linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/signal_types.h>
  29#include <linux/psi_types.h>
  30#include <linux/mm_types_task.h>
  31#include <linux/task_io_accounting.h>
  32#include <linux/rseq.h>
  33
  34/* task_struct member predeclarations (sorted alphabetically): */
  35struct audit_context;
  36struct backing_dev_info;
  37struct bio_list;
  38struct blk_plug;
  39struct cfs_rq;
  40struct fs_struct;
  41struct futex_pi_state;
  42struct io_context;
  43struct mempolicy;
  44struct nameidata;
  45struct nsproxy;
  46struct perf_event_context;
  47struct pid_namespace;
  48struct pipe_inode_info;
  49struct rcu_node;
  50struct reclaim_state;
  51struct capture_control;
  52struct robust_list_head;
  53struct sched_attr;
  54struct sched_param;
  55struct seq_file;
  56struct sighand_struct;
  57struct signal_struct;
  58struct task_delay_info;
  59struct task_group;
  60
  61/*
  62 * Task state bitmask. NOTE! These bits are also
  63 * encoded in fs/proc/array.c: get_task_state().
  64 *
  65 * We have two separate sets of flags: task->state
  66 * is about runnability, while task->exit_state are
  67 * about the task exiting. Confusing, but this way
  68 * modifying one set can't modify the other one by
  69 * mistake.
  70 */
  71
  72/* Used in tsk->state: */
  73#define TASK_RUNNING                    0x0000
  74#define TASK_INTERRUPTIBLE              0x0001
  75#define TASK_UNINTERRUPTIBLE            0x0002
  76#define __TASK_STOPPED                  0x0004
  77#define __TASK_TRACED                   0x0008
  78/* Used in tsk->exit_state: */
  79#define EXIT_DEAD                       0x0010
  80#define EXIT_ZOMBIE                     0x0020
  81#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  82/* Used in tsk->state again: */
  83#define TASK_PARKED                     0x0040
  84#define TASK_DEAD                       0x0080
  85#define TASK_WAKEKILL                   0x0100
  86#define TASK_WAKING                     0x0200
  87#define TASK_NOLOAD                     0x0400
  88#define TASK_NEW                        0x0800
  89#define TASK_STATE_MAX                  0x1000
  90
  91/* Convenience macros for the sake of set_current_state: */
  92#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  93#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  94#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  95
  96#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
  97
  98/* Convenience macros for the sake of wake_up(): */
  99#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 100
 101/* get_task_state(): */
 102#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 103                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 104                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 105                                         TASK_PARKED)
 106
 107#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 108
 109#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 110
 111#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 112
 113#define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 114                                         (task->flags & PF_FROZEN) == 0 && \
 115                                         (task->state & TASK_NOLOAD) == 0)
 116
 117#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 118
 119/*
 120 * Special states are those that do not use the normal wait-loop pattern. See
 121 * the comment with set_special_state().
 122 */
 123#define is_special_task_state(state)                            \
 124        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 125
 126#define __set_current_state(state_value)                        \
 127        do {                                                    \
 128                WARN_ON_ONCE(is_special_task_state(state_value));\
 129                current->task_state_change = _THIS_IP_;         \
 130                current->state = (state_value);                 \
 131        } while (0)
 132
 133#define set_current_state(state_value)                          \
 134        do {                                                    \
 135                WARN_ON_ONCE(is_special_task_state(state_value));\
 136                current->task_state_change = _THIS_IP_;         \
 137                smp_store_mb(current->state, (state_value));    \
 138        } while (0)
 139
 140#define set_special_state(state_value)                                  \
 141        do {                                                            \
 142                unsigned long flags; /* may shadow */                   \
 143                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 144                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 145                current->task_state_change = _THIS_IP_;                 \
 146                current->state = (state_value);                         \
 147                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 148        } while (0)
 149#else
 150/*
 151 * set_current_state() includes a barrier so that the write of current->state
 152 * is correctly serialised wrt the caller's subsequent test of whether to
 153 * actually sleep:
 154 *
 155 *   for (;;) {
 156 *      set_current_state(TASK_UNINTERRUPTIBLE);
 157 *      if (!need_sleep)
 158 *              break;
 159 *
 160 *      schedule();
 161 *   }
 162 *   __set_current_state(TASK_RUNNING);
 163 *
 164 * If the caller does not need such serialisation (because, for instance, the
 165 * condition test and condition change and wakeup are under the same lock) then
 166 * use __set_current_state().
 167 *
 168 * The above is typically ordered against the wakeup, which does:
 169 *
 170 *   need_sleep = false;
 171 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 172 *
 173 * where wake_up_state() executes a full memory barrier before accessing the
 174 * task state.
 175 *
 176 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 177 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 178 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 179 *
 180 * However, with slightly different timing the wakeup TASK_RUNNING store can
 181 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 182 * a problem either because that will result in one extra go around the loop
 183 * and our @cond test will save the day.
 184 *
 185 * Also see the comments of try_to_wake_up().
 186 */
 187#define __set_current_state(state_value)                                \
 188        current->state = (state_value)
 189
 190#define set_current_state(state_value)                                  \
 191        smp_store_mb(current->state, (state_value))
 192
 193/*
 194 * set_special_state() should be used for those states when the blocking task
 195 * can not use the regular condition based wait-loop. In that case we must
 196 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 197 * will not collide with our state change.
 198 */
 199#define set_special_state(state_value)                                  \
 200        do {                                                            \
 201                unsigned long flags; /* may shadow */                   \
 202                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 203                current->state = (state_value);                         \
 204                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 205        } while (0)
 206
 207#endif
 208
 209/* Task command name length: */
 210#define TASK_COMM_LEN                   16
 211
 212extern void scheduler_tick(void);
 213
 214#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 215
 216extern long schedule_timeout(long timeout);
 217extern long schedule_timeout_interruptible(long timeout);
 218extern long schedule_timeout_killable(long timeout);
 219extern long schedule_timeout_uninterruptible(long timeout);
 220extern long schedule_timeout_idle(long timeout);
 221asmlinkage void schedule(void);
 222extern void schedule_preempt_disabled(void);
 223
 224extern int __must_check io_schedule_prepare(void);
 225extern void io_schedule_finish(int token);
 226extern long io_schedule_timeout(long timeout);
 227extern void io_schedule(void);
 228
 229/**
 230 * struct prev_cputime - snapshot of system and user cputime
 231 * @utime: time spent in user mode
 232 * @stime: time spent in system mode
 233 * @lock: protects the above two fields
 234 *
 235 * Stores previous user/system time values such that we can guarantee
 236 * monotonicity.
 237 */
 238struct prev_cputime {
 239#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 240        u64                             utime;
 241        u64                             stime;
 242        raw_spinlock_t                  lock;
 243#endif
 244};
 245
 246/**
 247 * struct task_cputime - collected CPU time counts
 248 * @utime:              time spent in user mode, in nanoseconds
 249 * @stime:              time spent in kernel mode, in nanoseconds
 250 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 251 *
 252 * This structure groups together three kinds of CPU time that are tracked for
 253 * threads and thread groups.  Most things considering CPU time want to group
 254 * these counts together and treat all three of them in parallel.
