linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/limits.h>
   8#include <linux/linkage.h>
   9#include <linux/stddef.h>
  10#include <linux/types.h>
  11#include <linux/compiler.h>
  12#include <linux/bitops.h>
  13#include <linux/log2.h>
  14#include <linux/typecheck.h>
  15#include <linux/printk.h>
  16#include <linux/build_bug.h>
  17#include <asm/byteorder.h>
  18#include <asm/div64.h>
  19#include <uapi/linux/kernel.h>
  20
  21#define STACK_MAGIC     0xdeadbeef
  22
  23/**
  24 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  25 * @x: value to repeat
  26 *
  27 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  28 */
  29#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  30
  31/* @a is a power of 2 value */
  32#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  33#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  34#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  35#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  36#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  37
  38/* generic data direction definitions */
  39#define READ                    0
  40#define WRITE                   1
  41
  42/**
  43 * ARRAY_SIZE - get the number of elements in array @arr
  44 * @arr: array to be sized
  45 */
  46#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  47
  48#define u64_to_user_ptr(x) (            \
  49{                                       \
  50        typecheck(u64, (x));            \
  51        (void __user *)(uintptr_t)(x);  \
  52}                                       \
  53)
  54
  55/*
  56 * This looks more complex than it should be. But we need to
  57 * get the type for the ~ right in round_down (it needs to be
  58 * as wide as the result!), and we want to evaluate the macro
  59 * arguments just once each.
  60 */
  61#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  62/**
  63 * round_up - round up to next specified power of 2
  64 * @x: the value to round
  65 * @y: multiple to round up to (must be a power of 2)
  66 *
  67 * Rounds @x up to next multiple of @y (which must be a power of 2).
  68 * To perform arbitrary rounding up, use roundup() below.
  69 */
  70#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  71/**
  72 * round_down - round down to next specified power of 2
  73 * @x: the value to round
  74 * @y: multiple to round down to (must be a power of 2)
  75 *
  76 * Rounds @x down to next multiple of @y (which must be a power of 2).
  77 * To perform arbitrary rounding down, use rounddown() below.
  78 */
  79#define round_down(x, y) ((x) & ~__round_mask(x, y))
  80
  81/**
  82 * FIELD_SIZEOF - get the size of a struct's field
  83 * @t: the target struct
  84 * @f: the target struct's field
  85 * Return: the size of @f in the struct definition without having a
  86 * declared instance of @t.
  87 */
  88#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  89
  90#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  91
  92#define DIV_ROUND_DOWN_ULL(ll, d) \
  93        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  94
  95#define DIV_ROUND_UP_ULL(ll, d)         DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
  96
  97#if BITS_PER_LONG == 32
  98# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
  99#else
 100# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 101#endif
 102
 103/**
 104 * roundup - round up to the next specified multiple
 105 * @x: the value to up
 106 * @y: multiple to round up to
 107 *
 108 * Rounds @x up to next multiple of @y. If @y will always be a power
 109 * of 2, consider using the faster round_up().
 110 */
 111#define roundup(x, y) (                                 \
 112{                                                       \
 113        typeof(y) __y = y;                              \
 114        (((x) + (__y - 1)) / __y) * __y;                \
 115}                                                       \
 116)
 117/**
 118 * rounddown - round down to next specified multiple
 119 * @x: the value to round
 120 * @y: multiple to round down to
 121 *
 122 * Rounds @x down to next multiple of @y. If @y will always be a power
 123 * of 2, consider using the faster round_down().
 124 */
 125#define rounddown(x, y) (                               \
 126{                                                       \
 127        typeof(x) __x = (x);                            \
 128        __x - (__x % (y));                              \
 129}                                                       \
 130)
 131
 132/*
 133 * Divide positive or negative dividend by positive or negative divisor
 134 * and round to closest integer. Result is undefined for negative
 135 * divisors if the dividend variable type is unsigned and for negative
 136 * dividends if the divisor variable type is unsigned.
