linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <asm/page.h>
  22
  23/* Free memory management - zoned buddy allocator.  */
  24#ifndef CONFIG_FORCE_MAX_ZONEORDER
  25#define MAX_ORDER 11
  26#else
  27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  28#endif
  29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  30
  31/*
  32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  33 * costly to service.  That is between allocation orders which should
  34 * coalesce naturally under reasonable reclaim pressure and those which
  35 * will not.
  36 */
  37#define PAGE_ALLOC_COSTLY_ORDER 3
  38
  39enum migratetype {
  40        MIGRATE_UNMOVABLE,
  41        MIGRATE_MOVABLE,
  42        MIGRATE_RECLAIMABLE,
  43        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  44        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  45#ifdef CONFIG_CMA
  46        /*
  47         * MIGRATE_CMA migration type is designed to mimic the way
  48         * ZONE_MOVABLE works.  Only movable pages can be allocated
  49         * from MIGRATE_CMA pageblocks and page allocator never
  50         * implicitly change migration type of MIGRATE_CMA pageblock.
  51         *
  52         * The way to use it is to change migratetype of a range of
  53         * pageblocks to MIGRATE_CMA which can be done by
  54         * __free_pageblock_cma() function.  What is important though
  55         * is that a range of pageblocks must be aligned to
  56         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  57         * a single pageblock.
  58         */
  59        MIGRATE_CMA,
  60#endif
  61#ifdef CONFIG_MEMORY_ISOLATION
  62        MIGRATE_ISOLATE,        /* can't allocate from here */
  63#endif
  64        MIGRATE_TYPES
  65};
  66
  67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  68extern const char * const migratetype_names[MIGRATE_TYPES];
  69
  70#ifdef CONFIG_CMA
  71#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  72#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  73#else
  74#  define is_migrate_cma(migratetype) false
  75#  define is_migrate_cma_page(_page) false
  76#endif
  77
  78static inline bool is_migrate_movable(int mt)
  79{
  80        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  81}
  82
  83#define for_each_migratetype_order(order, type) \
  84        for (order = 0; order < MAX_ORDER; order++) \
  85                for (type = 0; type < MIGRATE_TYPES; type++)
  86
  87extern int page_group_by_mobility_disabled;
  88
  89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  91
  92#define get_pageblock_migratetype(page)                                 \
  93        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  94                        PB_migrate_end, MIGRATETYPE_MASK)
  95
  96struct free_area {
  97        struct list_head        free_list[MIGRATE_TYPES];
  98        unsigned long           nr_free;
  99};
 100
 101struct pglist_data;
 102
 103/*
 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 105 * So add a wild amount of padding here to ensure that they fall into separate
 106 * cachelines.  There are very few zone structures in the machine, so space
 107 * consumption is not a concern here.
 108 */
 109#if defined(CONFIG_SMP)
 110struct zone_padding {
 111        char x[0];
 112} ____cacheline_internodealigned_in_smp;
 113#define ZONE_PADDING(name)      struct zone_padding name;
 114#else
 115#define ZONE_PADDING(name)
 116#endif
 117
 118#ifdef CONFIG_NUMA
 119enum numa_stat_item {
 120        NUMA_HIT,               /* allocated in intended node */
 121        NUMA_MISS,              /* allocated in non intended node */
 122        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 123        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 124        NUMA_LOCAL,             /* allocation from local node */
 125        NUMA_OTHER,             /* allocation from other node */
 126        NR_VM_NUMA_STAT_ITEMS
 127};
 128#else
 129#define NR_VM_NUMA_STAT_ITEMS 0
 130#endif
 131
 132enum zone_stat_item {
 133        /* First 128 byte cacheline (assuming 64 bit words) */
 134        NR_FREE_PAGES,
 135        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 136        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 137        NR_ZONE_ACTIVE_ANON,
 138        NR_ZONE_INACTIVE_FILE,
 139        NR_ZONE_ACTIVE_FILE,
 140        NR_ZONE_UNEVICTABLE,
 141        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 142        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 143        NR_PAGETABLE,           /* used for pagetables */
 144        NR_KERNEL_STACK_KB,     /* measured in KiB */
 145        /* Second 128 byte cacheline */
 146        NR_BOUNCE,
 147#if IS_ENABLED(CONFIG_ZSMALLOC)
 148        NR_ZSPAGES,             /* allocated in zsmalloc */
 149#endif
 150        NR_FREE_CMA_PAGES,
 151        NR_VM_ZONE_STAT_ITEMS };
 152
 153enum node_stat_item {
 154        NR_LRU_BASE,
 155        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 156        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 157        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 158        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 159        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 160        NR_SLAB_RECLAIMABLE,
 161        NR_SLAB_UNRECLAIMABLE,
 162        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 163        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 164        WORKINGSET_NODES,
 165        WORKINGSET_REFAULT,
 166        WORKINGSET_ACTIVATE,
 167        WORKINGSET_RESTORE,
 168        WORKINGSET_NODERECLAIM,
 169        NR_ANON_MAPPED, /* Mapped anonymous pages */
 170        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 171                           only modified from process context */
 172        NR_FILE_PAGES,
 173        NR_FILE_DIRTY,
 174        NR_WRITEBACK,
