linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/workqueue.h>
  39#include <linux/dynamic_queue_limits.h>
  40
  41#include <linux/ethtool.h>
  42#include <net/net_namespace.h>
  43#ifdef CONFIG_DCB
  44#include <net/dcbnl.h>
  45#endif
  46#include <net/netprio_cgroup.h>
  47#include <net/xdp.h>
  48
  49#include <linux/netdev_features.h>
  50#include <linux/neighbour.h>
  51#include <uapi/linux/netdevice.h>
  52#include <uapi/linux/if_bonding.h>
  53#include <uapi/linux/pkt_cls.h>
  54#include <linux/hashtable.h>
  55
  56struct netpoll_info;
  57struct device;
  58struct phy_device;
  59struct dsa_port;
  60
  61struct sfp_bus;
  62/* 802.11 specific */
  63struct wireless_dev;
  64/* 802.15.4 specific */
  65struct wpan_dev;
  66struct mpls_dev;
  67/* UDP Tunnel offloads */
  68struct udp_tunnel_info;
  69struct bpf_prog;
  70struct xdp_buff;
  71
  72void netdev_set_default_ethtool_ops(struct net_device *dev,
  73                                    const struct ethtool_ops *ops);
  74
  75/* Backlog congestion levels */
  76#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  77#define NET_RX_DROP             1       /* packet dropped */
  78
  79/*
  80 * Transmit return codes: transmit return codes originate from three different
  81 * namespaces:
  82 *
  83 * - qdisc return codes
  84 * - driver transmit return codes
  85 * - errno values
  86 *
  87 * Drivers are allowed to return any one of those in their hard_start_xmit()
  88 * function. Real network devices commonly used with qdiscs should only return
  89 * the driver transmit return codes though - when qdiscs are used, the actual
  90 * transmission happens asynchronously, so the value is not propagated to
  91 * higher layers. Virtual network devices transmit synchronously; in this case
  92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  93 * others are propagated to higher layers.
  94 */
  95
  96/* qdisc ->enqueue() return codes. */
  97#define NET_XMIT_SUCCESS        0x00
  98#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  99#define NET_XMIT_CN             0x02    /* congestion notification      */
 100#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 101
 102/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 103 * indicates that the device will soon be dropping packets, or already drops
 104 * some packets of the same priority; prompting us to send less aggressively. */
 105#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 106#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 107
 108/* Driver transmit return codes */
 109#define NETDEV_TX_MASK          0xf0
 110
 111enum netdev_tx {
 112        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 113        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 114        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 115};
 116typedef enum netdev_tx netdev_tx_t;
 117
 118/*
 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 121 */
 122static inline bool dev_xmit_complete(int rc)
 123{
 124        /*
 125         * Positive cases with an skb consumed by a driver:
 126         * - successful transmission (rc == NETDEV_TX_OK)
 127         * - error while transmitting (rc < 0)
 128         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 129         */
 130        if (likely(rc < NET_XMIT_MASK))
 131                return true;
 132
 133        return false;
 134}
 135
 136/*
 137 *      Compute the worst-case header length according to the protocols
 138 *      used.
 139 */
 140
 141#if defined(CONFIG_HYPERV_NET)
 142# define LL_MAX_HEADER 128
 143#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 144# if defined(CONFIG_MAC80211_MESH)
 145#  define LL_MAX_HEADER 128
 146# else
 147#  define LL_MAX_HEADER 96
 148# endif
 149#else
 150# define LL_MAX_HEADER 32
 151#endif
 152
 153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 154    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 155#define MAX_HEADER LL_MAX_HEADER
 156#else
 157#define MAX_HEADER (LL_MAX_HEADER + 48)
 158#endif
 159
 160/*
 161 *      Old network device statistics. Fields are native words
 162 *      (unsigned long) so they can be read and written atomically.
 163 */
 164
 165struct net_device_stats {
 166        unsigned long   rx_packets;
 167        unsigned long   tx_packets;
 168        unsigned long   rx_bytes;
 169        unsigned long   tx_bytes;
 170        unsigned long   rx_errors;
 171        unsigned long   tx_errors;
 172        unsigned long   rx_dropped;
 173        unsigned long   tx_dropped;
 174        unsigned long   multicast;
 175        unsigned long   collisions;
 176        unsigned long   rx_length_errors;
 177        unsigned long   rx_over_errors;
 178        unsigned long   rx_crc_errors;
 179        unsigned long   rx_frame_errors;
 180        unsigned long   rx_fifo_errors;
 181        unsigned long   rx_missed_errors;
 182        unsigned long   tx_aborted_errors;
 183        unsigned long   tx_carrier_errors;
 184        unsigned long   tx_fifo_errors;
 185        unsigned long   tx_heartbeat_errors;
 186        unsigned long   tx_window_errors;
 187        unsigned long   rx_compressed;
 188        unsigned long   tx_compressed;
 189};
 190
 191
 192#include <linux/cache.h>
 193#include <linux/skbuff.h>
 194
 195#ifdef CONFIG_RPS
 196#include <linux/static_key.h>
 197extern struct static_key rps_needed;
 198extern struct static_key rfs_needed;
 199#endif
 200
 201struct neighbour;
 202struct neigh_parms;
 203struct sk_buff;
 204
 205struct netdev_hw_addr {
 206        struct list_head        list;
 207        unsigned char           addr[MAX_ADDR_LEN];
 208        unsigned char           type;
 209#define NETDEV_HW_ADDR_T_LAN            1
 210#define NETDEV_HW_ADDR_T_SAN            2
 211#define NETDEV_HW_ADDR_T_SLAVE          3
 212#define NETDEV_HW_ADDR_T_UNICAST        4
 213#define NETDEV_HW_ADDR_T_MULTICAST      5
 214        bool                    global_use;
 215        int                     sync_cnt;
 216        int                     refcount;
 217        int                     synced;
 218        struct rcu_head         rcu_head;
 219};
 220
 221struct netdev_hw_addr_list {
 222        struct list_head        list;
 223        int                     count;
 224};
 225
 226#define netdev_hw_addr_list_count(l) ((l)->count)
 227#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 228#define netdev_hw_addr_list_for_each(ha, l) \
 229        list_for_each_entry(ha, &(l)->list, list)
 230
 231#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 232#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 233#define netdev_for_each_uc_addr(ha, dev) \
 234        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 235
 236#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 237#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 238#define netdev_for_each_mc_addr(ha, dev) \
 239        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 240
 241struct hh_cache {
 242        unsigned int    hh_len;
 243        seqlock_t       hh_lock;
 244
 245        /* cached hardware header; allow for machine alignment needs.        */
 246#define HH_DATA_MOD     16
 247#define HH_DATA_OFF(__len) \
 248        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 249#define HH_DATA_ALIGN(__len) \
 250        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 251        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 252};
 253
 254/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 255 * Alternative is:
 256 *   dev->hard_header_len ? (dev->hard_header_len +
 257 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 258 *
 259 * We could use other alignment values, but we must maintain the
 260 * relationship HH alignment <= LL alignment.
 261 */
 262#define LL_RESERVED_SPACE(dev) \
 263        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 264#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 265        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 266
 267struct header_ops {
 268        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 269                           unsigned short type, const void *daddr,
 270                           const void *saddr, unsigned int len);
 271        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 272        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 273        void    (*cache_update)(struct hh_cache *hh,
 274                                const struct net_device *dev,
 275                                const unsigned char *haddr);
 276        bool    (*validate)(const char *ll_header, unsigned int len);
 277        __be16  (*parse_protocol)(const struct sk_buff *skb);
 278};
 279
 280/* These flag bits are private to the generic network queueing
 281 * layer; they may not be explicitly referenced by any other
 282 * code.
 283 */
 284
 285enum netdev_state_t {
 286        __LINK_STATE_START,
 287        __LINK_STATE_PRESENT,
 288        __LINK_STATE_NOCARRIER,
 289        __LINK_STATE_LINKWATCH_PENDING,
 290        __LINK_STATE_DORMANT,
 291};
 292
 293
 294/*
 295 * This structure holds boot-time configured netdevice settings. They
 296 * are then used in the device probing.
 297 */
 298struct netdev_boot_setup {
 299        char name[IFNAMSIZ];
 300        struct ifmap map;
 301};
 302#define NETDEV_BOOT_SETUP_MAX 8
 303
 304int __init netdev_boot_setup(char *str);
 305
 306struct gro_list {
 307        struct list_head        list;
 308        int                     count;
 309};
 310
 311/*
 312 * size of gro hash buckets, must less than bit number of
 313 * napi_struct::gro_bitmask
 314 */
 315#define GRO_HASH_BUCKETS        8
 316
 317/*
 318 * Structure for NAPI scheduling similar to tasklet but with weighting
 319 */
 320struct napi_struct {
 321        /* The poll_list must only be managed by the entity which
 322         * changes the state of the NAPI_STATE_SCHED bit.  This means
 323         * whoever atomically sets that bit can add this napi_struct
 324         * to the per-CPU poll_list, and whoever clears that bit
 325         * can remove from the list right before clearing the bit.
 326         */
 327        struct list_head        poll_list;
 328
 329        unsigned long           state;
 330        int                     weight;
 331        unsigned long           gro_bitmask;
 332        int                     (*poll)(struct napi_struct *, int);
 333#ifdef CONFIG_NETPOLL
 334        int                     poll_owner;
 335#endif
 336        struct net_device       *dev;
 337        struct gro_list         gro_hash[GRO_HASH_BUCKETS];
 338        struct sk_buff          *skb;
 339        struct hrtimer          timer;
 340        struct list_head        dev_list;
 341        struct hlist_node       napi_hash_node;
 342        unsigned int            napi_id;
 343};
 344
 345enum {
 346        NAPI_STATE_SCHED,       /* Poll is scheduled */
 347        NAPI_STATE_MISSED,      /* reschedule a napi */
 348        NAPI_STATE_DISABLE,     /* Disable pending */
 349        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 350        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 351        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 352        NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 353};
 354
 355enum {
 356        NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
 357        NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
 358        NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
 359        NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
 360        NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
 361        NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 362        NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 363};
 364
 365enum gro_result {
 366        GRO_MERGED,
 367        GRO_MERGED_FREE,
 368        GRO_HELD,
 369        GRO_NORMAL,
 370        GRO_DROP,
 371        GRO_CONSUMED,
 372};
 373typedef enum gro_result gro_result_t;
 374
 375/*
 376 * enum rx_handler_result - Possible return values for rx_handlers.
 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 378 * further.
 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 380 * case skb->dev was changed by rx_handler.
 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 383 *
 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 385 * special processing of the skb, prior to delivery to protocol handlers.
 386 *
 387 * Currently, a net_device can only have a single rx_handler registered. Trying
 388 * to register a second rx_handler will return -EBUSY.
 389 *
 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 391 * To unregister a rx_handler on a net_device, use
 392 * netdev_rx_handler_unregister().
 393 *
 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 395 * do with the skb.
 396 *
 397 * If the rx_handler consumed the skb in some way, it should return
 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 399 * the skb to be delivered in some other way.
 400 *
 401 * If the rx_handler changed skb->dev, to divert the skb to another
 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 403 * new device will be called if it exists.
 404 *
 405 * If the rx_handler decides the skb should be ignored, it should return
 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 407 * are registered on exact device (ptype->dev == skb->dev).
 408 *
 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 410 * delivered, it should return RX_HANDLER_PASS.
 411 *
 412 * A device without a registered rx_handler will behave as if rx_handler
 413 * returned RX_HANDLER_PASS.
 414 */
 415
 416enum rx_handler_result {
 417        RX_HANDLER_CONSUMED,
 418        RX_HANDLER_ANOTHER,
 419        RX_HANDLER_EXACT,
 420        RX_HANDLER_PASS,
 421};
 422typedef enum rx_handler_result rx_handler_result_t;
 423typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 424
 425void __napi_schedule(struct napi_struct *n);
 426void __napi_schedule_irqoff(struct napi_struct *n);
 427
 428static inline bool napi_disable_pending(struct napi_struct *n)
 429{
 430        return test_bit(NAPI_STATE_DISABLE, &n->state);
 431}
 432
 433bool napi_schedule_prep(struct napi_struct *n);
 434
 435/**
 436 *      napi_schedule - schedule NAPI poll
 437 *      @n: NAPI context
 438 *
 439 * Schedule NAPI poll routine to be called if it is not already
 440 * running.
 441 */
 442static inline void napi_schedule(struct napi_struct *n)
 443{
 444        if (napi_schedule_prep(n))
 445                __napi_schedule(n);
 446}
 447
 448/**
 449 *      napi_schedule_irqoff - schedule NAPI poll
 450 *      @n: NAPI context
 451 *
 452 * Variant of napi_schedule(), assuming hard irqs are masked.
 453 */
 454static inline void napi_schedule_irqoff(struct napi_struct *n)
 455{
 456        if (napi_schedule_prep(n))
 457                __napi_schedule_irqoff(n);
 458}
 459
 460/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 461static inline bool napi_reschedule(struct napi_struct *napi)
 462{
 463        if (napi_schedule_prep(napi)) {
 464                __napi_schedule(napi);
 465                return true;
 466        }
 467        return false;
 468}
 469
 470bool napi_complete_done(struct napi_struct *n, int work_done);
 471/**
 472 *      napi_complete - NAPI processing complete
 473 *      @n: NAPI context
 474 *
 475 * Mark NAPI processing as complete.
 476 * Consider using napi_complete_done() instead.
 477 * Return false if device should avoid rearming interrupts.
 478 */
 479static inline bool napi_complete(struct napi_struct *n)
 480{
 481        return napi_complete_done(n, 0);
 482}
 483
 484/**
 485 *      napi_hash_del - remove a NAPI from global table
 486 *      @napi: NAPI context
 487 *
 488 * Warning: caller must observe RCU grace period
 489 * before freeing memory containing @napi, if
 490 * this function returns true.
 491 * Note: core networking stack automatically calls it
 492 * from netif_napi_del().
 493 * Drivers might want to call this helper to combine all
 494 * the needed RCU grace periods into a single one.
 495 */
 496bool napi_hash_del(struct napi_struct *napi);
 497
 498/**
 499 *      napi_disable - prevent NAPI from scheduling
 500 *      @n: NAPI context
 501 *
 502 * Stop NAPI from being scheduled on this context.
 503 * Waits till any outstanding processing completes.
 504 */
 505void napi_disable(struct napi_struct *n);
 506
 507/**
 508 *      napi_enable - enable NAPI scheduling
 509 *      @n: NAPI context
 510 *
 511 * Resume NAPI from being scheduled on this context.
 512 * Must be paired with napi_disable.
 513 */
 514static inline void napi_enable(struct napi_struct *n)
 515{
 516        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 517        smp_mb__before_atomic();
 518        clear_bit(NAPI_STATE_SCHED, &n->state);
 519        clear_bit(NAPI_STATE_NPSVC, &n->state);
 520}
 521
 522/**
 523 *      napi_synchronize - wait until NAPI is not running
 524 *      @n: NAPI context
 525 *
 526 * Wait until NAPI is done being scheduled on this context.
 527 * Waits till any outstanding processing completes but
 528 * does not disable future activations.
 529 */
 530static inline void napi_synchronize(const struct napi_struct *n)
 531{
 532        if (IS_ENABLED(CONFIG_SMP))
 533                while (test_bit(NAPI_STATE_SCHED, &n->state))
 534                        msleep(1);
 535        else
 536                barrier();
 537}
 538
 539/**
 540 *      napi_if_scheduled_mark_missed - if napi is running, set the
 541 *      NAPIF_STATE_MISSED
 542 *      @n: NAPI context
 543 *
 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
 545 * NAPI is scheduled.
 546 **/
 547static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
 548{
 549        unsigned long val, new;
 550
 551        do {
 552                val = READ_ONCE(n->state);
 553                if (val & NAPIF_STATE_DISABLE)
 554                        return true;
 555
 556                if (!(val & NAPIF_STATE_SCHED))
 557                        return false;
 558
 559                new = val | NAPIF_STATE_MISSED;
 560        } while (cmpxchg(&n->state, val, new) != val);
 561
 562        return true;
 563}
 564
 565enum netdev_queue_state_t {
 566        __QUEUE_STATE_DRV_XOFF,
 567        __QUEUE_STATE_STACK_XOFF,
 568        __QUEUE_STATE_FROZEN,
 569};
 570
 571#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 572#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 573#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 574
 575#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 576#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 577                                        QUEUE_STATE_FROZEN)
 578#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 579                                        QUEUE_STATE_FROZEN)
 580
 581/*
 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 583 * netif_tx_* functions below are used to manipulate this flag.  The
 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 585 * queue independently.  The netif_xmit_*stopped functions below are called
 586 * to check if the queue has been stopped by the driver or stack (either
 587 * of the XOFF bits are set in the state).  Drivers should not need to call
 588 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 589 */
 590
 591struct netdev_queue {
 592/*
 593 * read-mostly part
 594 */
 595        struct net_device       *dev;
 596        struct Qdisc __rcu      *qdisc;
 597        struct Qdisc            *qdisc_sleeping;
 598#ifdef CONFIG_SYSFS
 599        struct kobject          kobj;
 600#endif
 601#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 602        int                     numa_node;
 603#endif
 604        unsigned long           tx_maxrate;
 605        /*
 606         * Number of TX timeouts for this queue
 607         * (/sys/class/net/DEV/Q/trans_timeout)
 608         */
 609        unsigned long           trans_timeout;
 610
 611        /* Subordinate device that the queue has been assigned to */
 612        struct net_device       *sb_dev;
 613#ifdef CONFIG_XDP_SOCKETS
 614        struct xdp_umem         *umem;
 615#endif
 616/*
 617 * write-mostly part
 618 */
 619        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 620        int                     xmit_lock_owner;
 621        /*
 622         * Time (in jiffies) of last Tx
 623         */
 624        unsigned long           trans_start;
 625
 626        unsigned long           state;
 627
 628#ifdef CONFIG_BQL
 629        struct dql              dql;
 630#endif
 631} ____cacheline_aligned_in_smp;
 632
 633extern int sysctl_fb_tunnels_only_for_init_net;
 634extern int sysctl_devconf_inherit_init_net;
 635
 636static inline bool net_has_fallback_tunnels(const struct net *net)
 637{
 638        return net == &init_net ||
 639               !IS_ENABLED(CONFIG_SYSCTL) ||
 640               !sysctl_fb_tunnels_only_for_init_net;
 641}
 642
 643static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 644{
 645#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 646        return q->numa_node;
 647#else
 648        return NUMA_NO_NODE;
 649#endif
 650}
 651
 652static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 653{
 654#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 655        q->numa_node = node;
 656#endif
 657}
 658
 659#ifdef CONFIG_RPS
 660/*
 661 * This structure holds an RPS map which can be of variable length.  The
 662 * map is an array of CPUs.
 663 */
 664struct rps_map {
 665        unsigned int len;
 666        struct rcu_head rcu;
 667        u16 cpus[0];
 668};
 669#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 670
 671/*
 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 673 * tail pointer for that CPU's input queue at the time of last enqueue, and
 674 * a hardware filter index.