 255 */
 256struct task_cputime {
 257        u64                             utime;
 258        u64                             stime;
 259        unsigned long long              sum_exec_runtime;
 260};
 261
 262/* Alternate field names when used on cache expirations: */
 263#define virt_exp                        utime
 264#define prof_exp                        stime
 265#define sched_exp                       sum_exec_runtime
 266
 267enum vtime_state {
 268        /* Task is sleeping or running in a CPU with VTIME inactive: */
 269        VTIME_INACTIVE = 0,
 270        /* Task runs in userspace in a CPU with VTIME active: */
 271        VTIME_USER,
 272        /* Task runs in kernelspace in a CPU with VTIME active: */
 273        VTIME_SYS,
 274};
 275
 276struct vtime {
 277        seqcount_t              seqcount;
 278        unsigned long long      starttime;
 279        enum vtime_state        state;
 280        u64                     utime;
 281        u64                     stime;
 282        u64                     gtime;
 283};
 284
 285struct sched_info {
 286#ifdef CONFIG_SCHED_INFO
 287        /* Cumulative counters: */
 288
 289        /* # of times we have run on this CPU: */
 290        unsigned long                   pcount;
 291
 292        /* Time spent waiting on a runqueue: */
 293        unsigned long long              run_delay;
 294
 295        /* Timestamps: */
 296
 297        /* When did we last run on a CPU? */
 298        unsigned long long              last_arrival;
 299
 300        /* When were we last queued to run? */
 301        unsigned long long              last_queued;
 302
 303#endif /* CONFIG_SCHED_INFO */
 304};
 305
 306/*
 307 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 308 * has a few: load, load_avg, util_avg, freq, and capacity.
 309 *
 310 * We define a basic fixed point arithmetic range, and then formalize
 311 * all these metrics based on that basic range.
 312 */
 313# define SCHED_FIXEDPOINT_SHIFT         10
 314# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 315
 316struct load_weight {
 317        unsigned long                   weight;
 318        u32                             inv_weight;
 319};
 320
 321/**
 322 * struct util_est - Estimation utilization of FAIR tasks
 323 * @enqueued: instantaneous estimated utilization of a task/cpu
 324 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 325 *            utilization of a task
 326 *
 327 * Support data structure to track an Exponential Weighted Moving Average
 328 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 329 * average each time a task completes an activation. Sample's weight is chosen
 330 * so that the EWMA will be relatively insensitive to transient changes to the
 331 * task's workload.
 332 *
 333 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 334 * - task:   the task's util_avg at last task dequeue time
 335 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 336 * Thus, the util_est.enqueued of a task represents the contribution on the
 337 * estimated utilization of the CPU where that task is currently enqueued.
 338 *
 339 * Only for tasks we track a moving average of the past instantaneous
 340 * estimated utilization. This allows to absorb sporadic drops in utilization
 341 * of an otherwise almost periodic task.
 342 */
 343struct util_est {
 344        unsigned int                    enqueued;
 345        unsigned int                    ewma;
 346#define UTIL_EST_WEIGHT_SHIFT           2
 347} __attribute__((__aligned__(sizeof(u64))));
 348
 349/*
 350 * The load_avg/util_avg accumulates an infinite geometric series
 351 * (see __update_load_avg() in kernel/sched/fair.c).
 352 *
 353 * [load_avg definition]
 354 *
 355 *   load_avg = runnable% * scale_load_down(load)
 356 *
 357 * where runnable% is the time ratio that a sched_entity is runnable.
 358 * For cfs_rq, it is the aggregated load_avg of all runnable and
 359 * blocked sched_entities.
 360 *
 361 * [util_avg definition]
 362 *
 363 *   util_avg = running% * SCHED_CAPACITY_SCALE
 364 *
 365 * where running% is the time ratio that a sched_entity is running on
 366 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 367 * and blocked sched_entities.
 368 *
 369 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 370 * capacity scaling. The scaling is done through the rq_clock_pelt that
 371 * is used for computing those signals (see update_rq_clock_pelt())
 372 *
 373 * N.B., the above ratios (runnable% and running%) themselves are in the
 374 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 375 * to as large a range as necessary. This is for example reflected by
 376 * util_avg's SCHED_CAPACITY_SCALE.
 377 *
 378 * [Overflow issue]
 379 *
 380 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 381 * with the highest load (=88761), always runnable on a single cfs_rq,
 382 * and should not overflow as the number already hits PID_MAX_LIMIT.
 383 *
 384 * For all other cases (including 32-bit kernels), struct load_weight's
 385 * weight will overflow first before we do, because:
 386 *
 387 *    Max(load_avg) <= Max(load.weight)
 388 *
 389 * Then it is the load_weight's responsibility to consider overflow
 390 * issues.
 391 */
 392struct sched_avg {
 393        u64                             last_update_time;
 394        u64                             load_sum;
 395        u64                             runnable_load_sum;
 396        u32                             util_sum;
 397        u32                             period_contrib;
 398        unsigned long                   load_avg;
 399        unsigned long                   runnable_load_avg;
 400        unsigned long                   util_avg;
 401        struct util_est                 util_est;
 402} ____cacheline_aligned;
 403
 404struct sched_statistics {
 405#ifdef CONFIG_SCHEDSTATS
 406        u64                             wait_start;
 407        u64                             wait_max;
 408        u64                             wait_count;
 409        u64                             wait_sum;
 410        u64                             iowait_count;
 411        u64                             iowait_sum;
 412
 413        u64                             sleep_start;
 414        u64                             sleep_max;
 415        s64                             sum_sleep_runtime;
 416
 417        u64                             block_start;
 418        u64                             block_max;
 419        u64                             exec_max;
 420        u64                             slice_max;
 421
 422        u64                             nr_migrations_cold;
 423        u64                             nr_failed_migrations_affine;
 424        u64                             nr_failed_migrations_running;
 425        u64                             nr_failed_migrations_hot;
 426        u64                             nr_forced_migrations;
 427
 428        u64                             nr_wakeups;
 429        u64                             nr_wakeups_sync;
 430        u64                             nr_wakeups_migrate;
 431        u64                             nr_wakeups_local;
 432        u64                             nr_wakeups_remote;
 433        u64                             nr_wakeups_affine;
 434        u64                             nr_wakeups_affine_attempts;
 435        u64                             nr_wakeups_passive;
 436        u64                             nr_wakeups_idle;
 437#endif
 438};
 439
 440struct sched_entity {
 441        /* For load-balancing: */
 442        struct load_weight              load;
 443        unsigned long                   runnable_weight;
 444        struct rb_node                  run_node;
 445        struct list_head                group_node;
 446        unsigned int                    on_rq;
 447
 448        u64                             exec_start;
 449        u64                             sum_exec_runtime;
 450        u64                             vruntime;
 451        u64                             prev_sum_exec_runtime;
 452
 453        u64                             nr_migrations;
 454
 455        struct sched_statistics         statistics;
 456
 457#ifdef CONFIG_FAIR_GROUP_SCHED
 458        int                             depth;
 459        struct sched_entity             *parent;
 460        /* rq on which this entity is (to be) queued: */
 461        struct cfs_rq                   *cfs_rq;
 462        /* rq "owned" by this entity/group: */
 463        struct cfs_rq                   *my_q;
 464#endif
 465
 466#ifdef CONFIG_SMP
 467        /*
 468         * Per entity load average tracking.
 469         *
 470         * Put into separate cache line so it does not
 471         * collide with read-mostly values above.