 175        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 176        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 177        NR_SHMEM_THPS,
 178        NR_SHMEM_PMDMAPPED,
 179        NR_ANON_THPS,
 180        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 181        NR_VMSCAN_WRITE,
 182        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 183        NR_DIRTIED,             /* page dirtyings since bootup */
 184        NR_WRITTEN,             /* page writings since bootup */
 185        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 186        NR_VM_NODE_STAT_ITEMS
 187};
 188
 189/*
 190 * We do arithmetic on the LRU lists in various places in the code,
 191 * so it is important to keep the active lists LRU_ACTIVE higher in
 192 * the array than the corresponding inactive lists, and to keep
 193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 194 *
 195 * This has to be kept in sync with the statistics in zone_stat_item
 196 * above and the descriptions in vmstat_text in mm/vmstat.c
 197 */
 198#define LRU_BASE 0
 199#define LRU_ACTIVE 1
 200#define LRU_FILE 2
 201
 202enum lru_list {
 203        LRU_INACTIVE_ANON = LRU_BASE,
 204        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 205        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 206        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 207        LRU_UNEVICTABLE,
 208        NR_LRU_LISTS
 209};
 210
 211#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 212
 213#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 214
 215static inline int is_file_lru(enum lru_list lru)
 216{
 217        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 218}
 219
 220static inline int is_active_lru(enum lru_list lru)
 221{
 222        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 223}
 224
 225struct zone_reclaim_stat {
 226        /*
 227         * The pageout code in vmscan.c keeps track of how many of the
 228         * mem/swap backed and file backed pages are referenced.
 229         * The higher the rotated/scanned ratio, the more valuable
 230         * that cache is.
 231         *
 232         * The anon LRU stats live in [0], file LRU stats in [1]
 233         */
 234        unsigned long           recent_rotated[2];
 235        unsigned long           recent_scanned[2];
 236};
 237
 238struct lruvec {
 239        struct list_head                lists[NR_LRU_LISTS];
 240        struct zone_reclaim_stat        reclaim_stat;
 241        /* Evictions & activations on the inactive file list */
 242        atomic_long_t                   inactive_age;
 243        /* Refaults at the time of last reclaim cycle */
 244        unsigned long                   refaults;
 245#ifdef CONFIG_MEMCG
 246        struct pglist_data *pgdat;
 247#endif
 248};
 249
 250/* Mask used at gathering information at once (see memcontrol.c) */
 251#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 252#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 253#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 254
 255/* Isolate unmapped file */
 256#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 257/* Isolate for asynchronous migration */
 258#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 259/* Isolate unevictable pages */
 260#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 261
 262/* LRU Isolation modes. */
 263typedef unsigned __bitwise isolate_mode_t;
 264
 265enum zone_watermarks {
 266        WMARK_MIN,
 267        WMARK_LOW,
 268        WMARK_HIGH,
 269        NR_WMARK
 270};
 271
 272#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 273#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 274#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 275#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 276
 277struct per_cpu_pages {
 278        int count;              /* number of pages in the list */
 279        int high;               /* high watermark, emptying needed */
 280        int batch;              /* chunk size for buddy add/remove */
 281
 282        /* Lists of pages, one per migrate type stored on the pcp-lists */
 283        struct list_head lists[MIGRATE_PCPTYPES];
 284};
 285
 286struct per_cpu_pageset {
 287        struct per_cpu_pages pcp;
 288#ifdef CONFIG_NUMA
 289        s8 expire;
 290        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 291#endif
 292#ifdef CONFIG_SMP
 293        s8 stat_threshold;
 294        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 295#endif
 296};
 297
 298struct per_cpu_nodestat {
 299        s8 stat_threshold;
 300        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 301};
 302
 303#endif /* !__GENERATING_BOUNDS.H */
 304
 305enum zone_type {
 306#ifdef CONFIG_ZONE_DMA
 307        /*
 308         * ZONE_DMA is used when there are devices that are not able
 309         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 310         * carve out the portion of memory that is needed for these devices.
 311         * The range is arch specific.
 312         *
 313         * Some examples
 314         *
 315         * Architecture         Limit
 316         * ---------------------------
 317         * parisc, ia64, sparc  <4G
 318         * s390, powerpc        <2G
 319         * arm                  Various
 320         * alpha                Unlimited or 0-16MB.
 321         *
 322         * i386, x86_64 and multiple other arches
 323         *                      <16M.
 324         */
 325        ZONE_DMA,
 326#endif
 327#ifdef CONFIG_ZONE_DMA32
 328        /*
 329         * x86_64 needs two ZONE_DMAs because it supports devices that are
 330         * only able to do DMA to the lower 16M but also 32 bit devices that
 331         * can only do DMA areas below 4G.
 332         */
 333        ZONE_DMA32,
 334#endif
 335        /*
 336         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 337         * performed on pages in ZONE_NORMAL if the DMA devices support
 338         * transfers to all addressable memory.
