linux/fs/xfs/xfs_file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_da_format.h"
  14#include "xfs_da_btree.h"
  15#include "xfs_inode.h"
  16#include "xfs_trans.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_bmap.h"
  19#include "xfs_bmap_util.h"
  20#include "xfs_error.h"
  21#include "xfs_dir2.h"
  22#include "xfs_dir2_priv.h"
  23#include "xfs_ioctl.h"
  24#include "xfs_trace.h"
  25#include "xfs_log.h"
  26#include "xfs_icache.h"
  27#include "xfs_pnfs.h"
  28#include "xfs_iomap.h"
  29#include "xfs_reflink.h"
  30
  31#include <linux/dcache.h>
  32#include <linux/falloc.h>
  33#include <linux/pagevec.h>
  34#include <linux/backing-dev.h>
  35#include <linux/mman.h>
  36
  37static const struct vm_operations_struct xfs_file_vm_ops;
  38
  39int
  40xfs_update_prealloc_flags(
  41        struct xfs_inode        *ip,
  42        enum xfs_prealloc_flags flags)
  43{
  44        struct xfs_trans        *tp;
  45        int                     error;
  46
  47        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  48                        0, 0, 0, &tp);
  49        if (error)
  50                return error;
  51
  52        xfs_ilock(ip, XFS_ILOCK_EXCL);
  53        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  54
  55        if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  56                VFS_I(ip)->i_mode &= ~S_ISUID;
  57                if (VFS_I(ip)->i_mode & S_IXGRP)
  58                        VFS_I(ip)->i_mode &= ~S_ISGID;
  59                xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  60        }
  61
  62        if (flags & XFS_PREALLOC_SET)
  63                ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  64        if (flags & XFS_PREALLOC_CLEAR)
  65                ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  66
  67        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  68        if (flags & XFS_PREALLOC_SYNC)
  69                xfs_trans_set_sync(tp);
  70        return xfs_trans_commit(tp);
  71}
  72
  73/*
  74 * Fsync operations on directories are much simpler than on regular files,
  75 * as there is no file data to flush, and thus also no need for explicit
  76 * cache flush operations, and there are no non-transaction metadata updates
  77 * on directories either.
  78 */
  79STATIC int
  80xfs_dir_fsync(
  81        struct file             *file,
  82        loff_t                  start,
  83        loff_t                  end,
  84        int                     datasync)
  85{
  86        struct xfs_inode        *ip = XFS_I(file->f_mapping->host);
  87        struct xfs_mount        *mp = ip->i_mount;
  88        xfs_lsn_t               lsn = 0;
  89
  90        trace_xfs_dir_fsync(ip);
  91
  92        xfs_ilock(ip, XFS_ILOCK_SHARED);
  93        if (xfs_ipincount(ip))
  94                lsn = ip->i_itemp->ili_last_lsn;
  95        xfs_iunlock(ip, XFS_ILOCK_SHARED);
  96
  97        if (!lsn)
  98                return 0;
  99        return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 100}
 101
 102STATIC int
 103xfs_file_fsync(
 104        struct file             *file,
 105        loff_t                  start,
 106        loff_t                  end,
 107        int                     datasync)
 108{
 109        struct inode            *inode = file->f_mapping->host;
 110        struct xfs_inode        *ip = XFS_I(inode);
 111        struct xfs_mount        *mp = ip->i_mount;
 112        int                     error = 0;
 113        int                     log_flushed = 0;
 114        xfs_lsn_t               lsn = 0;
 115
 116        trace_xfs_file_fsync(ip);
 117
 118        error = file_write_and_wait_range(file, start, end);
 119        if (error)
 120                return error;
 121
 122        if (XFS_FORCED_SHUTDOWN(mp))
 123                return -EIO;
 124
 125        xfs_iflags_clear(ip, XFS_ITRUNCATED);
 126
 127        /*
 128         * If we have an RT and/or log subvolume we need to make sure to flush
 129         * the write cache the device used for file data first.  This is to
 130         * ensure newly written file data make it to disk before logging the new
 131         * inode size in case of an extending write.
 132         */
 133        if (XFS_IS_REALTIME_INODE(ip))
 134                xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 135        else if (mp->m_logdev_targp != mp->m_ddev_targp)
 136                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 137
 138        /*
 139         * All metadata updates are logged, which means that we just have to
 140         * flush the log up to the latest LSN that touched the inode. If we have
 141         * concurrent fsync/fdatasync() calls, we need them to all block on the
 142         * log force before we clear the ili_fsync_fields field. This ensures
 143         * that we don't get a racing sync operation that does not wait for the
 144         * metadata to hit the journal before returning. If we race with
 145         * clearing the ili_fsync_fields, then all that will happen is the log
 146         * force will do nothing as the lsn will already be on disk. We can't
 147         * race with setting ili_fsync_fields because that is done under
 148         * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 149         * until after the ili_fsync_fields is cleared.