 472         */
 473        struct sched_avg                avg;
 474#endif
 475};
 476
 477struct sched_rt_entity {
 478        struct list_head                run_list;
 479        unsigned long                   timeout;
 480        unsigned long                   watchdog_stamp;
 481        unsigned int                    time_slice;
 482        unsigned short                  on_rq;
 483        unsigned short                  on_list;
 484
 485        struct sched_rt_entity          *back;
 486#ifdef CONFIG_RT_GROUP_SCHED
 487        struct sched_rt_entity          *parent;
 488        /* rq on which this entity is (to be) queued: */
 489        struct rt_rq                    *rt_rq;
 490        /* rq "owned" by this entity/group: */
 491        struct rt_rq                    *my_q;
 492#endif
 493} __randomize_layout;
 494
 495struct sched_dl_entity {
 496        struct rb_node                  rb_node;
 497
 498        /*
 499         * Original scheduling parameters. Copied here from sched_attr
 500         * during sched_setattr(), they will remain the same until
 501         * the next sched_setattr().
 502         */
 503        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 504        u64                             dl_deadline;    /* Relative deadline of each instance   */
 505        u64                             dl_period;      /* Separation of two instances (period) */
 506        u64                             dl_bw;          /* dl_runtime / dl_period               */
 507        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 508
 509        /*
 510         * Actual scheduling parameters. Initialized with the values above,
 511         * they are continuously updated during task execution. Note that
 512         * the remaining runtime could be < 0 in case we are in overrun.
 513         */
 514        s64                             runtime;        /* Remaining runtime for this instance  */
 515        u64                             deadline;       /* Absolute deadline for this instance  */
 516        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 517
 518        /*
 519         * Some bool flags:
 520         *
 521         * @dl_throttled tells if we exhausted the runtime. If so, the
 522         * task has to wait for a replenishment to be performed at the
 523         * next firing of dl_timer.
 524         *
 525         * @dl_boosted tells if we are boosted due to DI. If so we are
 526         * outside bandwidth enforcement mechanism (but only until we
 527         * exit the critical section);
 528         *
 529         * @dl_yielded tells if task gave up the CPU before consuming
 530         * all its available runtime during the last job.
 531         *
 532         * @dl_non_contending tells if the task is inactive while still
 533         * contributing to the active utilization. In other words, it
 534         * indicates if the inactive timer has been armed and its handler
 535         * has not been executed yet. This flag is useful to avoid race
 536         * conditions between the inactive timer handler and the wakeup
 537         * code.
 538         *
 539         * @dl_overrun tells if the task asked to be informed about runtime
 540         * overruns.
 541         */
 542        unsigned int                    dl_throttled      : 1;
 543        unsigned int                    dl_boosted        : 1;
 544        unsigned int                    dl_yielded        : 1;
 545        unsigned int                    dl_non_contending : 1;
 546        unsigned int                    dl_overrun        : 1;
 547
 548        /*
 549         * Bandwidth enforcement timer. Each -deadline task has its
 550         * own bandwidth to be enforced, thus we need one timer per task.
 551         */
 552        struct hrtimer                  dl_timer;
 553
 554        /*
 555         * Inactive timer, responsible for decreasing the active utilization
 556         * at the "0-lag time". When a -deadline task blocks, it contributes
 557         * to GRUB's active utilization until the "0-lag time", hence a
 558         * timer is needed to decrease the active utilization at the correct
 559         * time.
 560         */
 561        struct hrtimer inactive_timer;
 562};
 563
 564union rcu_special {
 565        struct {
 566                u8                      blocked;
 567                u8                      need_qs;
 568                u8                      exp_hint; /* Hint for performance. */
 569                u8                      pad; /* No garbage from compiler! */
 570        } b; /* Bits. */
 571        u32 s; /* Set of bits. */
 572};
 573
 574enum perf_event_task_context {
 575        perf_invalid_context = -1,
 576        perf_hw_context = 0,
 577        perf_sw_context,
 578        perf_nr_task_contexts,
 579};
 580
 581struct wake_q_node {
 582        struct wake_q_node *next;
 583};
 584
 585struct task_struct {
 586#ifdef CONFIG_THREAD_INFO_IN_TASK
 587        /*
 588         * For reasons of header soup (see current_thread_info()), this
 589         * must be the first element of task_struct.
 590         */
 591        struct thread_info              thread_info;
 592#endif
 593        /* -1 unrunnable, 0 runnable, >0 stopped: */
 594        volatile long                   state;
 595
 596        /*
 597         * This begins the randomizable portion of task_struct. Only
 598         * scheduling-critical items should be added above here.
 599         */
 600        randomized_struct_fields_start
 601
 602        void                            *stack;
 603        refcount_t                      usage;
 604        /* Per task flags (PF_*), defined further below: */
 605        unsigned int                    flags;
 606        unsigned int                    ptrace;
 607
 608#ifdef CONFIG_SMP
 609        struct llist_node               wake_entry;
 610        int                             on_cpu;
 611#ifdef CONFIG_THREAD_INFO_IN_TASK
 612        /* Current CPU: */
 613        unsigned int                    cpu;
 614#endif
 615        unsigned int                    wakee_flips;
 616        unsigned long                   wakee_flip_decay_ts;
 617        struct task_struct              *last_wakee;
 618
 619        /*
 620         * recent_used_cpu is initially set as the last CPU used by a task
 621         * that wakes affine another task. Waker/wakee relationships can
 622         * push tasks around a CPU where each wakeup moves to the next one.
 623         * Tracking a recently used CPU allows a quick search for a recently
 624         * used CPU that may be idle.