 339         */
 340        ZONE_NORMAL,
 341#ifdef CONFIG_HIGHMEM
 342        /*
 343         * A memory area that is only addressable by the kernel through
 344         * mapping portions into its own address space. This is for example
 345         * used by i386 to allow the kernel to address the memory beyond
 346         * 900MB. The kernel will set up special mappings (page
 347         * table entries on i386) for each page that the kernel needs to
 348         * access.
 349         */
 350        ZONE_HIGHMEM,
 351#endif
 352        ZONE_MOVABLE,
 353#ifdef CONFIG_ZONE_DEVICE
 354        ZONE_DEVICE,
 355#endif
 356        __MAX_NR_ZONES
 357
 358};
 359
 360#ifndef __GENERATING_BOUNDS_H
 361
 362struct zone {
 363        /* Read-mostly fields */
 364
 365        /* zone watermarks, access with *_wmark_pages(zone) macros */
 366        unsigned long _watermark[NR_WMARK];
 367        unsigned long watermark_boost;
 368
 369        unsigned long nr_reserved_highatomic;
 370
 371        /*
 372         * We don't know if the memory that we're going to allocate will be
 373         * freeable or/and it will be released eventually, so to avoid totally
 374         * wasting several GB of ram we must reserve some of the lower zone
 375         * memory (otherwise we risk to run OOM on the lower zones despite
 376         * there being tons of freeable ram on the higher zones).  This array is
 377         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 378         * changes.
 379         */
 380        long lowmem_reserve[MAX_NR_ZONES];
 381
 382#ifdef CONFIG_NUMA
 383        int node;
 384#endif
 385        struct pglist_data      *zone_pgdat;
 386        struct per_cpu_pageset __percpu *pageset;
 387
 388#ifndef CONFIG_SPARSEMEM
 389        /*
 390         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 391         * In SPARSEMEM, this map is stored in struct mem_section
 392         */
 393        unsigned long           *pageblock_flags;
 394#endif /* CONFIG_SPARSEMEM */
 395
 396        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 397        unsigned long           zone_start_pfn;
 398
 399        /*
 400         * spanned_pages is the total pages spanned by the zone, including
 401         * holes, which is calculated as:
 402         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 403         *
 404         * present_pages is physical pages existing within the zone, which
 405         * is calculated as:
 406         *      present_pages = spanned_pages - absent_pages(pages in holes);
 407         *
 408         * managed_pages is present pages managed by the buddy system, which
 409         * is calculated as (reserved_pages includes pages allocated by the
 410         * bootmem allocator):
 411         *      managed_pages = present_pages - reserved_pages;
 412         *
 413         * So present_pages may be used by memory hotplug or memory power
 414         * management logic to figure out unmanaged pages by checking
 415         * (present_pages - managed_pages). And managed_pages should be used
 416         * by page allocator and vm scanner to calculate all kinds of watermarks
 417         * and thresholds.
 418         *
 419         * Locking rules:
 420         *
 421         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 422         * It is a seqlock because it has to be read outside of zone->lock,
 423         * and it is done in the main allocator path.  But, it is written
 424         * quite infrequently.
 425         *
 426         * The span_seq lock is declared along with zone->lock because it is
 427         * frequently read in proximity to zone->lock.  It's good to
 428         * give them a chance of being in the same cacheline.
 429         *
 430         * Write access to present_pages at runtime should be protected by
 431         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 432         * present_pages should get_online_mems() to get a stable value.
 433         */
 434        atomic_long_t           managed_pages;
 435        unsigned long           spanned_pages;
 436        unsigned long           present_pages;
 437
 438        const char              *name;
 439
 440#ifdef CONFIG_MEMORY_ISOLATION
 441        /*
 442         * Number of isolated pageblock. It is used to solve incorrect
 443         * freepage counting problem due to racy retrieving migratetype
 444         * of pageblock. Protected by zone->lock.
 445         */
 446        unsigned long           nr_isolate_pageblock;
 447#endif
 448
 449#ifdef CONFIG_MEMORY_HOTPLUG
 450        /* see spanned/present_pages for more description */
 451        seqlock_t               span_seqlock;
 452#endif
 453
 454        int initialized;
 455
 456        /* Write-intensive fields used from the page allocator */
 457        ZONE_PADDING(_pad1_)
 458
 459        /* free areas of different sizes */
 460        struct free_area        free_area[MAX_ORDER];
 461
 462        /* zone flags, see below */
 463        unsigned long           flags;
 464
 465        /* Primarily protects free_area */
 466        spinlock_t              lock;
 467
 468        /* Write-intensive fields used by compaction and vmstats. */
 469        ZONE_PADDING(_pad2_)
 470
 471        /*
 472         * When free pages are below this point, additional steps are taken
 473         * when reading the number of free pages to avoid per-cpu counter
 474         * drift allowing watermarks to be breached
 475         */
 476        unsigned long percpu_drift_mark;
 477
 478#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 479        /* pfn where compaction free scanner should start */
 480        unsigned long           compact_cached_free_pfn;
 481        /* pfn where async and sync compaction migration scanner should start */
 482        unsigned long           compact_cached_migrate_pfn[2];
 483        unsigned long           compact_init_migrate_pfn;
 484        unsigned long           compact_init_free_pfn;
 485#endif
 486
 487#ifdef CONFIG_COMPACTION
 488        /*
 489         * On compaction failure, 1<<compact_defer_shift compactions
 490         * are skipped before trying again. The number attempted since
 491         * last failure is tracked with compact_considered.