 675 */
 676struct rps_dev_flow {
 677        u16 cpu;
 678        u16 filter;
 679        unsigned int last_qtail;
 680};
 681#define RPS_NO_FILTER 0xffff
 682
 683/*
 684 * The rps_dev_flow_table structure contains a table of flow mappings.
 685 */
 686struct rps_dev_flow_table {
 687        unsigned int mask;
 688        struct rcu_head rcu;
 689        struct rps_dev_flow flows[0];
 690};
 691#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 692    ((_num) * sizeof(struct rps_dev_flow)))
 693
 694/*
 695 * The rps_sock_flow_table contains mappings of flows to the last CPU
 696 * on which they were processed by the application (set in recvmsg).
 697 * Each entry is a 32bit value. Upper part is the high-order bits
 698 * of flow hash, lower part is CPU number.
 699 * rps_cpu_mask is used to partition the space, depending on number of
 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 702 * meaning we use 32-6=26 bits for the hash.
 703 */
 704struct rps_sock_flow_table {
 705        u32     mask;
 706
 707        u32     ents[0] ____cacheline_aligned_in_smp;
 708};
 709#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 710
 711#define RPS_NO_CPU 0xffff
 712
 713extern u32 rps_cpu_mask;
 714extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 715
 716static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 717                                        u32 hash)
 718{
 719        if (table && hash) {
 720                unsigned int index = hash & table->mask;
 721                u32 val = hash & ~rps_cpu_mask;
 722
 723                /* We only give a hint, preemption can change CPU under us */
 724                val |= raw_smp_processor_id();
 725
 726                if (table->ents[index] != val)
 727                        table->ents[index] = val;
 728        }
 729}
 730
 731#ifdef CONFIG_RFS_ACCEL
 732bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 733                         u16 filter_id);
 734#endif
 735#endif /* CONFIG_RPS */
 736
 737/* This structure contains an instance of an RX queue. */
 738struct netdev_rx_queue {
 739#ifdef CONFIG_RPS
 740        struct rps_map __rcu            *rps_map;
 741        struct rps_dev_flow_table __rcu *rps_flow_table;
 742#endif
 743        struct kobject                  kobj;
 744        struct net_device               *dev;
 745        struct xdp_rxq_info             xdp_rxq;
 746#ifdef CONFIG_XDP_SOCKETS
 747        struct xdp_umem                 *umem;
 748#endif
 749} ____cacheline_aligned_in_smp;
 750
 751/*
 752 * RX queue sysfs structures and functions.
 753 */
 754struct rx_queue_attribute {
 755        struct attribute attr;
 756        ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 757        ssize_t (*store)(struct netdev_rx_queue *queue,
 758                         const char *buf, size_t len);
 759};
 760
 761#ifdef CONFIG_XPS
 762/*
 763 * This structure holds an XPS map which can be of variable length.  The
 764 * map is an array of queues.
 765 */
 766struct xps_map {
 767        unsigned int len;
 768        unsigned int alloc_len;
 769        struct rcu_head rcu;
 770        u16 queues[0];
 771};
 772#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 773#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 774       - sizeof(struct xps_map)) / sizeof(u16))
 775
 776/*
 777 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 778 */
 779struct xps_dev_maps {
 780        struct rcu_head rcu;
 781        struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
 782};
 783
 784#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +      \
 785        (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 786
 787#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
 788        (_rxqs * (_tcs) * sizeof(struct xps_map *)))
 789
 790#endif /* CONFIG_XPS */
 791
 792#define TC_MAX_QUEUE    16
 793#define TC_BITMASK      15
 794/* HW offloaded queuing disciplines txq count and offset maps */
 795struct netdev_tc_txq {
 796        u16 count;
 797        u16 offset;
 798};
 799
 800#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 801/*
 802 * This structure is to hold information about the device
 803 * configured to run FCoE protocol stack.
 804 */
 805struct netdev_fcoe_hbainfo {
 806        char    manufacturer[64];
 807        char    serial_number[64];
 808        char    hardware_version[64];
 809        char    driver_version[64];
 810        char    optionrom_version[64];
 811        char    firmware_version[64];
 812        char    model[256];
 813        char    model_description[256];
 814};
 815#endif
 816
 817#define MAX_PHYS_ITEM_ID_LEN 32
 818
 819/* This structure holds a unique identifier to identify some
 820 * physical item (port for example) used by a netdevice.
 821 */
 822struct netdev_phys_item_id {
 823        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 824        unsigned char id_len;
 825};
 826
 827static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 828                                            struct netdev_phys_item_id *b)
 829{
 830        return a->id_len == b->id_len &&
 831               memcmp(a->id, b->id, a->id_len) == 0;
 832}
 833
 834typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 835                                       struct sk_buff *skb,
 836                                       struct net_device *sb_dev);
 837
 838enum tc_setup_type {
 839        TC_SETUP_QDISC_MQPRIO,
 840        TC_SETUP_CLSU32,
 841        TC_SETUP_CLSFLOWER,
 842        TC_SETUP_CLSMATCHALL,
 843        TC_SETUP_CLSBPF,
 844        TC_SETUP_BLOCK,
 845        TC_SETUP_QDISC_CBS,
 846        TC_SETUP_QDISC_RED,
 847        TC_SETUP_QDISC_PRIO,
 848        TC_SETUP_QDISC_MQ,
 849        TC_SETUP_QDISC_ETF,
 850        TC_SETUP_ROOT_QDISC,
 851        TC_SETUP_QDISC_GRED,
 852};
 853
 854/* These structures hold the attributes of bpf state that are being passed
 855 * to the netdevice through the bpf op.
 856 */
 857enum bpf_netdev_command {
 858        /* Set or clear a bpf program used in the earliest stages of packet
 859         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 860         * is responsible for calling bpf_prog_put on any old progs that are
 861         * stored. In case of error, the callee need not release the new prog
 862         * reference, but on success it takes ownership and must bpf_prog_put
 863         * when it is no longer used.
 864         */
 865        XDP_SETUP_PROG,
 866        XDP_SETUP_PROG_HW,
 867        XDP_QUERY_PROG,
 868        XDP_QUERY_PROG_HW,
 869        /* BPF program for offload callbacks, invoked at program load time. */
 870        BPF_OFFLOAD_MAP_ALLOC,
 871        BPF_OFFLOAD_MAP_FREE,
 872        XDP_SETUP_XSK_UMEM,
 873};
 874
 875struct bpf_prog_offload_ops;
 876struct netlink_ext_ack;
 877struct xdp_umem;
 878
 879struct netdev_bpf {
 880        enum bpf_netdev_command command;
 881        union {
 882                /* XDP_SETUP_PROG */
 883                struct {
 884                        u32 flags;
 885                        struct bpf_prog *prog;
 886                        struct netlink_ext_ack *extack;
 887                };
 888                /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
 889                struct {
 890                        u32 prog_id;
 891                        /* flags with which program was installed */
 892                        u32 prog_flags;
 893                };
 894                /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 895                struct {
 896                        struct bpf_offloaded_map *offmap;
 897                };
 898                /* XDP_SETUP_XSK_UMEM */
 899                struct {
 900                        struct xdp_umem *umem;
 901                        u16 queue_id;
 902                } xsk;
 903        };
 904};
 905
 906#ifdef CONFIG_XFRM_OFFLOAD
 907struct xfrmdev_ops {
 908        int     (*xdo_dev_state_add) (struct xfrm_state *x);
 909        void    (*xdo_dev_state_delete) (struct xfrm_state *x);
 910        void    (*xdo_dev_state_free) (struct xfrm_state *x);
 911        bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
 912                                       struct xfrm_state *x);
 913        void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 914};
 915#endif
 916
 917#if IS_ENABLED(CONFIG_TLS_DEVICE)
 918enum tls_offload_ctx_dir {
 919        TLS_OFFLOAD_CTX_DIR_RX,
 920        TLS_OFFLOAD_CTX_DIR_TX,
 921};
 922
 923struct tls_crypto_info;
 924struct tls_context;
 925
 926struct tlsdev_ops {
 927        int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
 928                           enum tls_offload_ctx_dir direction,
 929                           struct tls_crypto_info *crypto_info,
 930                           u32 start_offload_tcp_sn);
 931        void (*tls_dev_del)(struct net_device *netdev,
 932                            struct tls_context *ctx,
 933                            enum tls_offload_ctx_dir direction);
 934        void (*tls_dev_resync_rx)(struct net_device *netdev,
 935                                  struct sock *sk, u32 seq, u64 rcd_sn);
 936};
 937#endif
 938
 939struct dev_ifalias {
 940        struct rcu_head rcuhead;
 941        char ifalias[];
 942};
 943
 944struct devlink;
 945
 946/*
 947 * This structure defines the management hooks for network devices.
 948 * The following hooks can be defined; unless noted otherwise, they are
 949 * optional and can be filled with a null pointer.
 950 *
 951 * int (*ndo_init)(struct net_device *dev);
 952 *     This function is called once when a network device is registered.
 953 *     The network device can use this for any late stage initialization
 954 *     or semantic validation. It can fail with an error code which will
 955 *     be propagated back to register_netdev.
 956 *
 957 * void (*ndo_uninit)(struct net_device *dev);
 958 *     This function is called when device is unregistered or when registration
 959 *     fails. It is not called if init fails.
 960 *
 961 * int (*ndo_open)(struct net_device *dev);
 962 *     This function is called when a network device transitions to the up
 963 *     state.
 964 *
 965 * int (*ndo_stop)(struct net_device *dev);
 966 *     This function is called when a network device transitions to the down
 967 *     state.
 968 *
 969 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 970 *                               struct net_device *dev);
 971 *      Called when a packet needs to be transmitted.
 972 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 973 *      the queue before that can happen; it's for obsolete devices and weird
 974 *      corner cases, but the stack really does a non-trivial amount
 975 *      of useless work if you return NETDEV_TX_BUSY.
 976 *      Required; cannot be NULL.
 977 *
 978 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 979 *                                         struct net_device *dev
 980 *                                         netdev_features_t features);
 981 *      Called by core transmit path to determine if device is capable of
 982 *      performing offload operations on a given packet. This is to give
 983 *      the device an opportunity to implement any restrictions that cannot
 984 *      be otherwise expressed by feature flags. The check is called with
 985 *      the set of features that the stack has calculated and it returns
 986 *      those the driver believes to be appropriate.
 987 *
 988 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 989 *                         struct net_device *sb_dev,
 990 *                         select_queue_fallback_t fallback);
 991 *      Called to decide which queue to use when device supports multiple
 992 *      transmit queues.
 993 *
 994 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 995 *      This function is called to allow device receiver to make
 996 *      changes to configuration when multicast or promiscuous is enabled.
 997 *
 998 * void (*ndo_set_rx_mode)(struct net_device *dev);
 999 *      This function is called device changes address list filtering.
1000 *      If driver handles unicast address filtering, it should set
1001 *      IFF_UNICAST_FLT in its priv_flags.
1002 *
1003 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1004 *      This function  is called when the Media Access Control address
1005 *      needs to be changed. If this interface is not defined, the
1006 *      MAC address can not be changed.
1007 *
1008 * int (*ndo_validate_addr)(struct net_device *dev);
1009 *      Test if Media Access Control address is valid for the device.
1010 *
1011 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1012 *      Called when a user requests an ioctl which can't be handled by
1013 *      the generic interface code. If not defined ioctls return
1014 *      not supported error code.
1015 *
1016 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1017 *      Used to set network devices bus interface parameters. This interface
1018 *      is retained for legacy reasons; new devices should use the bus
1019 *      interface (PCI) for low level management.
1020 *
1021 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1022 *      Called when a user wants to change the Maximum Transfer Unit
1023 *      of a device.
1024 *
1025 * void (*ndo_tx_timeout)(struct net_device *dev);
1026 *      Callback used when the transmitter has not made any progress
1027 *      for dev->watchdog ticks.
1028 *
1029 * void (*ndo_get_stats64)(struct net_device *dev,
1030 *                         struct rtnl_link_stats64 *storage);
1031 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 *      Called when a user wants to get the network device usage
1033 *      statistics. Drivers must do one of the following:
1034 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
1035 *         rtnl_link_stats64 structure passed by the caller.
1036 *      2. Define @ndo_get_stats to update a net_device_stats structure
1037 *         (which should normally be dev->stats) and return a pointer to
1038 *         it. The structure may be changed asynchronously only if each
1039 *         field is written atomically.
1040 *      3. Update dev->stats asynchronously and atomically, and define
1041 *         neither operation.
1042 *
1043 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1044 *      Return true if this device supports offload stats of this attr_id.
1045 *
1046 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1047 *      void *attr_data)
1048 *      Get statistics for offload operations by attr_id. Write it into the
1049 *      attr_data pointer.
1050 *
1051 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1052 *      If device supports VLAN filtering this function is called when a
1053 *      VLAN id is registered.
1054 *
1055 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1056 *      If device supports VLAN filtering this function is called when a
1057 *      VLAN id is unregistered.
1058 *
1059 * void (*ndo_poll_controller)(struct net_device *dev);
1060 *
1061 *      SR-IOV management functions.
1062 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1063 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1064 *                        u8 qos, __be16 proto);
1065 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1066 *                        int max_tx_rate);
1067 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1068 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1069 * int (*ndo_get_vf_config)(struct net_device *dev,
1070 *                          int vf, struct ifla_vf_info *ivf);
1071 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1072 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1073 *                        struct nlattr *port[]);
1074 *
1075 *      Enable or disable the VF ability to query its RSS Redirection Table and
1076 *      Hash Key. This is needed since on some devices VF share this information
1077 *      with PF and querying it may introduce a theoretical security risk.
1078 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1079 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1080 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1081 *                     void *type_data);
1082 *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1083 *      This is always called from the stack with the rtnl lock held and netif
1084 *      tx queues stopped. This allows the netdevice to perform queue
1085 *      management safely.
1086 *
1087 *      Fiber Channel over Ethernet (FCoE) offload functions.
1088 * int (*ndo_fcoe_enable)(struct net_device *dev);
1089 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1090 *      so the underlying device can perform whatever needed configuration or
1091 *      initialization to support acceleration of FCoE traffic.
1092 *
1093 * int (*ndo_fcoe_disable)(struct net_device *dev);
1094 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1095 *      so the underlying device can perform whatever needed clean-ups to
1096 *      stop supporting acceleration of FCoE traffic.
1097 *
1098 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1099 *                           struct scatterlist *sgl, unsigned int sgc);
1100 *      Called when the FCoE Initiator wants to initialize an I/O that
1101 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1102 *      perform necessary setup and returns 1 to indicate the device is set up
1103 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1104 *
1105 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1106 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1107 *      indicated by the FC exchange id 'xid', so the underlying device can
1108 *      clean up and reuse resources for later DDP requests.
1109 *
1110 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1111 *                            struct scatterlist *sgl, unsigned int sgc);
1112 *      Called when the FCoE Target wants to initialize an I/O that
1113 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1114 *      perform necessary setup and returns 1 to indicate the device is set up
1115 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1116 *
1117 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1118 *                             struct netdev_fcoe_hbainfo *hbainfo);
1119 *      Called when the FCoE Protocol stack wants information on the underlying
1120 *      device. This information is utilized by the FCoE protocol stack to
1121 *      register attributes with Fiber Channel management service as per the
1122 *      FC-GS Fabric Device Management Information(FDMI) specification.
1123 *
1124 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1125 *      Called when the underlying device wants to override default World Wide
1126 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1127 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1128 *      protocol stack to use.
1129 *
1130 *      RFS acceleration.
1131 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1132 *                          u16 rxq_index, u32 flow_id);
1133 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1134 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1135 *      Return the filter ID on success, or a negative error code.
1136 *
1137 *      Slave management functions (for bridge, bonding, etc).
1138 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1139 *      Called to make another netdev an underling.
1140 *
1141 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1142 *      Called to release previously enslaved netdev.
1143 *
1144 *      Feature/offload setting functions.
1145 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1146 *              netdev_features_t features);
1147 *      Adjusts the requested feature flags according to device-specific
1148 *      constraints, and returns the resulting flags. Must not modify
1149 *      the device state.
1150 *
1151 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1152 *      Called to update device configuration to new features. Passed
1153 *      feature set might be less than what was returned by ndo_fix_features()).
1154 *      Must return >0 or -errno if it changed dev->features itself.
1155 *
1156 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1157 *                    struct net_device *dev,
1158 *                    const unsigned char *addr, u16 vid, u16 flags,
1159 *                    struct netlink_ext_ack *extack);
1160 *      Adds an FDB entry to dev for addr.
1161 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1162 *                    struct net_device *dev,
1163 *                    const unsigned char *addr, u16 vid)
1164 *      Deletes the FDB entry from dev coresponding to addr.
1165 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1166 *                     struct net_device *dev, struct net_device *filter_dev,
1167 *                     int *idx)
1168 *      Used to add FDB entries to dump requests. Implementers should add
1169 *      entries to skb and update idx with the number of entries.
1170 *
1171 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1172 *                           u16 flags, struct netlink_ext_ack *extack)
1173 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1174 *                           struct net_device *dev, u32 filter_mask,
1175 *                           int nlflags)
1176 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1177 *                           u16 flags);
1178 *
1179 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1180 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1181 *      which do not represent real hardware may define this to allow their
1182 *      userspace components to manage their virtual carrier state. Devices
1183 *      that determine carrier state from physical hardware properties (eg
1184 *      network cables) or protocol-dependent mechanisms (eg
1185 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1186 *
1187 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1188 *                             struct netdev_phys_item_id *ppid);
1189 *      Called to get ID of physical port of this device. If driver does
1190 *      not implement this, it is assumed that the hw is not able to have
1191 *      multiple net devices on single physical port.
1192 *
1193 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1194 *                               struct netdev_phys_item_id *ppid)
1195 *      Called to get the parent ID of the physical port of this device.
1196 *
1197 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1198 *                            struct udp_tunnel_info *ti);
1199 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1200 *      address family that a UDP tunnel is listnening to. It is called only
1201 *      when a new port starts listening. The operation is protected by the
1202 *      RTNL.
1203 *
1204 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1205 *                            struct udp_tunnel_info *ti);
1206 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1207 *      address family that the UDP tunnel is not listening to anymore. The
1208 *      operation is protected by the RTNL.
1209 *
1210 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1211 *                               struct net_device *dev)
1212 *      Called by upper layer devices to accelerate switching or other
1213 *      station functionality into hardware. 'pdev is the lowerdev
1214 *      to use for the offload and 'dev' is the net device that will
1215 *      back the offload. Returns a pointer to the private structure
1216 *      the upper layer will maintain.
1217 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1218 *      Called by upper layer device to delete the station created
1219 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1220 *      the station and priv is the structure returned by the add
1221 *      operation.
1222 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1223 *                           int queue_index, u32 maxrate);
1224 *      Called when a user wants to set a max-rate limitation of specific
1225 *      TX queue.
1226 * int (*ndo_get_iflink)(const struct net_device *dev);
1227 *      Called to get the iflink value of this device.
1228 * void (*ndo_change_proto_down)(struct net_device *dev,
1229 *                               bool proto_down);
1230 *      This function is used to pass protocol port error state information
1231 *      to the switch driver. The switch driver can react to the proto_down
1232 *      by doing a phys down on the associated switch port.
1233 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1234 *      This function is used to get egress tunnel information for given skb.
