linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11#include <linux/refcount.h>
  12
  13/*
  14 * Types defining task->signal and task->sighand and APIs using them:
  15 */
  16
  17struct sighand_struct {
  18        refcount_t              count;
  19        struct k_sigaction      action[_NSIG];
  20        spinlock_t              siglock;
  21        wait_queue_head_t       signalfd_wqh;
  22};
  23
  24/*
  25 * Per-process accounting stats:
  26 */
  27struct pacct_struct {
  28        int                     ac_flag;
  29        long                    ac_exitcode;
  30        unsigned long           ac_mem;
  31        u64                     ac_utime, ac_stime;
  32        unsigned long           ac_minflt, ac_majflt;
  33};
  34
  35struct cpu_itimer {
  36        u64 expires;
  37        u64 incr;
  38};
  39
  40/*
  41 * This is the atomic variant of task_cputime, which can be used for
  42 * storing and updating task_cputime statistics without locking.
  43 */
  44struct task_cputime_atomic {
  45        atomic64_t utime;
  46        atomic64_t stime;
  47        atomic64_t sum_exec_runtime;
  48};
  49
  50#define INIT_CPUTIME_ATOMIC \
  51        (struct task_cputime_atomic) {                          \
  52                .utime = ATOMIC64_INIT(0),                      \
  53                .stime = ATOMIC64_INIT(0),                      \
  54                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  55        }
  56/**
  57 * struct thread_group_cputimer - thread group interval timer counts
  58 * @cputime_atomic:     atomic thread group interval timers.
  59 * @running:            true when there are timers running and
  60 *                      @cputime_atomic receives updates.
  61 * @checking_timer:     true when a thread in the group is in the
  62 *                      process of checking for thread group timers.
  63 *
  64 * This structure contains the version of task_cputime, above, that is
  65 * used for thread group CPU timer calculations.
  66 */
  67struct thread_group_cputimer {
  68        struct task_cputime_atomic cputime_atomic;
  69        bool running;
  70        bool checking_timer;
  71};
  72
  73struct multiprocess_signals {
  74        sigset_t signal;
  75        struct hlist_node node;
  76};
  77
  78/*
  79 * NOTE! "signal_struct" does not have its own
  80 * locking, because a shared signal_struct always
  81 * implies a shared sighand_struct, so locking
  82 * sighand_struct is always a proper superset of
  83 * the locking of signal_struct.
  84 */
  85struct signal_struct {
  86        refcount_t              sigcnt;
  87        atomic_t                live;
  88        int                     nr_threads;
  89        struct list_head        thread_head;
  90
  91        wait_queue_head_t       wait_chldexit;  /* for wait4() */
  92
  93        /* current thread group signal load-balancing target: */
  94        struct task_struct      *curr_target;
  95
  96        /* shared signal handling: */
  97        struct sigpending       shared_pending;
  98
  99        /* For collecting multiprocess signals during fork */
 100        struct hlist_head       multiprocess;
 101
 102        /* thread group exit support */
 103        int                     group_exit_code;
 104        /* overloaded:
 105         * - notify group_exit_task when ->count is equal to notify_count
 106         * - everyone except group_exit_task is stopped during signal delivery
 107         *   of fatal signals, group_exit_task processes the signal.
 108         */
 109        int                     notify_count;
 110        struct task_struct      *group_exit_task;
 111
 112        /* thread group stop support, overloads group_exit_code too */
 113        int                     group_stop_count;
 114        unsigned int            flags; /* see SIGNAL_* flags below */
 115
 116        /*
 117         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 118         * manager, to re-parent orphan (double-forking) child processes
 119         * to this process instead of 'init'. The service manager is
 120         * able to receive SIGCHLD signals and is able to investigate
 121         * the process until it calls wait(). All children of this
 122         * process will inherit a flag if they should look for a
 123         * child_subreaper process at exit.
 124         */
 125        unsigned int            is_child_subreaper:1;
 126        unsigned int            has_child_subreaper:1;
 127
 128#ifdef CONFIG_POSIX_TIMERS
 129
 130        /* POSIX.1b Interval Timers */
 131        int                     posix_timer_id;
 132        struct list_head        posix_timers;
 133
 134        /* ITIMER_REAL timer for the process */
 135        struct hrtimer real_timer;
 136        ktime_t it_real_incr;
 137
 138        /*
 139         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 140         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 141         * values are defined to 0 and 1 respectively
 142         */
 143        struct cpu_itimer it[2];
 144
 145        /*
 146         * Thread group totals for process CPU timers.
