linux/fs/nfs/file.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/file.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  Changes Copyright (C) 1994 by Florian La Roche
   7 *   - Do not copy data too often around in the kernel.
   8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
   9 *   - Put in a better version of read look-ahead buffering. Original idea
  10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
  11 *
  12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
  13 *
  14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
  15 *
  16 *  nfs regular file handling functions
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/fcntl.h>
  24#include <linux/stat.h>
  25#include <linux/nfs_fs.h>
  26#include <linux/nfs_mount.h>
  27#include <linux/mm.h>
  28#include <linux/pagemap.h>
  29#include <linux/gfp.h>
  30#include <linux/swap.h>
  31
  32#include <linux/uaccess.h>
  33
  34#include "delegation.h"
  35#include "internal.h"
  36#include "iostat.h"
  37#include "fscache.h"
  38#include "pnfs.h"
  39
  40#include "nfstrace.h"
  41
  42#define NFSDBG_FACILITY         NFSDBG_FILE
  43
  44static const struct vm_operations_struct nfs_file_vm_ops;
  45
  46/* Hack for future NFS swap support */
  47#ifndef IS_SWAPFILE
  48# define IS_SWAPFILE(inode)     (0)
  49#endif
  50
  51int nfs_check_flags(int flags)
  52{
  53        if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
  54                return -EINVAL;
  55
  56        return 0;
  57}
  58EXPORT_SYMBOL_GPL(nfs_check_flags);
  59
  60/*
  61 * Open file
  62 */
  63static int
  64nfs_file_open(struct inode *inode, struct file *filp)
  65{
  66        int res;
  67
  68        dprintk("NFS: open file(%pD2)\n", filp);
  69
  70        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  71        res = nfs_check_flags(filp->f_flags);
  72        if (res)
  73                return res;
  74
  75        res = nfs_open(inode, filp);
  76        return res;
  77}
  78
  79int
  80nfs_file_release(struct inode *inode, struct file *filp)
  81{
  82        dprintk("NFS: release(%pD2)\n", filp);
  83
  84        nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
  85        nfs_file_clear_open_context(filp);
  86        return 0;
  87}
  88EXPORT_SYMBOL_GPL(nfs_file_release);
  89
  90/**
  91 * nfs_revalidate_size - Revalidate the file size
  92 * @inode: pointer to inode struct
  93 * @filp: pointer to struct file
  94 *
  95 * Revalidates the file length. This is basically a wrapper around
  96 * nfs_revalidate_inode() that takes into account the fact that we may
  97 * have cached writes (in which case we don't care about the server's
  98 * idea of what the file length is), or O_DIRECT (in which case we
  99 * shouldn't trust the cache).
 100 */
 101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
 102{
 103        struct nfs_server *server = NFS_SERVER(inode);
 104
 105        if (filp->f_flags & O_DIRECT)
 106                goto force_reval;
 107        if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
 108                goto force_reval;
 109        return 0;
 110force_reval:
 111        return __nfs_revalidate_inode(server, inode);
 112}
 113
 114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
 115{
 116        dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
 117                        filp, offset, whence);
 118
 119        /*
 120         * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
 121         * the cached file length
 122         */
 123        if (whence != SEEK_SET && whence != SEEK_CUR) {
 124                struct inode *inode = filp->f_mapping->host;
 125
 126                int retval = nfs_revalidate_file_size(inode, filp);
 127                if (retval < 0)
 128                        return (loff_t)retval;
 129        }
 130
 131        return generic_file_llseek(filp, offset, whence);
 132}
 133EXPORT_SYMBOL_GPL(nfs_file_llseek);
 134
 135/*
 136 * Flush all dirty pages, and check for write errors.