1235 *      This is useful for retrieving outer tunnel header parameters while
1236 *      sampling packet.
1237 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1238 *      This function is used to specify the headroom that the skb must
1239 *      consider when allocation skb during packet reception. Setting
1240 *      appropriate rx headroom value allows avoiding skb head copy on
1241 *      forward. Setting a negative value resets the rx headroom to the
1242 *      default value.
1243 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1244 *      This function is used to set or query state related to XDP on the
1245 *      netdevice and manage BPF offload. See definition of
1246 *      enum bpf_netdev_command for details.
1247 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1248 *                      u32 flags);
1249 *      This function is used to submit @n XDP packets for transmit on a
1250 *      netdevice. Returns number of frames successfully transmitted, frames
1251 *      that got dropped are freed/returned via xdp_return_frame().
1252 *      Returns negative number, means general error invoking ndo, meaning
1253 *      no frames were xmit'ed and core-caller will free all frames.
1254 * struct devlink *(*ndo_get_devlink)(struct net_device *dev);
1255 *      Get devlink instance associated with a given netdev.
1256 *      Called with a reference on the netdevice and devlink locks only,
1257 *      rtnl_lock is not held.
1258 */
1259struct net_device_ops {
1260        int                     (*ndo_init)(struct net_device *dev);
1261        void                    (*ndo_uninit)(struct net_device *dev);
1262        int                     (*ndo_open)(struct net_device *dev);
1263        int                     (*ndo_stop)(struct net_device *dev);
1264        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1265                                                  struct net_device *dev);
1266        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1267                                                      struct net_device *dev,
1268                                                      netdev_features_t features);
1269        u16                     (*ndo_select_queue)(struct net_device *dev,
1270                                                    struct sk_buff *skb,
1271                                                    struct net_device *sb_dev,
1272                                                    select_queue_fallback_t fallback);
1273        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1274                                                       int flags);
1275        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1276        int                     (*ndo_set_mac_address)(struct net_device *dev,
1277                                                       void *addr);
1278        int                     (*ndo_validate_addr)(struct net_device *dev);
1279        int                     (*ndo_do_ioctl)(struct net_device *dev,
1280                                                struct ifreq *ifr, int cmd);
1281        int                     (*ndo_set_config)(struct net_device *dev,
1282                                                  struct ifmap *map);
1283        int                     (*ndo_change_mtu)(struct net_device *dev,
1284                                                  int new_mtu);
1285        int                     (*ndo_neigh_setup)(struct net_device *dev,
1286                                                   struct neigh_parms *);
1287        void                    (*ndo_tx_timeout) (struct net_device *dev);
1288
1289        void                    (*ndo_get_stats64)(struct net_device *dev,
1290                                                   struct rtnl_link_stats64 *storage);
1291        bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1292        int                     (*ndo_get_offload_stats)(int attr_id,
1293                                                         const struct net_device *dev,
1294                                                         void *attr_data);
1295        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1296
1297        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1298                                                       __be16 proto, u16 vid);
1299        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1300                                                        __be16 proto, u16 vid);
1301#ifdef CONFIG_NET_POLL_CONTROLLER
1302        void                    (*ndo_poll_controller)(struct net_device *dev);
1303        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1304                                                     struct netpoll_info *info);
1305        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1306#endif
1307        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1308                                                  int queue, u8 *mac);
1309        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1310                                                   int queue, u16 vlan,
1311                                                   u8 qos, __be16 proto);
1312        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1313                                                   int vf, int min_tx_rate,
1314                                                   int max_tx_rate);
1315        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1316                                                       int vf, bool setting);
1317        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1318                                                    int vf, bool setting);
1319        int                     (*ndo_get_vf_config)(struct net_device *dev,
1320                                                     int vf,
1321                                                     struct ifla_vf_info *ivf);
1322        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1323                                                         int vf, int link_state);
1324        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1325                                                    int vf,
1326                                                    struct ifla_vf_stats
1327                                                    *vf_stats);
1328        int                     (*ndo_set_vf_port)(struct net_device *dev,
1329                                                   int vf,
1330                                                   struct nlattr *port[]);
1331        int                     (*ndo_get_vf_port)(struct net_device *dev,
1332                                                   int vf, struct sk_buff *skb);
1333        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1334                                                   int vf, u64 guid,
1335                                                   int guid_type);
1336        int                     (*ndo_set_vf_rss_query_en)(
1337                                                   struct net_device *dev,
1338                                                   int vf, bool setting);
1339        int                     (*ndo_setup_tc)(struct net_device *dev,
1340                                                enum tc_setup_type type,
1341                                                void *type_data);
1342#if IS_ENABLED(CONFIG_FCOE)
1343        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1344        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1345        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1346                                                      u16 xid,
1347                                                      struct scatterlist *sgl,
1348                                                      unsigned int sgc);
1349        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1350                                                     u16 xid);
1351        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1352                                                       u16 xid,
1353                                                       struct scatterlist *sgl,
1354                                                       unsigned int sgc);
1355        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1356                                                        struct netdev_fcoe_hbainfo *hbainfo);
1357#endif
1358
1359#if IS_ENABLED(CONFIG_LIBFCOE)
1360#define NETDEV_FCOE_WWNN 0
1361#define NETDEV_FCOE_WWPN 1
1362        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1363                                                    u64 *wwn, int type);
1364#endif
1365
1366#ifdef CONFIG_RFS_ACCEL
1367        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1368                                                     const struct sk_buff *skb,
1369                                                     u16 rxq_index,
1370                                                     u32 flow_id);
1371#endif
1372        int                     (*ndo_add_slave)(struct net_device *dev,
1373                                                 struct net_device *slave_dev,
1374                                                 struct netlink_ext_ack *extack);
1375        int                     (*ndo_del_slave)(struct net_device *dev,
1376                                                 struct net_device *slave_dev);
1377        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1378                                                    netdev_features_t features);
1379        int                     (*ndo_set_features)(struct net_device *dev,
1380                                                    netdev_features_t features);
1381        int                     (*ndo_neigh_construct)(struct net_device *dev,
1382                                                       struct neighbour *n);
1383        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1384                                                     struct neighbour *n);
1385
1386        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1387                                               struct nlattr *tb[],
1388                                               struct net_device *dev,
1389                                               const unsigned char *addr,
1390                                               u16 vid,
1391                                               u16 flags,
1392                                               struct netlink_ext_ack *extack);
1393        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1394                                               struct nlattr *tb[],
1395                                               struct net_device *dev,
1396                                               const unsigned char *addr,
1397                                               u16 vid);
1398        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1399                                                struct netlink_callback *cb,
1400                                                struct net_device *dev,
1401                                                struct net_device *filter_dev,
1402                                                int *idx);
1403        int                     (*ndo_fdb_get)(struct sk_buff *skb,
1404                                               struct nlattr *tb[],
1405                                               struct net_device *dev,
1406                                               const unsigned char *addr,
1407                                               u16 vid, u32 portid, u32 seq,
1408                                               struct netlink_ext_ack *extack);
1409        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1410                                                      struct nlmsghdr *nlh,
1411                                                      u16 flags,
1412                                                      struct netlink_ext_ack *extack);
1413        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1414                                                      u32 pid, u32 seq,
1415                                                      struct net_device *dev,
1416                                                      u32 filter_mask,
1417                                                      int nlflags);
1418        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1419                                                      struct nlmsghdr *nlh,
1420                                                      u16 flags);
1421        int                     (*ndo_change_carrier)(struct net_device *dev,
1422                                                      bool new_carrier);
1423        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1424                                                        struct netdev_phys_item_id *ppid);
1425        int                     (*ndo_get_port_parent_id)(struct net_device *dev,
1426                                                          struct netdev_phys_item_id *ppid);
1427        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1428                                                          char *name, size_t len);
1429        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1430                                                      struct udp_tunnel_info *ti);
1431        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1432                                                      struct udp_tunnel_info *ti);
1433        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1434                                                        struct net_device *dev);
1435        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1436                                                        void *priv);
1437
1438        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1439        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1440                                                      int queue_index,
1441                                                      u32 maxrate);
1442        int                     (*ndo_get_iflink)(const struct net_device *dev);
1443        int                     (*ndo_change_proto_down)(struct net_device *dev,
1444                                                         bool proto_down);
1445        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1446                                                       struct sk_buff *skb);
1447        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1448                                                       int needed_headroom);
1449        int                     (*ndo_bpf)(struct net_device *dev,
1450                                           struct netdev_bpf *bpf);
1451        int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1452                                                struct xdp_frame **xdp,
1453                                                u32 flags);
1454        int                     (*ndo_xsk_async_xmit)(struct net_device *dev,
1455                                                      u32 queue_id);
1456        struct devlink *        (*ndo_get_devlink)(struct net_device *dev);
1457};
1458
1459/**
1460 * enum net_device_priv_flags - &struct net_device priv_flags
1461 *
1462 * These are the &struct net_device, they are only set internally
1463 * by drivers and used in the kernel. These flags are invisible to
1464 * userspace; this means that the order of these flags can change
1465 * during any kernel release.
1466 *
1467 * You should have a pretty good reason to be extending these flags.
1468 *
1469 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1470 * @IFF_EBRIDGE: Ethernet bridging device
1471 * @IFF_BONDING: bonding master or slave
1472 * @IFF_ISATAP: ISATAP interface (RFC4214)
1473 * @IFF_WAN_HDLC: WAN HDLC device
1474 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1475 *      release skb->dst
1476 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1477 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1478 * @IFF_MACVLAN_PORT: device used as macvlan port
1479 * @IFF_BRIDGE_PORT: device used as bridge port
1480 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1481 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1482 * @IFF_UNICAST_FLT: Supports unicast filtering
1483 * @IFF_TEAM_PORT: device used as team port
1484 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1485 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1486 *      change when it's running
1487 * @IFF_MACVLAN: Macvlan device
1488 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1489 *      underlying stacked devices
1490 * @IFF_L3MDEV_MASTER: device is an L3 master device
1491 * @IFF_NO_QUEUE: device can run without qdisc attached
1492 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1493 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1494 * @IFF_TEAM: device is a team device
1495 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1496 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1497 *      entity (i.e. the master device for bridged veth)
1498 * @IFF_MACSEC: device is a MACsec device
1499 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1500 * @IFF_FAILOVER: device is a failover master device
1501 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1502 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1503 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1504 */
1505enum netdev_priv_flags {
1506        IFF_802_1Q_VLAN                 = 1<<0,
1507        IFF_EBRIDGE                     = 1<<1,
1508        IFF_BONDING                     = 1<<2,
1509        IFF_ISATAP                      = 1<<3,
1510        IFF_WAN_HDLC                    = 1<<4,
1511        IFF_XMIT_DST_RELEASE            = 1<<5,
1512        IFF_DONT_BRIDGE                 = 1<<6,
1513        IFF_DISABLE_NETPOLL             = 1<<7,
1514        IFF_MACVLAN_PORT                = 1<<8,
1515        IFF_BRIDGE_PORT                 = 1<<9,
1516        IFF_OVS_DATAPATH                = 1<<10,
1517        IFF_TX_SKB_SHARING              = 1<<11,
1518        IFF_UNICAST_FLT                 = 1<<12,
1519        IFF_TEAM_PORT                   = 1<<13,
1520        IFF_SUPP_NOFCS                  = 1<<14,
1521        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1522        IFF_MACVLAN                     = 1<<16,
1523        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1524        IFF_L3MDEV_MASTER               = 1<<18,
1525        IFF_NO_QUEUE                    = 1<<19,
1526        IFF_OPENVSWITCH                 = 1<<20,
1527        IFF_L3MDEV_SLAVE                = 1<<21,
1528        IFF_TEAM                        = 1<<22,
1529        IFF_RXFH_CONFIGURED             = 1<<23,
1530        IFF_PHONY_HEADROOM              = 1<<24,
1531        IFF_MACSEC                      = 1<<25,
1532        IFF_NO_RX_HANDLER               = 1<<26,
1533        IFF_FAILOVER                    = 1<<27,
1534        IFF_FAILOVER_SLAVE              = 1<<28,
1535        IFF_L3MDEV_RX_HANDLER           = 1<<29,
1536        IFF_LIVE_RENAME_OK              = 1<<30,
1537};
1538
1539#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1540#define IFF_EBRIDGE                     IFF_EBRIDGE
1541#define IFF_BONDING                     IFF_BONDING
1542#define IFF_ISATAP                      IFF_ISATAP
1543#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1544#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1545#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1546#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1547#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1548#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1549#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1550#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1551#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1552#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1553#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1554#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1555#define IFF_MACVLAN                     IFF_MACVLAN
1556#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1557#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1558#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1559#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1560#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1561#define IFF_TEAM                        IFF_TEAM
1562#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1563#define IFF_MACSEC                      IFF_MACSEC
1564#define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1565#define IFF_FAILOVER                    IFF_FAILOVER
1566#define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1567#define IFF_L3MDEV_RX_HANDLER           IFF_L3MDEV_RX_HANDLER
1568#define IFF_LIVE_RENAME_OK              IFF_LIVE_RENAME_OK
1569
1570/**
1571 *      struct net_device - The DEVICE structure.
1572 *
1573 *      Actually, this whole structure is a big mistake.  It mixes I/O
1574 *      data with strictly "high-level" data, and it has to know about
1575 *      almost every data structure used in the INET module.
1576 *
1577 *      @name:  This is the first field of the "visible" part of this structure
1578 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1579 *              of the interface.
1580 *
1581 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1582 *      @ifalias:       SNMP alias
1583 *      @mem_end:       Shared memory end
1584 *      @mem_start:     Shared memory start
1585 *      @base_addr:     Device I/O address
1586 *      @irq:           Device IRQ number
1587 *
1588 *      @state:         Generic network queuing layer state, see netdev_state_t
1589 *      @dev_list:      The global list of network devices
1590 *      @napi_list:     List entry used for polling NAPI devices
1591 *      @unreg_list:    List entry  when we are unregistering the
1592 *                      device; see the function unregister_netdev
1593 *      @close_list:    List entry used when we are closing the device
1594 *      @ptype_all:     Device-specific packet handlers for all protocols
1595 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1596 *
1597 *      @adj_list:      Directly linked devices, like slaves for bonding
1598 *      @features:      Currently active device features
1599 *      @hw_features:   User-changeable features
1600 *
1601 *      @wanted_features:       User-requested features
1602 *      @vlan_features:         Mask of features inheritable by VLAN devices
1603 *
1604 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1605 *                              This field indicates what encapsulation
1606 *                              offloads the hardware is capable of doing,
1607 *                              and drivers will need to set them appropriately.
1608 *
1609 *      @mpls_features: Mask of features inheritable by MPLS
1610 *
1611 *      @ifindex:       interface index
1612 *      @group:         The group the device belongs to
1613 *
1614 *      @stats:         Statistics struct, which was left as a legacy, use
1615 *                      rtnl_link_stats64 instead
1616 *
1617 *      @rx_dropped:    Dropped packets by core network,
1618 *                      do not use this in drivers
1619 *      @tx_dropped:    Dropped packets by core network,
1620 *                      do not use this in drivers
1621 *      @rx_nohandler:  nohandler dropped packets by core network on
1622 *                      inactive devices, do not use this in drivers
1623 *      @carrier_up_count:      Number of times the carrier has been up
1624 *      @carrier_down_count:    Number of times the carrier has been down
1625 *
1626 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1627 *                              instead of ioctl,
1628 *                              see <net/iw_handler.h> for details.
1629 *      @wireless_data: Instance data managed by the core of wireless extensions
1630 *
1631 *      @netdev_ops:    Includes several pointers to callbacks,
1632 *                      if one wants to override the ndo_*() functions
1633 *      @ethtool_ops:   Management operations
1634 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1635 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1636 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1637 *                      of Layer 2 headers.
1638 *
1639 *      @flags:         Interface flags (a la BSD)
1640 *      @priv_flags:    Like 'flags' but invisible to userspace,
1641 *                      see if.h for the definitions
1642 *      @gflags:        Global flags ( kept as legacy )
1643 *      @padded:        How much padding added by alloc_netdev()
1644 *      @operstate:     RFC2863 operstate
1645 *      @link_mode:     Mapping policy to operstate
1646 *      @if_port:       Selectable AUI, TP, ...
1647 *      @dma:           DMA channel
1648 *      @mtu:           Interface MTU value
1649 *      @min_mtu:       Interface Minimum MTU value
1650 *      @max_mtu:       Interface Maximum MTU value
1651 *      @type:          Interface hardware type
1652 *      @hard_header_len: Maximum hardware header length.
1653 *      @min_header_len:  Minimum hardware header length
1654 *
1655 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1656 *                        cases can this be guaranteed
1657 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1658 *                        cases can this be guaranteed. Some cases also use
1659 *                        LL_MAX_HEADER instead to allocate the skb
1660 *
1661 *      interface address info:
1662 *
1663 *      @perm_addr:             Permanent hw address
1664 *      @addr_assign_type:      Hw address assignment type
1665 *      @addr_len:              Hardware address length
1666 *      @neigh_priv_len:        Used in neigh_alloc()
1667 *      @dev_id:                Used to differentiate devices that share
1668 *                              the same link layer address
1669 *      @dev_port:              Used to differentiate devices that share
1670 *                              the same function
1671 *      @addr_list_lock:        XXX: need comments on this one
1672 *      @uc_promisc:            Counter that indicates promiscuous mode
1673 *                              has been enabled due to the need to listen to
1674 *                              additional unicast addresses in a device that
1675 *                              does not implement ndo_set_rx_mode()
1676 *      @uc:                    unicast mac addresses
1677 *      @mc:                    multicast mac addresses
1678 *      @dev_addrs:             list of device hw addresses
1679 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1680 *      @promiscuity:           Number of times the NIC is told to work in
1681 *                              promiscuous mode; if it becomes 0 the NIC will
1682 *                              exit promiscuous mode
1683 *      @allmulti:              Counter, enables or disables allmulticast mode
1684 *
1685 *      @vlan_info:     VLAN info
1686 *      @dsa_ptr:       dsa specific data
1687 *      @tipc_ptr:      TIPC specific data
1688 *      @atalk_ptr:     AppleTalk link
1689 *      @ip_ptr:        IPv4 specific data
1690 *      @dn_ptr:        DECnet specific data
1691 *      @ip6_ptr:       IPv6 specific data
1692 *      @ax25_ptr:      AX.25 specific data
1693 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1694 *
1695 *      @dev_addr:      Hw address (before bcast,
1696 *                      because most packets are unicast)
1697 *
1698 *      @_rx:                   Array of RX queues
1699 *      @num_rx_queues:         Number of RX queues
1700 *                              allocated at register_netdev() time
1701 *      @real_num_rx_queues:    Number of RX queues currently active in device
1702 *
1703 *      @rx_handler:            handler for received packets
1704 *      @rx_handler_data:       XXX: need comments on this one
1705 *      @miniq_ingress:         ingress/clsact qdisc specific data for
1706 *                              ingress processing
1707 *      @ingress_queue:         XXX: need comments on this one
1708 *      @broadcast:             hw bcast address
1709 *
1710 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1711 *                      indexed by RX queue number. Assigned by driver.