 625         */
 626        int                             recent_used_cpu;
 627        int                             wake_cpu;
 628#endif
 629        int                             on_rq;
 630
 631        int                             prio;
 632        int                             static_prio;
 633        int                             normal_prio;
 634        unsigned int                    rt_priority;
 635
 636        const struct sched_class        *sched_class;
 637        struct sched_entity             se;
 638        struct sched_rt_entity          rt;
 639#ifdef CONFIG_CGROUP_SCHED
 640        struct task_group               *sched_task_group;
 641#endif
 642        struct sched_dl_entity          dl;
 643
 644#ifdef CONFIG_PREEMPT_NOTIFIERS
 645        /* List of struct preempt_notifier: */
 646        struct hlist_head               preempt_notifiers;
 647#endif
 648
 649#ifdef CONFIG_BLK_DEV_IO_TRACE
 650        unsigned int                    btrace_seq;
 651#endif
 652
 653        unsigned int                    policy;
 654        int                             nr_cpus_allowed;
 655        cpumask_t                       cpus_allowed;
 656
 657#ifdef CONFIG_PREEMPT_RCU
 658        int                             rcu_read_lock_nesting;
 659        union rcu_special               rcu_read_unlock_special;
 660        struct list_head                rcu_node_entry;
 661        struct rcu_node                 *rcu_blocked_node;
 662#endif /* #ifdef CONFIG_PREEMPT_RCU */
 663
 664#ifdef CONFIG_TASKS_RCU
 665        unsigned long                   rcu_tasks_nvcsw;
 666        u8                              rcu_tasks_holdout;
 667        u8                              rcu_tasks_idx;
 668        int                             rcu_tasks_idle_cpu;
 669        struct list_head                rcu_tasks_holdout_list;
 670#endif /* #ifdef CONFIG_TASKS_RCU */
 671
 672        struct sched_info               sched_info;
 673
 674        struct list_head                tasks;
 675#ifdef CONFIG_SMP
 676        struct plist_node               pushable_tasks;
 677        struct rb_node                  pushable_dl_tasks;
 678#endif
 679
 680        struct mm_struct                *mm;
 681        struct mm_struct                *active_mm;
 682
 683        /* Per-thread vma caching: */
 684        struct vmacache                 vmacache;
 685
 686#ifdef SPLIT_RSS_COUNTING
 687        struct task_rss_stat            rss_stat;
 688#endif
 689        int                             exit_state;
 690        int                             exit_code;
 691        int                             exit_signal;
 692        /* The signal sent when the parent dies: */
 693        int                             pdeath_signal;
 694        /* JOBCTL_*, siglock protected: */
 695        unsigned long                   jobctl;
 696
 697        /* Used for emulating ABI behavior of previous Linux versions: */
 698        unsigned int                    personality;
 699
 700        /* Scheduler bits, serialized by scheduler locks: */
 701        unsigned                        sched_reset_on_fork:1;
 702        unsigned                        sched_contributes_to_load:1;
 703        unsigned                        sched_migrated:1;
 704        unsigned                        sched_remote_wakeup:1;
 705#ifdef CONFIG_PSI
 706        unsigned                        sched_psi_wake_requeue:1;
 707#endif
 708
 709        /* Force alignment to the next boundary: */
 710        unsigned                        :0;
 711
 712        /* Unserialized, strictly 'current' */
 713
 714        /* Bit to tell LSMs we're in execve(): */
 715        unsigned                        in_execve:1;
 716        unsigned                        in_iowait:1;
 717#ifndef TIF_RESTORE_SIGMASK
 718        unsigned                        restore_sigmask:1;
 719#endif
 720#ifdef CONFIG_MEMCG
 721        unsigned                        in_user_fault:1;
 722#endif
 723#ifdef CONFIG_COMPAT_BRK
 724        unsigned                        brk_randomized:1;
 725#endif
 726#ifdef CONFIG_CGROUPS
 727        /* disallow userland-initiated cgroup migration */
 728        unsigned                        no_cgroup_migration:1;
 729#endif
 730#ifdef CONFIG_BLK_CGROUP
 731        /* to be used once the psi infrastructure lands upstream. */
 732        unsigned                        use_memdelay:1;
 733#endif
 734
 735        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 736
 737        struct restart_block            restart_block;
 738
 739        pid_t                           pid;
 740        pid_t                           tgid;
 741
 742#ifdef CONFIG_STACKPROTECTOR
 743        /* Canary value for the -fstack-protector GCC feature: */
 744        unsigned long                   stack_canary;
 745#endif
 746        /*
 747         * Pointers to the (original) parent process, youngest child, younger sibling,
 748         * older sibling, respectively.  (p->father can be replaced with
 749         * p->real_parent->pid)
 750         */
 751
 752        /* Real parent process: */
 753        struct task_struct __rcu        *real_parent;
 754
 755        /* Recipient of SIGCHLD, wait4() reports: */
 756        struct task_struct __rcu        *parent;
 757
 758        /*
 759         * Children/sibling form the list of natural children:
 760         */
 761        struct list_head                children;
 762        struct list_head                sibling;
 763        struct task_struct              *group_leader;
 764
 765        /*
 766         * 'ptraced' is the list of tasks this task is using ptrace() on.
 767         *
 768         * This includes both natural children and PTRACE_ATTACH targets.
 769         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 770         */
 771        struct list_head                ptraced;
 772        struct list_head                ptrace_entry;
 773
 774        /* PID/PID hash table linkage. */
 775        struct pid                      *thread_pid;
 776        struct hlist_node               pid_links[PIDTYPE_MAX];
 777        struct list_head                thread_group;
 778        struct list_head                thread_node;
 779
 780        struct completion               *vfork_done;
 781
 782        /* CLONE_CHILD_SETTID: */
 783        int __user                      *set_child_tid;
 784
 785        /* CLONE_CHILD_CLEARTID: */
 786        int __user                      *clear_child_tid;
 787
 788        u64                             utime;
 789        u64                             stime;
 790#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 791        u64                             utimescaled;
 792        u64                             stimescaled;
 793#endif
 794        u64                             gtime;
 795        struct prev_cputime             prev_cputime;
 796#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 797        struct vtime                    vtime;
 798#endif
 799
 800#ifdef CONFIG_NO_HZ_FULL
 801        atomic_t                        tick_dep_mask;
 802#endif
 803        /* Context switch counts: */
 804        unsigned long                   nvcsw;
 805        unsigned long                   nivcsw;
 806
 807        /* Monotonic time in nsecs: */
 808        u64                             start_time;
 809
 810        /* Boot based time in nsecs: */
 811        u64                             real_start_time;
 812
 813        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 814        unsigned long                   min_flt;
 815        unsigned long                   maj_flt;
 816
 817#ifdef CONFIG_POSIX_TIMERS
 818        struct task_cputime             cputime_expires;
 819        struct list_head                cpu_timers[3];
 820#endif
 821
 822        /* Process credentials: */
 823
 824        /* Tracer's credentials at attach: */
 825        const struct cred __rcu         *ptracer_cred;
 826
 827        /* Objective and real subjective task credentials (COW): */
 828        const struct cred __rcu         *real_cred;
 829
 830        /* Effective (overridable) subjective task credentials (COW): */
 831        const struct cred __rcu         *cred;
 832
 833        /*
 834         * executable name, excluding path.