 150         */
 151        xfs_ilock(ip, XFS_ILOCK_SHARED);
 152        if (xfs_ipincount(ip)) {
 153                if (!datasync ||
 154                    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 155                        lsn = ip->i_itemp->ili_last_lsn;
 156        }
 157
 158        if (lsn) {
 159                error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 160                ip->i_itemp->ili_fsync_fields = 0;
 161        }
 162        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 163
 164        /*
 165         * If we only have a single device, and the log force about was
 166         * a no-op we might have to flush the data device cache here.
 167         * This can only happen for fdatasync/O_DSYNC if we were overwriting
 168         * an already allocated file and thus do not have any metadata to
 169         * commit.
 170         */
 171        if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 172            mp->m_logdev_targp == mp->m_ddev_targp)
 173                xfs_blkdev_issue_flush(mp->m_ddev_targp);
 174
 175        return error;
 176}
 177
 178STATIC ssize_t
 179xfs_file_dio_aio_read(
 180        struct kiocb            *iocb,
 181        struct iov_iter         *to)
 182{
 183        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 184        size_t                  count = iov_iter_count(to);
 185        ssize_t                 ret;
 186
 187        trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 188
 189        if (!count)
 190                return 0; /* skip atime */
 191
 192        file_accessed(iocb->ki_filp);
 193
 194        xfs_ilock(ip, XFS_IOLOCK_SHARED);
 195        ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 196        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 197
 198        return ret;
 199}
 200
 201static noinline ssize_t
 202xfs_file_dax_read(
 203        struct kiocb            *iocb,
 204        struct iov_iter         *to)
 205{
 206        struct xfs_inode        *ip = XFS_I(iocb->ki_filp->f_mapping->host);
 207        size_t                  count = iov_iter_count(to);
 208        ssize_t                 ret = 0;
 209
 210        trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 211
 212        if (!count)
 213                return 0; /* skip atime */
 214
 215        if (iocb->ki_flags & IOCB_NOWAIT) {
 216                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 217                        return -EAGAIN;
 218        } else {
 219                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 220        }
 221
 222        ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 223        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 224
 225        file_accessed(iocb->ki_filp);
 226        return ret;
 227}
 228
 229STATIC ssize_t
 230xfs_file_buffered_aio_read(
 231        struct kiocb            *iocb,
 232        struct iov_iter         *to)
 233{
 234        struct xfs_inode        *ip = XFS_I(file_inode(iocb->ki_filp));
 235        ssize_t                 ret;
 236
 237        trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 238
 239        if (iocb->ki_flags & IOCB_NOWAIT) {
 240                if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 241                        return -EAGAIN;
 242        } else {
 243                xfs_ilock(ip, XFS_IOLOCK_SHARED);
 244        }
 245        ret = generic_file_read_iter(iocb, to);
 246        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 247
 248        return ret;
 249}
 250
 251STATIC ssize_t
 252xfs_file_read_iter(
 253        struct kiocb            *iocb,
 254        struct iov_iter         *to)
 255{
 256        struct inode            *inode = file_inode(iocb->ki_filp);
 257        struct xfs_mount        *mp = XFS_I(inode)->i_mount;
 258        ssize_t                 ret = 0;
 259
 260        XFS_STATS_INC(mp, xs_read_calls);
 261
 262        if (XFS_FORCED_SHUTDOWN(mp))
 263                return -EIO;
 264
 265        if (IS_DAX(inode))
 266                ret = xfs_file_dax_read(iocb, to);
 267        else if (iocb->ki_flags & IOCB_DIRECT)
 268                ret = xfs_file_dio_aio_read(iocb, to);
 269        else
 270                ret = xfs_file_buffered_aio_read(iocb, to);
 271
 272        if (ret > 0)
 273                XFS_STATS_ADD(mp, xs_read_bytes, ret);
 274        return ret;
 275}
 276
 277/*
 278 * Common pre-write limit and setup checks.
 279 *
 280 * Called with the iolocked held either shared and exclusive according to
 281 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 282 * if called for a direct write beyond i_size.
 283 */
 284STATIC ssize_t
 285xfs_file_aio_write_checks(
 286        struct kiocb            *iocb,
 287        struct iov_iter         *from,
 288        int                     *iolock)
 289{
 290        struct file             *file = iocb->ki_filp;
 291        struct inode            *inode = file->f_mapping->host;
 292        struct xfs_inode        *ip = XFS_I(inode);
 293        ssize_t                 error = 0;
 294        size_t                  count = iov_iter_count(from);
 295        bool                    drained_dio = false;
 296        loff_t                  isize;
 297
 298restart:
 299        error = generic_write_checks(iocb, from);
 300        if (error <= 0)
 301                return error;
 302
 303        error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 304        if (error)
 305                return error;
 306
 307        /*
 308         * For changing security info in file_remove_privs() we need i_rwsem
 309         * exclusively.
 310         */
 311        if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 312                xfs_iunlock(ip, *iolock);
 313                *iolock = XFS_IOLOCK_EXCL;
 314                xfs_ilock(ip, *iolock);
 315                goto restart;
 316        }
 317        /*
 318         * If the offset is beyond the size of the file, we need to zero any
 319         * blocks that fall between the existing EOF and the start of this
 320         * write.  If zeroing is needed and we are currently holding the
 321         * iolock shared, we need to update it to exclusive which implies
 322         * having to redo all checks before.