1712 *                      This must only be set if the ndo_rx_flow_steer
1713 *                      operation is defined
1714 *      @index_hlist:           Device index hash chain
1715 *
1716 *      @_tx:                   Array of TX queues
1717 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1718 *      @real_num_tx_queues:    Number of TX queues currently active in device
1719 *      @qdisc:                 Root qdisc from userspace point of view
1720 *      @tx_queue_len:          Max frames per queue allowed
1721 *      @tx_global_lock:        XXX: need comments on this one
1722 *
1723 *      @xps_maps:      XXX: need comments on this one
1724 *      @miniq_egress:          clsact qdisc specific data for
1725 *                              egress processing
1726 *      @watchdog_timeo:        Represents the timeout that is used by
1727 *                              the watchdog (see dev_watchdog())
1728 *      @watchdog_timer:        List of timers
1729 *
1730 *      @pcpu_refcnt:           Number of references to this device
1731 *      @todo_list:             Delayed register/unregister
1732 *      @link_watch_list:       XXX: need comments on this one
1733 *
1734 *      @reg_state:             Register/unregister state machine
1735 *      @dismantle:             Device is going to be freed
1736 *      @rtnl_link_state:       This enum represents the phases of creating
1737 *                              a new link
1738 *
1739 *      @needs_free_netdev:     Should unregister perform free_netdev?
1740 *      @priv_destructor:       Called from unregister
1741 *      @npinfo:                XXX: need comments on this one
1742 *      @nd_net:                Network namespace this network device is inside
1743 *
1744 *      @ml_priv:       Mid-layer private
1745 *      @lstats:        Loopback statistics
1746 *      @tstats:        Tunnel statistics
1747 *      @dstats:        Dummy statistics
1748 *      @vstats:        Virtual ethernet statistics
1749 *
1750 *      @garp_port:     GARP
1751 *      @mrp_port:      MRP
1752 *
1753 *      @dev:           Class/net/name entry
1754 *      @sysfs_groups:  Space for optional device, statistics and wireless
1755 *                      sysfs groups
1756 *
1757 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1758 *      @rtnl_link_ops: Rtnl_link_ops
1759 *
1760 *      @gso_max_size:  Maximum size of generic segmentation offload
1761 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1762 *                      NIC for GSO
1763 *
1764 *      @dcbnl_ops:     Data Center Bridging netlink ops
1765 *      @num_tc:        Number of traffic classes in the net device
1766 *      @tc_to_txq:     XXX: need comments on this one
1767 *      @prio_tc_map:   XXX: need comments on this one
1768 *
1769 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1770 *
1771 *      @priomap:       XXX: need comments on this one
1772 *      @phydev:        Physical device may attach itself
1773 *                      for hardware timestamping
1774 *      @sfp_bus:       attached &struct sfp_bus structure.
1775 *
1776 *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1777 *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1778 *
1779 *      @proto_down:    protocol port state information can be sent to the
1780 *                      switch driver and used to set the phys state of the
1781 *                      switch port.
1782 *
1783 *      @wol_enabled:   Wake-on-LAN is enabled
1784 *
1785 *      FIXME: cleanup struct net_device such that network protocol info
1786 *      moves out.
1787 */
1788
1789struct net_device {
1790        char                    name[IFNAMSIZ];
1791        struct hlist_node       name_hlist;
1792        struct dev_ifalias      __rcu *ifalias;
1793        /*
1794         *      I/O specific fields
1795         *      FIXME: Merge these and struct ifmap into one
1796         */
1797        unsigned long           mem_end;
1798        unsigned long           mem_start;
1799        unsigned long           base_addr;
1800        int                     irq;
1801
1802        /*
1803         *      Some hardware also needs these fields (state,dev_list,
1804         *      napi_list,unreg_list,close_list) but they are not
1805         *      part of the usual set specified in Space.c.
1806         */
1807
1808        unsigned long           state;
1809
1810        struct list_head        dev_list;
1811        struct list_head        napi_list;
1812        struct list_head        unreg_list;
1813        struct list_head        close_list;
1814        struct list_head        ptype_all;
1815        struct list_head        ptype_specific;
1816
1817        struct {
1818                struct list_head upper;
1819                struct list_head lower;
1820        } adj_list;
1821
1822        netdev_features_t       features;
1823        netdev_features_t       hw_features;
1824        netdev_features_t       wanted_features;
1825        netdev_features_t       vlan_features;
1826        netdev_features_t       hw_enc_features;
1827        netdev_features_t       mpls_features;
1828        netdev_features_t       gso_partial_features;
1829
1830        int                     ifindex;
1831        int                     group;
1832
1833        struct net_device_stats stats;
1834
1835        atomic_long_t           rx_dropped;
1836        atomic_long_t           tx_dropped;
1837        atomic_long_t           rx_nohandler;
1838
1839        /* Stats to monitor link on/off, flapping */
1840        atomic_t                carrier_up_count;
1841        atomic_t                carrier_down_count;
1842
1843#ifdef CONFIG_WIRELESS_EXT
1844        const struct iw_handler_def *wireless_handlers;
1845        struct iw_public_data   *wireless_data;
1846#endif
1847        const struct net_device_ops *netdev_ops;
1848        const struct ethtool_ops *ethtool_ops;
1849#ifdef CONFIG_NET_L3_MASTER_DEV
1850        const struct l3mdev_ops *l3mdev_ops;
1851#endif
1852#if IS_ENABLED(CONFIG_IPV6)
1853        const struct ndisc_ops *ndisc_ops;
1854#endif
1855
1856#ifdef CONFIG_XFRM_OFFLOAD
1857        const struct xfrmdev_ops *xfrmdev_ops;
1858#endif
1859
1860#if IS_ENABLED(CONFIG_TLS_DEVICE)
1861        const struct tlsdev_ops *tlsdev_ops;
1862#endif
1863
1864        const struct header_ops *header_ops;
1865
1866        unsigned int            flags;
1867        unsigned int            priv_flags;
1868
1869        unsigned short          gflags;
1870        unsigned short          padded;
1871
1872        unsigned char           operstate;
1873        unsigned char           link_mode;
1874
1875        unsigned char           if_port;
1876        unsigned char           dma;
1877
1878        unsigned int            mtu;
1879        unsigned int            min_mtu;
1880        unsigned int            max_mtu;
1881        unsigned short          type;
1882        unsigned short          hard_header_len;
1883        unsigned char           min_header_len;
1884
1885        unsigned short          needed_headroom;
1886        unsigned short          needed_tailroom;
1887
1888        /* Interface address info. */
1889        unsigned char           perm_addr[MAX_ADDR_LEN];
1890        unsigned char           addr_assign_type;
1891        unsigned char           addr_len;
1892        unsigned short          neigh_priv_len;
1893        unsigned short          dev_id;
1894        unsigned short          dev_port;
1895        spinlock_t              addr_list_lock;
1896        unsigned char           name_assign_type;
1897        bool                    uc_promisc;
1898        struct netdev_hw_addr_list      uc;
1899        struct netdev_hw_addr_list      mc;
1900        struct netdev_hw_addr_list      dev_addrs;
1901
1902#ifdef CONFIG_SYSFS
1903        struct kset             *queues_kset;
1904#endif
1905        unsigned int            promiscuity;
1906        unsigned int            allmulti;
1907
1908
1909        /* Protocol-specific pointers */
1910
1911#if IS_ENABLED(CONFIG_VLAN_8021Q)
1912        struct vlan_info __rcu  *vlan_info;
1913#endif
1914#if IS_ENABLED(CONFIG_NET_DSA)
1915        struct dsa_port         *dsa_ptr;
1916#endif
1917#if IS_ENABLED(CONFIG_TIPC)
1918        struct tipc_bearer __rcu *tipc_ptr;
1919#endif
1920#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1921        void                    *atalk_ptr;
1922#endif
1923        struct in_device __rcu  *ip_ptr;
1924#if IS_ENABLED(CONFIG_DECNET)
1925        struct dn_dev __rcu     *dn_ptr;
1926#endif
1927        struct inet6_dev __rcu  *ip6_ptr;
1928#if IS_ENABLED(CONFIG_AX25)
1929        void                    *ax25_ptr;
1930#endif
1931        struct wireless_dev     *ieee80211_ptr;
1932        struct wpan_dev         *ieee802154_ptr;
1933#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1934        struct mpls_dev __rcu   *mpls_ptr;
1935#endif
1936
1937/*
1938 * Cache lines mostly used on receive path (including eth_type_trans())
1939 */
1940        /* Interface address info used in eth_type_trans() */
1941        unsigned char           *dev_addr;
1942
1943        struct netdev_rx_queue  *_rx;
1944        unsigned int            num_rx_queues;
1945        unsigned int            real_num_rx_queues;
1946
1947        struct bpf_prog __rcu   *xdp_prog;
1948        unsigned long           gro_flush_timeout;
1949        rx_handler_func_t __rcu *rx_handler;
1950        void __rcu              *rx_handler_data;
1951
1952#ifdef CONFIG_NET_CLS_ACT
1953        struct mini_Qdisc __rcu *miniq_ingress;
1954#endif
1955        struct netdev_queue __rcu *ingress_queue;
1956#ifdef CONFIG_NETFILTER_INGRESS
1957        struct nf_hook_entries __rcu *nf_hooks_ingress;
1958#endif
1959
1960        unsigned char           broadcast[MAX_ADDR_LEN];
1961#ifdef CONFIG_RFS_ACCEL
1962        struct cpu_rmap         *rx_cpu_rmap;
1963#endif
1964        struct hlist_node       index_hlist;
1965
1966/*
1967 * Cache lines mostly used on transmit path
1968 */
1969        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1970        unsigned int            num_tx_queues;
1971        unsigned int            real_num_tx_queues;
1972        struct Qdisc            *qdisc;
1973#ifdef CONFIG_NET_SCHED
1974        DECLARE_HASHTABLE       (qdisc_hash, 4);
1975#endif
1976        unsigned int            tx_queue_len;
1977        spinlock_t              tx_global_lock;
1978        int                     watchdog_timeo;
1979
1980#ifdef CONFIG_XPS
1981        struct xps_dev_maps __rcu *xps_cpus_map;
1982        struct xps_dev_maps __rcu *xps_rxqs_map;
1983#endif
1984#ifdef CONFIG_NET_CLS_ACT
1985        struct mini_Qdisc __rcu *miniq_egress;
1986#endif
1987
1988        /* These may be needed for future network-power-down code. */
1989        struct timer_list       watchdog_timer;
1990
1991        int __percpu            *pcpu_refcnt;
1992        struct list_head        todo_list;
1993
1994        struct list_head        link_watch_list;
1995
1996        enum { NETREG_UNINITIALIZED=0,
1997               NETREG_REGISTERED,       /* completed register_netdevice */
1998               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1999               NETREG_UNREGISTERED,     /* completed unregister todo */
2000               NETREG_RELEASED,         /* called free_netdev */
2001               NETREG_DUMMY,            /* dummy device for NAPI poll */
2002        } reg_state:8;
2003
2004        bool dismantle;
2005
2006        enum {
2007                RTNL_LINK_INITIALIZED,
2008                RTNL_LINK_INITIALIZING,
2009        } rtnl_link_state:16;
2010
2011        bool needs_free_netdev;
2012        void (*priv_destructor)(struct net_device *dev);
2013
2014#ifdef CONFIG_NETPOLL
2015        struct netpoll_info __rcu       *npinfo;
2016#endif
2017
2018        possible_net_t                  nd_net;
2019
2020        /* mid-layer private */
2021        union {
2022                void                                    *ml_priv;
2023                struct pcpu_lstats __percpu             *lstats;
2024                struct pcpu_sw_netstats __percpu        *tstats;
2025                struct pcpu_dstats __percpu             *dstats;
2026        };
2027
2028#if IS_ENABLED(CONFIG_GARP)
2029        struct garp_port __rcu  *garp_port;
2030#endif
2031#if IS_ENABLED(CONFIG_MRP)
2032        struct mrp_port __rcu   *mrp_port;
2033#endif
2034
2035        struct device           dev;
2036        const struct attribute_group *sysfs_groups[4];
2037        const struct attribute_group *sysfs_rx_queue_group;
2038
2039        const struct rtnl_link_ops *rtnl_link_ops;
2040
2041        /* for setting kernel sock attribute on TCP connection setup */
2042#define GSO_MAX_SIZE            65536
2043        unsigned int            gso_max_size;
2044#define GSO_MAX_SEGS            65535
2045        u16                     gso_max_segs;
2046
2047#ifdef CONFIG_DCB
2048        const struct dcbnl_rtnl_ops *dcbnl_ops;
2049#endif
2050        s16                     num_tc;
2051        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
2052        u8                      prio_tc_map[TC_BITMASK + 1];
2053
2054#if IS_ENABLED(CONFIG_FCOE)
2055        unsigned int            fcoe_ddp_xid;
2056#endif
2057#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2058        struct netprio_map __rcu *priomap;
2059#endif
2060        struct phy_device       *phydev;
2061        struct sfp_bus          *sfp_bus;
2062        struct lock_class_key   *qdisc_tx_busylock;
2063        struct lock_class_key   *qdisc_running_key;
2064        bool                    proto_down;
2065        unsigned                wol_enabled:1;
2066};
2067#define to_net_dev(d) container_of(d, struct net_device, dev)
2068
2069static inline bool netif_elide_gro(const struct net_device *dev)
2070{
2071        if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2072                return true;
2073        return false;
2074}
2075
2076#define NETDEV_ALIGN            32
2077
2078static inline
2079int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2080{
2081        return dev->prio_tc_map[prio & TC_BITMASK];
2082}
2083
2084static inline
2085int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2086{
2087        if (tc >= dev->num_tc)
2088                return -EINVAL;
2089
2090        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2091        return 0;
2092}
2093
2094int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2095void netdev_reset_tc(struct net_device *dev);
2096int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2097int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2098
2099static inline
2100int netdev_get_num_tc(struct net_device *dev)
2101{
2102        return dev->num_tc;
2103}
2104
2105void netdev_unbind_sb_channel(struct net_device *dev,
2106                              struct net_device *sb_dev);
2107int netdev_bind_sb_channel_queue(struct net_device *dev,
2108                                 struct net_device *sb_dev,
2109                                 u8 tc, u16 count, u16 offset);
2110int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2111static inline int netdev_get_sb_channel(struct net_device *dev)
2112{
2113        return max_t(int, -dev->num_tc, 0);
2114}
2115
2116static inline
2117struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2118                                         unsigned int index)
2119{
2120        return &dev->_tx[index];
2121}
2122
2123static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2124                                                    const struct sk_buff *skb)
2125{
2126        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2127}
2128
2129static inline void netdev_for_each_tx_queue(struct net_device *dev,
2130                                            void (*f)(struct net_device *,
2131                                                      struct netdev_queue *,
2132                                                      void *),
2133                                            void *arg)
2134{
2135        unsigned int i;
2136
2137        for (i = 0; i < dev->num_tx_queues; i++)
2138                f(dev, &dev->_tx[i], arg);
2139}
2140
2141#define netdev_lockdep_set_classes(dev)                         \
2142{                                                               \
2143        static struct lock_class_key qdisc_tx_busylock_key;     \
2144        static struct lock_class_key qdisc_running_key;         \
2145        static struct lock_class_key qdisc_xmit_lock_key;       \
2146        static struct lock_class_key dev_addr_list_lock_key;    \
2147        unsigned int i;                                         \
2148                                                                \
2149        (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2150        (dev)->qdisc_running_key = &qdisc_running_key;          \
2151        lockdep_set_class(&(dev)->addr_list_lock,               \
2152                          &dev_addr_list_lock_key);             \
2153        for (i = 0; i < (dev)->num_tx_queues; i++)              \
2154                lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2155                                  &qdisc_xmit_lock_key);        \
2156}
2157
2158struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2159                                    struct sk_buff *skb,
2160                                    struct net_device *sb_dev);
2161
2162/* returns the headroom that the master device needs to take in account
2163 * when forwarding to this dev
2164 */
2165static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2166{
2167        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2168}
2169
2170static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2171{
2172        if (dev->netdev_ops->ndo_set_rx_headroom)
2173                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2174}
2175
2176/* set the device rx headroom to the dev's default */
2177static inline void netdev_reset_rx_headroom(struct net_device *dev)
2178{
2179        netdev_set_rx_headroom(dev, -1);
2180}
2181
2182/*
2183 * Net namespace inlines
2184 */
2185static inline
2186struct net *dev_net(const struct net_device *dev)
2187{
2188        return read_pnet(&dev->nd_net);
2189}
2190
2191static inline
2192void dev_net_set(struct net_device *dev, struct net *net)
2193{
2194        write_pnet(&dev->nd_net, net);
2195}
2196
2197/**
2198 *      netdev_priv - access network device private data
2199 *      @dev: network device
2200 *
2201 * Get network device private data
2202 */
2203static inline void *netdev_priv(const struct net_device *dev)
2204{
2205        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2206}
2207
2208/* Set the sysfs physical device reference for the network logical device
2209 * if set prior to registration will cause a symlink during initialization.
2210 */
2211#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2212
2213/* Set the sysfs device type for the network logical device to allow
2214 * fine-grained identification of different network device types. For
2215 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2216 */
2217#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2218
2219/* Default NAPI poll() weight
2220 * Device drivers are strongly advised to not use bigger value
2221 */
2222#define NAPI_POLL_WEIGHT 64
2223
2224/**
2225 *      netif_napi_add - initialize a NAPI context
2226 *      @dev:  network device
2227 *      @napi: NAPI context
2228 *      @poll: polling function
2229 *      @weight: default weight
2230 *
2231 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2232 * *any* of the other NAPI-related functions.
2233 */
2234void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2235                    int (*poll)(struct napi_struct *, int), int weight);
2236
2237/**
2238 *      netif_tx_napi_add - initialize a NAPI context
2239 *      @dev:  network device
2240 *      @napi: NAPI context
2241 *      @poll: polling function
2242 *      @weight: default weight
2243 *
2244 * This variant of netif_napi_add() should be used from drivers using NAPI
2245 * to exclusively poll a TX queue.