 835         *
 836         * - normally initialized setup_new_exec()
 837         * - access it with [gs]et_task_comm()
 838         * - lock it with task_lock()
 839         */
 840        char                            comm[TASK_COMM_LEN];
 841
 842        struct nameidata                *nameidata;
 843
 844#ifdef CONFIG_SYSVIPC
 845        struct sysv_sem                 sysvsem;
 846        struct sysv_shm                 sysvshm;
 847#endif
 848#ifdef CONFIG_DETECT_HUNG_TASK
 849        unsigned long                   last_switch_count;
 850        unsigned long                   last_switch_time;
 851#endif
 852        /* Filesystem information: */
 853        struct fs_struct                *fs;
 854
 855        /* Open file information: */
 856        struct files_struct             *files;
 857
 858        /* Namespaces: */
 859        struct nsproxy                  *nsproxy;
 860
 861        /* Signal handlers: */
 862        struct signal_struct            *signal;
 863        struct sighand_struct           *sighand;
 864        sigset_t                        blocked;
 865        sigset_t                        real_blocked;
 866        /* Restored if set_restore_sigmask() was used: */
 867        sigset_t                        saved_sigmask;
 868        struct sigpending               pending;
 869        unsigned long                   sas_ss_sp;
 870        size_t                          sas_ss_size;
 871        unsigned int                    sas_ss_flags;
 872
 873        struct callback_head            *task_works;
 874
 875#ifdef CONFIG_AUDIT
 876#ifdef CONFIG_AUDITSYSCALL
 877        struct audit_context            *audit_context;
 878#endif
 879        kuid_t                          loginuid;
 880        unsigned int                    sessionid;
 881#endif
 882        struct seccomp                  seccomp;
 883
 884        /* Thread group tracking: */
 885        u32                             parent_exec_id;
 886        u32                             self_exec_id;
 887
 888        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 889        spinlock_t                      alloc_lock;
 890
 891        /* Protection of the PI data structures: */
 892        raw_spinlock_t                  pi_lock;
 893
 894        struct wake_q_node              wake_q;
 895
 896#ifdef CONFIG_RT_MUTEXES
 897        /* PI waiters blocked on a rt_mutex held by this task: */
 898        struct rb_root_cached           pi_waiters;
 899        /* Updated under owner's pi_lock and rq lock */
 900        struct task_struct              *pi_top_task;
 901        /* Deadlock detection and priority inheritance handling: */
 902        struct rt_mutex_waiter          *pi_blocked_on;
 903#endif
 904
 905#ifdef CONFIG_DEBUG_MUTEXES
 906        /* Mutex deadlock detection: */
 907        struct mutex_waiter             *blocked_on;
 908#endif
 909
 910#ifdef CONFIG_TRACE_IRQFLAGS
 911        unsigned int                    irq_events;
 912        unsigned long                   hardirq_enable_ip;
 913        unsigned long                   hardirq_disable_ip;
 914        unsigned int                    hardirq_enable_event;
 915        unsigned int                    hardirq_disable_event;
 916        int                             hardirqs_enabled;
 917        int                             hardirq_context;
 918        unsigned long                   softirq_disable_ip;
 919        unsigned long                   softirq_enable_ip;
 920        unsigned int                    softirq_disable_event;
 921        unsigned int                    softirq_enable_event;
 922        int                             softirqs_enabled;
 923        int                             softirq_context;
 924#endif
 925
 926#ifdef CONFIG_LOCKDEP
 927# define MAX_LOCK_DEPTH                 48UL
 928        u64                             curr_chain_key;
 929        int                             lockdep_depth;
 930        unsigned int                    lockdep_recursion;
 931        struct held_lock                held_locks[MAX_LOCK_DEPTH];
 932#endif
 933
 934#ifdef CONFIG_UBSAN
 935        unsigned int                    in_ubsan;
 936#endif
 937
 938        /* Journalling filesystem info: */
 939        void                            *journal_info;
 940
 941        /* Stacked block device info: */
 942        struct bio_list                 *bio_list;
 943
 944#ifdef CONFIG_BLOCK
 945        /* Stack plugging: */
 946        struct blk_plug                 *plug;
 947#endif
 948
 949        /* VM state: */
 950        struct reclaim_state            *reclaim_state;
 951
 952        struct backing_dev_info         *backing_dev_info;
 953
 954        struct io_context               *io_context;
 955
 956#ifdef CONFIG_COMPACTION
 957        struct capture_control          *capture_control;
 958#endif
 959        /* Ptrace state: */
 960        unsigned long                   ptrace_message;
 961        kernel_siginfo_t                *last_siginfo;
 962
 963        struct task_io_accounting       ioac;
 964#ifdef CONFIG_PSI
 965        /* Pressure stall state */
 966        unsigned int                    psi_flags;
 967#endif
 968#ifdef CONFIG_TASK_XACCT
 969        /* Accumulated RSS usage: */
 970        u64                             acct_rss_mem1;
 971        /* Accumulated virtual memory usage: */
 972        u64                             acct_vm_mem1;
 973        /* stime + utime since last update: */
 974        u64                             acct_timexpd;
 975#endif
 976#ifdef CONFIG_CPUSETS
 977        /* Protected by ->alloc_lock: */
 978        nodemask_t                      mems_allowed;
 979        /* Seqence number to catch updates: */
 980        seqcount_t                      mems_allowed_seq;
 981        int                             cpuset_mem_spread_rotor;
 982        int                             cpuset_slab_spread_rotor;
 983#endif
 984#ifdef CONFIG_CGROUPS
 985        /* Control Group info protected by css_set_lock: */
 986        struct css_set __rcu            *cgroups;
 987        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
 988        struct list_head                cg_list;
 989#endif
 990#ifdef CONFIG_X86_CPU_RESCTRL
 991        u32                             closid;
 992        u32                             rmid;
 993#endif
 994#ifdef CONFIG_FUTEX
 995        struct robust_list_head __user  *robust_list;
 996#ifdef CONFIG_COMPAT
 997        struct compat_robust_list_head __user *compat_robust_list;
 998#endif
 999        struct list_head                pi_state_list;
1000        struct futex_pi_state           *pi_state_cache;
1001#endif
1002#ifdef CONFIG_PERF_EVENTS
1003        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1004        struct mutex                    perf_event_mutex;
1005        struct list_head                perf_event_list;
1006#endif
1007#ifdef CONFIG_DEBUG_PREEMPT
1008        unsigned long                   preempt_disable_ip;
1009#endif
1010#ifdef CONFIG_NUMA
1011        /* Protected by alloc_lock: */
1012        struct mempolicy                *mempolicy;
1013        short                           il_prev;
1014        short                           pref_node_fork;
1015#endif
1016#ifdef CONFIG_NUMA_BALANCING
1017        int                             numa_scan_seq;
1018        unsigned int                    numa_scan_period;
1019        unsigned int                    numa_scan_period_max;
1020        int                             numa_preferred_nid;
1021        unsigned long                   numa_migrate_retry;
1022        /* Migration stamp: */
1023        u64                             node_stamp;
1024        u64                             last_task_numa_placement;
1025        u64                             last_sum_exec_runtime;
1026        struct callback_head            numa_work;
1027
1028        struct numa_group               *numa_group;
1029
1030        /*
1031         * numa_faults is an array split into four regions:
1032         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1033         * in this precise order.
1034         *
1035         * faults_memory: Exponential decaying average of faults on a per-node
1036         * basis. Scheduling placement decisions are made based on these
1037         * counts. The values remain static for the duration of a PTE scan.
1038         * faults_cpu: Track the nodes the process was running on when a NUMA
1039         * hinting fault was incurred.
1040         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1041         * during the current scan window. When the scan completes, the counts
1042         * in faults_memory and faults_cpu decay and these values are copied.
1043         */
1044        unsigned long                   *numa_faults;
1045        unsigned long                   total_numa_faults;
1046
1047        /*
1048         * numa_faults_locality tracks if faults recorded during the last
1049         * scan window were remote/local or failed to migrate. The task scan
1050         * period is adapted based on the locality of the faults with different
1051         * weights depending on whether they were shared or private faults
1052         */
1053        unsigned long                   numa_faults_locality[3];
1054
1055        unsigned long                   numa_pages_migrated;
1056#endif /* CONFIG_NUMA_BALANCING */
1057
1058#ifdef CONFIG_RSEQ
1059        struct rseq __user *rseq;
1060        u32 rseq_len;
1061        u32 rseq_sig;
1062        /*
1063         * RmW on rseq_event_mask must be performed atomically
1064         * with respect to preemption.