 323         *
 324         * We need to serialise against EOF updates that occur in IO
 325         * completions here. We want to make sure that nobody is changing the
 326         * size while we do this check until we have placed an IO barrier (i.e.
 327         * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 328         * The spinlock effectively forms a memory barrier once we have the
 329         * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 330         * and hence be able to correctly determine if we need to run zeroing.
 331         */
 332        spin_lock(&ip->i_flags_lock);
 333        isize = i_size_read(inode);
 334        if (iocb->ki_pos > isize) {
 335                spin_unlock(&ip->i_flags_lock);
 336                if (!drained_dio) {
 337                        if (*iolock == XFS_IOLOCK_SHARED) {
 338                                xfs_iunlock(ip, *iolock);
 339                                *iolock = XFS_IOLOCK_EXCL;
 340                                xfs_ilock(ip, *iolock);
 341                                iov_iter_reexpand(from, count);
 342                        }
 343                        /*
 344                         * We now have an IO submission barrier in place, but
 345                         * AIO can do EOF updates during IO completion and hence
 346                         * we now need to wait for all of them to drain. Non-AIO
 347                         * DIO will have drained before we are given the
 348                         * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 349                         * no-op.
 350                         */
 351                        inode_dio_wait(inode);
 352                        drained_dio = true;
 353                        goto restart;
 354                }
 355        
 356                trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 357                error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 358                                NULL, &xfs_iomap_ops);
 359                if (error)
 360                        return error;
 361        } else
 362                spin_unlock(&ip->i_flags_lock);
 363
 364        /*
 365         * Updating the timestamps will grab the ilock again from
 366         * xfs_fs_dirty_inode, so we have to call it after dropping the
 367         * lock above.  Eventually we should look into a way to avoid
 368         * the pointless lock roundtrip.
 369         */
 370        if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 371                error = file_update_time(file);
 372                if (error)
 373                        return error;
 374        }
 375
 376        /*
 377         * If we're writing the file then make sure to clear the setuid and
 378         * setgid bits if the process is not being run by root.  This keeps
 379         * people from modifying setuid and setgid binaries.
 380         */
 381        if (!IS_NOSEC(inode))
 382                return file_remove_privs(file);
 383        return 0;
 384}
 385
 386static int
 387xfs_dio_write_end_io(
 388        struct kiocb            *iocb,
 389        ssize_t                 size,
 390        unsigned                flags)
 391{
 392        struct inode            *inode = file_inode(iocb->ki_filp);
 393        struct xfs_inode        *ip = XFS_I(inode);
 394        loff_t                  offset = iocb->ki_pos;
 395        int                     error = 0;
 396
 397        trace_xfs_end_io_direct_write(ip, offset, size);
 398
 399        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 400                return -EIO;
 401
 402        if (size <= 0)
 403                return size;
 404
 405        /*
 406         * Capture amount written on completion as we can't reliably account
 407         * for it on submission.
 408         */
 409        XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 410
 411        if (flags & IOMAP_DIO_COW) {
 412                error = xfs_reflink_end_cow(ip, offset, size);
 413                if (error)
 414                        return error;
 415        }
 416
 417        /*
 418         * Unwritten conversion updates the in-core isize after extent
 419         * conversion but before updating the on-disk size. Updating isize any
 420         * earlier allows a racing dio read to find unwritten extents before
 421         * they are converted.
 422         */
 423        if (flags & IOMAP_DIO_UNWRITTEN)
 424                return xfs_iomap_write_unwritten(ip, offset, size, true);
 425
 426        /*
 427         * We need to update the in-core inode size here so that we don't end up
 428         * with the on-disk inode size being outside the in-core inode size. We
 429         * have no other method of updating EOF for AIO, so always do it here
 430         * if necessary.
 431         *
 432         * We need to lock the test/set EOF update as we can be racing with
 433         * other IO completions here to update the EOF. Failing to serialise
 434         * here can result in EOF moving backwards and Bad Things Happen when
 435         * that occurs.
 436         */
 437        spin_lock(&ip->i_flags_lock);
 438        if (offset + size > i_size_read(inode)) {
 439                i_size_write(inode, offset + size);
 440                spin_unlock(&ip->i_flags_lock);
 441                error = xfs_setfilesize(ip, offset, size);
 442        } else {
 443                spin_unlock(&ip->i_flags_lock);
 444        }
 445
 446        return error;
 447}
 448
 449/*
 450 * xfs_file_dio_aio_write - handle direct IO writes
 451 *
 452 * Lock the inode appropriately to prepare for and issue a direct IO write.
 453 * By separating it from the buffered write path we remove all the tricky to
 454 * follow locking changes and looping.
 455 *
 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 458 * pages are flushed out.
 459 *
 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 461 * allowing them to be done in parallel with reads and other direct IO writes.
 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 463 * needs to do sub-block zeroing and that requires serialisation against other
 464 * direct IOs to the same block. In this case we need to serialise the
 465 * submission of the unaligned IOs so that we don't get racing block zeroing in
 466 * the dio layer.  To avoid the problem with aio, we also need to wait for
 467 * outstanding IOs to complete so that unwritten extent conversion is completed
 468 * before we try to map the overlapping block. This is currently implemented by
 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
 470 *
 471 * Returns with locks held indicated by @iolock and errors indicated by
 472 * negative return values.