 492         */
 493        unsigned int            compact_considered;
 494        unsigned int            compact_defer_shift;
 495        int                     compact_order_failed;
 496#endif
 497
 498#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 499        /* Set to true when the PG_migrate_skip bits should be cleared */
 500        bool                    compact_blockskip_flush;
 501#endif
 502
 503        bool                    contiguous;
 504
 505        ZONE_PADDING(_pad3_)
 506        /* Zone statistics */
 507        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 508        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 509} ____cacheline_internodealigned_in_smp;
 510
 511enum pgdat_flags {
 512        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 513                                         * a congested BDI
 514                                         */
 515        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 516                                         * many dirty file pages at the tail
 517                                         * of the LRU.
 518                                         */
 519        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 520                                         * many pages under writeback
 521                                         */
 522        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 523};
 524
 525enum zone_flags {
 526        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 527                                         * Cleared when kswapd is woken.
 528                                         */
 529};
 530
 531static inline unsigned long zone_managed_pages(struct zone *zone)
 532{
 533        return (unsigned long)atomic_long_read(&zone->managed_pages);
 534}
 535
 536static inline unsigned long zone_end_pfn(const struct zone *zone)
 537{
 538        return zone->zone_start_pfn + zone->spanned_pages;
 539}
 540
 541static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 542{
 543        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 544}
 545
 546static inline bool zone_is_initialized(struct zone *zone)
 547{
 548        return zone->initialized;
 549}
 550
 551static inline bool zone_is_empty(struct zone *zone)
 552{
 553        return zone->spanned_pages == 0;
 554}
 555
 556/*
 557 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 558 * intersection with the given zone
 559 */
 560static inline bool zone_intersects(struct zone *zone,
 561                unsigned long start_pfn, unsigned long nr_pages)
 562{
 563        if (zone_is_empty(zone))
 564                return false;
 565        if (start_pfn >= zone_end_pfn(zone) ||
 566            start_pfn + nr_pages <= zone->zone_start_pfn)
 567                return false;
 568
 569        return true;
 570}
 571
 572/*
 573 * The "priority" of VM scanning is how much of the queues we will scan in one
 574 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 575 * queues ("queue_length >> 12") during an aging round.
 576 */
 577#define DEF_PRIORITY 12
 578
 579/* Maximum number of zones on a zonelist */
 580#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 581
 582enum {
 583        ZONELIST_FALLBACK,      /* zonelist with fallback */
 584#ifdef CONFIG_NUMA
 585        /*
 586         * The NUMA zonelists are doubled because we need zonelists that
 587         * restrict the allocations to a single node for __GFP_THISNODE.
 588         */
 589        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 590#endif
 591        MAX_ZONELISTS
 592};
 593
 594/*
 595 * This struct contains information about a zone in a zonelist. It is stored
 596 * here to avoid dereferences into large structures and lookups of tables
 597 */
 598struct zoneref {
 599        struct zone *zone;      /* Pointer to actual zone */
 600        int zone_idx;           /* zone_idx(zoneref->zone) */
 601};
 602
 603/*
 604 * One allocation request operates on a zonelist. A zonelist
 605 * is a list of zones, the first one is the 'goal' of the
 606 * allocation, the other zones are fallback zones, in decreasing
 607 * priority.
 608 *
 609 * To speed the reading of the zonelist, the zonerefs contain the zone index
 610 * of the entry being read. Helper functions to access information given
 611 * a struct zoneref are
 612 *
 613 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 614 * zonelist_zone_idx()  - Return the index of the zone for an entry
 615 * zonelist_node_idx()  - Return the index of the node for an entry
 616 */
 617struct zonelist {
 618        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 619};
 620
 621#ifndef CONFIG_DISCONTIGMEM
 622/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 623extern struct page *mem_map;
 624#endif
 625
 626/*
 627 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 628 * it's memory layout. On UMA machines there is a single pglist_data which
 629 * describes the whole memory.
 630 *
 631 * Memory statistics and page replacement data structures are maintained on a
 632 * per-zone basis.