 147         * See thread_group_cputimer(), et al, for details.
 148         */
 149        struct thread_group_cputimer cputimer;
 150
 151        /* Earliest-expiration cache. */
 152        struct task_cputime cputime_expires;
 153
 154        struct list_head cpu_timers[3];
 155
 156#endif
 157
 158        /* PID/PID hash table linkage. */
 159        struct pid *pids[PIDTYPE_MAX];
 160
 161#ifdef CONFIG_NO_HZ_FULL
 162        atomic_t tick_dep_mask;
 163#endif
 164
 165        struct pid *tty_old_pgrp;
 166
 167        /* boolean value for session group leader */
 168        int leader;
 169
 170        struct tty_struct *tty; /* NULL if no tty */
 171
 172#ifdef CONFIG_SCHED_AUTOGROUP
 173        struct autogroup *autogroup;
 174#endif
 175        /*
 176         * Cumulative resource counters for dead threads in the group,
 177         * and for reaped dead child processes forked by this group.
 178         * Live threads maintain their own counters and add to these
 179         * in __exit_signal, except for the group leader.
 180         */
 181        seqlock_t stats_lock;
 182        u64 utime, stime, cutime, cstime;
 183        u64 gtime;
 184        u64 cgtime;
 185        struct prev_cputime prev_cputime;
 186        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 187        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 188        unsigned long inblock, oublock, cinblock, coublock;
 189        unsigned long maxrss, cmaxrss;
 190        struct task_io_accounting ioac;
 191
 192        /*
 193         * Cumulative ns of schedule CPU time fo dead threads in the
 194         * group, not including a zombie group leader, (This only differs
 195         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 196         * other than jiffies.)
 197         */
 198        unsigned long long sum_sched_runtime;
 199
 200        /*
 201         * We don't bother to synchronize most readers of this at all,
 202         * because there is no reader checking a limit that actually needs
 203         * to get both rlim_cur and rlim_max atomically, and either one
 204         * alone is a single word that can safely be read normally.
 205         * getrlimit/setrlimit use task_lock(current->group_leader) to
 206         * protect this instead of the siglock, because they really
 207         * have no need to disable irqs.
 208         */
 209        struct rlimit rlim[RLIM_NLIMITS];
 210
 211#ifdef CONFIG_BSD_PROCESS_ACCT
 212        struct pacct_struct pacct;      /* per-process accounting information */
 213#endif
 214#ifdef CONFIG_TASKSTATS
 215        struct taskstats *stats;
 216#endif
 217#ifdef CONFIG_AUDIT
 218        unsigned audit_tty;
 219        struct tty_audit_buf *tty_audit_buf;
 220#endif
 221
 222        /*
 223         * Thread is the potential origin of an oom condition; kill first on
 224         * oom
 225         */
 226        bool oom_flag_origin;
 227        short oom_score_adj;            /* OOM kill score adjustment */
 228        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 229                                         * Only settable by CAP_SYS_RESOURCE. */
 230        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 231                                         * killed by the oom killer */
 232
 233        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 234                                         * credential calculations
 235                                         * (notably. ptrace) */
 236} __randomize_layout;
 237
 238/*
 239 * Bits in flags field of signal_struct.
 240 */
 241#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 242#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 243#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 244#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 245/*
 246 * Pending notifications to parent.