2246 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2247 */
2248static inline void netif_tx_napi_add(struct net_device *dev,
2249                                     struct napi_struct *napi,
2250                                     int (*poll)(struct napi_struct *, int),
2251                                     int weight)
2252{
2253        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2254        netif_napi_add(dev, napi, poll, weight);
2255}
2256
2257/**
2258 *  netif_napi_del - remove a NAPI context
2259 *  @napi: NAPI context
2260 *
2261 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2262 */
2263void netif_napi_del(struct napi_struct *napi);
2264
2265struct napi_gro_cb {
2266        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2267        void    *frag0;
2268
2269        /* Length of frag0. */
2270        unsigned int frag0_len;
2271
2272        /* This indicates where we are processing relative to skb->data. */
2273        int     data_offset;
2274
2275        /* This is non-zero if the packet cannot be merged with the new skb. */
2276        u16     flush;
2277
2278        /* Save the IP ID here and check when we get to the transport layer */
2279        u16     flush_id;
2280
2281        /* Number of segments aggregated. */
2282        u16     count;
2283
2284        /* Start offset for remote checksum offload */
2285        u16     gro_remcsum_start;
2286
2287        /* jiffies when first packet was created/queued */
2288        unsigned long age;
2289
2290        /* Used in ipv6_gro_receive() and foo-over-udp */
2291        u16     proto;
2292
2293        /* This is non-zero if the packet may be of the same flow. */
2294        u8      same_flow:1;
2295
2296        /* Used in tunnel GRO receive */
2297        u8      encap_mark:1;
2298
2299        /* GRO checksum is valid */
2300        u8      csum_valid:1;
2301
2302        /* Number of checksums via CHECKSUM_UNNECESSARY */
2303        u8      csum_cnt:3;
2304
2305        /* Free the skb? */
2306        u8      free:2;
2307#define NAPI_GRO_FREE             1
2308#define NAPI_GRO_FREE_STOLEN_HEAD 2
2309
2310        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2311        u8      is_ipv6:1;
2312
2313        /* Used in GRE, set in fou/gue_gro_receive */
2314        u8      is_fou:1;
2315
2316        /* Used to determine if flush_id can be ignored */
2317        u8      is_atomic:1;
2318
2319        /* Number of gro_receive callbacks this packet already went through */
2320        u8 recursion_counter:4;
2321
2322        /* 1 bit hole */
2323
2324        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2325        __wsum  csum;
2326
2327        /* used in skb_gro_receive() slow path */
2328        struct sk_buff *last;
2329};
2330
2331#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2332
2333#define GRO_RECURSION_LIMIT 15
2334static inline int gro_recursion_inc_test(struct sk_buff *skb)
2335{
2336        return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2337}
2338
2339typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2340static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2341                                               struct list_head *head,
2342                                               struct sk_buff *skb)
2343{
2344        if (unlikely(gro_recursion_inc_test(skb))) {
2345                NAPI_GRO_CB(skb)->flush |= 1;
2346                return NULL;
2347        }
2348
2349        return cb(head, skb);
2350}
2351
2352typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2353                                            struct sk_buff *);
2354static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2355                                                  struct sock *sk,
2356                                                  struct list_head *head,
2357                                                  struct sk_buff *skb)
2358{
2359        if (unlikely(gro_recursion_inc_test(skb))) {
2360                NAPI_GRO_CB(skb)->flush |= 1;
2361                return NULL;
2362        }
2363
2364        return cb(sk, head, skb);
2365}
2366
2367struct packet_type {
2368        __be16                  type;   /* This is really htons(ether_type). */
2369        bool                    ignore_outgoing;
2370        struct net_device       *dev;   /* NULL is wildcarded here           */
2371        int                     (*func) (struct sk_buff *,
2372                                         struct net_device *,
2373                                         struct packet_type *,
2374                                         struct net_device *);
2375        void                    (*list_func) (struct list_head *,
2376                                              struct packet_type *,
2377                                              struct net_device *);
2378        bool                    (*id_match)(struct packet_type *ptype,
2379                                            struct sock *sk);
2380        void                    *af_packet_priv;
2381        struct list_head        list;
2382};
2383
2384struct offload_callbacks {
2385        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2386                                                netdev_features_t features);
2387        struct sk_buff          *(*gro_receive)(struct list_head *head,
2388                                                struct sk_buff *skb);
2389        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2390};
2391
2392struct packet_offload {
2393        __be16                   type;  /* This is really htons(ether_type). */
2394        u16                      priority;
2395        struct offload_callbacks callbacks;
2396        struct list_head         list;
2397};
2398
2399/* often modified stats are per-CPU, other are shared (netdev->stats) */
2400struct pcpu_sw_netstats {
2401        u64     rx_packets;
2402        u64     rx_bytes;
2403        u64     tx_packets;
2404        u64     tx_bytes;
2405        struct u64_stats_sync   syncp;
2406} __aligned(4 * sizeof(u64));
2407
2408struct pcpu_lstats {
2409        u64 packets;
2410        u64 bytes;
2411        struct u64_stats_sync syncp;
2412} __aligned(2 * sizeof(u64));
2413
2414#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2415({                                                                      \
2416        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2417        if (pcpu_stats) {                                               \
2418                int __cpu;                                              \
2419                for_each_possible_cpu(__cpu) {                          \
2420                        typeof(type) *stat;                             \
2421                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2422                        u64_stats_init(&stat->syncp);                   \
2423                }                                                       \
2424        }                                                               \
2425        pcpu_stats;                                                     \
2426})
2427
2428#define netdev_alloc_pcpu_stats(type)                                   \
2429        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2430
2431enum netdev_lag_tx_type {
2432        NETDEV_LAG_TX_TYPE_UNKNOWN,
2433        NETDEV_LAG_TX_TYPE_RANDOM,
2434        NETDEV_LAG_TX_TYPE_BROADCAST,
2435        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2436        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2437        NETDEV_LAG_TX_TYPE_HASH,
2438};
2439
2440enum netdev_lag_hash {
2441        NETDEV_LAG_HASH_NONE,
2442        NETDEV_LAG_HASH_L2,
2443        NETDEV_LAG_HASH_L34,
2444        NETDEV_LAG_HASH_L23,
2445        NETDEV_LAG_HASH_E23,
2446        NETDEV_LAG_HASH_E34,
2447        NETDEV_LAG_HASH_UNKNOWN,
2448};
2449
2450struct netdev_lag_upper_info {
2451        enum netdev_lag_tx_type tx_type;
2452        enum netdev_lag_hash hash_type;
2453};
2454
2455struct netdev_lag_lower_state_info {
2456        u8 link_up : 1,
2457           tx_enabled : 1;
2458};
2459
2460#include <linux/notifier.h>
2461
2462/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2463 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2464 * adding new types.
2465 */
2466enum netdev_cmd {
2467        NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2468        NETDEV_DOWN,
2469        NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2470                                   detected a hardware crash and restarted
2471                                   - we can use this eg to kick tcp sessions
2472                                   once done */
2473        NETDEV_CHANGE,          /* Notify device state change */
2474        NETDEV_REGISTER,
2475        NETDEV_UNREGISTER,
2476        NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2477        NETDEV_CHANGEADDR,      /* notify after the address change */
2478        NETDEV_PRE_CHANGEADDR,  /* notify before the address change */
2479        NETDEV_GOING_DOWN,
2480        NETDEV_CHANGENAME,
2481        NETDEV_FEAT_CHANGE,
2482        NETDEV_BONDING_FAILOVER,
2483        NETDEV_PRE_UP,
2484        NETDEV_PRE_TYPE_CHANGE,
2485        NETDEV_POST_TYPE_CHANGE,
2486        NETDEV_POST_INIT,
2487        NETDEV_RELEASE,
2488        NETDEV_NOTIFY_PEERS,
2489        NETDEV_JOIN,
2490        NETDEV_CHANGEUPPER,
2491        NETDEV_RESEND_IGMP,
2492        NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2493        NETDEV_CHANGEINFODATA,
2494        NETDEV_BONDING_INFO,
2495        NETDEV_PRECHANGEUPPER,
2496        NETDEV_CHANGELOWERSTATE,
2497        NETDEV_UDP_TUNNEL_PUSH_INFO,
2498        NETDEV_UDP_TUNNEL_DROP_INFO,
2499        NETDEV_CHANGE_TX_QUEUE_LEN,
2500        NETDEV_CVLAN_FILTER_PUSH_INFO,
2501        NETDEV_CVLAN_FILTER_DROP_INFO,
2502        NETDEV_SVLAN_FILTER_PUSH_INFO,
2503        NETDEV_SVLAN_FILTER_DROP_INFO,
2504};
2505const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2506
2507int register_netdevice_notifier(struct notifier_block *nb);
2508int unregister_netdevice_notifier(struct notifier_block *nb);
2509
2510struct netdev_notifier_info {
2511        struct net_device       *dev;
2512        struct netlink_ext_ack  *extack;
2513};
2514
2515struct netdev_notifier_info_ext {
2516        struct netdev_notifier_info info; /* must be first */
2517        union {
2518                u32 mtu;
2519        } ext;
2520};
2521
2522struct netdev_notifier_change_info {
2523        struct netdev_notifier_info info; /* must be first */
2524        unsigned int flags_changed;
2525};
2526
2527struct netdev_notifier_changeupper_info {
2528        struct netdev_notifier_info info; /* must be first */
2529        struct net_device *upper_dev; /* new upper dev */
2530        bool master; /* is upper dev master */
2531        bool linking; /* is the notification for link or unlink */
2532        void *upper_info; /* upper dev info */
2533};
2534
2535struct netdev_notifier_changelowerstate_info {
2536        struct netdev_notifier_info info; /* must be first */
2537        void *lower_state_info; /* is lower dev state */
2538};
2539
2540struct netdev_notifier_pre_changeaddr_info {
2541        struct netdev_notifier_info info; /* must be first */
2542        const unsigned char *dev_addr;
2543};
2544
2545static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2546                                             struct net_device *dev)
2547{
2548        info->dev = dev;
2549        info->extack = NULL;
2550}
2551
2552static inline struct net_device *
2553netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2554{
2555        return info->dev;
2556}
2557
2558static inline struct netlink_ext_ack *
2559netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2560{
2561        return info->extack;
2562}
2563
2564int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2565
2566
2567extern rwlock_t                         dev_base_lock;          /* Device list lock */
2568
2569#define for_each_netdev(net, d)         \
2570                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2571#define for_each_netdev_reverse(net, d) \
2572                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2573#define for_each_netdev_rcu(net, d)             \
2574                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2575#define for_each_netdev_safe(net, d, n) \
2576                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2577#define for_each_netdev_continue(net, d)                \
2578                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2579#define for_each_netdev_continue_rcu(net, d)            \
2580        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2581#define for_each_netdev_in_bond_rcu(bond, slave)        \
2582                for_each_netdev_rcu(&init_net, slave)   \
2583                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2584#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2585
2586static inline struct net_device *next_net_device(struct net_device *dev)
2587{
2588        struct list_head *lh;
2589        struct net *net;
2590
2591        net = dev_net(dev);
2592        lh = dev->dev_list.next;
2593        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2594}
2595
2596static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2597{
2598        struct list_head *lh;
2599        struct net *net;
2600
2601        net = dev_net(dev);
2602        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2603        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2604}
2605
2606static inline struct net_device *first_net_device(struct net *net)
2607{
2608        return list_empty(&net->dev_base_head) ? NULL :
2609                net_device_entry(net->dev_base_head.next);
2610}
2611
2612static inline struct net_device *first_net_device_rcu(struct net *net)
2613{
2614        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2615
2616        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2617}
2618
2619int netdev_boot_setup_check(struct net_device *dev);
2620unsigned long netdev_boot_base(const char *prefix, int unit);
2621struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2622                                       const char *hwaddr);
2623struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2624struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2625void dev_add_pack(struct packet_type *pt);
2626void dev_remove_pack(struct packet_type *pt);
2627void __dev_remove_pack(struct packet_type *pt);
2628void dev_add_offload(struct packet_offload *po);
2629void dev_remove_offload(struct packet_offload *po);
2630
2631int dev_get_iflink(const struct net_device *dev);
2632int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2633struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2634                                      unsigned short mask);
2635struct net_device *dev_get_by_name(struct net *net, const char *name);
2636struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2637struct net_device *__dev_get_by_name(struct net *net, const char *name);
2638int dev_alloc_name(struct net_device *dev, const char *name);
2639int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2640void dev_close(struct net_device *dev);
2641void dev_close_many(struct list_head *head, bool unlink);
2642void dev_disable_lro(struct net_device *dev);
2643int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2644u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2645                     struct net_device *sb_dev,
2646                     select_queue_fallback_t fallback);
2647u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2648                       struct net_device *sb_dev,
2649                       select_queue_fallback_t fallback);
2650int dev_queue_xmit(struct sk_buff *skb);
2651int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2652int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2653int register_netdevice(struct net_device *dev);
2654void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2655void unregister_netdevice_many(struct list_head *head);
2656static inline void unregister_netdevice(struct net_device *dev)
2657{
2658        unregister_netdevice_queue(dev, NULL);
2659}
2660
2661int netdev_refcnt_read(const struct net_device *dev);
2662void free_netdev(struct net_device *dev);
2663void netdev_freemem(struct net_device *dev);
2664void synchronize_net(void);
2665int init_dummy_netdev(struct net_device *dev);
2666
2667DECLARE_PER_CPU(int, xmit_recursion);
2668#define XMIT_RECURSION_LIMIT    10
2669
2670static inline int dev_recursion_level(void)
2671{
2672        return this_cpu_read(xmit_recursion);
2673}
2674
2675struct net_device *dev_get_by_index(struct net *net, int ifindex);
2676struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2677struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2678struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2679int netdev_get_name(struct net *net, char *name, int ifindex);
2680int dev_restart(struct net_device *dev);
2681int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2682
2683static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2684{
2685        return NAPI_GRO_CB(skb)->data_offset;
2686}
2687
2688static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2689{
2690        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2691}
2692
2693static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2694{
2695        NAPI_GRO_CB(skb)->data_offset += len;
2696}
2697
2698static inline void *skb_gro_header_fast(struct sk_buff *skb,
2699                                        unsigned int offset)
2700{
2701        return NAPI_GRO_CB(skb)->frag0 + offset;
2702}
2703
2704static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2705{
2706        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2707}
2708
2709static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2710{
2711        NAPI_GRO_CB(skb)->frag0 = NULL;
2712        NAPI_GRO_CB(skb)->frag0_len = 0;
2713}
2714
2715static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2716                                        unsigned int offset)
2717{
2718        if (!pskb_may_pull(skb, hlen))
2719                return NULL;
2720
2721        skb_gro_frag0_invalidate(skb);
2722        return skb->data + offset;
2723}
2724
2725static inline void *skb_gro_network_header(struct sk_buff *skb)
2726{
2727        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2728               skb_network_offset(skb);
2729}
2730
2731static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2732                                        const void *start, unsigned int len)
2733{
2734        if (NAPI_GRO_CB(skb)->csum_valid)
2735                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2736                                                  csum_partial(start, len, 0));
2737}
2738
2739/* GRO checksum functions. These are logical equivalents of the normal
2740 * checksum functions (in skbuff.h) except that they operate on the GRO
2741 * offsets and fields in sk_buff.
2742 */
2743
2744__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2745
2746static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2747{
2748        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2749}
2750
2751static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2752                                                      bool zero_okay,
2753                                                      __sum16 check)
2754{
2755        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2756                skb_checksum_start_offset(skb) <
2757                 skb_gro_offset(skb)) &&
2758                !skb_at_gro_remcsum_start(skb) &&
2759                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2760                (!zero_okay || check));
2761}
2762
2763static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2764                                                           __wsum psum)
2765{
2766        if (NAPI_GRO_CB(skb)->csum_valid &&
2767            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2768                return 0;
2769
2770        NAPI_GRO_CB(skb)->csum = psum;
2771
2772        return __skb_gro_checksum_complete(skb);
2773}
2774
2775static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2776{
2777        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2778                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2779                NAPI_GRO_CB(skb)->csum_cnt--;
2780        } else {
2781                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2782                 * verified a new top level checksum or an encapsulated one
2783                 * during GRO. This saves work if we fallback to normal path.
2784                 */
2785                __skb_incr_checksum_unnecessary(skb);
2786        }
2787}
2788
2789#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2790                                    compute_pseudo)                     \
2791({                                                                      \
2792        __sum16 __ret = 0;                                              \
2793        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2794                __ret = __skb_gro_checksum_validate_complete(skb,       \
2795                                compute_pseudo(skb, proto));            \
2796        if (!__ret)                                                     \
2797                skb_gro_incr_csum_unnecessary(skb);                     \
2798        __ret;                                                          \
2799})
2800
2801#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2802        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2803
2804#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2805                                             compute_pseudo)            \
2806        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2807
2808#define skb_gro_checksum_simple_validate(skb)                           \
2809        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2810
2811static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2812{
2813        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2814                !NAPI_GRO_CB(skb)->csum_valid);
2815}
2816
2817static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2818                                              __sum16 check, __wsum pseudo)
2819{
2820        NAPI_GRO_CB(skb)->csum = ~pseudo;
2821        NAPI_GRO_CB(skb)->csum_valid = 1;
2822}
2823
2824#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2825do {                                                                    \
2826        if (__skb_gro_checksum_convert_check(skb))                      \
2827                __skb_gro_checksum_convert(skb, check,                  \
2828                                           compute_pseudo(skb, proto)); \
2829} while (0)
2830
2831struct gro_remcsum {
2832        int offset;
2833        __wsum delta;
2834};
2835
2836static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2837{
2838        grc->offset = 0;
2839        grc->delta = 0;
2840}
2841
2842static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2843                                            unsigned int off, size_t hdrlen,
2844                                            int start, int offset,
2845                                            struct gro_remcsum *grc,
2846                                            bool nopartial)
2847{
2848        __wsum delta;
2849        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2850
2851        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2852
2853        if (!nopartial) {
2854                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2855                return ptr;
2856        }
2857
2858        ptr = skb_gro_header_fast(skb, off);
2859        if (skb_gro_header_hard(skb, off + plen)) {
2860                ptr = skb_gro_header_slow(skb, off + plen, off);
2861                if (!ptr)
2862                        return NULL;
2863        }
2864
2865        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2866                               start, offset);
2867
2868        /* Adjust skb->csum since we changed the packet */
2869        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2870
2871        grc->offset = off + hdrlen + offset;
2872        grc->delta = delta;
2873
2874        return ptr;
2875}
2876
2877static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2878                                           struct gro_remcsum *grc)
2879{
2880        void *ptr;
2881        size_t plen = grc->offset + sizeof(u16);
2882
2883        if (!grc->delta)
2884                return;
2885
2886        ptr = skb_gro_header_fast(skb, grc->offset);
2887        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2888                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2889                if (!ptr)
2890                        return;
2891        }
2892
2893        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2894}
2895
2896#ifdef CONFIG_XFRM_OFFLOAD
2897static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2898{
2899        if (PTR_ERR(pp) != -EINPROGRESS)
2900                NAPI_GRO_CB(skb)->flush |= flush;
2901}
2902static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2903                                               struct sk_buff *pp,
2904                                               int flush,
2905                                               struct gro_remcsum *grc)
2906{
2907        if (PTR_ERR(pp) != -EINPROGRESS) {
2908                NAPI_GRO_CB(skb)->flush |= flush;
2909                skb_gro_remcsum_cleanup(skb, grc);
2910                skb->remcsum_offload = 0;
2911        }
2912}
2913#else
2914static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2915{
2916        NAPI_GRO_CB(skb)->flush |= flush;
2917}
2918static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2919                                               struct sk_buff *pp,
2920                                               int flush,
2921                                               struct gro_remcsum *grc)
2922{
2923        NAPI_GRO_CB(skb)->flush |= flush;
2924        skb_gro_remcsum_cleanup(skb, grc);
2925        skb->remcsum_offload = 0;
2926}
2927#endif
2928
2929static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2930                                  unsigned short type,
2931                                  const void *daddr, const void *saddr,
2932                                  unsigned int len)
2933{
2934        if (!dev->header_ops || !dev->header_ops->create)
2935                return 0;
2936
2937        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2938}
2939
2940static inline int dev_parse_header(const struct sk_buff *skb,
2941                                   unsigned char *haddr)
2942{
2943        const struct net_device *dev = skb->dev;
2944
2945        if (!dev->header_ops || !dev->header_ops->parse)
2946                return 0;
2947        return dev->header_ops->parse(skb, haddr);
2948}
2949
2950static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2951{
2952        const struct net_device *dev = skb->dev;
2953
2954        if (!dev->header_ops || !dev->header_ops->parse_protocol)
2955                return 0;
2956        return dev->header_ops->parse_protocol(skb);
2957}
2958
2959/* ll_header must have at least hard_header_len allocated */
2960static inline bool dev_validate_header(const struct net_device *dev,
2961                                       char *ll_header, int len)
2962{
2963        if (likely(len >= dev->hard_header_len))
2964                return true;
2965        if (len < dev->min_header_len)
2966                return false;
2967
2968        if (capable(CAP_SYS_RAWIO)) {
2969                memset(ll_header + len, 0, dev->hard_header_len - len);
2970                return true;
2971        }
2972
2973        if (dev->header_ops && dev->header_ops->validate)
2974                return dev->header_ops->validate(ll_header, len);
2975
2976        return false;
2977}
2978
2979typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2980                           int len, int size);
2981int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2982static inline int unregister_gifconf(unsigned int family)
2983{
2984        return register_gifconf(family, NULL);
2985}
2986
2987#ifdef CONFIG_NET_FLOW_LIMIT
2988#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2989struct sd_flow_limit {
2990        u64                     count;
2991        unsigned int            num_buckets;
2992        unsigned int            history_head;
2993        u16                     history[FLOW_LIMIT_HISTORY];
2994        u8                      buckets[];
2995};
2996
2997extern int netdev_flow_limit_table_len;
2998#endif /* CONFIG_NET_FLOW_LIMIT */
2999
3000/*
3001 * Incoming packets are placed on per-CPU queues
3002 */
3003struct softnet_data {
3004        struct list_head        poll_list;
3005        struct sk_buff_head     process_queue;
3006
3007        /* stats */
3008        unsigned int            processed;
3009        unsigned int            time_squeeze;
3010        unsigned int            received_rps;
3011#ifdef CONFIG_RPS
3012        struct softnet_data     *rps_ipi_list;
3013#endif
3014#ifdef CONFIG_NET_FLOW_LIMIT
3015        struct sd_flow_limit __rcu *flow_limit;
3016#endif
3017        struct Qdisc            *output_queue;
3018        struct Qdisc            **output_queue_tailp;
3019        struct sk_buff          *completion_queue;
3020#ifdef CONFIG_XFRM_OFFLOAD
3021        struct sk_buff_head     xfrm_backlog;
3022#endif
3023#ifdef CONFIG_RPS
3024        /* input_queue_head should be written by cpu owning this struct,
3025         * and only read by other cpus. Worth using a cache line.