1065         */
1066        unsigned long rseq_event_mask;
1067#endif
1068
1069        struct tlbflush_unmap_batch     tlb_ubc;
1070
1071        struct rcu_head                 rcu;
1072
1073        /* Cache last used pipe for splice(): */
1074        struct pipe_inode_info          *splice_pipe;
1075
1076        struct page_frag                task_frag;
1077
1078#ifdef CONFIG_TASK_DELAY_ACCT
1079        struct task_delay_info          *delays;
1080#endif
1081
1082#ifdef CONFIG_FAULT_INJECTION
1083        int                             make_it_fail;
1084        unsigned int                    fail_nth;
1085#endif
1086        /*
1087         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1088         * balance_dirty_pages() for a dirty throttling pause:
1089         */
1090        int                             nr_dirtied;
1091        int                             nr_dirtied_pause;
1092        /* Start of a write-and-pause period: */
1093        unsigned long                   dirty_paused_when;
1094
1095#ifdef CONFIG_LATENCYTOP
1096        int                             latency_record_count;
1097        struct latency_record           latency_record[LT_SAVECOUNT];
1098#endif
1099        /*
1100         * Time slack values; these are used to round up poll() and
1101         * select() etc timeout values. These are in nanoseconds.
1102         */
1103        u64                             timer_slack_ns;
1104        u64                             default_timer_slack_ns;
1105
1106#ifdef CONFIG_KASAN
1107        unsigned int                    kasan_depth;
1108#endif
1109
1110#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1111        /* Index of current stored address in ret_stack: */
1112        int                             curr_ret_stack;
1113        int                             curr_ret_depth;
1114
1115        /* Stack of return addresses for return function tracing: */
1116        struct ftrace_ret_stack         *ret_stack;
1117
1118        /* Timestamp for last schedule: */
1119        unsigned long long              ftrace_timestamp;
1120
1121        /*
1122         * Number of functions that haven't been traced
1123         * because of depth overrun:
1124         */
1125        atomic_t                        trace_overrun;
1126
1127        /* Pause tracing: */
1128        atomic_t                        tracing_graph_pause;
1129#endif
1130
1131#ifdef CONFIG_TRACING
1132        /* State flags for use by tracers: */
1133        unsigned long                   trace;
1134
1135        /* Bitmask and counter of trace recursion: */
1136        unsigned long                   trace_recursion;
1137#endif /* CONFIG_TRACING */
1138
1139#ifdef CONFIG_KCOV
1140        /* Coverage collection mode enabled for this task (0 if disabled): */
1141        unsigned int                    kcov_mode;
1142
1143        /* Size of the kcov_area: */
1144        unsigned int                    kcov_size;
1145
1146        /* Buffer for coverage collection: */
1147        void                            *kcov_area;
1148
1149        /* KCOV descriptor wired with this task or NULL: */
1150        struct kcov                     *kcov;
1151#endif
1152
1153#ifdef CONFIG_MEMCG
1154        struct mem_cgroup               *memcg_in_oom;
1155        gfp_t                           memcg_oom_gfp_mask;
1156        int                             memcg_oom_order;
1157
1158        /* Number of pages to reclaim on returning to userland: */
1159        unsigned int                    memcg_nr_pages_over_high;
1160
1161        /* Used by memcontrol for targeted memcg charge: */
1162        struct mem_cgroup               *active_memcg;
1163#endif
1164
1165#ifdef CONFIG_BLK_CGROUP
1166        struct request_queue            *throttle_queue;
1167#endif
1168
1169#ifdef CONFIG_UPROBES
1170        struct uprobe_task              *utask;
1171#endif
1172#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1173        unsigned int                    sequential_io;
1174        unsigned int                    sequential_io_avg;
1175#endif
1176#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1177        unsigned long                   task_state_change;
1178#endif
1179        int                             pagefault_disabled;
1180#ifdef CONFIG_MMU
1181        struct task_struct              *oom_reaper_list;
1182#endif
1183#ifdef CONFIG_VMAP_STACK
1184        struct vm_struct                *stack_vm_area;
1185#endif
1186#ifdef CONFIG_THREAD_INFO_IN_TASK
1187        /* A live task holds one reference: */
1188        refcount_t                      stack_refcount;
1189#endif
1190#ifdef CONFIG_LIVEPATCH
1191        int patch_state;
1192#endif
1193#ifdef CONFIG_SECURITY
1194        /* Used by LSM modules for access restriction: */
1195        void                            *security;
1196#endif
1197
1198#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1199        unsigned long                   lowest_stack;
1200        unsigned long                   prev_lowest_stack;
1201#endif
1202
1203        /*
1204         * New fields for task_struct should be added above here, so that
1205         * they are included in the randomized portion of task_struct.
1206         */
1207        randomized_struct_fields_end
1208
1209        /* CPU-specific state of this task: */
1210        struct thread_struct            thread;
1211
1212        /*
1213         * WARNING: on x86, 'thread_struct' contains a variable-sized
1214         * structure.  It *MUST* be at the end of 'task_struct'.
1215         *
1216         * Do not put anything below here!
1217         */
1218};
1219
1220static inline struct pid *task_pid(struct task_struct *task)
1221{
1222        return task->thread_pid;
1223}
1224
1225/*
1226 * the helpers to get the task's different pids as they are seen
1227 * from various namespaces
1228 *
1229 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1230 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1231 *                     current.
1232 * task_xid_nr_ns()  : id seen from the ns specified;
1233 *
1234 * see also pid_nr() etc in include/linux/pid.h
1235 */
1236pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1237
1238static inline pid_t task_pid_nr(struct task_struct *tsk)
1239{
1240        return tsk->pid;
1241}
1242
1243static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1244{
1245        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1246}
1247
1248static inline pid_t task_pid_vnr(struct task_struct *tsk)
1249{
1250        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1251}
1252
1253
1254static inline pid_t task_tgid_nr(struct task_struct *tsk)
1255{
1256        return tsk->tgid;
1257}
1258
1259/**
1260 * pid_alive - check that a task structure is not stale
1261 * @p: Task structure to be checked.
1262 *
1263 * Test if a process is not yet dead (at most zombie state)
1264 * If pid_alive fails, then pointers within the task structure
1265 * can be stale and must not be dereferenced.
1266 *
1267 * Return: 1 if the process is alive. 0 otherwise.
1268 */
1269static inline int pid_alive(const struct task_struct *p)
1270{
1271        return p->thread_pid != NULL;
1272}
1273
1274static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1275{
1276        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1277}
1278
1279static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1280{
1281        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1282}
1283
1284
1285static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1286{
1287        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1288}
1289
1290static inline pid_t task_session_vnr(struct task_struct *tsk)
1291{
1292        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1293}
1294
1295static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1296{
1297        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1298}
1299
1300static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1301{
1302        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1303}
1304
1305static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1306{
1307        pid_t pid = 0;
1308
1309        rcu_read_lock();
1310        if (pid_alive(tsk))
1311                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1312        rcu_read_unlock();
1313
1314        return pid;
1315}
1316
1317static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1318{
1319        return task_ppid_nr_ns(tsk, &init_pid_ns);
1320}
1321
1322/* Obsolete, do not use: */
1323static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1324{
1325        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1326}
1327
1328#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1329#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1330
1331static inline unsigned int task_state_index(struct task_struct *tsk)
1332{
1333        unsigned int tsk_state = READ_ONCE(tsk->state);
1334        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1335
1336        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1337
1338        if (tsk_state == TASK_IDLE)
1339                state = TASK_REPORT_IDLE;
1340
1341        return fls(state);
1342}
1343
1344static inline char task_index_to_char(unsigned int state)
1345{
1346        static const char state_char[] = "RSDTtXZPI";
1347
1348        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1349
1350        return state_char[state];
1351}
1352
1353static inline char task_state_to_char(struct task_struct *tsk)
1354{
1355        return task_index_to_char(task_state_index(tsk));
1356}
1357
1358/**
1359 * is_global_init - check if a task structure is init. Since init
1360 * is free to have sub-threads we need to check tgid.