 137 */
 138static int
 139nfs_file_flush(struct file *file, fl_owner_t id)
 140{
 141        struct inode    *inode = file_inode(file);
 142
 143        dprintk("NFS: flush(%pD2)\n", file);
 144
 145        nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
 146        if ((file->f_mode & FMODE_WRITE) == 0)
 147                return 0;
 148
 149        /* Flush writes to the server and return any errors */
 150        return vfs_fsync(file, 0);
 151}
 152
 153ssize_t
 154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 155{
 156        struct inode *inode = file_inode(iocb->ki_filp);
 157        ssize_t result;
 158
 159        if (iocb->ki_flags & IOCB_DIRECT)
 160                return nfs_file_direct_read(iocb, to);
 161
 162        dprintk("NFS: read(%pD2, %zu@%lu)\n",
 163                iocb->ki_filp,
 164                iov_iter_count(to), (unsigned long) iocb->ki_pos);
 165
 166        nfs_start_io_read(inode);
 167        result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
 168        if (!result) {
 169                result = generic_file_read_iter(iocb, to);
 170                if (result > 0)
 171                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
 172        }
 173        nfs_end_io_read(inode);
 174        return result;
 175}
 176EXPORT_SYMBOL_GPL(nfs_file_read);
 177
 178int
 179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
 180{
 181        struct inode *inode = file_inode(file);
 182        int     status;
 183
 184        dprintk("NFS: mmap(%pD2)\n", file);
 185
 186        /* Note: generic_file_mmap() returns ENOSYS on nommu systems
 187         *       so we call that before revalidating the mapping
 188         */
 189        status = generic_file_mmap(file, vma);
 190        if (!status) {
 191                vma->vm_ops = &nfs_file_vm_ops;
 192                status = nfs_revalidate_mapping(inode, file->f_mapping);
 193        }
 194        return status;
 195}
 196EXPORT_SYMBOL_GPL(nfs_file_mmap);
 197
 198/*
 199 * Flush any dirty pages for this process, and check for write errors.
 200 * The return status from this call provides a reliable indication of
 201 * whether any write errors occurred for this process.
 202 *
 203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
 204 * disk, but it retrieves and clears ctx->error after synching, despite
 205 * the two being set at the same time in nfs_context_set_write_error().
 206 * This is because the former is used to notify the _next_ call to
 207 * nfs_file_write() that a write error occurred, and hence cause it to
 208 * fall back to doing a synchronous write.
 209 */
 210static int
 211nfs_file_fsync_commit(struct file *file, int datasync)
 212{
 213        struct nfs_open_context *ctx = nfs_file_open_context(file);
 214        struct inode *inode = file_inode(file);
 215        int do_resend, status;
 216        int ret = 0;
 217
 218        dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 219
 220        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 221        do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 222        status = nfs_commit_inode(inode, FLUSH_SYNC);
 223        if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
 224                ret = xchg(&ctx->error, 0);
 225                if (ret)
 226                        goto out;
 227        }
 228        if (status < 0) {
 229                ret = status;
 230                goto out;
 231        }
 232        do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 233        if (do_resend)
 234                ret = -EAGAIN;
 235out:
 236        return ret;
 237}
 238
 239int
 240nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 241{
 242        int ret;
 243        struct inode *inode = file_inode(file);
 244
 245        trace_nfs_fsync_enter(inode);
 246
 247        do {
 248                struct nfs_open_context *ctx = nfs_file_open_context(file);
 249                ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 250                if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
 251                        int ret2 = xchg(&ctx->error, 0);
 252                        if (ret2)
 253                                ret = ret2;
 254                }
 255                if (ret != 0)
 256                        break;
 257                ret = nfs_file_fsync_commit(file, datasync);
 258                if (!ret)
 259                        ret = pnfs_sync_inode(inode, !!datasync);
 260                /*
 261                 * If nfs_file_fsync_commit detected a server reboot, then
 262                 * resend all dirty pages that might have been covered by
 263                 * the NFS_CONTEXT_RESEND_WRITES flag
 264                 */
 265                start = 0;
 266                end = LLONG_MAX;
 267        } while (ret == -EAGAIN);
 268
 269        trace_nfs_fsync_exit(inode, ret);
 270        return ret;
 271}
 272EXPORT_SYMBOL_GPL(nfs_file_fsync);
 273
 274/*
 275 * Decide whether a read/modify/write cycle may be more efficient
 276 * then a modify/write/read cycle when writing to a page in the
 277 * page cache.