 137 */
 138#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 139{                                                       \
 140        typeof(x) __x = x;                              \
 141        typeof(divisor) __d = divisor;                  \
 142        (((typeof(x))-1) > 0 ||                         \
 143         ((typeof(divisor))-1) > 0 ||                   \
 144         (((__x) > 0) == ((__d) > 0))) ?                \
 145                (((__x) + ((__d) / 2)) / (__d)) :       \
 146                (((__x) - ((__d) / 2)) / (__d));        \
 147}                                                       \
 148)
 149/*
 150 * Same as above but for u64 dividends. divisor must be a 32-bit
 151 * number.
 152 */
 153#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 154{                                                       \
 155        typeof(divisor) __d = divisor;                  \
 156        unsigned long long _tmp = (x) + (__d) / 2;      \
 157        do_div(_tmp, __d);                              \
 158        _tmp;                                           \
 159}                                                       \
 160)
 161
 162/*
 163 * Multiplies an integer by a fraction, while avoiding unnecessary
 164 * overflow or loss of precision.
 165 */
 166#define mult_frac(x, numer, denom)(                     \
 167{                                                       \
 168        typeof(x) quot = (x) / (denom);                 \
 169        typeof(x) rem  = (x) % (denom);                 \
 170        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 171}                                                       \
 172)
 173
 174
 175#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 176#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 177
 178#ifdef CONFIG_LBDAF
 179# define sector_div(a, b) do_div(a, b)
 180#else
 181# define sector_div(n, b)( \
 182{ \
 183        int _res; \
 184        _res = (n) % (b); \
 185        (n) /= (b); \
 186        _res; \
 187} \
 188)
 189#endif
 190
 191/**
 192 * upper_32_bits - return bits 32-63 of a number
 193 * @n: the number we're accessing
 194 *
 195 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 196 * the "right shift count >= width of type" warning when that quantity is
 197 * 32-bits.
 198 */
 199#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 200
 201/**
 202 * lower_32_bits - return bits 0-31 of a number
 203 * @n: the number we're accessing
 204 */
 205#define lower_32_bits(n) ((u32)(n))
 206
 207struct completion;
 208struct pt_regs;
 209struct user;
 210
 211#ifdef CONFIG_PREEMPT_VOLUNTARY
 212extern int _cond_resched(void);
 213# define might_resched() _cond_resched()
 214#else
 215# define might_resched() do { } while (0)
 216#endif
 217
 218#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 219extern void ___might_sleep(const char *file, int line, int preempt_offset);
 220extern void __might_sleep(const char *file, int line, int preempt_offset);
 221extern void __cant_sleep(const char *file, int line, int preempt_offset);
 222
 223/**
 224 * might_sleep - annotation for functions that can sleep
 225 *
 226 * this macro will print a stack trace if it is executed in an atomic
 227 * context (spinlock, irq-handler, ...).
 228 *
 229 * This is a useful debugging help to be able to catch problems early and not
 230 * be bitten later when the calling function happens to sleep when it is not
 231 * supposed to.
 232 */
 233# define might_sleep() \
 234        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 235/**
 236 * cant_sleep - annotation for functions that cannot sleep
 237 *
 238 * this macro will print a stack trace if it is executed with preemption enabled
 239 */
 240# define cant_sleep() \
 241        do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
 242# define sched_annotate_sleep() (current->task_state_change = 0)
 243#else
 244  static inline void ___might_sleep(const char *file, int line,
 245                                   int preempt_offset) { }
 246  static inline void __might_sleep(const char *file, int line,
 247                                   int preempt_offset) { }
 248# define might_sleep() do { might_resched(); } while (0)
 249# define cant_sleep() do { } while (0)
 250# define sched_annotate_sleep() do { } while (0)
 251#endif
 252
 253#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 254
 255/**
 256 * abs - return absolute value of an argument
 257 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 258 *     char is treated as if it was signed (regardless of whether it really is)
 259 *     but the macro's return type is preserved as char.
 260 *
 261 * Return: an absolute value of x.