1361 * @tsk: Task structure to be checked.
1362 *
1363 * Check if a task structure is the first user space task the kernel created.
1364 *
1365 * Return: 1 if the task structure is init. 0 otherwise.
1366 */
1367static inline int is_global_init(struct task_struct *tsk)
1368{
1369        return task_tgid_nr(tsk) == 1;
1370}
1371
1372extern struct pid *cad_pid;
1373
1374/*
1375 * Per process flags
1376 */
1377#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1378#define PF_EXITING              0x00000004      /* Getting shut down */
1379#define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1380#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1381#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1382#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1383#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1384#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1385#define PF_DUMPCORE             0x00000200      /* Dumped core */
1386#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1387#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1388#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1389#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1390#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1391#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1392#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1393#define PF_KSWAPD               0x00020000      /* I am kswapd */
1394#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1395#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1396#define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1397#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1398#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1399#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1400#define PF_MEMSTALL             0x01000000      /* Stalled due to lack of memory */
1401#define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1402#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_allowed */
1403#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1404#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1405#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1406#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1407
1408/*
1409 * Only the _current_ task can read/write to tsk->flags, but other
1410 * tasks can access tsk->flags in readonly mode for example
1411 * with tsk_used_math (like during threaded core dumping).
1412 * There is however an exception to this rule during ptrace
1413 * or during fork: the ptracer task is allowed to write to the
1414 * child->flags of its traced child (same goes for fork, the parent
1415 * can write to the child->flags), because we're guaranteed the
1416 * child is not running and in turn not changing child->flags
1417 * at the same time the parent does it.
1418 */
1419#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1420#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1421#define clear_used_math()                       clear_stopped_child_used_math(current)
1422#define set_used_math()                         set_stopped_child_used_math(current)
1423
1424#define conditional_stopped_child_used_math(condition, child) \
1425        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1426
1427#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1428
1429#define copy_to_stopped_child_used_math(child) \
1430        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1431
1432/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1433#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1434#define used_math()                             tsk_used_math(current)
1435
1436static inline bool is_percpu_thread(void)
1437{
1438#ifdef CONFIG_SMP
1439        return (current->flags & PF_NO_SETAFFINITY) &&
1440                (current->nr_cpus_allowed  == 1);
1441#else
1442        return true;
1443#endif
1444}
1445
1446/* Per-process atomic flags. */
1447#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1448#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1449#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1450#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1451#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1452#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1453#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1454#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1455
1456#define TASK_PFA_TEST(name, func)                                       \
1457        static inline bool task_##func(struct task_struct *p)           \
1458        { return test_bit(PFA_##name, &p->atomic_flags); }
1459
1460#define TASK_PFA_SET(name, func)                                        \
1461        static inline void task_set_##func(struct task_struct *p)       \
1462        { set_bit(PFA_##name, &p->atomic_flags); }
1463
1464#define TASK_PFA_CLEAR(name, func)                                      \
1465        static inline void task_clear_##func(struct task_struct *p)     \
1466        { clear_bit(PFA_##name, &p->atomic_flags); }
1467
1468TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1469TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1470
1471TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1472TASK_PFA_SET(SPREAD_PAGE, spread_page)
1473TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1474
1475TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1476TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1477TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1478
1479TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1480TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1481TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1482
1483TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1484TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1485TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1486
1487TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1488TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489
1490TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1491TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1492TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1493
1494TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1495TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1496
1497static inline void
1498current_restore_flags(unsigned long orig_flags, unsigned long flags)
1499{
1500        current->flags &= ~flags;
1501        current->flags |= orig_flags & flags;
1502}
1503
1504extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1505extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1506#ifdef CONFIG_SMP
1507extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1508extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1509#else
1510static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1511{
1512}
1513static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1514{
1515        if (!cpumask_test_cpu(0, new_mask))
1516                return -EINVAL;
1517        return 0;
1518}
1519#endif
1520
1521#ifndef cpu_relax_yield
1522#define cpu_relax_yield() cpu_relax()
1523#endif
1524
1525extern int yield_to(struct task_struct *p, bool preempt);
1526extern void set_user_nice(struct task_struct *p, long nice);
1527extern int task_prio(const struct task_struct *p);
1528
1529/**
1530 * task_nice - return the nice value of a given task.
1531 * @p: the task in question.
1532 *
1533 * Return: The nice value [ -20 ... 0 ... 19 ].
1534 */
1535static inline int task_nice(const struct task_struct *p)
1536{
1537        return PRIO_TO_NICE((p)->static_prio);
1538}
1539
1540extern int can_nice(const struct task_struct *p, const int nice);
1541extern int task_curr(const struct task_struct *p);
1542extern int idle_cpu(int cpu);
1543extern int available_idle_cpu(int cpu);
1544extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1545extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1546extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1547extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1548extern struct task_struct *idle_task(int cpu);
1549
1550/**
1551 * is_idle_task - is the specified task an idle task?
1552 * @p: the task in question.
1553 *
1554 * Return: 1 if @p is an idle task. 0 otherwise.
1555 */
1556static inline bool is_idle_task(const struct task_struct *p)
1557{
1558        return !!(p->flags & PF_IDLE);
1559}
1560
1561extern struct task_struct *curr_task(int cpu);
1562extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1563
1564void yield(void);
1565
1566union thread_union {
1567#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1568        struct task_struct task;
1569#endif
1570#ifndef CONFIG_THREAD_INFO_IN_TASK
1571        struct thread_info thread_info;
1572#endif
1573        unsigned long stack[THREAD_SIZE/sizeof(long)];
1574};
1575
1576#ifndef CONFIG_THREAD_INFO_IN_TASK
1577extern struct thread_info init_thread_info;
1578#endif
1579
1580extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1581
1582#ifdef CONFIG_THREAD_INFO_IN_TASK
1583static inline struct thread_info *task_thread_info(struct task_struct *task)
1584{
1585        return &task->thread_info;
1586}
1587#elif !defined(__HAVE_THREAD_FUNCTIONS)
1588# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1589#endif
1590
1591/*
1592 * find a task by one of its numerical ids
1593 *
1594 * find_task_by_pid_ns():
1595 *      finds a task by its pid in the specified namespace
1596 * find_task_by_vpid():
1597 *      finds a task by its virtual pid
1598 *
1599 * see also find_vpid() etc in include/linux/pid.h
1600 */
1601
1602extern struct task_struct *find_task_by_vpid(pid_t nr);
1603extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1604
1605/*
1606 * find a task by its virtual pid and get the task struct
1607 */
1608extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1609
1610extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1611extern int wake_up_process(struct task_struct *tsk);
1612extern void wake_up_new_task(struct task_struct *tsk);
1613
1614#ifdef CONFIG_SMP
1615extern void kick_process(struct task_struct *tsk);
1616#else
1617static inline void kick_process(struct task_struct *tsk) { }
1618#endif
1619
1620extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1621
1622static inline void set_task_comm(struct task_struct *tsk, const char *from)
1623{
1624        __set_task_comm(tsk, from, false);
1625}
1626
1627extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1628#define get_task_comm(buf, tsk) ({                      \
1629        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1630        __get_task_comm(buf, sizeof(buf), tsk);         \
1631})
1632
1633#ifdef CONFIG_SMP
1634void scheduler_ipi(void);
1635extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1636#else
1637static inline void scheduler_ipi(void) { }
1638static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1639{
1640        return 1;
1641}
1642#endif
1643
1644/*
1645 * Set thread flags in other task's structures.