 278 *
 279 * Some pNFS layout drivers can only read/write at a certain block
 280 * granularity like all block devices and therefore we must perform
 281 * read/modify/write whenever a page hasn't read yet and the data
 282 * to be written there is not aligned to a block boundary and/or
 283 * smaller than the block size.
 284 *
 285 * The modify/write/read cycle may occur if a page is read before
 286 * being completely filled by the writer.  In this situation, the
 287 * page must be completely written to stable storage on the server
 288 * before it can be refilled by reading in the page from the server.
 289 * This can lead to expensive, small, FILE_SYNC mode writes being
 290 * done.
 291 *
 292 * It may be more efficient to read the page first if the file is
 293 * open for reading in addition to writing, the page is not marked
 294 * as Uptodate, it is not dirty or waiting to be committed,
 295 * indicating that it was previously allocated and then modified,
 296 * that there were valid bytes of data in that range of the file,
 297 * and that the new data won't completely replace the old data in
 298 * that range of the file.
 299 */
 300static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
 301{
 302        unsigned int pglen = nfs_page_length(page);
 303        unsigned int offset = pos & (PAGE_SIZE - 1);
 304        unsigned int end = offset + len;
 305
 306        return !pglen || (end >= pglen && !offset);
 307}
 308
 309static bool nfs_want_read_modify_write(struct file *file, struct page *page,
 310                        loff_t pos, unsigned int len)
 311{
 312        /*
 313         * Up-to-date pages, those with ongoing or full-page write
 314         * don't need read/modify/write
 315         */
 316        if (PageUptodate(page) || PagePrivate(page) ||
 317            nfs_full_page_write(page, pos, len))
 318                return false;
 319
 320        if (pnfs_ld_read_whole_page(file->f_mapping->host))
 321                return true;
 322        /* Open for reading too? */
 323        if (file->f_mode & FMODE_READ)
 324                return true;
 325        return false;
 326}
 327
 328/*
 329 * This does the "real" work of the write. We must allocate and lock the
 330 * page to be sent back to the generic routine, which then copies the
 331 * data from user space.
 332 *
 333 * If the writer ends up delaying the write, the writer needs to
 334 * increment the page use counts until he is done with the page.
 335 */
 336static int nfs_write_begin(struct file *file, struct address_space *mapping,
 337                        loff_t pos, unsigned len, unsigned flags,
 338                        struct page **pagep, void **fsdata)
 339{
 340        int ret;
 341        pgoff_t index = pos >> PAGE_SHIFT;
 342        struct page *page;
 343        int once_thru = 0;
 344
 345        dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
 346                file, mapping->host->i_ino, len, (long long) pos);
 347
 348start:
 349        page = grab_cache_page_write_begin(mapping, index, flags);
 350        if (!page)
 351                return -ENOMEM;
 352        *pagep = page;
 353
 354        ret = nfs_flush_incompatible(file, page);
 355        if (ret) {
 356                unlock_page(page);
 357                put_page(page);
 358        } else if (!once_thru &&
 359                   nfs_want_read_modify_write(file, page, pos, len)) {
 360                once_thru = 1;
 361                ret = nfs_readpage(file, page);
 362                put_page(page);
 363                if (!ret)
 364                        goto start;
 365        }
 366        return ret;
 367}
 368
 369static int nfs_write_end(struct file *file, struct address_space *mapping,
 370                        loff_t pos, unsigned len, unsigned copied,
 371                        struct page *page, void *fsdata)
 372{
 373        unsigned offset = pos & (PAGE_SIZE - 1);
 374        struct nfs_open_context *ctx = nfs_file_open_context(file);
 375        int status;
 376
 377        dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
 378                file, mapping->host->i_ino, len, (long long) pos);
 379
 380        /*
 381         * Zero any uninitialised parts of the page, and then mark the page
 382         * as up to date if it turns out that we're extending the file.