 262 */
 263#define abs(x)  __abs_choose_expr(x, long long,                         \
 264                __abs_choose_expr(x, long,                              \
 265                __abs_choose_expr(x, int,                               \
 266                __abs_choose_expr(x, short,                             \
 267                __abs_choose_expr(x, char,                              \
 268                __builtin_choose_expr(                                  \
 269                        __builtin_types_compatible_p(typeof(x), char),  \
 270                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 271                        ((void)0)))))))
 272
 273#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 274        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 275        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 276        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 277
 278/**
 279 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 280 * @val: value
 281 * @ep_ro: right open interval endpoint
 282 *
 283 * Perform a "reciprocal multiplication" in order to "scale" a value into
 284 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 285 * This is useful, e.g. for accessing a index of an array containing
 286 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 287 * the result isn't that of modulo. ;) Note that if initial input is a
 288 * small value, then result will return 0.
 289 *
 290 * Return: a result based on @val in interval [0, @ep_ro).
 291 */
 292static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 293{
 294        return (u32)(((u64) val * ep_ro) >> 32);
 295}
 296
 297#if defined(CONFIG_MMU) && \
 298        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 299#define might_fault() __might_fault(__FILE__, __LINE__)
 300void __might_fault(const char *file, int line);
 301#else
 302static inline void might_fault(void) { }
 303#endif
 304
 305extern struct atomic_notifier_head panic_notifier_list;
 306extern long (*panic_blink)(int state);
 307__printf(1, 2)
 308void panic(const char *fmt, ...) __noreturn __cold;
 309void nmi_panic(struct pt_regs *regs, const char *msg);
 310extern void oops_enter(void);
 311extern void oops_exit(void);
 312void print_oops_end_marker(void);
 313extern int oops_may_print(void);
 314void do_exit(long error_code) __noreturn;
 315void complete_and_exit(struct completion *, long) __noreturn;
 316
 317#ifdef CONFIG_ARCH_HAS_REFCOUNT
 318void refcount_error_report(struct pt_regs *regs, const char *err);
 319#else
 320static inline void refcount_error_report(struct pt_regs *regs, const char *err)
 321{ }
 322#endif
 323
 324/* Internal, do not use. */
 325int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 326int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 327
 328int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 329int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 330
 331/**
 332 * kstrtoul - convert a string to an unsigned long
 333 * @s: The start of the string. The string must be null-terminated, and may also
 334 *  include a single newline before its terminating null. The first character
 335 *  may also be a plus sign, but not a minus sign.
 336 * @base: The number base to use. The maximum supported base is 16. If base is
 337 *  given as 0, then the base of the string is automatically detected with the
 338 *  conventional semantics - If it begins with 0x the number will be parsed as a
 339 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 340 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 341 * @res: Where to write the result of the conversion on success.
 342 *
 343 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 344 * Used as a replacement for the obsolete simple_strtoull. Return code must
 345 * be checked.
 346*/
 347static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 348{
 349        /*
 350         * We want to shortcut function call, but
 351         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 352         */
 353        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 354            __alignof__(unsigned long) == __alignof__(unsigned long long))
 355                return kstrtoull(s, base, (unsigned long long *)res);
 356        else
 357                return _kstrtoul(s, base, res);
 358}
 359
 360/**
 361 * kstrtol - convert a string to a long
 362 * @s: The start of the string. The string must be null-terminated, and may also
 363 *  include a single newline before its terminating null. The first character
 364 *  may also be a plus sign or a minus sign.
 365 * @base: The number base to use. The maximum supported base is 16. If base is
 366 *  given as 0, then the base of the string is automatically detected with the
 367 *  conventional semantics - If it begins with 0x the number will be parsed as a
 368 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 369 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 370 * @res: Where to write the result of the conversion on success.
 371 *
 372 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 373 * Used as a replacement for the obsolete simple_strtoull. Return code must
 374 * be checked.
 375 */
 376static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 377{
 378        /*
 379         * We want to shortcut function call, but
 380         * __builtin_types_compatible_p(long, long long) = 0.