3026         */
3027        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
3028
3029        /* Elements below can be accessed between CPUs for RPS/RFS */
3030        call_single_data_t      csd ____cacheline_aligned_in_smp;
3031        struct softnet_data     *rps_ipi_next;
3032        unsigned int            cpu;
3033        unsigned int            input_queue_tail;
3034#endif
3035        unsigned int            dropped;
3036        struct sk_buff_head     input_pkt_queue;
3037        struct napi_struct      backlog;
3038
3039};
3040
3041static inline void input_queue_head_incr(struct softnet_data *sd)
3042{
3043#ifdef CONFIG_RPS
3044        sd->input_queue_head++;
3045#endif
3046}
3047
3048static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3049                                              unsigned int *qtail)
3050{
3051#ifdef CONFIG_RPS
3052        *qtail = ++sd->input_queue_tail;
3053#endif
3054}
3055
3056DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3057
3058void __netif_schedule(struct Qdisc *q);
3059void netif_schedule_queue(struct netdev_queue *txq);
3060
3061static inline void netif_tx_schedule_all(struct net_device *dev)
3062{
3063        unsigned int i;
3064
3065        for (i = 0; i < dev->num_tx_queues; i++)
3066                netif_schedule_queue(netdev_get_tx_queue(dev, i));
3067}
3068
3069static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3070{
3071        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3072}
3073
3074/**
3075 *      netif_start_queue - allow transmit
3076 *      @dev: network device
3077 *
3078 *      Allow upper layers to call the device hard_start_xmit routine.
3079 */
3080static inline void netif_start_queue(struct net_device *dev)
3081{
3082        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3083}
3084
3085static inline void netif_tx_start_all_queues(struct net_device *dev)
3086{
3087        unsigned int i;
3088
3089        for (i = 0; i < dev->num_tx_queues; i++) {
3090                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3091                netif_tx_start_queue(txq);
3092        }
3093}
3094
3095void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3096
3097/**
3098 *      netif_wake_queue - restart transmit
3099 *      @dev: network device
3100 *
3101 *      Allow upper layers to call the device hard_start_xmit routine.
3102 *      Used for flow control when transmit resources are available.
3103 */
3104static inline void netif_wake_queue(struct net_device *dev)
3105{
3106        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3107}
3108
3109static inline void netif_tx_wake_all_queues(struct net_device *dev)
3110{
3111        unsigned int i;
3112
3113        for (i = 0; i < dev->num_tx_queues; i++) {
3114                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3115                netif_tx_wake_queue(txq);
3116        }
3117}
3118
3119static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3120{
3121        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3122}
3123
3124/**
3125 *      netif_stop_queue - stop transmitted packets
3126 *      @dev: network device
3127 *
3128 *      Stop upper layers calling the device hard_start_xmit routine.
3129 *      Used for flow control when transmit resources are unavailable.
3130 */
3131static inline void netif_stop_queue(struct net_device *dev)
3132{
3133        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3134}
3135
3136void netif_tx_stop_all_queues(struct net_device *dev);
3137
3138static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3139{
3140        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3141}
3142
3143/**
3144 *      netif_queue_stopped - test if transmit queue is flowblocked
3145 *      @dev: network device
3146 *
3147 *      Test if transmit queue on device is currently unable to send.
3148 */
3149static inline bool netif_queue_stopped(const struct net_device *dev)
3150{
3151        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3152}
3153
3154static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3155{
3156        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3157}
3158
3159static inline bool
3160netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3161{
3162        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3163}
3164
3165static inline bool
3166netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3167{
3168        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3169}
3170
3171/**
3172 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3173 *      @dev_queue: pointer to transmit queue
3174 *
3175 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3176 * to give appropriate hint to the CPU.
3177 */
3178static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3179{
3180#ifdef CONFIG_BQL
3181        prefetchw(&dev_queue->dql.num_queued);
3182#endif
3183}
3184
3185/**
3186 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3187 *      @dev_queue: pointer to transmit queue
3188 *
3189 * BQL enabled drivers might use this helper in their TX completion path,
3190 * to give appropriate hint to the CPU.
3191 */
3192static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3193{
3194#ifdef CONFIG_BQL
3195        prefetchw(&dev_queue->dql.limit);
3196#endif
3197}
3198
3199static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3200                                        unsigned int bytes)
3201{
3202#ifdef CONFIG_BQL
3203        dql_queued(&dev_queue->dql, bytes);
3204
3205        if (likely(dql_avail(&dev_queue->dql) >= 0))
3206                return;
3207
3208        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3209
3210        /*
3211         * The XOFF flag must be set before checking the dql_avail below,
3212         * because in netdev_tx_completed_queue we update the dql_completed
3213         * before checking the XOFF flag.
3214         */
3215        smp_mb();
3216
3217        /* check again in case another CPU has just made room avail */
3218        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3219                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3220#endif
3221}
3222
3223/* Variant of netdev_tx_sent_queue() for drivers that are aware
3224 * that they should not test BQL status themselves.
3225 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3226 * skb of a batch.
3227 * Returns true if the doorbell must be used to kick the NIC.
3228 */
3229static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3230                                          unsigned int bytes,
3231                                          bool xmit_more)
3232{
3233        if (xmit_more) {
3234#ifdef CONFIG_BQL
3235                dql_queued(&dev_queue->dql, bytes);
3236#endif
3237                return netif_tx_queue_stopped(dev_queue);
3238        }
3239        netdev_tx_sent_queue(dev_queue, bytes);
3240        return true;
3241}
3242
3243/**
3244 *      netdev_sent_queue - report the number of bytes queued to hardware
3245 *      @dev: network device
3246 *      @bytes: number of bytes queued to the hardware device queue
3247 *
3248 *      Report the number of bytes queued for sending/completion to the network
3249 *      device hardware queue. @bytes should be a good approximation and should
3250 *      exactly match netdev_completed_queue() @bytes
3251 */
3252static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3253{
3254        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3255}
3256
3257static inline bool __netdev_sent_queue(struct net_device *dev,
3258                                       unsigned int bytes,
3259                                       bool xmit_more)
3260{
3261        return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3262                                      xmit_more);
3263}
3264
3265static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3266                                             unsigned int pkts, unsigned int bytes)
3267{
3268#ifdef CONFIG_BQL
3269        if (unlikely(!bytes))
3270                return;
3271
3272        dql_completed(&dev_queue->dql, bytes);
3273
3274        /*
3275         * Without the memory barrier there is a small possiblity that
3276         * netdev_tx_sent_queue will miss the update and cause the queue to
3277         * be stopped forever
3278         */
3279        smp_mb();
3280
3281        if (dql_avail(&dev_queue->dql) < 0)
3282                return;
3283
3284        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3285                netif_schedule_queue(dev_queue);
3286#endif
3287}
3288
3289/**
3290 *      netdev_completed_queue - report bytes and packets completed by device
3291 *      @dev: network device
3292 *      @pkts: actual number of packets sent over the medium
3293 *      @bytes: actual number of bytes sent over the medium
3294 *
3295 *      Report the number of bytes and packets transmitted by the network device
3296 *      hardware queue over the physical medium, @bytes must exactly match the
3297 *      @bytes amount passed to netdev_sent_queue()
3298 */
3299static inline void netdev_completed_queue(struct net_device *dev,
3300                                          unsigned int pkts, unsigned int bytes)
3301{
3302        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3303}
3304
3305static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3306{
3307#ifdef CONFIG_BQL
3308        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3309        dql_reset(&q->dql);
3310#endif
3311}
3312
3313/**
3314 *      netdev_reset_queue - reset the packets and bytes count of a network device
3315 *      @dev_queue: network device
3316 *
3317 *      Reset the bytes and packet count of a network device and clear the
3318 *      software flow control OFF bit for this network device
3319 */
3320static inline void netdev_reset_queue(struct net_device *dev_queue)
3321{
3322        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3323}
3324
3325/**
3326 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3327 *      @dev: network device
3328 *      @queue_index: given tx queue index
3329 *
3330 *      Returns 0 if given tx queue index >= number of device tx queues,
3331 *      otherwise returns the originally passed tx queue index.
3332 */
3333static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3334{
3335        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3336                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3337                                     dev->name, queue_index,
3338                                     dev->real_num_tx_queues);
3339                return 0;
3340        }
3341
3342        return queue_index;
3343}
3344
3345/**
3346 *      netif_running - test if up
3347 *      @dev: network device
3348 *
3349 *      Test if the device has been brought up.
3350 */
3351static inline bool netif_running(const struct net_device *dev)
3352{
3353        return test_bit(__LINK_STATE_START, &dev->state);
3354}
3355
3356/*
3357 * Routines to manage the subqueues on a device.  We only need start,
3358 * stop, and a check if it's stopped.  All other device management is
3359 * done at the overall netdevice level.
3360 * Also test the device if we're multiqueue.
3361 */
3362
3363/**
3364 *      netif_start_subqueue - allow sending packets on subqueue
3365 *      @dev: network device
3366 *      @queue_index: sub queue index
3367 *
3368 * Start individual transmit queue of a device with multiple transmit queues.
3369 */
3370static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3371{
3372        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3373
3374        netif_tx_start_queue(txq);
3375}
3376
3377/**
3378 *      netif_stop_subqueue - stop sending packets on subqueue
3379 *      @dev: network device
3380 *      @queue_index: sub queue index
3381 *
3382 * Stop individual transmit queue of a device with multiple transmit queues.
3383 */
3384static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3385{
3386        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3387        netif_tx_stop_queue(txq);
3388}
3389
3390/**
3391 *      netif_subqueue_stopped - test status of subqueue
3392 *      @dev: network device
3393 *      @queue_index: sub queue index
3394 *
3395 * Check individual transmit queue of a device with multiple transmit queues.
3396 */
3397static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3398                                            u16 queue_index)
3399{
3400        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3401
3402        return netif_tx_queue_stopped(txq);
3403}
3404
3405static inline bool netif_subqueue_stopped(const struct net_device *dev,
3406                                          struct sk_buff *skb)
3407{
3408        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3409}
3410
3411/**
3412 *      netif_wake_subqueue - allow sending packets on subqueue
3413 *      @dev: network device
3414 *      @queue_index: sub queue index
3415 *
3416 * Resume individual transmit queue of a device with multiple transmit queues.
3417 */
3418static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3419{
3420        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3421
3422        netif_tx_wake_queue(txq);
3423}
3424
3425#ifdef CONFIG_XPS
3426int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3427                        u16 index);
3428int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3429                          u16 index, bool is_rxqs_map);
3430
3431/**
3432 *      netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3433 *      @j: CPU/Rx queue index
3434 *      @mask: bitmask of all cpus/rx queues
3435 *      @nr_bits: number of bits in the bitmask
3436 *
3437 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3438 */
3439static inline bool netif_attr_test_mask(unsigned long j,
3440                                        const unsigned long *mask,
3441                                        unsigned int nr_bits)
3442{
3443        cpu_max_bits_warn(j, nr_bits);
3444        return test_bit(j, mask);
3445}
3446
3447/**
3448 *      netif_attr_test_online - Test for online CPU/Rx queue
3449 *      @j: CPU/Rx queue index
3450 *      @online_mask: bitmask for CPUs/Rx queues that are online
3451 *      @nr_bits: number of bits in the bitmask
3452 *
3453 * Returns true if a CPU/Rx queue is online.
3454 */
3455static inline bool netif_attr_test_online(unsigned long j,
3456                                          const unsigned long *online_mask,
3457                                          unsigned int nr_bits)
3458{
3459        cpu_max_bits_warn(j, nr_bits);
3460
3461        if (online_mask)
3462                return test_bit(j, online_mask);
3463
3464        return (j < nr_bits);
3465}
3466
3467/**
3468 *      netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3469 *      @n: CPU/Rx queue index
3470 *      @srcp: the cpumask/Rx queue mask pointer
3471 *      @nr_bits: number of bits in the bitmask
3472 *
3473 * Returns >= nr_bits if no further CPUs/Rx queues set.
3474 */
3475static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3476                                               unsigned int nr_bits)
3477{
3478        /* -1 is a legal arg here. */
3479        if (n != -1)
3480                cpu_max_bits_warn(n, nr_bits);
3481
3482        if (srcp)
3483                return find_next_bit(srcp, nr_bits, n + 1);
3484
3485        return n + 1;
3486}
3487
3488/**
3489 *      netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3490 *      @n: CPU/Rx queue index
3491 *      @src1p: the first CPUs/Rx queues mask pointer
3492 *      @src2p: the second CPUs/Rx queues mask pointer
3493 *      @nr_bits: number of bits in the bitmask
3494 *
3495 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3496 */
3497static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3498                                          const unsigned long *src2p,
3499                                          unsigned int nr_bits)
3500{
3501        /* -1 is a legal arg here. */
3502        if (n != -1)
3503                cpu_max_bits_warn(n, nr_bits);
3504
3505        if (src1p && src2p)
3506                return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3507        else if (src1p)
3508                return find_next_bit(src1p, nr_bits, n + 1);
3509        else if (src2p)
3510                return find_next_bit(src2p, nr_bits, n + 1);
3511
3512        return n + 1;
3513}
3514#else
3515static inline int netif_set_xps_queue(struct net_device *dev,
3516                                      const struct cpumask *mask,
3517                                      u16 index)
3518{
3519        return 0;
3520}
3521
3522static inline int __netif_set_xps_queue(struct net_device *dev,
3523                                        const unsigned long *mask,
3524                                        u16 index, bool is_rxqs_map)
3525{
3526        return 0;
3527}
3528#endif
3529
3530/**
3531 *      netif_is_multiqueue - test if device has multiple transmit queues
3532 *      @dev: network device
3533 *
3534 * Check if device has multiple transmit queues
3535 */
3536static inline bool netif_is_multiqueue(const struct net_device *dev)
3537{
3538        return dev->num_tx_queues > 1;
3539}
3540
3541int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3542
3543#ifdef CONFIG_SYSFS
3544int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3545#else
3546static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3547                                                unsigned int rxqs)
3548{
3549        dev->real_num_rx_queues = rxqs;
3550        return 0;
3551}
3552#endif
3553
3554static inline struct netdev_rx_queue *
3555__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3556{
3557        return dev->_rx + rxq;
3558}
3559
3560#ifdef CONFIG_SYSFS
3561static inline unsigned int get_netdev_rx_queue_index(
3562                struct netdev_rx_queue *queue)
3563{
3564        struct net_device *dev = queue->dev;
3565        int index = queue - dev->_rx;
3566
3567        BUG_ON(index >= dev->num_rx_queues);
3568        return index;
3569}
3570#endif
3571
3572#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3573int netif_get_num_default_rss_queues(void);
3574
3575enum skb_free_reason {
3576        SKB_REASON_CONSUMED,
3577        SKB_REASON_DROPPED,
3578};
3579
3580void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3581void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3582
3583/*
3584 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3585 * interrupt context or with hardware interrupts being disabled.