 473 */
 474STATIC ssize_t
 475xfs_file_dio_aio_write(
 476        struct kiocb            *iocb,
 477        struct iov_iter         *from)
 478{
 479        struct file             *file = iocb->ki_filp;
 480        struct address_space    *mapping = file->f_mapping;
 481        struct inode            *inode = mapping->host;
 482        struct xfs_inode        *ip = XFS_I(inode);
 483        struct xfs_mount        *mp = ip->i_mount;
 484        ssize_t                 ret = 0;
 485        int                     unaligned_io = 0;
 486        int                     iolock;
 487        size_t                  count = iov_iter_count(from);
 488        struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 489                                        mp->m_rtdev_targp : mp->m_ddev_targp;
 490
 491        /* DIO must be aligned to device logical sector size */
 492        if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 493                return -EINVAL;
 494
 495        /*
 496         * Don't take the exclusive iolock here unless the I/O is unaligned to
 497         * the file system block size.  We don't need to consider the EOF
 498         * extension case here because xfs_file_aio_write_checks() will relock
 499         * the inode as necessary for EOF zeroing cases and fill out the new
 500         * inode size as appropriate.
 501         */
 502        if ((iocb->ki_pos & mp->m_blockmask) ||
 503            ((iocb->ki_pos + count) & mp->m_blockmask)) {
 504                unaligned_io = 1;
 505
 506                /*
 507                 * We can't properly handle unaligned direct I/O to reflink
 508                 * files yet, as we can't unshare a partial block.
 509                 */
 510                if (xfs_is_cow_inode(ip)) {
 511                        trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 512                        return -EREMCHG;
 513                }
 514                iolock = XFS_IOLOCK_EXCL;
 515        } else {
 516                iolock = XFS_IOLOCK_SHARED;
 517        }
 518
 519        if (iocb->ki_flags & IOCB_NOWAIT) {
 520                if (!xfs_ilock_nowait(ip, iolock))
 521                        return -EAGAIN;
 522        } else {
 523                xfs_ilock(ip, iolock);
 524        }
 525
 526        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 527        if (ret)
 528                goto out;
 529        count = iov_iter_count(from);
 530
 531        /*
 532         * If we are doing unaligned IO, we can't allow any other overlapping IO
 533         * in-flight at the same time or we risk data corruption. Wait for all
 534         * other IO to drain before we submit. If the IO is aligned, demote the
 535         * iolock if we had to take the exclusive lock in
 536         * xfs_file_aio_write_checks() for other reasons.
 537         */
 538        if (unaligned_io) {
 539                /* unaligned dio always waits, bail */
 540                if (iocb->ki_flags & IOCB_NOWAIT)
 541                        return -EAGAIN;
 542                inode_dio_wait(inode);
 543        } else if (iolock == XFS_IOLOCK_EXCL) {
 544                xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 545                iolock = XFS_IOLOCK_SHARED;
 546        }
 547
 548        trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 549        ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 550
 551        /*
 552         * If unaligned, this is the only IO in-flight. If it has not yet
 553         * completed, wait on it before we release the iolock to prevent
 554         * subsequent overlapping IO.
 555         */
 556        if (ret == -EIOCBQUEUED && unaligned_io)
 557                inode_dio_wait(inode);
 558out:
 559        xfs_iunlock(ip, iolock);
 560
 561        /*
 562         * No fallback to buffered IO on errors for XFS, direct IO will either
 563         * complete fully or fail.