 381         */
 382        if (sizeof(long) == sizeof(long long) &&
 383            __alignof__(long) == __alignof__(long long))
 384                return kstrtoll(s, base, (long long *)res);
 385        else
 386                return _kstrtol(s, base, res);
 387}
 388
 389int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 390int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 391
 392static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 393{
 394        return kstrtoull(s, base, res);
 395}
 396
 397static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 398{
 399        return kstrtoll(s, base, res);
 400}
 401
 402static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 403{
 404        return kstrtouint(s, base, res);
 405}
 406
 407static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 408{
 409        return kstrtoint(s, base, res);
 410}
 411
 412int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 413int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 414int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 415int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 416int __must_check kstrtobool(const char *s, bool *res);
 417
 418int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 419int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 420int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 421int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 422int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 423int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 424int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 425int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 426int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 427int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 428int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 429
 430static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 431{
 432        return kstrtoull_from_user(s, count, base, res);
 433}
 434
 435static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 436{
 437        return kstrtoll_from_user(s, count, base, res);
 438}
 439
 440static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 441{
 442        return kstrtouint_from_user(s, count, base, res);
 443}
 444
 445static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 446{
 447        return kstrtoint_from_user(s, count, base, res);
 448}
 449
 450/* Obsolete, do not use.  Use kstrto<foo> instead */
 451
 452extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 453extern long simple_strtol(const char *,char **,unsigned int);
 454extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 455extern long long simple_strtoll(const char *,char **,unsigned int);
 456
 457extern int num_to_str(char *buf, int size,
 458                      unsigned long long num, unsigned int width);
 459
 460/* lib/printf utilities */
 461
 462extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 463extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 464extern __printf(3, 4)
 465int snprintf(char *buf, size_t size, const char *fmt, ...);
 466extern __printf(3, 0)
 467int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 468extern __printf(3, 4)
 469int scnprintf(char *buf, size_t size, const char *fmt, ...);
 470extern __printf(3, 0)
 471int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 472extern __printf(2, 3) __malloc
 473char *kasprintf(gfp_t gfp, const char *fmt, ...);
 474extern __printf(2, 0) __malloc
 475char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 476extern __printf(2, 0)
 477const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 478
 479extern __scanf(2, 3)
 480int sscanf(const char *, const char *, ...);
 481extern __scanf(2, 0)
 482int vsscanf(const char *, const char *, va_list);
 483
 484extern int get_option(char **str, int *pint);
 485extern char *get_options(const char *str, int nints, int *ints);
 486extern unsigned long long memparse(const char *ptr, char **retptr);
 487extern bool parse_option_str(const char *str, const char *option);
 488extern char *next_arg(char *args, char **param, char **val);
 489
 490extern int core_kernel_text(unsigned long addr);
 491extern int init_kernel_text(unsigned long addr);
 492extern int core_kernel_data(unsigned long addr);
 493extern int __kernel_text_address(unsigned long addr);
 494extern int kernel_text_address(unsigned long addr);
 495extern int func_ptr_is_kernel_text(void *ptr);
 496
 497unsigned long int_sqrt(unsigned long);
 498
 499#if BITS_PER_LONG < 64
 500u32 int_sqrt64(u64 x);
 501#else
 502static inline u32 int_sqrt64(u64 x)
 503{
 504        return (u32)int_sqrt(x);
 505}
 506#endif
 507
 508extern void bust_spinlocks(int yes);
 509extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 510extern int panic_timeout;
 511extern unsigned long panic_print;
 512extern int panic_on_oops;
 513extern int panic_on_unrecovered_nmi;
 514extern int panic_on_io_nmi;
 515extern int panic_on_warn;
 516extern int sysctl_panic_on_rcu_stall;
 517extern int sysctl_panic_on_stackoverflow;
 518
 519extern bool crash_kexec_post_notifiers;
 520
 521/*
 522 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 523 * holds a CPU number which is executing panic() currently. A value of
 524 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 525 */
 526extern atomic_t panic_cpu;
 527#define PANIC_CPU_INVALID       -1
 528
 529/*
 530 * Only to be used by arch init code. If the user over-wrote the default
 531 * CONFIG_PANIC_TIMEOUT, honor it.