 383         */
 384        if (!PageUptodate(page)) {
 385                unsigned pglen = nfs_page_length(page);
 386                unsigned end = offset + copied;
 387
 388                if (pglen == 0) {
 389                        zero_user_segments(page, 0, offset,
 390                                        end, PAGE_SIZE);
 391                        SetPageUptodate(page);
 392                } else if (end >= pglen) {
 393                        zero_user_segment(page, end, PAGE_SIZE);
 394                        if (offset == 0)
 395                                SetPageUptodate(page);
 396                } else
 397                        zero_user_segment(page, pglen, PAGE_SIZE);
 398        }
 399
 400        status = nfs_updatepage(file, page, offset, copied);
 401
 402        unlock_page(page);
 403        put_page(page);
 404
 405        if (status < 0)
 406                return status;
 407        NFS_I(mapping->host)->write_io += copied;
 408
 409        if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
 410                status = nfs_wb_all(mapping->host);
 411                if (status < 0)
 412                        return status;
 413        }
 414
 415        return copied;
 416}
 417
 418/*
 419 * Partially or wholly invalidate a page
 420 * - Release the private state associated with a page if undergoing complete
 421 *   page invalidation
 422 * - Called if either PG_private or PG_fscache is set on the page
 423 * - Caller holds page lock
 424 */
 425static void nfs_invalidate_page(struct page *page, unsigned int offset,
 426                                unsigned int length)
 427{
 428        dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
 429                 page, offset, length);
 430
 431        if (offset != 0 || length < PAGE_SIZE)
 432                return;
 433        /* Cancel any unstarted writes on this page */
 434        nfs_wb_page_cancel(page_file_mapping(page)->host, page);
 435
 436        nfs_fscache_invalidate_page(page, page->mapping->host);
 437}
 438
 439/*
 440 * Attempt to release the private state associated with a page
 441 * - Called if either PG_private or PG_fscache is set on the page
 442 * - Caller holds page lock
 443 * - Return true (may release page) or false (may not)
 444 */
 445static int nfs_release_page(struct page *page, gfp_t gfp)
 446{
 447        dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
 448
 449        /* If PagePrivate() is set, then the page is not freeable */
 450        if (PagePrivate(page))
 451                return 0;
 452        return nfs_fscache_release_page(page, gfp);
 453}
 454
 455static void nfs_check_dirty_writeback(struct page *page,
 456                                bool *dirty, bool *writeback)
 457{
 458        struct nfs_inode *nfsi;
 459        struct address_space *mapping = page_file_mapping(page);
 460
 461        if (!mapping || PageSwapCache(page))
 462                return;
 463
 464        /*
 465         * Check if an unstable page is currently being committed and
 466         * if so, have the VM treat it as if the page is under writeback
 467         * so it will not block due to pages that will shortly be freeable.