 564         */
 565        ASSERT(ret < 0 || ret == count);
 566        return ret;
 567}
 568
 569static noinline ssize_t
 570xfs_file_dax_write(
 571        struct kiocb            *iocb,
 572        struct iov_iter         *from)
 573{
 574        struct inode            *inode = iocb->ki_filp->f_mapping->host;
 575        struct xfs_inode        *ip = XFS_I(inode);
 576        int                     iolock = XFS_IOLOCK_EXCL;
 577        ssize_t                 ret, error = 0;
 578        size_t                  count;
 579        loff_t                  pos;
 580
 581        if (iocb->ki_flags & IOCB_NOWAIT) {
 582                if (!xfs_ilock_nowait(ip, iolock))
 583                        return -EAGAIN;
 584        } else {
 585                xfs_ilock(ip, iolock);
 586        }
 587
 588        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 589        if (ret)
 590                goto out;
 591
 592        pos = iocb->ki_pos;
 593        count = iov_iter_count(from);
 594
 595        trace_xfs_file_dax_write(ip, count, pos);
 596        ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 597        if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 598                i_size_write(inode, iocb->ki_pos);
 599                error = xfs_setfilesize(ip, pos, ret);
 600        }
 601out:
 602        xfs_iunlock(ip, iolock);
 603        if (error)
 604                return error;
 605
 606        if (ret > 0) {
 607                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 608
 609                /* Handle various SYNC-type writes */
 610                ret = generic_write_sync(iocb, ret);
 611        }
 612        return ret;
 613}
 614
 615STATIC ssize_t
 616xfs_file_buffered_aio_write(
 617        struct kiocb            *iocb,
 618        struct iov_iter         *from)
 619{
 620        struct file             *file = iocb->ki_filp;
 621        struct address_space    *mapping = file->f_mapping;
 622        struct inode            *inode = mapping->host;
 623        struct xfs_inode        *ip = XFS_I(inode);
 624        ssize_t                 ret;
 625        int                     enospc = 0;
 626        int                     iolock;
 627
 628        if (iocb->ki_flags & IOCB_NOWAIT)
 629                return -EOPNOTSUPP;
 630
 631write_retry:
 632        iolock = XFS_IOLOCK_EXCL;
 633        xfs_ilock(ip, iolock);
 634
 635        ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 636        if (ret)
 637                goto out;
 638
 639        /* We can write back this queue in page reclaim */
 640        current->backing_dev_info = inode_to_bdi(inode);
 641
 642        trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 643        ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 644        if (likely(ret >= 0))
 645                iocb->ki_pos += ret;
 646
 647        /*
 648         * If we hit a space limit, try to free up some lingering preallocated
 649         * space before returning an error. In the case of ENOSPC, first try to
 650         * write back all dirty inodes to free up some of the excess reserved
 651         * metadata space. This reduces the chances that the eofblocks scan
 652         * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 653         * also behaves as a filter to prevent too many eofblocks scans from
 654         * running at the same time.
 655         */
 656        if (ret == -EDQUOT && !enospc) {
 657                xfs_iunlock(ip, iolock);
 658                enospc = xfs_inode_free_quota_eofblocks(ip);
 659                if (enospc)
 660                        goto write_retry;
 661                enospc = xfs_inode_free_quota_cowblocks(ip);
 662                if (enospc)
 663                        goto write_retry;
 664                iolock = 0;
 665        } else if (ret == -ENOSPC && !enospc) {
 666                struct xfs_eofblocks eofb = {0};
 667
 668                enospc = 1;
 669                xfs_flush_inodes(ip->i_mount);
 670
 671                xfs_iunlock(ip, iolock);
 672                eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 673                xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 674                xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 675                goto write_retry;
 676        }
 677
 678        current->backing_dev_info = NULL;
 679out:
 680        if (iolock)
 681                xfs_iunlock(ip, iolock);
 682
 683        if (ret > 0) {
 684                XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 685                /* Handle various SYNC-type writes */
 686                ret = generic_write_sync(iocb, ret);
 687        }
 688        return ret;
 689}
 690
 691STATIC ssize_t
 692xfs_file_write_iter(
 693        struct kiocb            *iocb,
 694        struct iov_iter         *from)
 695{
 696        struct file             *file = iocb->ki_filp;
 697        struct address_space    *mapping = file->f_mapping;
 698        struct inode            *inode = mapping->host;
 699        struct xfs_inode        *ip = XFS_I(inode);
 700        ssize_t                 ret;
 701        size_t                  ocount = iov_iter_count(from);
 702
 703        XFS_STATS_INC(ip->i_mount, xs_write_calls);
 704
 705        if (ocount == 0)
 706                return 0;
 707
 708        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 709                return -EIO;
 710
 711        if (IS_DAX(inode))
 712                return xfs_file_dax_write(iocb, from);
 713
 714        if (iocb->ki_flags & IOCB_DIRECT) {
 715                /*
 716                 * Allow a directio write to fall back to a buffered
 717                 * write *only* in the case that we're doing a reflink
 718                 * CoW.  In all other directio scenarios we do not
 719                 * allow an operation to fall back to buffered mode.