 532 */
 533static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 534{
 535        if (panic_timeout == arch_default_timeout)
 536                panic_timeout = timeout;
 537}
 538extern const char *print_tainted(void);
 539enum lockdep_ok {
 540        LOCKDEP_STILL_OK,
 541        LOCKDEP_NOW_UNRELIABLE
 542};
 543extern void add_taint(unsigned flag, enum lockdep_ok);
 544extern int test_taint(unsigned flag);
 545extern unsigned long get_taint(void);
 546extern int root_mountflags;
 547
 548extern bool early_boot_irqs_disabled;
 549
 550/*
 551 * Values used for system_state. Ordering of the states must not be changed
 552 * as code checks for <, <=, >, >= STATE.
 553 */
 554extern enum system_states {
 555        SYSTEM_BOOTING,
 556        SYSTEM_SCHEDULING,
 557        SYSTEM_RUNNING,
 558        SYSTEM_HALT,
 559        SYSTEM_POWER_OFF,
 560        SYSTEM_RESTART,
 561        SYSTEM_SUSPEND,
 562} system_state;
 563
 564/* This cannot be an enum because some may be used in assembly source. */
 565#define TAINT_PROPRIETARY_MODULE        0
 566#define TAINT_FORCED_MODULE             1
 567#define TAINT_CPU_OUT_OF_SPEC           2
 568#define TAINT_FORCED_RMMOD              3
 569#define TAINT_MACHINE_CHECK             4
 570#define TAINT_BAD_PAGE                  5
 571#define TAINT_USER                      6
 572#define TAINT_DIE                       7
 573#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 574#define TAINT_WARN                      9
 575#define TAINT_CRAP                      10
 576#define TAINT_FIRMWARE_WORKAROUND       11
 577#define TAINT_OOT_MODULE                12
 578#define TAINT_UNSIGNED_MODULE           13
 579#define TAINT_SOFTLOCKUP                14
 580#define TAINT_LIVEPATCH                 15
 581#define TAINT_AUX                       16
 582#define TAINT_RANDSTRUCT                17
 583#define TAINT_FLAGS_COUNT               18
 584
 585struct taint_flag {
 586        char c_true;    /* character printed when tainted */
 587        char c_false;   /* character printed when not tainted */
 588        bool module;    /* also show as a per-module taint flag */
 589};
 590
 591extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 592
 593extern const char hex_asc[];
 594#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 595#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 596
 597static inline char *hex_byte_pack(char *buf, u8 byte)
 598{
 599        *buf++ = hex_asc_hi(byte);
 600        *buf++ = hex_asc_lo(byte);
 601        return buf;
 602}
 603
 604extern const char hex_asc_upper[];
 605#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 606#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 607
 608static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 609{
 610        *buf++ = hex_asc_upper_hi(byte);
 611        *buf++ = hex_asc_upper_lo(byte);
 612        return buf;
 613}
 614
 615extern int hex_to_bin(char ch);
 616extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 617extern char *bin2hex(char *dst, const void *src, size_t count);
 618
 619bool mac_pton(const char *s, u8 *mac);
 620
 621/*
 622 * General tracing related utility functions - trace_printk(),
 623 * tracing_on/tracing_off and tracing_start()/tracing_stop
 624 *
 625 * Use tracing_on/tracing_off when you want to quickly turn on or off
 626 * tracing. It simply enables or disables the recording of the trace events.
 627 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 628 * file, which gives a means for the kernel and userspace to interact.
 629 * Place a tracing_off() in the kernel where you want tracing to end.
 630 * From user space, examine the trace, and then echo 1 > tracing_on
 631 * to continue tracing.
 632 *
 633 * tracing_stop/tracing_start has slightly more overhead. It is used
 634 * by things like suspend to ram where disabling the recording of the
 635 * trace is not enough, but tracing must actually stop because things
 636 * like calling smp_processor_id() may crash the system.
 637 *
 638 * Most likely, you want to use tracing_on/tracing_off.