 468         */
 469        nfsi = NFS_I(mapping->host);
 470        if (atomic_read(&nfsi->commit_info.rpcs_out)) {
 471                *writeback = true;
 472                return;
 473        }
 474
 475        /*
 476         * If PagePrivate() is set, then the page is not freeable and as the
 477         * inode is not being committed, it's not going to be cleaned in the
 478         * near future so treat it as dirty
 479         */
 480        if (PagePrivate(page))
 481                *dirty = true;
 482}
 483
 484/*
 485 * Attempt to clear the private state associated with a page when an error
 486 * occurs that requires the cached contents of an inode to be written back or
 487 * destroyed
 488 * - Called if either PG_private or fscache is set on the page
 489 * - Caller holds page lock
 490 * - Return 0 if successful, -error otherwise
 491 */
 492static int nfs_launder_page(struct page *page)
 493{
 494        struct inode *inode = page_file_mapping(page)->host;
 495        struct nfs_inode *nfsi = NFS_I(inode);
 496
 497        dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
 498                inode->i_ino, (long long)page_offset(page));
 499
 500        nfs_fscache_wait_on_page_write(nfsi, page);
 501        return nfs_wb_page(inode, page);
 502}
 503
 504static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 505                                                sector_t *span)
 506{
 507        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 508
 509        *span = sis->pages;
 510
 511        return rpc_clnt_swap_activate(clnt);
 512}
 513
 514static void nfs_swap_deactivate(struct file *file)
 515{
 516        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 517
 518        rpc_clnt_swap_deactivate(clnt);
 519}
 520
 521const struct address_space_operations nfs_file_aops = {
 522        .readpage = nfs_readpage,
 523        .readpages = nfs_readpages,
 524        .set_page_dirty = __set_page_dirty_nobuffers,
 525        .writepage = nfs_writepage,
 526        .writepages = nfs_writepages,
 527        .write_begin = nfs_write_begin,
 528        .write_end = nfs_write_end,
 529        .invalidatepage = nfs_invalidate_page,
 530        .releasepage = nfs_release_page,
 531        .direct_IO = nfs_direct_IO,
 532#ifdef CONFIG_MIGRATION
 533        .migratepage = nfs_migrate_page,
 534#endif
 535        .launder_page = nfs_launder_page,
 536        .is_dirty_writeback = nfs_check_dirty_writeback,
 537        .error_remove_page = generic_error_remove_page,
 538        .swap_activate = nfs_swap_activate,
 539        .swap_deactivate = nfs_swap_deactivate,
 540};
 541
 542/*
 543 * Notification that a PTE pointing to an NFS page is about to be made
 544 * writable, implying that someone is about to modify the page through a
 545 * shared-writable mapping
 546 */
 547static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
 548{
 549        struct page *page = vmf->page;
 550        struct file *filp = vmf->vma->vm_file;
 551        struct inode *inode = file_inode(filp);
 552        unsigned pagelen;
 553        vm_fault_t ret = VM_FAULT_NOPAGE;
 554        struct address_space *mapping;
 555
 556        dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
 557                filp, filp->f_mapping->host->i_ino,
 558                (long long)page_offset(page));
 559
 560        sb_start_pagefault(inode->i_sb);
 561
 562        /* make sure the cache has finished storing the page */
 563        nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 564
 565        wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
 566                        nfs_wait_bit_killable, TASK_KILLABLE);
 567
 568        lock_page(page);
 569        mapping = page_file_mapping(page);
 570        if (mapping != inode->i_mapping)
 571                goto out_unlock;
 572
 573        wait_on_page_writeback(page);
 574
 575        pagelen = nfs_page_length(page);
 576        if (pagelen == 0)
 577                goto out_unlock;
 578
 579        ret = VM_FAULT_LOCKED;
 580        if (nfs_flush_incompatible(filp, page) == 0 &&
 581            nfs_updatepage(filp, page, 0, pagelen) == 0)
 582                goto out;
 583
 584        ret = VM_FAULT_SIGBUS;
 585out_unlock:
 586        unlock_page(page);
 587out:
 588        sb_end_pagefault(inode->i_sb);
 589        return ret;
 590}
 591
 592static const struct vm_operations_struct nfs_file_vm_ops = {
 593        .fault = filemap_fault,
 594        .map_pages = filemap_map_pages,
 595        .page_mkwrite = nfs_vm_page_mkwrite,
 596};
 597
 598static int nfs_need_check_write(struct file *filp, struct inode *inode)
 599{
 600        struct nfs_open_context *ctx;
 601
 602        ctx = nfs_file_open_context(filp);
 603        if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
 604            nfs_ctx_key_to_expire(ctx, inode))
 605                return 1;
 606        return 0;
 607}
 608
 609ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 610{
 611        struct file *file = iocb->ki_filp;
 612        struct inode *inode = file_inode(file);
 613        unsigned long written = 0;
 614        ssize_t result;
 615
 616        result = nfs_key_timeout_notify(file, inode);
 617        if (result)
 618                return result;
 619
 620        if (iocb->ki_flags & IOCB_DIRECT)
 621                return nfs_file_direct_write(iocb, from);
 622
 623        dprintk("NFS: write(%pD2, %zu@%Ld)\n",
 624                file, iov_iter_count(from), (long long) iocb->ki_pos);
 625
 626        if (IS_SWAPFILE(inode))
 627                goto out_swapfile;
 628        /*
 629         * O_APPEND implies that we must revalidate the file length.