 720                 */
 721                ret = xfs_file_dio_aio_write(iocb, from);
 722                if (ret != -EREMCHG)
 723                        return ret;
 724        }
 725
 726        return xfs_file_buffered_aio_write(iocb, from);
 727}
 728
 729static void
 730xfs_wait_dax_page(
 731        struct inode            *inode)
 732{
 733        struct xfs_inode        *ip = XFS_I(inode);
 734
 735        xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 736        schedule();
 737        xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 738}
 739
 740static int
 741xfs_break_dax_layouts(
 742        struct inode            *inode,
 743        bool                    *retry)
 744{
 745        struct page             *page;
 746
 747        ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 748
 749        page = dax_layout_busy_page(inode->i_mapping);
 750        if (!page)
 751                return 0;
 752
 753        *retry = true;
 754        return ___wait_var_event(&page->_refcount,
 755                        atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 756                        0, 0, xfs_wait_dax_page(inode));
 757}
 758
 759int
 760xfs_break_layouts(
 761        struct inode            *inode,
 762        uint                    *iolock,
 763        enum layout_break_reason reason)
 764{
 765        bool                    retry;
 766        int                     error;
 767
 768        ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 769
 770        do {
 771                retry = false;
 772                switch (reason) {
 773                case BREAK_UNMAP:
 774                        error = xfs_break_dax_layouts(inode, &retry);
 775                        if (error || retry)
 776                                break;
 777                        /* fall through */
 778                case BREAK_WRITE:
 779                        error = xfs_break_leased_layouts(inode, iolock, &retry);
 780                        break;
 781                default:
 782                        WARN_ON_ONCE(1);
 783                        error = -EINVAL;
 784                }
 785        } while (error == 0 && retry);
 786
 787        return error;
 788}
 789
 790#define XFS_FALLOC_FL_SUPPORTED                                         \
 791                (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |           \
 792                 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |      \
 793                 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 794
 795STATIC long
 796xfs_file_fallocate(
 797        struct file             *file,
 798        int                     mode,
 799        loff_t                  offset,
 800        loff_t                  len)
 801{
 802        struct inode            *inode = file_inode(file);
 803        struct xfs_inode        *ip = XFS_I(inode);
 804        long                    error;
 805        enum xfs_prealloc_flags flags = 0;
 806        uint                    iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 807        loff_t                  new_size = 0;
 808        bool                    do_file_insert = false;
 809
 810        if (!S_ISREG(inode->i_mode))
 811                return -EINVAL;
 812        if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 813                return -EOPNOTSUPP;
 814
 815        xfs_ilock(ip, iolock);
 816        error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 817        if (error)
 818                goto out_unlock;
 819
 820        if (mode & FALLOC_FL_PUNCH_HOLE) {
 821                error = xfs_free_file_space(ip, offset, len);
 822                if (error)
 823                        goto out_unlock;
 824        } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 825                unsigned int blksize_mask = i_blocksize(inode) - 1;
 826
 827                if (offset & blksize_mask || len & blksize_mask) {
 828                        error = -EINVAL;
 829                        goto out_unlock;
 830                }
 831
 832                /*
 833                 * There is no need to overlap collapse range with EOF,
 834                 * in which case it is effectively a truncate operation
 835                 */
 836                if (offset + len >= i_size_read(inode)) {
 837                        error = -EINVAL;
 838                        goto out_unlock;
 839                }
 840
 841                new_size = i_size_read(inode) - len;
 842
 843                error = xfs_collapse_file_space(ip, offset, len);
 844                if (error)
 845                        goto out_unlock;
 846        } else if (mode & FALLOC_FL_INSERT_RANGE) {
 847                unsigned int    blksize_mask = i_blocksize(inode) - 1;
 848                loff_t          isize = i_size_read(inode);
 849
 850                if (offset & blksize_mask || len & blksize_mask) {
 851                        error = -EINVAL;
 852                        goto out_unlock;
 853                }
 854
 855                /*
 856                 * New inode size must not exceed ->s_maxbytes, accounting for
 857                 * possible signed overflow.
 858                 */
 859                if (inode->i_sb->s_maxbytes - isize < len) {
 860                        error = -EFBIG;
 861                        goto out_unlock;
 862                }
 863                new_size = isize + len;
 864
 865                /* Offset should be less than i_size */
 866                if (offset >= isize) {
 867                        error = -EINVAL;
 868                        goto out_unlock;
 869                }
 870                do_file_insert = true;
 871        } else {
 872                flags |= XFS_PREALLOC_SET;
 873
 874                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 875                    offset + len > i_size_read(inode)) {
 876                        new_size = offset + len;
 877                        error = inode_newsize_ok(inode, new_size);
 878                        if (error)
 879                                goto out_unlock;
 880                }
 881
 882                if (mode & FALLOC_FL_ZERO_RANGE) {
 883                        error = xfs_zero_file_space(ip, offset, len);
 884                } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 885                        error = xfs_reflink_unshare(ip, offset, len);
 886                        if (error)
 887                                goto out_unlock;
 888
 889                        if (!xfs_is_always_cow_inode(ip)) {
 890                                error = xfs_alloc_file_space(ip, offset, len,
 891                                                XFS_BMAPI_PREALLOC);
 892                        }
 893                } else {
 894                        /*
 895                         * If always_cow mode we can't use preallocations and
 896                         * thus should not create them.
 897                         */
 898                        if (xfs_is_always_cow_inode(ip)) {
 899                                error = -EOPNOTSUPP;
 900                                goto out_unlock;
 901                        }
 902
 903                        error = xfs_alloc_file_space(ip, offset, len,
 904                                                     XFS_BMAPI_PREALLOC);
 905                }
 906                if (error)
 907                        goto out_unlock;
 908        }
 909
 910        if (file->f_flags & O_DSYNC)
 911                flags |= XFS_PREALLOC_SYNC;
 912
 913        error = xfs_update_prealloc_flags(ip, flags);
 914        if (error)
 915                goto out_unlock;
 916
 917        /* Change file size if needed */
 918        if (new_size) {
 919                struct iattr iattr;
 920
 921                iattr.ia_valid = ATTR_SIZE;
 922                iattr.ia_size = new_size;
 923                error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 924                if (error)
 925                        goto out_unlock;
 926        }
 927
 928        /*
 929         * Perform hole insertion now that the file size has been
 930         * updated so that if we crash during the operation we don't
 931         * leave shifted extents past EOF and hence losing access to
 932         * the data that is contained within them.
