after the transaction with
2645 * write has committed but before the transaction with truncate has
2646 * committed, we could see stale data in block A.  This function is a
2647 * helper to solve this problem.  It starts writeout of the truncated
2648 * part in case it is in the committing transaction.
2649 *
2650 * Filesystem code must call this function when inode is journaled in
2651 * ordered mode before truncation happens and after the inode has been
2652 * placed on orphan list with the new inode size. The second condition
2653 * avoids the race that someone writes new data and we start
2654 * committing the transaction after this function has been called but
2655 * before a transaction for truncate is started (and furthermore it
2656 * allows us to optimize the case where the addition to orphan list
2657 * happens in the same transaction as write --- we don't have to write
2658 * any data in such case).
2659 */
2660int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2661                                        struct jbd2_inode *jinode,
2662                                        loff_t new_size)
2663{
2664        transaction_t *inode_trans, *commit_trans;
2665        int ret = 0;
2666
2667        /* This is a quick check to avoid locking if not necessary */
2668        if (!jinode->i_transaction)
2669                goto out;
2670        /* Locks are here just to force reading of recent values, it is
2671         * enough that the transaction was not committing before we started
2672         * a transaction adding the inode to orphan list */
2673        read_lock(&journal->j_state_lock);
2674        commit_trans = journal->j_committing_transaction;
2675        read_unlock(&journal->j_state_lock);
2676        spin_lock(&journal->j_list_lock);
2677        inode_trans = jinode->i_transaction;
2678        spin_unlock(&journal->j_list_lock);
2679        if (inode_trans == commit_trans) {
2680                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2681                        new_size, LLONG_MAX);
2682                if (ret)
2683                        jbd2_journal_abort(journal, ret);
2684        }
2685out:
2686        return ret;
2687}
2688