 633 */
 634struct bootmem_data;
 635typedef struct pglist_data {
 636        struct zone node_zones[MAX_NR_ZONES];
 637        struct zonelist node_zonelists[MAX_ZONELISTS];
 638        int nr_zones;
 639#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 640        struct page *node_mem_map;
 641#ifdef CONFIG_PAGE_EXTENSION
 642        struct page_ext *node_page_ext;
 643#endif
 644#endif
 645#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 646        /*
 647         * Must be held any time you expect node_start_pfn,
 648         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 649         *
 650         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 651         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 652         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 653         *
 654         * Nests above zone->lock and zone->span_seqlock
 655         */
 656        spinlock_t node_size_lock;
 657#endif
 658        unsigned long node_start_pfn;
 659        unsigned long node_present_pages; /* total number of physical pages */
 660        unsigned long node_spanned_pages; /* total size of physical page
 661                                             range, including holes */
 662        int node_id;
 663        wait_queue_head_t kswapd_wait;
 664        wait_queue_head_t pfmemalloc_wait;
 665        struct task_struct *kswapd;     /* Protected by
 666                                           mem_hotplug_begin/end() */
 667        int kswapd_order;
 668        enum zone_type kswapd_classzone_idx;
 669
 670        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 671
 672#ifdef CONFIG_COMPACTION
 673        int kcompactd_max_order;
 674        enum zone_type kcompactd_classzone_idx;
 675        wait_queue_head_t kcompactd_wait;
 676        struct task_struct *kcompactd;
 677#endif
 678        /*
 679         * This is a per-node reserve of pages that are not available
 680         * to userspace allocations.
 681         */
 682        unsigned long           totalreserve_pages;
 683
 684#ifdef CONFIG_NUMA
 685        /*
 686         * zone reclaim becomes active if more unmapped pages exist.
 687         */
 688        unsigned long           min_unmapped_pages;
 689        unsigned long           min_slab_pages;
 690#endif /* CONFIG_NUMA */
 691
 692        /* Write-intensive fields used by page reclaim */
 693        ZONE_PADDING(_pad1_)
 694        spinlock_t              lru_lock;
 695
 696#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 697        /*
 698         * If memory initialisation on large machines is deferred then this
 699         * is the first PFN that needs to be initialised.
 700         */
 701        unsigned long first_deferred_pfn;
 702#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 703
 704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 705        spinlock_t split_queue_lock;
 706        struct list_head split_queue;
 707        unsigned long split_queue_len;
 708#endif
 709
 710        /* Fields commonly accessed by the page reclaim scanner */
 711        struct lruvec           lruvec;
 712
 713        unsigned long           flags;
 714
 715        ZONE_PADDING(_pad2_)
 716
 717        /* Per-node vmstats */
 718        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 719        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 720} pg_data_t;
 721
 722#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 723#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 724#ifdef CONFIG_FLAT_NODE_MEM_MAP
 725#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 726#else
 727#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 728#endif
 729#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 730
 731#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 732#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 733
 734static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 735{
 736        return &pgdat->lruvec;
 737}
 738
 739static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 740{
 741        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 742}
 743
 744static inline bool pgdat_is_empty(pg_data_t *pgdat)
 745{
 746        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 747}
 748
 749#include <linux/memory_hotplug.h>
 750
 751void build_all_zonelists(pg_data_t *pgdat);
 752void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 753                   enum zone_type classzone_idx);
 754bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 755                         int classzone_idx, unsigned int alloc_flags,
 756                         long free_pages);
 757bool zone_watermark_ok(struct zone *z, unsigned int order,
 758                unsigned long mark, int classzone_idx,
 759                unsigned int alloc_flags);
 760bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 761                unsigned long mark, int classzone_idx);
 762enum memmap_context {
 763        MEMMAP_EARLY,
 764        MEMMAP_HOTPLUG,
 765};
 766extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 767                                     unsigned long size);
 768
 769extern void lruvec_init(struct lruvec *lruvec);
 770
 771static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 772{
 773#ifdef CONFIG_MEMCG
 774        return lruvec->pgdat;
 775#else
 776        return container_of(lruvec, struct pglist_data, lruvec);
 777#endif
 778}
 779
 780extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 781
 782#ifdef CONFIG_HAVE_MEMORY_PRESENT
 783void memory_present(int nid, unsigned long start, unsigned long end);
 784#else
 785static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 786#endif
 787
 788#if defined(CONFIG_SPARSEMEM)
 789void memblocks_present(void);
 790#else
 791static inline void memblocks_present(void) {}
 792#endif
 793
 794#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 795int local_memory_node(int node_id);
 796#else
 797static inline int local_memory_node(int node_id) { return node_id; };
 798#endif
 799
 800/*
 801 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 802 */
 803#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 804
 805#ifdef CONFIG_ZONE_DEVICE
 806static inline bool is_dev_zone(const struct zone *zone)
 807{
 808        return zone_idx(zone) == ZONE_DEVICE;
 809}
 810#else
 811static inline bool is_dev_zone(const struct zone *zone)
 812{
 813        return false;
 814}
 815#endif
 816
 817/*
 818 * Returns true if a zone has pages managed by the buddy allocator.
 819 * All the reclaim decisions have to use this function rather than
 820 * populated_zone(). If the whole zone is reserved then we can easily
 821 * end up with populated_zone() && !managed_zone().