 639 */
 640
 641enum ftrace_dump_mode {
 642        DUMP_NONE,
 643        DUMP_ALL,
 644        DUMP_ORIG,
 645};
 646
 647#ifdef CONFIG_TRACING
 648void tracing_on(void);
 649void tracing_off(void);
 650int tracing_is_on(void);
 651void tracing_snapshot(void);
 652void tracing_snapshot_alloc(void);
 653
 654extern void tracing_start(void);
 655extern void tracing_stop(void);
 656
 657static inline __printf(1, 2)
 658void ____trace_printk_check_format(const char *fmt, ...)
 659{
 660}
 661#define __trace_printk_check_format(fmt, args...)                       \
 662do {                                                                    \
 663        if (0)                                                          \
 664                ____trace_printk_check_format(fmt, ##args);             \
 665} while (0)
 666
 667/**
 668 * trace_printk - printf formatting in the ftrace buffer
 669 * @fmt: the printf format for printing
 670 *
 671 * Note: __trace_printk is an internal function for trace_printk() and
 672 *       the @ip is passed in via the trace_printk() macro.
 673 *
 674 * This function allows a kernel developer to debug fast path sections
 675 * that printk is not appropriate for. By scattering in various
 676 * printk like tracing in the code, a developer can quickly see
 677 * where problems are occurring.
 678 *
 679 * This is intended as a debugging tool for the developer only.
 680 * Please refrain from leaving trace_printks scattered around in
 681 * your code. (Extra memory is used for special buffers that are
 682 * allocated when trace_printk() is used.)
 683 *
 684 * A little optimization trick is done here. If there's only one
 685 * argument, there's no need to scan the string for printf formats.
 686 * The trace_puts() will suffice. But how can we take advantage of
 687 * using trace_puts() when trace_printk() has only one argument?
 688 * By stringifying the args and checking the size we can tell
 689 * whether or not there are args. __stringify((__VA_ARGS__)) will
 690 * turn into "()\0" with a size of 3 when there are no args, anything
 691 * else will be bigger. All we need to do is define a string to this,
 692 * and then take its size and compare to 3. If it's bigger, use
 693 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 694 * let gcc optimize the rest.
 695 */
 696
 697#define trace_printk(fmt, ...)                          \
 698do {                                                    \
 699        char _______STR[] = __stringify((__VA_ARGS__)); \
 700        if (sizeof(_______STR) > 3)                     \
 701                do_trace_printk(fmt, ##__VA_ARGS__);    \
 702        else                                            \
 703                trace_puts(fmt);                        \
 704} while (0)
 705
 706#define do_trace_printk(fmt, args...)                                   \
 707do {                                                                    \
 708        static const char *trace_printk_fmt __used                      \
 709                __attribute__((section("__trace_printk_fmt"))) =        \
 710                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 711                                                                        \
 712        __trace_printk_check_format(fmt, ##args);                       \
 713                                                                        \
 714        if (__builtin_constant_p(fmt))                                  \
 715                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 716        else                                                            \
 717                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 718} while (0)
 719
 720extern __printf(2, 3)
 721int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 722
 723extern __printf(2, 3)
 724int __trace_printk(unsigned long ip, const char *fmt, ...);
 725
 726/**
 727 * trace_puts - write a string into the ftrace buffer
 728 * @str: the string to record
 729 *
 730 * Note: __trace_bputs is an internal function for trace_puts and
 731 *       the @ip is passed in via the trace_puts macro.
 732 *
 733 * This is similar to trace_printk() but is made for those really fast
 734 * paths that a developer wants the least amount of "Heisenbug" effects,
 735 * where the processing of the print format is still too much.
 736 *
 737 * This function allows a kernel developer to debug fast path sections
 738 * that printk is not appropriate for. By scattering in various
 739 * printk like tracing in the code, a developer can quickly see
 740 * where problems are occurring.
 741 *
 742 * This is intended as a debugging tool for the developer only.
 743 * Please refrain from leaving trace_puts scattered around in
 744 * your code. (Extra memory is used for special buffers that are
 745 * allocated when trace_puts() is used.)