3586 * (in_irq() || irqs_disabled())
3587 *
3588 * We provide four helpers that can be used in following contexts :
3589 *
3590 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3591 *  replacing kfree_skb(skb)
3592 *
3593 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3594 *  Typically used in place of consume_skb(skb) in TX completion path
3595 *
3596 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3597 *  replacing kfree_skb(skb)
3598 *
3599 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3600 *  and consumed a packet. Used in place of consume_skb(skb)
3601 */
3602static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3603{
3604        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3605}
3606
3607static inline void dev_consume_skb_irq(struct sk_buff *skb)
3608{
3609        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3610}
3611
3612static inline void dev_kfree_skb_any(struct sk_buff *skb)
3613{
3614        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3615}
3616
3617static inline void dev_consume_skb_any(struct sk_buff *skb)
3618{
3619        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3620}
3621
3622void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3623int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3624int netif_rx(struct sk_buff *skb);
3625int netif_rx_ni(struct sk_buff *skb);
3626int netif_receive_skb(struct sk_buff *skb);
3627int netif_receive_skb_core(struct sk_buff *skb);
3628void netif_receive_skb_list(struct list_head *head);
3629gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3630void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3631struct sk_buff *napi_get_frags(struct napi_struct *napi);
3632gro_result_t napi_gro_frags(struct napi_struct *napi);
3633struct packet_offload *gro_find_receive_by_type(__be16 type);
3634struct packet_offload *gro_find_complete_by_type(__be16 type);
3635
3636static inline void napi_free_frags(struct napi_struct *napi)
3637{
3638        kfree_skb(napi->skb);
3639        napi->skb = NULL;
3640}
3641
3642bool netdev_is_rx_handler_busy(struct net_device *dev);
3643int netdev_rx_handler_register(struct net_device *dev,
3644                               rx_handler_func_t *rx_handler,
3645                               void *rx_handler_data);
3646void netdev_rx_handler_unregister(struct net_device *dev);
3647
3648bool dev_valid_name(const char *name);
3649int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3650                bool *need_copyout);
3651int dev_ifconf(struct net *net, struct ifconf *, int);
3652int dev_ethtool(struct net *net, struct ifreq *);
3653unsigned int dev_get_flags(const struct net_device *);
3654int __dev_change_flags(struct net_device *dev, unsigned int flags,
3655                       struct netlink_ext_ack *extack);
3656int dev_change_flags(struct net_device *dev, unsigned int flags,
3657                     struct netlink_ext_ack *extack);
3658void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3659                        unsigned int gchanges);
3660int dev_change_name(struct net_device *, const char *);
3661int dev_set_alias(struct net_device *, const char *, size_t);
3662int dev_get_alias(const struct net_device *, char *, size_t);
3663int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3664int __dev_set_mtu(struct net_device *, int);
3665int dev_set_mtu_ext(struct net_device *dev, int mtu,
3666                    struct netlink_ext_ack *extack);
3667int dev_set_mtu(struct net_device *, int);
3668int dev_change_tx_queue_len(struct net_device *, unsigned long);
3669void dev_set_group(struct net_device *, int);
3670int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3671                              struct netlink_ext_ack *extack);
3672int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3673                        struct netlink_ext_ack *extack);
3674int dev_change_carrier(struct net_device *, bool new_carrier);
3675int dev_get_phys_port_id(struct net_device *dev,
3676                         struct netdev_phys_item_id *ppid);
3677int dev_get_phys_port_name(struct net_device *dev,
3678                           char *name, size_t len);
3679int dev_get_port_parent_id(struct net_device *dev,
3680                           struct netdev_phys_item_id *ppid, bool recurse);
3681bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3682int dev_change_proto_down(struct net_device *dev, bool proto_down);
3683int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3684struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3685struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3686                                    struct netdev_queue *txq, int *ret);
3687
3688typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3689int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3690                      int fd, u32 flags);
3691u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3692                    enum bpf_netdev_command cmd);
3693int xdp_umem_query(struct net_device *dev, u16 queue_id);
3694
3695int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3696int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3697bool is_skb_forwardable(const struct net_device *dev,
3698                        const struct sk_buff *skb);
3699
3700static __always_inline int ____dev_forward_skb(struct net_device *dev,
3701                                               struct sk_buff *skb)
3702{
3703        if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3704            unlikely(!is_skb_forwardable(dev, skb))) {
3705                atomic_long_inc(&dev->rx_dropped);
3706                kfree_skb(skb);
3707                return NET_RX_DROP;
3708        }
3709
3710        skb_scrub_packet(skb, true);
3711        skb->priority = 0;
3712        return 0;
3713}
3714
3715bool dev_nit_active(struct net_device *dev);
3716void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3717
3718extern int              netdev_budget;
3719extern unsigned int     netdev_budget_usecs;
3720
3721/* Called by rtnetlink.c:rtnl_unlock() */
3722void netdev_run_todo(void);
3723
3724/**
3725 *      dev_put - release reference to device
3726 *      @dev: network device
3727 *
3728 * Release reference to device to allow it to be freed.
3729 */
3730static inline void dev_put(struct net_device *dev)
3731{
3732        this_cpu_dec(*dev->pcpu_refcnt);
3733}
3734
3735/**
3736 *      dev_hold - get reference to device
3737 *      @dev: network device
3738 *
3739 * Hold reference to device to keep it from being freed.
3740 */
3741static inline void dev_hold(struct net_device *dev)
3742{
3743        this_cpu_inc(*dev->pcpu_refcnt);
3744}
3745
3746/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3747 * and _off may be called from IRQ context, but it is caller
3748 * who is responsible for serialization of these calls.
3749 *
3750 * The name carrier is inappropriate, these functions should really be
3751 * called netif_lowerlayer_*() because they represent the state of any
3752 * kind of lower layer not just hardware media.
3753 */
3754
3755void linkwatch_init_dev(struct net_device *dev);
3756void linkwatch_fire_event(struct net_device *dev);
3757void linkwatch_forget_dev(struct net_device *dev);
3758
3759/**
3760 *      netif_carrier_ok - test if carrier present
3761 *      @dev: network device
3762 *
3763 * Check if carrier is present on device
3764 */
3765static inline bool netif_carrier_ok(const struct net_device *dev)
3766{
3767        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3768}
3769
3770unsigned long dev_trans_start(struct net_device *dev);
3771
3772void __netdev_watchdog_up(struct net_device *dev);
3773
3774void netif_carrier_on(struct net_device *dev);
3775
3776void netif_carrier_off(struct net_device *dev);
3777
3778/**
3779 *      netif_dormant_on - mark device as dormant.
3780 *      @dev: network device
3781 *
3782 * Mark device as dormant (as per RFC2863).
3783 *
3784 * The dormant state indicates that the relevant interface is not
3785 * actually in a condition to pass packets (i.e., it is not 'up') but is
3786 * in a "pending" state, waiting for some external event.  For "on-
3787 * demand" interfaces, this new state identifies the situation where the
3788 * interface is waiting for events to place it in the up state.
3789 */
3790static inline void netif_dormant_on(struct net_device *dev)
3791{
3792        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3793                linkwatch_fire_event(dev);
3794}
3795
3796/**
3797 *      netif_dormant_off - set device as not dormant.
3798 *      @dev: network device
3799 *
3800 * Device is not in dormant state.
3801 */
3802static inline void netif_dormant_off(struct net_device *dev)
3803{
3804        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3805                linkwatch_fire_event(dev);
3806}
3807
3808/**
3809 *      netif_dormant - test if device is dormant
3810 *      @dev: network device
3811 *
3812 * Check if device is dormant.
3813 */
3814static inline bool netif_dormant(const struct net_device *dev)
3815{
3816        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3817}
3818
3819
3820/**
3821 *      netif_oper_up - test if device is operational
3822 *      @dev: network device
3823 *
3824 * Check if carrier is operational
3825 */
3826static inline bool netif_oper_up(const struct net_device *dev)
3827{
3828        return (dev->operstate == IF_OPER_UP ||
3829                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3830}
3831
3832/**
3833 *      netif_device_present - is device available or removed
3834 *      @dev: network device
3835 *
3836 * Check if device has not been removed from system.
3837 */
3838static inline bool netif_device_present(struct net_device *dev)
3839{
3840        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3841}
3842
3843void netif_device_detach(struct net_device *dev);
3844
3845void netif_device_attach(struct net_device *dev);
3846
3847/*
3848 * Network interface message level settings
3849 */
3850
3851enum {
3852        NETIF_MSG_DRV           = 0x0001,
3853        NETIF_MSG_PROBE         = 0x0002,
3854        NETIF_MSG_LINK          = 0x0004,
3855        NETIF_MSG_TIMER         = 0x0008,
3856        NETIF_MSG_IFDOWN        = 0x0010,
3857        NETIF_MSG_IFUP          = 0x0020,
3858        NETIF_MSG_RX_ERR        = 0x0040,
3859        NETIF_MSG_TX_ERR        = 0x0080,
3860        NETIF_MSG_TX_QUEUED     = 0x0100,
3861        NETIF_MSG_INTR          = 0x0200,
3862        NETIF_MSG_TX_DONE       = 0x0400,
3863        NETIF_MSG_RX_STATUS     = 0x0800,
3864        NETIF_MSG_PKTDATA       = 0x1000,
3865        NETIF_MSG_HW            = 0x2000,
3866        NETIF_MSG_WOL           = 0x4000,
3867};
3868
3869#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3870#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3871#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3872#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3873#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3874#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3875#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3876#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3877#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3878#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3879#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3880#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3881#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3882#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3883#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3884
3885static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3886{
3887        /* use default */
3888        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3889                return default_msg_enable_bits;
3890        if (debug_value == 0)   /* no output */
3891                return 0;
3892        /* set low N bits */
3893        return (1U << debug_value) - 1;
3894}
3895
3896static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3897{
3898        spin_lock(&txq->_xmit_lock);
3899        txq->xmit_lock_owner = cpu;
3900}
3901
3902static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3903{
3904        __acquire(&txq->_xmit_lock);
3905        return true;
3906}
3907
3908static inline void __netif_tx_release(struct netdev_queue *txq)
3909{
3910        __release(&txq->_xmit_lock);
3911}
3912
3913static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3914{
3915        spin_lock_bh(&txq->_xmit_lock);
3916        txq->xmit_lock_owner = smp_processor_id();
3917}
3918
3919static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3920{
3921        bool ok = spin_trylock(&txq->_xmit_lock);
3922        if (likely(ok))
3923                txq->xmit_lock_owner = smp_processor_id();
3924        return ok;
3925}
3926
3927static inline void __netif_tx_unlock(struct netdev_queue *txq)
3928{
3929        txq->xmit_lock_owner = -1;
3930        spin_unlock(&txq->_xmit_lock);
3931}
3932
3933static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3934{
3935        txq->xmit_lock_owner = -1;
3936        spin_unlock_bh(&txq->_xmit_lock);
3937}
3938
3939static inline void txq_trans_update(struct netdev_queue *txq)
3940{
3941        if (txq->xmit_lock_owner != -1)
3942                txq->trans_start = jiffies;
3943}
3944
3945/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3946static inline void netif_trans_update(struct net_device *dev)
3947{
3948        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3949
3950        if (txq->trans_start != jiffies)
3951                txq->trans_start = jiffies;
3952}
3953
3954/**
3955 *      netif_tx_lock - grab network device transmit lock
3956 *      @dev: network device
3957 *
3958 * Get network device transmit lock
3959 */
3960static inline void netif_tx_lock(struct net_device *dev)
3961{
3962        unsigned int i;
3963        int cpu;
3964
3965        spin_lock(&dev->tx_global_lock);
3966        cpu = smp_processor_id();
3967        for (i = 0; i < dev->num_tx_queues; i++) {
3968                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3969
3970                /* We are the only thread of execution doing a
3971                 * freeze, but we have to grab the _xmit_lock in
3972                 * order to synchronize with threads which are in
3973                 * the ->hard_start_xmit() handler and already
3974                 * checked the frozen bit.
3975                 */
3976                __netif_tx_lock(txq, cpu);
3977                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3978                __netif_tx_unlock(txq);
3979        }
3980}
3981
3982static inline void netif_tx_lock_bh(struct net_device *dev)
3983{
3984        local_bh_disable();
3985        netif_tx_lock(dev);
3986}
3987
3988static inline void netif_tx_unlock(struct net_device *dev)
3989{
3990        unsigned int i;
3991
3992        for (i = 0; i < dev->num_tx_queues; i++) {
3993                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3994
3995                /* No need to grab the _xmit_lock here.  If the
3996                 * queue is not stopped for another reason, we
3997                 * force a schedule.
3998                 */
3999                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4000                netif_schedule_queue(txq);
4001        }
4002        spin_unlock(&dev->tx_global_lock);
4003}
4004
4005static inline void netif_tx_unlock_bh(struct net_device *dev)
4006{
4007        netif_tx_unlock(dev);
4008        local_bh_enable();
4009}
4010
4011#define HARD_TX_LOCK(dev, txq, cpu) {                   \
4012        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4013                __netif_tx_lock(txq, cpu);              \
4014        } else {                                        \
4015                __netif_tx_acquire(txq);                \
4016        }                                               \
4017}
4018
4019#define HARD_TX_TRYLOCK(dev, txq)                       \
4020        (((dev->features & NETIF_F_LLTX) == 0) ?        \
4021                __netif_tx_trylock(txq) :               \
4022                __netif_tx_acquire(txq))
4023
4024#define HARD_TX_UNLOCK(dev, txq) {                      \
4025        if ((dev->features & NETIF_F_LLTX) == 0) {      \
4026                __netif_tx_unlock(txq);                 \
4027        } else {                                        \
4028                __netif_tx_release(txq);                \
4029        }                                               \
4030}
4031
4032static inline void netif_tx_disable(struct net_device *dev)
4033{
4034        unsigned int i;
4035        int cpu;
4036
4037        local_bh_disable();
4038        cpu = smp_processor_id();
4039        for (i = 0; i < dev->num_tx_queues; i++) {
4040                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4041
4042                __netif_tx_lock(txq, cpu);
4043                netif_tx_stop_queue(txq);
4044                __netif_tx_unlock(txq);
4045        }
4046        local_bh_enable();
4047}
4048
4049static inline void netif_addr_lock(struct net_device *dev)
4050{
4051        spin_lock(&dev->addr_list_lock);
4052}
4053
4054static inline void netif_addr_lock_nested(struct net_device *dev)
4055{
4056        int subclass = SINGLE_DEPTH_NESTING;
4057
4058        if (dev->netdev_ops->ndo_get_lock_subclass)
4059                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4060
4061        spin_lock_nested(&dev->addr_list_lock, subclass);
4062}
4063
4064static inline void netif_addr_lock_bh(struct net_device *dev)
4065{
4066        spin_lock_bh(&dev->addr_list_lock);
4067}
4068
4069static inline void netif_addr_unlock(struct net_device *dev)
4070{
4071        spin_unlock(&dev->addr_list_lock);
4072}
4073
4074static inline void netif_addr_unlock_bh(struct net_device *dev)
4075{
4076        spin_unlock_bh(&dev->addr_list_lock);
4077}
4078
4079/*
4080 * dev_addrs walker. Should be used only for read access. Call with
4081 * rcu_read_lock held.
4082 */
4083#define for_each_dev_addr(dev, ha) \
4084                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4085
4086/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4087
4088void ether_setup(struct net_device *dev);
4089
4090/* Support for loadable net-drivers */
4091struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4092                                    unsigned char name_assign_type,
4093                                    void (*setup)(struct net_device *),
4094                                    unsigned int txqs, unsigned int rxqs);
4095int dev_get_valid_name(struct net *net, struct net_device *dev,
4096                       const char *name);
4097
4098#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4099        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4100
4101#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4102        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4103                         count)
4104
4105int register_netdev(struct net_device *dev);
4106void unregister_netdev(struct net_device *dev);
4107
4108/* General hardware address lists handling functions */
4109int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4110                   struct netdev_hw_addr_list *from_list, int addr_len);
4111void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4112                      struct netdev_hw_addr_list *from_list, int addr_len);
4113int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4114                       struct net_device *dev,
4115                       int (*sync)(struct net_device *, const unsigned char *),
4116                       int (*unsync)(struct net_device *,
4117                                     const unsigned char *));
4118int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4119                           struct net_device *dev,
4120                           int (*sync)(struct net_device *,
4121                                       const unsigned char *, int),
4122                           int (*unsync)(struct net_device *,
4123                                         const unsigned char *, int));
4124void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4125                              struct net_device *dev,
4126                              int (*unsync)(struct net_device *,
4127                                            const unsigned char *, int));
4128void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4129                          struct net_device *dev,
4130                          int (*unsync)(struct net_device *,
4131                                        const unsigned char *));
4132void __hw_addr_init(struct netdev_hw_addr_list *list);
4133
4134/* Functions used for device addresses handling */
4135int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4136                 unsigned char addr_type);
4137int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4138                 unsigned char addr_type);
4139void dev_addr_flush(struct net_device *dev);
4140int dev_addr_init(struct net_device *dev);
4141
4142/* Functions used for unicast addresses handling */
4143int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4144int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4145int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4146int dev_uc_sync(struct net_device *to, struct net_device *from);
4147int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4148void dev_uc_unsync(struct net_device *to, struct net_device *from);
4149void dev_uc_flush(struct net_device *dev);
4150void dev_uc_init(struct net_device *dev);
4151
4152/**
4153 *  __dev_uc_sync - Synchonize device's unicast list
4154 *  @dev:  device to sync
4155 *  @sync: function to call if address should be added
4156 *  @unsync: function to call if address should be removed
4157 *
4158 *  Add newly added addresses to the interface, and release
4159 *  addresses that have been deleted.
4160 */
4161static inline int __dev_uc_sync(struct net_device *dev,
4162                                int (*sync)(struct net_device *,
4163                                            const unsigned char *),
4164                                int (*unsync)(struct net_device *,
4165                                              const unsigned char *))
4166{
4167        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4168}
4169
4170/**
4171 *  __dev_uc_unsync - Remove synchronized addresses from device
4172 *  @dev:  device to sync
4173 *  @unsync: function to call if address should be removed
4174 *
4175 *  Remove all addresses that were added to the device by dev_uc_sync().
4176 */
4177static inline void __dev_uc_unsync(struct net_device *dev,
4178                                   int (*unsync)(struct net_device *,
4179                                                 const unsigned char *))
4180{
4181        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4182}
4183
4184/* Functions used for multicast addresses handling */
4185int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4186int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4187int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4188int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4189int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4190int dev_mc_sync(struct net_device *to, struct net_device *from);
4191int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4192void dev_mc_unsync(struct net_device *to, struct net_device *from);
4193void dev_mc_flush(struct net_device *dev);
4194void dev_mc_init(struct net_device *dev);
4195
4196/**
4197 *  __dev_mc_sync - Synchonize device's multicast list
4198 *  @dev:  device to sync
4199 *  @sync: function to call if address should be added
4200 *  @unsync: function to call if address should be removed
4201 *
4202 *  Add newly added addresses to the interface, and release
4203 *  addresses that have been deleted.
4204 */
4205static inline int __dev_mc_sync(struct net_device *dev,
4206                                int (*sync)(struct net_device *,
4207                                            const unsigned char *),
4208                                int (*unsync)(struct net_device *,
4209                                              const unsigned char *))
4210{
4211        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4212}
4213
4214/**
4215 *  __dev_mc_unsync - Remove synchronized addresses from device
4216 *  @dev:  device to sync
4217 *  @unsync: function to call if address should be removed
4218 *
4219 *  Remove all addresses that were added to the device by dev_mc_sync().