 247 */
 248#define SIGNAL_CLD_STOPPED      0x00000010
 249#define SIGNAL_CLD_CONTINUED    0x00000020
 250#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 251
 252#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 253
 254#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 255                          SIGNAL_STOP_CONTINUED)
 256
 257static inline void signal_set_stop_flags(struct signal_struct *sig,
 258                                         unsigned int flags)
 259{
 260        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 261        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 262}
 263
 264/* If true, all threads except ->group_exit_task have pending SIGKILL */
 265static inline int signal_group_exit(const struct signal_struct *sig)
 266{
 267        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 268                (sig->group_exit_task != NULL);
 269}
 270
 271extern void flush_signals(struct task_struct *);
 272extern void ignore_signals(struct task_struct *);
 273extern void flush_signal_handlers(struct task_struct *, int force_default);
 274extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info);
 275
 276static inline int kernel_dequeue_signal(void)
 277{
 278        struct task_struct *tsk = current;
 279        kernel_siginfo_t __info;
 280        int ret;
 281
 282        spin_lock_irq(&tsk->sighand->siglock);
 283        ret = dequeue_signal(tsk, &tsk->blocked, &__info);
 284        spin_unlock_irq(&tsk->sighand->siglock);
 285
 286        return ret;
 287}
 288
 289static inline void kernel_signal_stop(void)
 290{
 291        spin_lock_irq(&current->sighand->siglock);
 292        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 293                set_special_state(TASK_STOPPED);
 294        spin_unlock_irq(&current->sighand->siglock);
 295
 296        schedule();
 297}
 298#ifdef __ARCH_SI_TRAPNO
 299# define ___ARCH_SI_TRAPNO(_a1) , _a1
 300#else
 301# define ___ARCH_SI_TRAPNO(_a1)
 302#endif
 303#ifdef __ia64__
 304# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 305#else
 306# define ___ARCH_SI_IA64(_a1, _a2, _a3)
 307#endif
 308
 309int force_sig_fault(int sig, int code, void __user *addr
 310        ___ARCH_SI_TRAPNO(int trapno)
 311        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 312        , struct task_struct *t);
 313int send_sig_fault(int sig, int code, void __user *addr
 314        ___ARCH_SI_TRAPNO(int trapno)
 315        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 316        , struct task_struct *t);
 317
 318int force_sig_mceerr(int code, void __user *, short, struct task_struct *);
 319int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 320
 321int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 322int force_sig_pkuerr(void __user *addr, u32 pkey);
 323
 324int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 325
 326extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 327extern void force_sigsegv(int sig, struct task_struct *p);
 328extern int force_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 329extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
 330extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
 331extern int kill_pid_info_as_cred(int, struct kernel_siginfo *, struct pid *,
 332                                const struct cred *);
 333extern int kill_pgrp(struct pid *pid, int sig, int priv);
 334extern int kill_pid(struct pid *pid, int sig, int priv);
 335extern __must_check bool do_notify_parent(struct task_struct *, int);
 336extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 337extern void force_sig(int, struct task_struct *);
 338extern int send_sig(int, struct task_struct *, int);
 339extern int zap_other_threads(struct task_struct *p);
 340extern struct sigqueue *sigqueue_alloc(void);
 341extern void sigqueue_free(struct sigqueue *);
 342extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 343extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 344
 345static inline int restart_syscall(void)
 346{
 347        set_tsk_thread_flag(current, TIF_SIGPENDING);
 348        return -ERESTARTNOINTR;
 349}
 350
 351static inline int signal_pending(struct task_struct *p)
 352{
 353        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 354}
 355
 356static inline int __fatal_signal_pending(struct task_struct *p)
 357{
 358        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 359}
 360
 361static inline int fatal_signal_pending(struct task_struct *p)
 362{
 363        return signal_pending(p) && __fatal_signal_pending(p);
 364}
 365
 366static inline int signal_pending_state(long state, struct task_struct *p)
 367{
 368        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 369                return 0;
 370        if (!signal_pending(p))
 371                return 0;
 372
 373        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 374}
 375
 376/*
 377 * Reevaluate whether the task has signals pending delivery.
 378 * Wake the task if so.
 379 * This is required every time the blocked sigset_t changes.
 380 * callers must hold sighand->siglock.
 381 */
 382extern void recalc_sigpending_and_wake(struct task_struct *t);
 383extern void recalc_sigpending(void);
 384extern void calculate_sigpending(void);
 385
 386extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 387
 388static inline void signal_wake_up(struct task_struct *t, bool resume)
 389{
 390        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 391}
 392static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 393{
 394        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 395}
 396
 397void task_join_group_stop(struct task_struct *task);
 398
 399#ifdef TIF_RESTORE_SIGMASK
 400/*
 401 * Legacy restore_sigmask accessors.  These are inefficient on
 402 * SMP architectures because they require atomic operations.