 746 *
 747 * Returns: 0 if nothing was written, positive # if string was.
 748 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 749 */
 750
 751#define trace_puts(str) ({                                              \
 752        static const char *trace_printk_fmt __used                      \
 753                __attribute__((section("__trace_printk_fmt"))) =        \
 754                __builtin_constant_p(str) ? str : NULL;                 \
 755                                                                        \
 756        if (__builtin_constant_p(str))                                  \
 757                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 758        else                                                            \
 759                __trace_puts(_THIS_IP_, str, strlen(str));              \
 760})
 761extern int __trace_bputs(unsigned long ip, const char *str);
 762extern int __trace_puts(unsigned long ip, const char *str, int size);
 763
 764extern void trace_dump_stack(int skip);
 765
 766/*
 767 * The double __builtin_constant_p is because gcc will give us an error
 768 * if we try to allocate the static variable to fmt if it is not a
 769 * constant. Even with the outer if statement.
 770 */
 771#define ftrace_vprintk(fmt, vargs)                                      \
 772do {                                                                    \
 773        if (__builtin_constant_p(fmt)) {                                \
 774                static const char *trace_printk_fmt __used              \
 775                  __attribute__((section("__trace_printk_fmt"))) =      \
 776                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 777                                                                        \
 778                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 779        } else                                                          \
 780                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 781} while (0)
 782
 783extern __printf(2, 0) int
 784__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 785
 786extern __printf(2, 0) int
 787__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 788
 789extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 790#else
 791static inline void tracing_start(void) { }
 792static inline void tracing_stop(void) { }
 793static inline void trace_dump_stack(int skip) { }
 794
 795static inline void tracing_on(void) { }
 796static inline void tracing_off(void) { }
 797static inline int tracing_is_on(void) { return 0; }
 798static inline void tracing_snapshot(void) { }
 799static inline void tracing_snapshot_alloc(void) { }
 800
 801static inline __printf(1, 2)
 802int trace_printk(const char *fmt, ...)
 803{
 804        return 0;
 805}
 806static __printf(1, 0) inline int
 807ftrace_vprintk(const char *fmt, va_list ap)
 808{
 809        return 0;
 810}
 811static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 812#endif /* CONFIG_TRACING */
 813
 814/*
 815 * min()/max()/clamp() macros must accomplish three things:
 816 *
 817 * - avoid multiple evaluations of the arguments (so side-effects like
 818 *   "x++" happen only once) when non-constant.
 819 * - perform strict type-checking (to generate warnings instead of
 820 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 821 *   in __typecheck().
 822 * - retain result as a constant expressions when called with only
 823 *   constant expressions (to avoid tripping VLA warnings in stack
 824 *   allocation usage).
 825 */
 826#define __typecheck(x, y) \
 827                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 828
 829/*
 830 * This returns a constant expression while determining if an argument is
 831 * a constant expression, most importantly without evaluating the argument.
 832 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 833 */
 834#define __is_constexpr(x) \
 835        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 836
 837#define __no_side_effects(x, y) \
 838                (__is_constexpr(x) && __is_constexpr(y))
 839
 840#define __safe_cmp(x, y) \
 841                (__typecheck(x, y) && __no_side_effects(x, y))
 842
 843#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 844
 845#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 846                typeof(x) unique_x = (x);               \
 847                typeof(y) unique_y = (y);               \
 848                __cmp(unique_x, unique_y, op); })
 849
 850#define __careful_cmp(x, y, op) \
 851        __builtin_choose_expr(__safe_cmp(x, y), \
 852                __cmp(x, y, op), \
 853                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 854
 855/**
 856 * min - return minimum of two values of the same or compatible types
 857 * @x: first value
 858 * @y: second value
 859 */
 860#define min(x, y)       __careful_cmp(x, y, <)
 861
 862/**
 863 * max - return maximum of two values of the same or compatible types
 864 * @x: first value
 865 * @y: second value
 866 */
 867#define max(x, y)       __careful_cmp(x, y, >)
 868
 869/**
 870 * min3 - return minimum of three values
 871 * @x: first value
 872 * @y: second value
 873 * @z: third value
 874 */
 875#define min3(x, y, z) min((typeof(x))min(x, y), z)
 876
 877/**
 878 * max3 - return maximum of three values
 879 * @x: first value
 880 * @y: second value
 881 * @z: third value
 882 */
 883#define max3(x, y, z) max((typeof(x))max(x, y), z)
 884
 885/**
 886 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 887 * @x: value1
 888 * @y: value2
 889 */
 890#define min_not_zero(x, y) ({                   \
 891        typeof(x) __x = (x);                    \
 892        typeof(y) __y = (y);                    \
 893        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 894
 895/**
 896 * clamp - return a value clamped to a given range with strict typechecking
 897 * @val: current value
 898 * @lo: lowest allowable value
 899 * @hi: highest allowable value
 900 *
 901 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 902 * same type as @val.  See the unnecessary pointer comparisons.