 822 */
 823static inline bool managed_zone(struct zone *zone)
 824{
 825        return zone_managed_pages(zone);
 826}
 827
 828/* Returns true if a zone has memory */
 829static inline bool populated_zone(struct zone *zone)
 830{
 831        return zone->present_pages;
 832}
 833
 834#ifdef CONFIG_NUMA
 835static inline int zone_to_nid(struct zone *zone)
 836{
 837        return zone->node;
 838}
 839
 840static inline void zone_set_nid(struct zone *zone, int nid)
 841{
 842        zone->node = nid;
 843}
 844#else
 845static inline int zone_to_nid(struct zone *zone)
 846{
 847        return 0;
 848}
 849
 850static inline void zone_set_nid(struct zone *zone, int nid) {}
 851#endif
 852
 853extern int movable_zone;
 854
 855#ifdef CONFIG_HIGHMEM
 856static inline int zone_movable_is_highmem(void)
 857{
 858#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 859        return movable_zone == ZONE_HIGHMEM;
 860#else
 861        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 862#endif
 863}
 864#endif
 865
 866static inline int is_highmem_idx(enum zone_type idx)
 867{
 868#ifdef CONFIG_HIGHMEM
 869        return (idx == ZONE_HIGHMEM ||
 870                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 871#else
 872        return 0;
 873#endif
 874}
 875
 876/**
 877 * is_highmem - helper function to quickly check if a struct zone is a
 878 *              highmem zone or not.  This is an attempt to keep references
 879 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 880 * @zone - pointer to struct zone variable
 881 */
 882static inline int is_highmem(struct zone *zone)
 883{
 884#ifdef CONFIG_HIGHMEM
 885        return is_highmem_idx(zone_idx(zone));
 886#else
 887        return 0;
 888#endif
 889}
 890
 891/* These two functions are used to setup the per zone pages min values */
 892struct ctl_table;
 893int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 894                                        void __user *, size_t *, loff_t *);
 895int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
 896                                        void __user *, size_t *, loff_t *);
 897int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 898                                        void __user *, size_t *, loff_t *);
 899extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 900int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 901                                        void __user *, size_t *, loff_t *);
 902int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 903                                        void __user *, size_t *, loff_t *);
 904int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 905                        void __user *, size_t *, loff_t *);
 906int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 907                        void __user *, size_t *, loff_t *);
 908
 909extern int numa_zonelist_order_handler(struct ctl_table *, int,
 910                        void __user *, size_t *, loff_t *);
 911extern char numa_zonelist_order[];
 912#define NUMA_ZONELIST_ORDER_LEN 16
 913
 914#ifndef CONFIG_NEED_MULTIPLE_NODES
 915
 916extern struct pglist_data contig_page_data;
 917#define NODE_DATA(nid)          (&contig_page_data)
 918#define NODE_MEM_MAP(nid)       mem_map
 919
 920#else /* CONFIG_NEED_MULTIPLE_NODES */
 921
 922#include <asm/mmzone.h>
 923
 924#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 925
 926extern struct pglist_data *first_online_pgdat(void);
 927extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 928extern struct zone *next_zone(struct zone *zone);
 929
 930/**
 931 * for_each_online_pgdat - helper macro to iterate over all online nodes
 932 * @pgdat - pointer to a pg_data_t variable
 933 */
 934#define for_each_online_pgdat(pgdat)                    \
 935        for (pgdat = first_online_pgdat();              \
 936             pgdat;                                     \
 937             pgdat = next_online_pgdat(pgdat))
 938/**
 939 * for_each_zone - helper macro to iterate over all memory zones
 940 * @zone - pointer to struct zone variable
 941 *
 942 * The user only needs to declare the zone variable, for_each_zone
 943 * fills it in.
 944 */
 945#define for_each_zone(zone)                             \
 946        for (zone = (first_online_pgdat())->node_zones; \
 947             zone;                                      \
 948             zone = next_zone(zone))
 949
 950#define for_each_populated_zone(zone)                   \
 951        for (zone = (first_online_pgdat())->node_zones; \
 952             zone;                                      \
 953             zone = next_zone(zone))                    \
 954                if (!populated_zone(zone))              \
 955                        ; /* do nothing */              \
 956                else
 957
 958static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 959{
 960        return zoneref->zone;
 961}
 962
 963static inline int zonelist_zone_idx(struct zoneref *zoneref)
 964{
 965        return zoneref->zone_idx;
 966}
 967
 968static inline int zonelist_node_idx(struct zoneref *zoneref)
 969{
 970        return zone_to_nid(zoneref->zone);
 971}
 972
 973struct zoneref *__next_zones_zonelist(struct zoneref *z,
 974                                        enum zone_type highest_zoneidx,
 975                                        nodemask_t *nodes);
 976
 977/**
 978 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 979 * @z - The cursor used as a starting point for the search
 980 * @highest_zoneidx - The zone index of the highest zone to return
 981 * @nodes - An optional nodemask to filter the zonelist with
 982 *
 983 * This function returns the next zone at or below a given zone index that is
 984 * within the allowed nodemask using a cursor as the starting point for the
 985 * search. The zoneref returned is a cursor that represents the current zone
 986 * being examined. It should be advanced by one before calling
 987 * next_zones_zonelist again.