 403 */
 404
 405/**
 406 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 407 *
 408 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 409 * will run before returning to user mode, to process the flag.  For
 410 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 411 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 412 * arch code will notice on return to user mode, in case those bits
 413 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 414 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 415 */
 416static inline void set_restore_sigmask(void)
 417{
 418        set_thread_flag(TIF_RESTORE_SIGMASK);
 419        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 420}
 421
 422static inline void clear_tsk_restore_sigmask(struct task_struct *tsk)
 423{
 424        clear_tsk_thread_flag(tsk, TIF_RESTORE_SIGMASK);
 425}
 426
 427static inline void clear_restore_sigmask(void)
 428{
 429        clear_thread_flag(TIF_RESTORE_SIGMASK);
 430}
 431static inline bool test_tsk_restore_sigmask(struct task_struct *tsk)
 432{
 433        return test_tsk_thread_flag(tsk, TIF_RESTORE_SIGMASK);
 434}
 435static inline bool test_restore_sigmask(void)
 436{
 437        return test_thread_flag(TIF_RESTORE_SIGMASK);
 438}
 439static inline bool test_and_clear_restore_sigmask(void)
 440{
 441        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 442}
 443
 444#else   /* TIF_RESTORE_SIGMASK */
 445
 446/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 447static inline void set_restore_sigmask(void)
 448{
 449        current->restore_sigmask = true;
 450        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 451}
 452static inline void clear_tsk_restore_sigmask(struct task_struct *tsk)
 453{
 454        tsk->restore_sigmask = false;
 455}
 456static inline void clear_restore_sigmask(void)
 457{
 458        current->restore_sigmask = false;
 459}
 460static inline bool test_restore_sigmask(void)
 461{
 462        return current->restore_sigmask;
 463}
 464static inline bool test_tsk_restore_sigmask(struct task_struct *tsk)
 465{
 466        return tsk->restore_sigmask;
 467}
 468static inline bool test_and_clear_restore_sigmask(void)
 469{
 470        if (!current->restore_sigmask)
 471                return false;
 472        current->restore_sigmask = false;
 473        return true;
 474}
 475#endif
 476
 477static inline void restore_saved_sigmask(void)
 478{
 479        if (test_and_clear_restore_sigmask())
 480                __set_current_blocked(&current->saved_sigmask);
 481}
 482
 483static inline sigset_t *sigmask_to_save(void)
 484{
 485        sigset_t *res = &current->blocked;
 486        if (unlikely(test_restore_sigmask()))
 487                res = &current->saved_sigmask;
 488        return res;
 489}
 490
 491static inline int kill_cad_pid(int sig, int priv)
 492{
 493        return kill_pid(cad_pid, sig, priv);
 494}
 495
 496/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 497#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
 498#define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
 499
 500/*
 501 * True if we are on the alternate signal stack.
 502 */
 503static inline int on_sig_stack(unsigned long sp)
 504{
 505        /*
 506         * If the signal stack is SS_AUTODISARM then, by construction, we
 507         * can't be on the signal stack unless user code deliberately set
 508         * SS_AUTODISARM when we were already on it.
 509         *
 510         * This improves reliability: if user state gets corrupted such that
 511         * the stack pointer points very close to the end of the signal stack,
 512         * then this check will enable the signal to be handled anyway.
 513         */
 514        if (current->sas_ss_flags & SS_AUTODISARM)
 515                return 0;
 516
 517#ifdef CONFIG_STACK_GROWSUP
 518        return sp >= current->sas_ss_sp &&
 519                sp - current->sas_ss_sp < current->sas_ss_size;
 520#else
 521        return sp > current->sas_ss_sp &&
 522                sp - current->sas_ss_sp <= current->sas_ss_size;
 523#endif
 524}
 525
 526static inline int sas_ss_flags(unsigned long sp)
 527{
 528        if (!current->sas_ss_size)
 529                return SS_DISABLE;
 530
 531        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 532}
 533
 534static inline void sas_ss_reset(struct task_struct *p)
 535{
 536        p->sas_ss_sp = 0;
 537        p->sas_ss_size = 0;
 538        p->sas_ss_flags = SS_DISABLE;
 539}
 540
 541static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 542{
 543        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 544#ifdef CONFIG_STACK_GROWSUP
 545                return current->sas_ss_sp;
 546#else
 547                return current->sas_ss_sp + current->sas_ss_size;
 548#endif
 549        return sp;
 550}
 551
 552extern void __cleanup_sighand(struct sighand_struct *);
 553extern void flush_itimer_signals(void);
 554
 555#define tasklist_empty() \
 556        list_empty(&init_task.tasks)
 557
 558#define next_task(p) \
 559        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 560
 561#define for_each_process(p) \
 562        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 563
 564extern bool current_is_single_threaded(void);
 565
 566/*
 567 * Careful: do_each_thread/while_each_thread is a double loop so
 568 *          'break' will not work as expected - use goto instead.