 903 */
 904#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 905
 906/*
 907 * ..and if you can't take the strict
 908 * types, you can specify one yourself.
 909 *
 910 * Or not use min/max/clamp at all, of course.
 911 */
 912
 913/**
 914 * min_t - return minimum of two values, using the specified type
 915 * @type: data type to use
 916 * @x: first value
 917 * @y: second value
 918 */
 919#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 920
 921/**
 922 * max_t - return maximum of two values, using the specified type
 923 * @type: data type to use
 924 * @x: first value
 925 * @y: second value
 926 */
 927#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 928
 929/**
 930 * clamp_t - return a value clamped to a given range using a given type
 931 * @type: the type of variable to use
 932 * @val: current value
 933 * @lo: minimum allowable value
 934 * @hi: maximum allowable value
 935 *
 936 * This macro does no typechecking and uses temporary variables of type
 937 * @type to make all the comparisons.
 938 */
 939#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 940
 941/**
 942 * clamp_val - return a value clamped to a given range using val's type
 943 * @val: current value
 944 * @lo: minimum allowable value
 945 * @hi: maximum allowable value
 946 *
 947 * This macro does no typechecking and uses temporary variables of whatever
 948 * type the input argument @val is.  This is useful when @val is an unsigned
 949 * type and @lo and @hi are literals that will otherwise be assigned a signed
 950 * integer type.
 951 */
 952#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 953
 954
 955/**
 956 * swap - swap values of @a and @b
 957 * @a: first value
 958 * @b: second value
 959 */
 960#define swap(a, b) \
 961        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 962
 963/* This counts to 12. Any more, it will return 13th argument. */
 964#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 965#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 966
 967#define __CONCAT(a, b) a ## b
 968#define CONCATENATE(a, b) __CONCAT(a, b)
 969
 970/**
 971 * container_of - cast a member of a structure out to the containing structure
 972 * @ptr:        the pointer to the member.
 973 * @type:       the type of the container struct this is embedded in.
 974 * @member:     the name of the member within the struct.
 975 *
 976 */
 977#define container_of(ptr, type, member) ({                              \
 978        void *__mptr = (void *)(ptr);                                   \
 979        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 980                         !__same_type(*(ptr), void),                    \
 981                         "pointer type mismatch in container_of()");    \
 982        ((type *)(__mptr - offsetof(type, member))); })
 983
 984/**
 985 * container_of_safe - cast a member of a structure out to the containing structure
 986 * @ptr:        the pointer to the member.
 987 * @type:       the type of the container struct this is embedded in.
 988 * @member:     the name of the member within the struct.
 989 *
 990 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
 991 */
 992#define container_of_safe(ptr, type, member) ({                         \
 993        void *__mptr = (void *)(ptr);                                   \
 994        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 995                         !__same_type(*(ptr), void),                    \
 996                         "pointer type mismatch in container_of()");    \
 997        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
 998                ((type *)(__mptr - offsetof(type, member))); })
 999
1000/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1001#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1002# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1003#endif
1004
1005/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1006#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
1007        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1008         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1009         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1010         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1011         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1012         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1013         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1014         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1015         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1016         (perms))
1017#endif
1018