 988 */
 989static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 990                                        enum zone_type highest_zoneidx,
 991                                        nodemask_t *nodes)
 992{
 993        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 994                return z;
 995        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 996}
 997
 998/**
 999 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1000 * @zonelist - The zonelist to search for a suitable zone
1001 * @highest_zoneidx - The zone index of the highest zone to return
1002 * @nodes - An optional nodemask to filter the zonelist with
1003 * @return - Zoneref pointer for the first suitable zone found (see below)
1004 *
1005 * This function returns the first zone at or below a given zone index that is
1006 * within the allowed nodemask. The zoneref returned is a cursor that can be
1007 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1008 * one before calling.
1009 *
1010 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1011 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1012 * update due to cpuset modification.
1013 */
1014static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1015                                        enum zone_type highest_zoneidx,
1016                                        nodemask_t *nodes)
1017{
1018        return next_zones_zonelist(zonelist->_zonerefs,
1019                                                        highest_zoneidx, nodes);
1020}
1021
1022/**
1023 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1024 * @zone - The current zone in the iterator
1025 * @z - The current pointer within zonelist->zones being iterated
1026 * @zlist - The zonelist being iterated
1027 * @highidx - The zone index of the highest zone to return
1028 * @nodemask - Nodemask allowed by the allocator
1029 *
1030 * This iterator iterates though all zones at or below a given zone index and
1031 * within a given nodemask
1032 */
1033#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1035                zone;                                                   \
1036                z = next_zones_zonelist(++z, highidx, nodemask),        \
1037                        zone = zonelist_zone(z))
1038
1039#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1040        for (zone = z->zone;    \
1041                zone;                                                   \
1042                z = next_zones_zonelist(++z, highidx, nodemask),        \
1043                        zone = zonelist_zone(z))
1044
1045
1046/**
1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1048 * @zone - The current zone in the iterator
1049 * @z - The current pointer within zonelist->zones being iterated
1050 * @zlist - The zonelist being iterated
1051 * @highidx - The zone index of the highest zone to return
1052 *
1053 * This iterator iterates though all zones at or below a given zone index.
1054 */
1055#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1056        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057
1058#ifdef CONFIG_SPARSEMEM
1059#include <asm/sparsemem.h>
1060#endif
1061
1062#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1063        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1064static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065{
1066        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1067        return 0;
1068}
1069#endif
1070
1071#ifdef CONFIG_FLATMEM
1072#define pfn_to_nid(pfn)         (0)
1073#endif
1074
1075#ifdef CONFIG_SPARSEMEM
1076
1077/*
1078 * SECTION_SHIFT                #bits space required to store a section #
1079 *
1080 * PA_SECTION_SHIFT             physical address to/from section number
1081 * PFN_SECTION_SHIFT            pfn to/from section number
1082 */
1083#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1084#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1085
1086#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1087
1088#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1089#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1090
1091#define SECTION_BLOCKFLAGS_BITS \
1092        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1093
1094#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1095#error Allocator MAX_ORDER exceeds SECTION_SIZE
1096#endif
1097
1098static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1099{
1100        return pfn >> PFN_SECTION_SHIFT;
1101}
1102static inline unsigned long section_nr_to_pfn(unsigned long sec)
1103{
1104        return sec << PFN_SECTION_SHIFT;
1105}
1106
1107#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1108#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1109
1110struct page;
1111struct page_ext;
1112struct mem_section {
1113        /*
1114         * This is, logically, a pointer to an array of struct
1115         * pages.  However, it is stored with some other magic.
1116         * (see sparse.c::sparse_init_one_section())
1117         *
1118         * Additionally during early boot we encode node id of
1119         * the location of the section here to guide allocation.
1120         * (see sparse.c::memory_present())
1121         *
1122         * Making it a UL at least makes someone do a cast
1123         * before using it wrong.
1124         */
1125        unsigned long section_mem_map;
1126
1127        /* See declaration of similar field in struct zone */
1128        unsigned long *pageblock_flags;
1129#ifdef CONFIG_PAGE_EXTENSION
1130        /*
1131         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1132         * section. (see page_ext.h about this.)
1133         */
1134        struct page_ext *page_ext;
1135        unsigned long pad;
1136#endif
1137        /*
1138         * WARNING: mem_section must be a power-of-2 in size for the
1139         * calculation and use of SECTION_ROOT_MASK to make sense.
1140         */
1141};
1142
1143#ifdef CONFIG_SPARSEMEM_EXTREME
1144#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1145#else
1146#define SECTIONS_PER_ROOT       1
1147#endif
1148
1149#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1150#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1151#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1152
1153#ifdef CONFIG_SPARSEMEM_EXTREME
1154extern struct mem_section **mem_section;
1155#else
1156extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1157#endif
1158
1159static inline struct mem_section *__nr_to_section(unsigned long nr)
1160{
1161#ifdef CONFIG_SPARSEMEM_EXTREME
1162        if (!mem_section)
1163                return NULL;
1164#endif
1165        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1166                return NULL;
1167        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1168}
1169extern int __section_nr(struct mem_section* ms);
1170extern unsigned long usemap_size(void);
1171
1172/*
1173 * We use the lower bits of the mem_map pointer to store
1174 * a little bit of information.  The pointer is calculated
1175 * as mem_map - section_nr_to_pfn(pnum).  The result is
1176 * aligned to the minimum alignment of the two values:
1177 *   1. All mem_map arrays are page-aligned.