 630         */
 631        if (iocb->ki_flags & IOCB_APPEND) {
 632                result = nfs_revalidate_file_size(inode, file);
 633                if (result)
 634                        goto out;
 635        }
 636        if (iocb->ki_pos > i_size_read(inode))
 637                nfs_revalidate_mapping(inode, file->f_mapping);
 638
 639        nfs_start_io_write(inode);
 640        result = generic_write_checks(iocb, from);
 641        if (result > 0) {
 642                current->backing_dev_info = inode_to_bdi(inode);
 643                result = generic_perform_write(file, from, iocb->ki_pos);
 644                current->backing_dev_info = NULL;
 645        }
 646        nfs_end_io_write(inode);
 647        if (result <= 0)
 648                goto out;
 649
 650        written = result;
 651        iocb->ki_pos += written;
 652        result = generic_write_sync(iocb, written);
 653        if (result < 0)
 654                goto out;
 655
 656        /* Return error values */
 657        if (nfs_need_check_write(file, inode)) {
 658                int err = vfs_fsync(file, 0);
 659                if (err < 0)
 660                        result = err;
 661        }
 662        nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 663out:
 664        return result;
 665
 666out_swapfile:
 667        printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
 668        return -EBUSY;
 669}
 670EXPORT_SYMBOL_GPL(nfs_file_write);
 671
 672static int
 673do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 674{
 675        struct inode *inode = filp->f_mapping->host;
 676        int status = 0;
 677        unsigned int saved_type = fl->fl_type;
 678
 679        /* Try local locking first */
 680        posix_test_lock(filp, fl);
 681        if (fl->fl_type != F_UNLCK) {
 682                /* found a conflict */
 683                goto out;
 684        }
 685        fl->fl_type = saved_type;
 686
 687        if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
 688                goto out_noconflict;
 689
 690        if (is_local)
 691                goto out_noconflict;
 692
 693        status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 694out:
 695        return status;
 696out_noconflict:
 697        fl->fl_type = F_UNLCK;
 698        goto out;
 699}
 700
 701static int
 702do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 703{
 704        struct inode *inode = filp->f_mapping->host;
 705        struct nfs_lock_context *l_ctx;
 706        int status;
 707
 708        /*
 709         * Flush all pending writes before doing anything
 710         * with locks..
 711         */
 712        vfs_fsync(filp, 0);
 713
 714        l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
 715        if (!IS_ERR(l_ctx)) {
 716                status = nfs_iocounter_wait(l_ctx);
 717                nfs_put_lock_context(l_ctx);
 718                /*  NOTE: special case
 719                 *      If we're signalled while cleaning up locks on process exit, we
 720                 *      still need to complete the unlock.
 721                 */
 722                if (status < 0 && !(fl->fl_flags & FL_CLOSE))
 723                        return status;
 724        }
 725
 726        /*
 727         * Use local locking if mounted with "-onolock" or with appropriate
 728         * "-olocal_lock="
 729         */
 730        if (!is_local)
 731                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 732        else
 733                status = locks_lock_file_wait(filp, fl);
 734        return status;
 735}
 736
 737static int
 738do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 739{
 740        struct inode *inode = filp->f_mapping->host;
 741        int status;
 742
 743        /*
 744         * Flush all pending writes before doing anything
 745         * with locks..