 569 */
 570#define do_each_thread(g, t) \
 571        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 572
 573#define while_each_thread(g, t) \
 574        while ((t = next_thread(t)) != g)
 575
 576#define __for_each_thread(signal, t)    \
 577        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 578
 579#define for_each_thread(p, t)           \
 580        __for_each_thread((p)->signal, t)
 581
 582/* Careful: this is a double loop, 'break' won't work as expected. */
 583#define for_each_process_thread(p, t)   \
 584        for_each_process(p) for_each_thread(p, t)
 585
 586typedef int (*proc_visitor)(struct task_struct *p, void *data);
 587void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 588
 589static inline
 590struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 591{
 592        struct pid *pid;
 593        if (type == PIDTYPE_PID)
 594                pid = task_pid(task);
 595        else
 596                pid = task->signal->pids[type];
 597        return pid;
 598}
 599
 600static inline struct pid *task_tgid(struct task_struct *task)
 601{
 602        return task->signal->pids[PIDTYPE_TGID];
 603}
 604
 605/*
 606 * Without tasklist or RCU lock it is not safe to dereference
 607 * the result of task_pgrp/task_session even if task == current,
 608 * we can race with another thread doing sys_setsid/sys_setpgid.
 609 */
 610static inline struct pid *task_pgrp(struct task_struct *task)
 611{
 612        return task->signal->pids[PIDTYPE_PGID];
 613}
 614
 615static inline struct pid *task_session(struct task_struct *task)
 616{
 617        return task->signal->pids[PIDTYPE_SID];
 618}
 619
 620static inline int get_nr_threads(struct task_struct *tsk)
 621{
 622        return tsk->signal->nr_threads;
 623}
 624
 625static inline bool thread_group_leader(struct task_struct *p)
 626{
 627        return p->exit_signal >= 0;
 628}
 629
 630/* Do to the insanities of de_thread it is possible for a process
 631 * to have the pid of the thread group leader without actually being
 632 * the thread group leader.  For iteration through the pids in proc
 633 * all we care about is that we have a task with the appropriate
 634 * pid, we don't actually care if we have the right task.
 635 */
 636static inline bool has_group_leader_pid(struct task_struct *p)
 637{
 638        return task_pid(p) == task_tgid(p);
 639}
 640
 641static inline
 642bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 643{
 644        return p1->signal == p2->signal;
 645}
 646
 647static inline struct task_struct *next_thread(const struct task_struct *p)
 648{
 649        return list_entry_rcu(p->thread_group.next,
 650                              struct task_struct, thread_group);
 651}
 652
 653static inline int thread_group_empty(struct task_struct *p)
 654{
 655        return list_empty(&p->thread_group);
 656}
 657
 658#define delay_group_leader(p) \
 659                (thread_group_leader(p) && !thread_group_empty(p))
 660
 661extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 662                                                        unsigned long *flags);
 663
 664static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
 665                                                       unsigned long *flags)
 666{
 667        struct sighand_struct *ret;
 668
 669        ret = __lock_task_sighand(tsk, flags);
 670        (void)__cond_lock(&tsk->sighand->siglock, ret);
 671        return ret;
 672}
 673
 674static inline void unlock_task_sighand(struct task_struct *tsk,
 675                                                unsigned long *flags)
 676{
 677        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
 678}
 679
 680static inline unsigned long task_rlimit(const struct task_struct *tsk,
 681                unsigned int limit)
 682{
 683        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
 684}
 685
 686static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
 687                unsigned int limit)
 688{
 689        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
 690}
 691
 692static inline unsigned long rlimit(unsigned int limit)
 693{
 694        return task_rlimit(current, limit);
 695}
 696
 697static inline unsigned long rlimit_max(unsigned int limit)
 698{
 699        return task_rlimit_max(current, limit);
 700}
 701
 702#endif /* _LINUX_SCHED_SIGNAL_H */
 703