1178 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1179 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1180 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1181 *      worst combination is powerpc with 256k pages,
1182 *      which results in PFN_SECTION_SHIFT equal 6.
1183 * To sum it up, at least 6 bits are available.
1184 */
1185#define SECTION_MARKED_PRESENT  (1UL<<0)
1186#define SECTION_HAS_MEM_MAP     (1UL<<1)
1187#define SECTION_IS_ONLINE       (1UL<<2)
1188#define SECTION_MAP_LAST_BIT    (1UL<<3)
1189#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1190#define SECTION_NID_SHIFT       3
1191
1192static inline struct page *__section_mem_map_addr(struct mem_section *section)
1193{
1194        unsigned long map = section->section_mem_map;
1195        map &= SECTION_MAP_MASK;
1196        return (struct page *)map;
1197}
1198
1199static inline int present_section(struct mem_section *section)
1200{
1201        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1202}
1203
1204static inline int present_section_nr(unsigned long nr)
1205{
1206        return present_section(__nr_to_section(nr));
1207}
1208
1209static inline int valid_section(struct mem_section *section)
1210{
1211        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1212}
1213
1214static inline int valid_section_nr(unsigned long nr)
1215{
1216        return valid_section(__nr_to_section(nr));
1217}
1218
1219static inline int online_section(struct mem_section *section)
1220{
1221        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1222}
1223
1224static inline int online_section_nr(unsigned long nr)
1225{
1226        return online_section(__nr_to_section(nr));
1227}
1228
1229#ifdef CONFIG_MEMORY_HOTPLUG
1230void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1231#ifdef CONFIG_MEMORY_HOTREMOVE
1232void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1233#endif
1234#endif
1235
1236static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1237{
1238        return __nr_to_section(pfn_to_section_nr(pfn));
1239}
1240
1241extern int __highest_present_section_nr;
1242
1243#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1244static inline int pfn_valid(unsigned long pfn)
1245{
1246        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1247                return 0;
1248        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1249}
1250#endif
1251
1252static inline int pfn_present(unsigned long pfn)
1253{
1254        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1255                return 0;
1256        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1257}
1258
1259/*
1260 * These are _only_ used during initialisation, therefore they
1261 * can use __initdata ...  They could have names to indicate
1262 * this restriction.
1263 */
1264#ifdef CONFIG_NUMA
1265#define pfn_to_nid(pfn)                                                 \
1266({                                                                      \
1267        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1268        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1269})
1270#else
1271#define pfn_to_nid(pfn)         (0)
1272#endif
1273
1274#define early_pfn_valid(pfn)    pfn_valid(pfn)
1275void sparse_init(void);
1276#else
1277#define sparse_init()   do {} while (0)
1278#define sparse_index_init(_sec, _nid)  do {} while (0)
1279#endif /* CONFIG_SPARSEMEM */
1280
1281/*
1282 * During memory init memblocks map pfns to nids. The search is expensive and
1283 * this caches recent lookups. The implementation of __early_pfn_to_nid
1284 * may treat start/end as pfns or sections.
1285 */
1286struct mminit_pfnnid_cache {
1287        unsigned long last_start;
1288        unsigned long last_end;
1289        int last_nid;
1290};
1291
1292#ifndef early_pfn_valid
1293#define early_pfn_valid(pfn)    (1)
1294#endif
1295
1296void memory_present(int nid, unsigned long start, unsigned long end);
1297
1298/*
1299 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1300 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1301 * pfn_valid_within() should be used in this case; we optimise this away
1302 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1303 */
1304#ifdef CONFIG_HOLES_IN_ZONE
1305#define pfn_valid_within(pfn) pfn_valid(pfn)
1306#else
1307#define pfn_valid_within(pfn) (1)
1308#endif
1309
1310#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1311/*
1312 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1313 * associated with it or not. This means that a struct page exists for this
1314 * pfn. The caller cannot assume the page is fully initialized in general.
1315 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1316 * will ensure the struct page is fully online and initialized. Special pages
1317 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1318 *
1319 * In FLATMEM, it is expected that holes always have valid memmap as long as
1320 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1321 * that a valid section has a memmap for the entire section.
1322 *
1323 * However, an ARM, and maybe other embedded architectures in the future
1324 * free memmap backing holes to save memory on the assumption the memmap is
1325 * never used. The page_zone linkages are then broken even though pfn_valid()
1326 * returns true. A walker of the full memmap must then do this additional
1327 * check to ensure the memmap they are looking at is sane by making sure
1328 * the zone and PFN linkages are still valid. This is expensive, but walkers
1329 * of the full memmap are extremely rare.
1330 */
1331bool memmap_valid_within(unsigned long pfn,
1332                                        struct page *page, struct zone *zone);
1333#else
1334static inline bool memmap_valid_within(unsigned long pfn,
1335                                        struct page *page, struct zone *zone)
1336{
1337        return true;
1338}
1339#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1340
1341#endif /* !__GENERATING_BOUNDS.H */
1342#endif /* !__ASSEMBLY__ */
1343#endif /* _LINUX_MMZONE_H */
1344