1646 * See asm/thread_info.h for TIF_xxxx flags available:
1647 */
1648static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1649{
1650        set_ti_thread_flag(task_thread_info(tsk), flag);
1651}
1652
1653static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1654{
1655        clear_ti_thread_flag(task_thread_info(tsk), flag);
1656}
1657
1658static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1659                                          bool value)
1660{
1661        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1662}
1663
1664static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1665{
1666        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1667}
1668
1669static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1670{
1671        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1672}
1673
1674static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1675{
1676        return test_ti_thread_flag(task_thread_info(tsk), flag);
1677}
1678
1679static inline void set_tsk_need_resched(struct task_struct *tsk)
1680{
1681        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1682}
1683
1684static inline void clear_tsk_need_resched(struct task_struct *tsk)
1685{
1686        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1687}
1688
1689static inline int test_tsk_need_resched(struct task_struct *tsk)
1690{
1691        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1692}
1693
1694/*
1695 * cond_resched() and cond_resched_lock(): latency reduction via
1696 * explicit rescheduling in places that are safe. The return
1697 * value indicates whether a reschedule was done in fact.
1698 * cond_resched_lock() will drop the spinlock before scheduling,
1699 */
1700#ifndef CONFIG_PREEMPT
1701extern int _cond_resched(void);
1702#else
1703static inline int _cond_resched(void) { return 0; }
1704#endif
1705
1706#define cond_resched() ({                       \
1707        ___might_sleep(__FILE__, __LINE__, 0);  \
1708        _cond_resched();                        \
1709})
1710
1711extern int __cond_resched_lock(spinlock_t *lock);
1712
1713#define cond_resched_lock(lock) ({                              \
1714        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1715        __cond_resched_lock(lock);                              \
1716})
1717
1718static inline void cond_resched_rcu(void)
1719{
1720#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1721        rcu_read_unlock();
1722        cond_resched();
1723        rcu_read_lock();
1724#endif
1725}
1726
1727/*
1728 * Does a critical section need to be broken due to another
1729 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1730 * but a general need for low latency)
1731 */
1732static inline int spin_needbreak(spinlock_t *lock)
1733{
1734#ifdef CONFIG_PREEMPT
1735        return spin_is_contended(lock);
1736#else
1737        return 0;
1738#endif
1739}
1740
1741static __always_inline bool need_resched(void)
1742{
1743        return unlikely(tif_need_resched());
1744}
1745
1746/*
1747 * Wrappers for p->thread_info->cpu access. No-op on UP.
1748 */
1749#ifdef CONFIG_SMP
1750
1751static inline unsigned int task_cpu(const struct task_struct *p)
1752{
1753#ifdef CONFIG_THREAD_INFO_IN_TASK
1754        return READ_ONCE(p->cpu);
1755#else
1756        return READ_ONCE(task_thread_info(p)->cpu);
1757#endif
1758}
1759
1760extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1761
1762#else
1763
1764static inline unsigned int task_cpu(const struct task_struct *p)
1765{
1766        return 0;
1767}
1768
1769static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1770{
1771}
1772
1773#endif /* CONFIG_SMP */
1774
1775/*
1776 * In order to reduce various lock holder preemption latencies provide an
1777 * interface to see if a vCPU is currently running or not.
1778 *
1779 * This allows us to terminate optimistic spin loops and block, analogous to
1780 * the native optimistic spin heuristic of testing if the lock owner task is
1781 * running or not.
1782 */
1783#ifndef vcpu_is_preempted
1784# define vcpu_is_preempted(cpu) false
1785#endif
1786
1787extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1788extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1789
1790#ifndef TASK_SIZE_OF
1791#define TASK_SIZE_OF(tsk)       TASK_SIZE
1792#endif
1793
1794#ifdef CONFIG_RSEQ
1795
1796/*
1797 * Map the event mask on the user-space ABI enum rseq_cs_flags
1798 * for direct mask checks.
1799 */
1800enum rseq_event_mask_bits {
1801        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1802        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1803        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1804};
1805
1806enum rseq_event_mask {
1807        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1808        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1809        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1810};
1811
1812static inline void rseq_set_notify_resume(struct task_struct *t)
1813{
1814        if (t->rseq)
1815                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1816}
1817
1818void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1819
1820static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1821                                             struct pt_regs *regs)
1822{
1823        if (current->rseq)
1824                __rseq_handle_notify_resume(ksig, regs);
1825}
1826
1827static inline void rseq_signal_deliver(struct ksignal *ksig,
1828                                       struct pt_regs *regs)
1829{
1830        preempt_disable();
1831        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1832        preempt_enable();
1833        rseq_handle_notify_resume(ksig, regs);
1834}
1835
1836/* rseq_preempt() requires preemption to be disabled. */
1837static inline void rseq_preempt(struct task_struct *t)
1838{
1839        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1840        rseq_set_notify_resume(t);
1841}
1842
1843/* rseq_migrate() requires preemption to be disabled. */
1844static inline void rseq_migrate(struct task_struct *t)
1845{
1846        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1847        rseq_set_notify_resume(t);
1848}
1849
1850/*
1851 * If parent process has a registered restartable sequences area, the
1852 * child inherits. Only applies when forking a process, not a thread.
1853 */
1854static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1855{
1856        if (clone_flags & CLONE_THREAD) {
1857                t->rseq = NULL;
1858                t->rseq_len = 0;
1859                t->rseq_sig = 0;
1860                t->rseq_event_mask = 0;
1861        } else {
1862                t->rseq = current->rseq;
1863                t->rseq_len = current->rseq_len;
1864                t->rseq_sig = current->rseq_sig;
1865                t->rseq_event_mask = current->rseq_event_mask;
1866        }
1867}
1868
1869static inline void rseq_execve(struct task_struct *t)
1870{
1871        t->rseq = NULL;
1872        t->rseq_len = 0;
1873        t->rseq_sig = 0;
1874        t->rseq_event_mask = 0;
1875}
1876
1877#else
1878
1879static inline void rseq_set_notify_resume(struct task_struct *t)
1880{
1881}
1882static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1883                                             struct pt_regs *regs)
1884{
1885}
1886static inline void rseq_signal_deliver(struct ksignal *ksig,
1887                                       struct pt_regs *regs)
1888{
1889}
1890static inline void rseq_preempt(struct task_struct *t)
1891{
1892}
1893static inline void rseq_migrate(struct task_struct *t)
1894{
1895}
1896static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1897{
1898}
1899static inline void rseq_execve(struct task_struct *t)
1900{
1901}
1902
1903#endif
1904
1905void __exit_umh(struct task_struct *tsk);
1906
1907static inline void exit_umh(struct task_struct *tsk)
1908{
1909        if (unlikely(tsk->flags & PF_UMH))
1910                __exit_umh(tsk);
1911}
1912
1913#ifdef CONFIG_DEBUG_RSEQ
1914
1915void rseq_syscall(struct pt_regs *regs);
1916
1917#else
1918
1919static inline void rseq_syscall(struct pt_regs *regs)
1920{
1921}
1922
1923#endif
1924
1925#endif
1926