4220 */
4221static inline void __dev_mc_unsync(struct net_device *dev,
4222                                   int (*unsync)(struct net_device *,
4223                                                 const unsigned char *))
4224{
4225        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4226}
4227
4228/* Functions used for secondary unicast and multicast support */
4229void dev_set_rx_mode(struct net_device *dev);
4230void __dev_set_rx_mode(struct net_device *dev);
4231int dev_set_promiscuity(struct net_device *dev, int inc);
4232int dev_set_allmulti(struct net_device *dev, int inc);
4233void netdev_state_change(struct net_device *dev);
4234void netdev_notify_peers(struct net_device *dev);
4235void netdev_features_change(struct net_device *dev);
4236/* Load a device via the kmod */
4237void dev_load(struct net *net, const char *name);
4238struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4239                                        struct rtnl_link_stats64 *storage);
4240void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4241                             const struct net_device_stats *netdev_stats);
4242
4243extern int              netdev_max_backlog;
4244extern int              netdev_tstamp_prequeue;
4245extern int              weight_p;
4246extern int              dev_weight_rx_bias;
4247extern int              dev_weight_tx_bias;
4248extern int              dev_rx_weight;
4249extern int              dev_tx_weight;
4250
4251bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4252struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4253                                                     struct list_head **iter);
4254struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4255                                                     struct list_head **iter);
4256
4257/* iterate through upper list, must be called under RCU read lock */
4258#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4259        for (iter = &(dev)->adj_list.upper, \
4260             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4261             updev; \
4262             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4263
4264int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4265                                  int (*fn)(struct net_device *upper_dev,
4266                                            void *data),
4267                                  void *data);
4268
4269bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4270                                  struct net_device *upper_dev);
4271
4272bool netdev_has_any_upper_dev(struct net_device *dev);
4273
4274void *netdev_lower_get_next_private(struct net_device *dev,
4275                                    struct list_head **iter);
4276void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4277                                        struct list_head **iter);
4278
4279#define netdev_for_each_lower_private(dev, priv, iter) \
4280        for (iter = (dev)->adj_list.lower.next, \
4281             priv = netdev_lower_get_next_private(dev, &(iter)); \
4282             priv; \
4283             priv = netdev_lower_get_next_private(dev, &(iter)))
4284
4285#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4286        for (iter = &(dev)->adj_list.lower, \
4287             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4288             priv; \
4289             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4290
4291void *netdev_lower_get_next(struct net_device *dev,
4292                                struct list_head **iter);
4293
4294#define netdev_for_each_lower_dev(dev, ldev, iter) \
4295        for (iter = (dev)->adj_list.lower.next, \
4296             ldev = netdev_lower_get_next(dev, &(iter)); \
4297             ldev; \
4298             ldev = netdev_lower_get_next(dev, &(iter)))
4299
4300struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4301                                             struct list_head **iter);
4302struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4303                                                 struct list_head **iter);
4304
4305int netdev_walk_all_lower_dev(struct net_device *dev,
4306                              int (*fn)(struct net_device *lower_dev,
4307                                        void *data),
4308                              void *data);
4309int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4310                                  int (*fn)(struct net_device *lower_dev,
4311                                            void *data),
4312                                  void *data);
4313
4314void *netdev_adjacent_get_private(struct list_head *adj_list);
4315void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4316struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4317struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4318int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4319                          struct netlink_ext_ack *extack);
4320int netdev_master_upper_dev_link(struct net_device *dev,
4321                                 struct net_device *upper_dev,
4322                                 void *upper_priv, void *upper_info,
4323                                 struct netlink_ext_ack *extack);
4324void netdev_upper_dev_unlink(struct net_device *dev,
4325                             struct net_device *upper_dev);
4326void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4327void *netdev_lower_dev_get_private(struct net_device *dev,
4328                                   struct net_device *lower_dev);
4329void netdev_lower_state_changed(struct net_device *lower_dev,
4330                                void *lower_state_info);
4331
4332/* RSS keys are 40 or 52 bytes long */
4333#define NETDEV_RSS_KEY_LEN 52
4334extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4335void netdev_rss_key_fill(void *buffer, size_t len);
4336
4337int dev_get_nest_level(struct net_device *dev);
4338int skb_checksum_help(struct sk_buff *skb);
4339int skb_crc32c_csum_help(struct sk_buff *skb);
4340int skb_csum_hwoffload_help(struct sk_buff *skb,
4341                            const netdev_features_t features);
4342
4343struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4344                                  netdev_features_t features, bool tx_path);
4345struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4346                                    netdev_features_t features);
4347
4348struct netdev_bonding_info {
4349        ifslave slave;
4350        ifbond  master;
4351};
4352
4353struct netdev_notifier_bonding_info {
4354        struct netdev_notifier_info info; /* must be first */
4355        struct netdev_bonding_info  bonding_info;
4356};
4357
4358void netdev_bonding_info_change(struct net_device *dev,
4359                                struct netdev_bonding_info *bonding_info);
4360
4361static inline
4362struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4363{
4364        return __skb_gso_segment(skb, features, true);
4365}
4366__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4367
4368static inline bool can_checksum_protocol(netdev_features_t features,
4369                                         __be16 protocol)
4370{
4371        if (protocol == htons(ETH_P_FCOE))
4372                return !!(features & NETIF_F_FCOE_CRC);
4373
4374        /* Assume this is an IP checksum (not SCTP CRC) */
4375
4376        if (features & NETIF_F_HW_CSUM) {
4377                /* Can checksum everything */
4378                return true;
4379        }
4380
4381        switch (protocol) {
4382        case htons(ETH_P_IP):
4383                return !!(features & NETIF_F_IP_CSUM);
4384        case htons(ETH_P_IPV6):
4385                return !!(features & NETIF_F_IPV6_CSUM);
4386        default:
4387                return false;
4388        }
4389}
4390
4391#ifdef CONFIG_BUG
4392void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4393#else
4394static inline void netdev_rx_csum_fault(struct net_device *dev,
4395                                        struct sk_buff *skb)
4396{
4397}
4398#endif
4399/* rx skb timestamps */
4400void net_enable_timestamp(void);
4401void net_disable_timestamp(void);
4402
4403#ifdef CONFIG_PROC_FS
4404int __init dev_proc_init(void);
4405#else
4406#define dev_proc_init() 0
4407#endif
4408
4409static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4410                                              struct sk_buff *skb, struct net_device *dev,
4411                                              bool more)
4412{
4413        skb->xmit_more = more ? 1 : 0;
4414        return ops->ndo_start_xmit(skb, dev);
4415}
4416
4417static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4418                                            struct netdev_queue *txq, bool more)
4419{
4420        const struct net_device_ops *ops = dev->netdev_ops;
4421        netdev_tx_t rc;
4422
4423        rc = __netdev_start_xmit(ops, skb, dev, more);
4424        if (rc == NETDEV_TX_OK)
4425                txq_trans_update(txq);
4426
4427        return rc;
4428}
4429
4430int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4431                                const void *ns);
4432void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4433                                 const void *ns);
4434
4435static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4436{
4437        return netdev_class_create_file_ns(class_attr, NULL);
4438}
4439
4440static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4441{
4442        netdev_class_remove_file_ns(class_attr, NULL);
4443}
4444
4445extern const struct kobj_ns_type_operations net_ns_type_operations;
4446
4447const char *netdev_drivername(const struct net_device *dev);
4448
4449void linkwatch_run_queue(void);
4450
4451static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4452                                                          netdev_features_t f2)
4453{
4454        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4455                if (f1 & NETIF_F_HW_CSUM)
4456                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4457                else
4458                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4459        }
4460
4461        return f1 & f2;
4462}
4463
4464static inline netdev_features_t netdev_get_wanted_features(
4465        struct net_device *dev)
4466{
4467        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4468}
4469netdev_features_t netdev_increment_features(netdev_features_t all,
4470        netdev_features_t one, netdev_features_t mask);
4471
4472/* Allow TSO being used on stacked device :
4473 * Performing the GSO segmentation before last device
4474 * is a performance improvement.
4475 */
4476static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4477                                                        netdev_features_t mask)
4478{
4479        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4480}
4481
4482int __netdev_update_features(struct net_device *dev);
4483void netdev_update_features(struct net_device *dev);
4484void netdev_change_features(struct net_device *dev);
4485
4486void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4487                                        struct net_device *dev);
4488
4489netdev_features_t passthru_features_check(struct sk_buff *skb,
4490                                          struct net_device *dev,
4491                                          netdev_features_t features);
4492netdev_features_t netif_skb_features(struct sk_buff *skb);
4493
4494static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4495{
4496        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4497
4498        /* check flags correspondence */
4499        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4500        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4501        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4502        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4503        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4504        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4505        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4506        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4507        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4508        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4509        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4510        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4511        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4512        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4513        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4514        BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4515        BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4516        BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4517
4518        return (features & feature) == feature;
4519}
4520
4521static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4522{
4523        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4524               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4525}
4526
4527static inline bool netif_needs_gso(struct sk_buff *skb,
4528                                   netdev_features_t features)
4529{
4530        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4531                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4532                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4533}
4534
4535static inline void netif_set_gso_max_size(struct net_device *dev,
4536                                          unsigned int size)
4537{
4538        dev->gso_max_size = size;
4539}
4540
4541static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4542                                        int pulled_hlen, u16 mac_offset,
4543                                        int mac_len)
4544{
4545        skb->protocol = protocol;
4546        skb->encapsulation = 1;
4547        skb_push(skb, pulled_hlen);
4548        skb_reset_transport_header(skb);
4549        skb->mac_header = mac_offset;
4550        skb->network_header = skb->mac_header + mac_len;
4551        skb->mac_len = mac_len;
4552}
4553
4554static inline bool netif_is_macsec(const struct net_device *dev)
4555{
4556        return dev->priv_flags & IFF_MACSEC;
4557}
4558
4559static inline bool netif_is_macvlan(const struct net_device *dev)
4560{
4561        return dev->priv_flags & IFF_MACVLAN;
4562}
4563
4564static inline bool netif_is_macvlan_port(const struct net_device *dev)
4565{
4566        return dev->priv_flags & IFF_MACVLAN_PORT;
4567}
4568
4569static inline bool netif_is_bond_master(const struct net_device *dev)
4570{
4571        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4572}
4573
4574static inline bool netif_is_bond_slave(const struct net_device *dev)
4575{
4576        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4577}
4578
4579static inline bool netif_supports_nofcs(struct net_device *dev)
4580{
4581        return dev->priv_flags & IFF_SUPP_NOFCS;
4582}
4583
4584static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4585{
4586        return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4587}
4588
4589static inline bool netif_is_l3_master(const struct net_device *dev)
4590{
4591        return dev->priv_flags & IFF_L3MDEV_MASTER;
4592}
4593
4594static inline bool netif_is_l3_slave(const struct net_device *dev)
4595{
4596        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4597}
4598
4599static inline bool netif_is_bridge_master(const struct net_device *dev)
4600{
4601        return dev->priv_flags & IFF_EBRIDGE;
4602}
4603
4604static inline bool netif_is_bridge_port(const struct net_device *dev)
4605{
4606        return dev->priv_flags & IFF_BRIDGE_PORT;
4607}
4608
4609static inline bool netif_is_ovs_master(const struct net_device *dev)
4610{
4611        return dev->priv_flags & IFF_OPENVSWITCH;
4612}
4613
4614static inline bool netif_is_ovs_port(const struct net_device *dev)
4615{
4616        return dev->priv_flags & IFF_OVS_DATAPATH;
4617}
4618
4619static inline bool netif_is_team_master(const struct net_device *dev)
4620{
4621        return dev->priv_flags & IFF_TEAM;
4622}
4623
4624static inline bool netif_is_team_port(const struct net_device *dev)
4625{
4626        return dev->priv_flags & IFF_TEAM_PORT;
4627}
4628
4629static inline bool netif_is_lag_master(const struct net_device *dev)
4630{
4631        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4632}
4633
4634static inline bool netif_is_lag_port(const struct net_device *dev)
4635{
4636        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4637}
4638
4639static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4640{
4641        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4642}
4643
4644static inline bool netif_is_failover(const struct net_device *dev)
4645{
4646        return dev->priv_flags & IFF_FAILOVER;
4647}
4648
4649static inline bool netif_is_failover_slave(const struct net_device *dev)
4650{
4651        return dev->priv_flags & IFF_FAILOVER_SLAVE;
4652}
4653
4654/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4655static inline void netif_keep_dst(struct net_device *dev)
4656{
4657        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4658}
4659
4660/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4661static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4662{
4663        /* TODO: reserve and use an additional IFF bit, if we get more users */
4664        return dev->priv_flags & IFF_MACSEC;
4665}
4666
4667extern struct pernet_operations __net_initdata loopback_net_ops;
4668
4669/* Logging, debugging and troubleshooting/diagnostic helpers. */
4670
4671/* netdev_printk helpers, similar to dev_printk */
4672
4673static inline const char *netdev_name(const struct net_device *dev)
4674{
4675        if (!dev->name[0] || strchr(dev->name, '%'))
4676                return "(unnamed net_device)";
4677        return dev->name;
4678}
4679
4680static inline bool netdev_unregistering(const struct net_device *dev)
4681{
4682        return dev->reg_state == NETREG_UNREGISTERING;
4683}
4684
4685static inline const char *netdev_reg_state(const struct net_device *dev)
4686{
4687        switch (dev->reg_state) {
4688        case NETREG_UNINITIALIZED: return " (uninitialized)";
4689        case NETREG_REGISTERED: return "";
4690        case NETREG_UNREGISTERING: return " (unregistering)";
4691        case NETREG_UNREGISTERED: return " (unregistered)";
4692        case NETREG_RELEASED: return " (released)";
4693        case NETREG_DUMMY: return " (dummy)";
4694        }
4695
4696        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4697        return " (unknown)";
4698}
4699
4700__printf(3, 4) __cold
4701void netdev_printk(const char *level, const struct net_device *dev,
4702                   const char *format, ...);
4703__printf(2, 3) __cold
4704void netdev_emerg(const struct net_device *dev, const char *format, ...);
4705__printf(2, 3) __cold
4706void netdev_alert(const struct net_device *dev, const char *format, ...);
4707__printf(2, 3) __cold
4708void netdev_crit(const struct net_device *dev, const char *format, ...);
4709__printf(2, 3) __cold
4710void netdev_err(const struct net_device *dev, const char *format, ...);
4711__printf(2, 3) __cold
4712void netdev_warn(const struct net_device *dev, const char *format, ...);
4713__printf(2, 3) __cold
4714void netdev_notice(const struct net_device *dev, const char *format, ...);
4715__printf(2, 3) __cold
4716void netdev_info(const struct net_device *dev, const char *format, ...);
4717
4718#define netdev_level_once(level, dev, fmt, ...)                 \
4719do {                                                            \
4720        static bool __print_once __read_mostly;                 \
4721                                                                \
4722        if (!__print_once) {                                    \
4723                __print_once = true;                            \
4724                netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4725        }                                                       \
4726} while (0)
4727
4728#define netdev_emerg_once(dev, fmt, ...) \
4729        netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4730#define netdev_alert_once(dev, fmt, ...) \
4731        netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4732#define netdev_crit_once(dev, fmt, ...) \
4733        netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4734#define netdev_err_once(dev, fmt, ...) \
4735        netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4736#define netdev_warn_once(dev, fmt, ...) \
4737        netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4738#define netdev_notice_once(dev, fmt, ...) \
4739        netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4740#define netdev_info_once(dev, fmt, ...) \
4741        netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4742
4743#define MODULE_ALIAS_NETDEV(device) \
4744        MODULE_ALIAS("netdev-" device)
4745
4746#if defined(CONFIG_DYNAMIC_DEBUG)
4747#define netdev_dbg(__dev, format, args...)                      \
4748do {                                                            \
4749        dynamic_netdev_dbg(__dev, format, ##args);              \
4750} while (0)
4751#elif defined(DEBUG)
4752#define netdev_dbg(__dev, format, args...)                      \
4753        netdev_printk(KERN_DEBUG, __dev, format, ##args)
4754#else
4755#define netdev_dbg(__dev, format, args...)                      \
4756({                                                              \
4757        if (0)                                                  \
4758                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4759})
4760#endif
4761
4762#if defined(VERBOSE_DEBUG)
4763#define netdev_vdbg     netdev_dbg
4764#else
4765
4766#define netdev_vdbg(dev, format, args...)                       \
4767({                                                              \
4768        if (0)                                                  \
4769                netdev_printk(KERN_DEBUG, dev, format, ##args); \
4770        0;                                                      \
4771})
4772#endif
4773
4774/*
4775 * netdev_WARN() acts like dev_printk(), but with the key difference
4776 * of using a WARN/WARN_ON to get the message out, including the
4777 * file/line information and a backtrace.
4778 */
4779#define netdev_WARN(dev, format, args...)                       \
4780        WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4781             netdev_reg_state(dev), ##args)
4782
4783#define netdev_WARN_ONCE(dev, format, args...)                          \
4784        WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4785                  netdev_reg_state(dev), ##args)
4786
4787/* netif printk helpers, similar to netdev_printk */
4788
4789#define netif_printk(priv, type, level, dev, fmt, args...)      \
4790do {                                                            \
4791        if (netif_msg_##type(priv))                             \
4792                netdev_printk(level, (dev), fmt, ##args);       \
4793} while (0)
4794
4795#define netif_level(level, priv, type, dev, fmt, args...)       \
4796do {                                                            \
4797        if (netif_msg_##type(priv))                             \
4798                netdev_##level(dev, fmt, ##args);               \
4799} while (0)
4800
4801#define netif_emerg(priv, type, dev, fmt, args...)              \
4802        netif_level(emerg, priv, type, dev, fmt, ##args)
4803#define netif_alert(priv, type, dev, fmt, args...)              \
4804        netif_level(alert, priv, type, dev, fmt, ##args)
4805#define netif_crit(priv, type, dev, fmt, args...)               \
4806        netif_level(crit, priv, type, dev, fmt, ##args)
4807#define netif_err(priv, type, dev, fmt, args...)                \
4808        netif_level(err, priv, type, dev, fmt, ##args)
4809#define netif_warn(priv, type, dev, fmt, args...)               \
4810        netif_level(warn, priv, type, dev, fmt, ##args)
4811#define netif_notice(priv, type, dev, fmt, args...)             \
4812        netif_level(notice, priv, type, dev, fmt, ##args)
4813#define netif_info(priv, type, dev, fmt, args...)               \
4814        netif_level(info, priv, type, dev, fmt, ##args)
4815
4816#if defined(CONFIG_DYNAMIC_DEBUG)
4817#define netif_dbg(priv, type, netdev, format, args...)          \
4818do {                                                            \
4819        if (netif_msg_##type(priv))                             \
4820                dynamic_netdev_dbg(netdev, format, ##args);     \
4821} while (0)
4822#elif defined(DEBUG)
4823#define netif_dbg(priv, type, dev, format, args...)             \
4824        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4825#else
4826#define netif_dbg(priv, type, dev, format, args...)                     \
4827({                                                                      \
4828        if (0)                                                          \
4829                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4830        0;                                                              \
4831})
4832#endif
4833
4834/* if @cond then downgrade to debug, else print at @level */
4835#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4836        do {                                                              \
4837                if (cond)                                                 \
4838                        netif_dbg(priv, type, netdev, fmt, ##args);       \
4839                else                                                      \
4840                        netif_ ## level(priv, type, netdev, fmt, ##args); \
4841        } while (0)
4842
4843#if defined(VERBOSE_DEBUG)
4844#define netif_vdbg      netif_dbg
4845#else
4846#define netif_vdbg(priv, type, dev, format, args...)            \
4847({                                                              \
4848        if (0)                                                  \
4849                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4850        0;                                                      \
4851})
4852#endif
4853
4854/*
4855 *      The list of packet types we will receive (as opposed to discard)
4856 *      and the routines to invoke.
4857 *
4858 *      Why 16. Because with 16 the only overlap we get on a hash of the
4859 *      low nibble of the protocol value is RARP/SNAP/X.25.
4860 *
4861 *              0800    IP
4862 *              0001    802.3
4863 *              0002    AX.25
4864 *              0004    802.2
4865 *              8035    RARP
4866 *              0005    SNAP
4867 *              0805    X.25
4868 *              0806    ARP
4869 *              8137    IPX
4870 *              0009    Localtalk
4871 *              86DD    IPv6
4872 */
4873#define PTYPE_HASH_SIZE (16)
4874#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4875
4876#endif  /* _LINUX_NETDEVICE_H */
4877