 933         */
 934        if (do_file_insert)
 935                error = xfs_insert_file_space(ip, offset, len);
 936
 937out_unlock:
 938        xfs_iunlock(ip, iolock);
 939        return error;
 940}
 941
 942
 943STATIC loff_t
 944xfs_file_remap_range(
 945        struct file             *file_in,
 946        loff_t                  pos_in,
 947        struct file             *file_out,
 948        loff_t                  pos_out,
 949        loff_t                  len,
 950        unsigned int            remap_flags)
 951{
 952        struct inode            *inode_in = file_inode(file_in);
 953        struct xfs_inode        *src = XFS_I(inode_in);
 954        struct inode            *inode_out = file_inode(file_out);
 955        struct xfs_inode        *dest = XFS_I(inode_out);
 956        struct xfs_mount        *mp = src->i_mount;
 957        loff_t                  remapped = 0;
 958        xfs_extlen_t            cowextsize;
 959        int                     ret;
 960
 961        if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 962                return -EINVAL;
 963
 964        if (!xfs_sb_version_hasreflink(&mp->m_sb))
 965                return -EOPNOTSUPP;
 966
 967        if (XFS_FORCED_SHUTDOWN(mp))
 968                return -EIO;
 969
 970        /* Prepare and then clone file data. */
 971        ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 972                        &len, remap_flags);
 973        if (ret < 0 || len == 0)
 974                return ret;
 975
 976        trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
 977
 978        ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
 979                        &remapped);
 980        if (ret)
 981                goto out_unlock;
 982
 983        /*
 984         * Carry the cowextsize hint from src to dest if we're sharing the
 985         * entire source file to the entire destination file, the source file
 986         * has a cowextsize hint, and the destination file does not.
 987         */
 988        cowextsize = 0;
 989        if (pos_in == 0 && len == i_size_read(inode_in) &&
 990            (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
 991            pos_out == 0 && len >= i_size_read(inode_out) &&
 992            !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
 993                cowextsize = src->i_d.di_cowextsize;
 994
 995        ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
 996                        remap_flags);
 997
 998out_unlock:
 999        xfs_reflink_remap_unlock(file_in, file_out);
1000        if (ret)
1001                trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1002        return remapped > 0 ? remapped : ret;
1003}
1004
1005STATIC int
1006xfs_file_open(
1007        struct inode    *inode,
1008        struct file     *file)
1009{
1010        if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1011                return -EFBIG;
1012        if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1013                return -EIO;
1014        file->f_mode |= FMODE_NOWAIT;
1015        return 0;
1016}
1017
1018STATIC int
1019xfs_dir_open(
1020        struct inode    *inode,
1021        struct file     *file)
1022{
1023        struct xfs_inode *ip = XFS_I(inode);
1024        int             mode;
1025        int             error;
1026
1027        error = xfs_file_open(inode, file);
1028        if (error)
1029                return error;
1030
1031        /*
1032         * If there are any blocks, read-ahead block 0 as we're almost
1033         * certain to have the next operation be a read there.
1034         */
1035        mode = xfs_ilock_data_map_shared(ip);
1036        if (ip->i_d.di_nextents > 0)
1037                error = xfs_dir3_data_readahead(ip, 0, -1);
1038        xfs_iunlock(ip, mode);
1039        return error;
1040}
1041
1042STATIC int
1043xfs_file_release(
1044        struct inode    *inode,
1045        struct file     *filp)
1046{
1047        return xfs_release(XFS_I(inode));
1048}
1049
1050STATIC int
1051xfs_file_readdir(
1052        struct file     *file,
1053        struct dir_context *ctx)
1054{
1055        struct inode    *inode = file_inode(file);
1056        xfs_inode_t     *ip = XFS_I(inode);
1057        size_t          bufsize;
1058
1059        /*
1060         * The Linux API doesn't pass down the total size of the buffer
1061         * we read into down to the filesystem.  With the filldir concept
1062         * it's not needed for correct information, but the XFS dir2 leaf
1063         * code wants an estimate of the buffer size to calculate it's
1064         * readahead window and size the buffers used for mapping to
1065         * physical blocks.
1066         *
1067         * Try to give it an estimate that's good enough, maybe at some
1068         * point we can change the ->readdir prototype to include the
1069         * buffer size.  For now we use the current glibc buffer size.