 746         */
 747        status = nfs_sync_mapping(filp->f_mapping);
 748        if (status != 0)
 749                goto out;
 750
 751        /*
 752         * Use local locking if mounted with "-onolock" or with appropriate
 753         * "-olocal_lock="
 754         */
 755        if (!is_local)
 756                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 757        else
 758                status = locks_lock_file_wait(filp, fl);
 759        if (status < 0)
 760                goto out;
 761
 762        /*
 763         * Invalidate cache to prevent missing any changes.  If
 764         * the file is mapped, clear the page cache as well so
 765         * those mappings will be loaded.
 766         *
 767         * This makes locking act as a cache coherency point.
 768         */
 769        nfs_sync_mapping(filp->f_mapping);
 770        if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
 771                nfs_zap_caches(inode);
 772                if (mapping_mapped(filp->f_mapping))
 773                        nfs_revalidate_mapping(inode, filp->f_mapping);
 774        }
 775out:
 776        return status;
 777}
 778
 779/*
 780 * Lock a (portion of) a file
 781 */
 782int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
 783{
 784        struct inode *inode = filp->f_mapping->host;
 785        int ret = -ENOLCK;
 786        int is_local = 0;
 787
 788        dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
 789                        filp, fl->fl_type, fl->fl_flags,
 790                        (long long)fl->fl_start, (long long)fl->fl_end);
 791
 792        nfs_inc_stats(inode, NFSIOS_VFSLOCK);
 793
 794        /* No mandatory locks over NFS */
 795        if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
 796                goto out_err;
 797
 798        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
 799                is_local = 1;
 800
 801        if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
 802                ret = NFS_PROTO(inode)->lock_check_bounds(fl);
 803                if (ret < 0)
 804                        goto out_err;
 805        }
 806
 807        if (IS_GETLK(cmd))
 808                ret = do_getlk(filp, cmd, fl, is_local);
 809        else if (fl->fl_type == F_UNLCK)
 810                ret = do_unlk(filp, cmd, fl, is_local);
 811        else
 812                ret = do_setlk(filp, cmd, fl, is_local);
 813out_err:
 814        return ret;
 815}
 816EXPORT_SYMBOL_GPL(nfs_lock);
 817
 818/*
 819 * Lock a (portion of) a file
 820 */
 821int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
 822{
 823        struct inode *inode = filp->f_mapping->host;
 824        int is_local = 0;
 825
 826        dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
 827                        filp, fl->fl_type, fl->fl_flags);
 828
 829        if (!(fl->fl_flags & FL_FLOCK))
 830                return -ENOLCK;
 831
 832        /*
 833         * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
 834         * any standard. In principle we might be able to support LOCK_MAND
 835         * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
 836         * NFS code is not set up for it.
 837         */
 838        if (fl->fl_type & LOCK_MAND)
 839                return -EINVAL;
 840
 841        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
 842                is_local = 1;
 843
 844        /* We're simulating flock() locks using posix locks on the server */
 845        if (fl->fl_type == F_UNLCK)
 846                return do_unlk(filp, cmd, fl, is_local);
 847        return do_setlk(filp, cmd, fl, is_local);
 848}
 849EXPORT_SYMBOL_GPL(nfs_flock);
 850
 851const struct file_operations nfs_file_operations = {
 852        .llseek         = nfs_file_llseek,
 853        .read_iter      = nfs_file_read,
 854        .write_iter     = nfs_file_write,
 855        .mmap           = nfs_file_mmap,
 856        .open           = nfs_file_open,
 857        .flush          = nfs_file_flush,
 858        .release        = nfs_file_release,
 859        .fsync          = nfs_file_fsync,
 860        .lock           = nfs_lock,
 861        .flock          = nfs_flock,
 862        .splice_read    = generic_file_splice_read,
 863        .splice_write   = iter_file_splice_write,
 864        .check_flags    = nfs_check_flags,
 865        .setlease       = simple_nosetlease,
 866};
 867EXPORT_SYMBOL_GPL(nfs_file_operations);
 868