1070         */
1071        bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1072
1073        return xfs_readdir(NULL, ip, ctx, bufsize);
1074}
1075
1076STATIC loff_t
1077xfs_file_llseek(
1078        struct file     *file,
1079        loff_t          offset,
1080        int             whence)
1081{
1082        struct inode            *inode = file->f_mapping->host;
1083
1084        if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1085                return -EIO;
1086
1087        switch (whence) {
1088        default:
1089                return generic_file_llseek(file, offset, whence);
1090        case SEEK_HOLE:
1091                offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1092                break;
1093        case SEEK_DATA:
1094                offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1095                break;
1096        }
1097
1098        if (offset < 0)
1099                return offset;
1100        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1101}
1102
1103/*
1104 * Locking for serialisation of IO during page faults. This results in a lock
1105 * ordering of:
1106 *
1107 * mmap_sem (MM)
1108 *   sb_start_pagefault(vfs, freeze)
1109 *     i_mmaplock (XFS - truncate serialisation)
1110 *       page_lock (MM)
1111 *         i_lock (XFS - extent map serialisation)
1112 */
1113static vm_fault_t
1114__xfs_filemap_fault(
1115        struct vm_fault         *vmf,
1116        enum page_entry_size    pe_size,
1117        bool                    write_fault)
1118{
1119        struct inode            *inode = file_inode(vmf->vma->vm_file);
1120        struct xfs_inode        *ip = XFS_I(inode);
1121        vm_fault_t              ret;
1122
1123        trace_xfs_filemap_fault(ip, pe_size, write_fault);
1124
1125        if (write_fault) {
1126                sb_start_pagefault(inode->i_sb);
1127                file_update_time(vmf->vma->vm_file);
1128        }
1129
1130        xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1131        if (IS_DAX(inode)) {
1132                pfn_t pfn;
1133
1134                ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1135                if (ret & VM_FAULT_NEEDDSYNC)
1136                        ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1137        } else {
1138                if (write_fault)
1139                        ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1140                else
1141                        ret = filemap_fault(vmf);
1142        }
1143        xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1144
1145        if (write_fault)
1146                sb_end_pagefault(inode->i_sb);
1147        return ret;
1148}
1149
1150static vm_fault_t
1151xfs_filemap_fault(
1152        struct vm_fault         *vmf)
1153{
1154        /* DAX can shortcut the normal fault path on write faults! */
1155        return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1156                        IS_DAX(file_inode(vmf->vma->vm_file)) &&
1157                        (vmf->flags & FAULT_FLAG_WRITE));
1158}
1159
1160static vm_fault_t
1161xfs_filemap_huge_fault(
1162        struct vm_fault         *vmf,
1163        enum page_entry_size    pe_size)
1164{
1165        if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1166                return VM_FAULT_FALLBACK;
1167
1168        /* DAX can shortcut the normal fault path on write faults! */
1169        return __xfs_filemap_fault(vmf, pe_size,
1170                        (vmf->flags & FAULT_FLAG_WRITE));
1171}
1172
1173static vm_fault_t
1174xfs_filemap_page_mkwrite(
1175        struct vm_fault         *vmf)
1176{
1177        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1178}
1179
1180/*
1181 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1182 * on write faults. In reality, it needs to serialise against truncate and
1183 * prepare memory for writing so handle is as standard write fault.
1184 */
1185static vm_fault_t
1186xfs_filemap_pfn_mkwrite(
1187        struct vm_fault         *vmf)
1188{
1189
1190        return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1191}
1192
1193static const struct vm_operations_struct xfs_file_vm_ops = {
1194        .fault          = xfs_filemap_fault,
1195        .huge_fault     = xfs_filemap_huge_fault,
1196        .map_pages      = filemap_map_pages,
1197        .page_mkwrite   = xfs_filemap_page_mkwrite,
1198        .pfn_mkwrite    = xfs_filemap_pfn_mkwrite,
1199};
1200
1201STATIC int
1202xfs_file_mmap(
1203        struct file     *filp,
1204        struct vm_area_struct *vma)
1205{
1206        /*
1207         * We don't support synchronous mappings for non-DAX files. At least
1208         * until someone comes with a sensible use case.
1209         */
1210        if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1211                return -EOPNOTSUPP;
1212
1213        file_accessed(filp);
1214        vma->vm_ops = &xfs_file_vm_ops;
1215        if (IS_DAX(file_inode(filp)))
1216                vma->vm_flags |= VM_HUGEPAGE;
1217        return 0;
1218}
1219
1220const struct file_operations xfs_file_operations = {
1221        .llseek         = xfs_file_llseek,
1222        .read_iter      = xfs_file_read_iter,
1223        .write_iter     = xfs_file_write_iter,
1224        .splice_read    = generic_file_splice_read,
1225        .splice_write   = iter_file_splice_write,
1226        .iopoll         = iomap_dio_iopoll,
1227        .unlocked_ioctl = xfs_file_ioctl,
1228#ifdef CONFIG_COMPAT
1229        .compat_ioctl   = xfs_file_compat_ioctl,
1230#endif
1231        .mmap           = xfs_file_mmap,
1232        .mmap_supported_flags = MAP_SYNC,
1233        .open           = xfs_file_open,
1234        .release        = xfs_file_release,
1235        .fsync          = xfs_file_fsync,
1236        .get_unmapped_area = thp_get_unmapped_area,
1237        .fallocate      = xfs_file_fallocate,
1238        .remap_file_range = xfs_file_remap_range,
1239};
1240
1241const struct file_operations xfs_dir_file_operations = {
1242        .open           = xfs_dir_open,
1243        .read           = generic_read_dir,
1244        .iterate_shared = xfs_file_readdir,
1245        .llseek         = generic_file_llseek,
1246        .unlocked_ioctl = xfs_file_ioctl,
1247#ifdef CONFIG_COMPAT
1248        .compat_ioctl   = xfs_file_compat_ioctl,
1249#endif
1250        .fsync          = xfs_dir_fsync,
1251};
1252