linux/kernel/dma/mapping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * arch-independent dma-mapping routines
   4 *
   5 * Copyright (c) 2006  SUSE Linux Products GmbH
   6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
   7 */
   8#include <linux/memblock.h> /* for max_pfn */
   9#include <linux/acpi.h>
  10#include <linux/dma-direct.h>
  11#include <linux/dma-noncoherent.h>
  12#include <linux/export.h>
  13#include <linux/gfp.h>
  14#include <linux/of_device.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18/*
  19 * Managed DMA API
  20 */
  21struct dma_devres {
  22        size_t          size;
  23        void            *vaddr;
  24        dma_addr_t      dma_handle;
  25        unsigned long   attrs;
  26};
  27
  28static void dmam_release(struct device *dev, void *res)
  29{
  30        struct dma_devres *this = res;
  31
  32        dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  33                        this->attrs);
  34}
  35
  36static int dmam_match(struct device *dev, void *res, void *match_data)
  37{
  38        struct dma_devres *this = res, *match = match_data;
  39
  40        if (this->vaddr == match->vaddr) {
  41                WARN_ON(this->size != match->size ||
  42                        this->dma_handle != match->dma_handle);
  43                return 1;
  44        }
  45        return 0;
  46}
  47
  48/**
  49 * dmam_free_coherent - Managed dma_free_coherent()
  50 * @dev: Device to free coherent memory for
  51 * @size: Size of allocation
  52 * @vaddr: Virtual address of the memory to free
  53 * @dma_handle: DMA handle of the memory to free
  54 *
  55 * Managed dma_free_coherent().
  56 */
  57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  58                        dma_addr_t dma_handle)
  59{
  60        struct dma_devres match_data = { size, vaddr, dma_handle };
  61
  62        dma_free_coherent(dev, size, vaddr, dma_handle);
  63        WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  64}
  65EXPORT_SYMBOL(dmam_free_coherent);
  66
  67/**
  68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
  69 * @dev: Device to allocate non_coherent memory for
  70 * @size: Size of allocation
  71 * @dma_handle: Out argument for allocated DMA handle
  72 * @gfp: Allocation flags
  73 * @attrs: Flags in the DMA_ATTR_* namespace.
  74 *
  75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
  76 * automatically released on driver detach.
  77 *
  78 * RETURNS:
  79 * Pointer to allocated memory on success, NULL on failure.
  80 */
  81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  82                gfp_t gfp, unsigned long attrs)
  83{
  84        struct dma_devres *dr;
  85        void *vaddr;
  86
  87        dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  88        if (!dr)
  89                return NULL;
  90
  91        vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  92        if (!vaddr) {
  93                devres_free(dr);
  94                return NULL;
  95        }
  96
  97        dr->vaddr = vaddr;
  98        dr->dma_handle = *dma_handle;
  99        dr->size = size;
 100        dr->attrs = attrs;
 101
 102        devres_add(dev, dr);
 103
 104        return vaddr;
 105}
 106EXPORT_SYMBOL(dmam_alloc_attrs);
 107
 108/*
 109 * Create scatter-list for the already allocated DMA buffer.
 110 */
 111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
 112                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 113                 unsigned long attrs)
 114{
 115        struct page *page;
 116        int ret;
 117
 118        if (!dev_is_dma_coherent(dev)) {
 119                if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
 120                        return -ENXIO;
 121
 122                page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
 123                                dma_addr));
 124        } else {
 125                page = virt_to_page(cpu_addr);
 126        }
 127
 128        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 129        if (!ret)
 130                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 131        return ret;
 132}
 133
 134int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
 135                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 136                unsigned long attrs)
 137{
 138        const struct dma_map_ops *ops = get_dma_ops(dev);
 139
 140        if (!dma_is_direct(ops) && ops->get_sgtable)
 141                return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
 142                                        attrs);
 143        return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
 144                        attrs);
 145}
 146EXPORT_SYMBOL(dma_get_sgtable_attrs);
 147
 148/*
 149 * Create userspace mapping for the DMA-coherent memory.
 150 */
 151int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
 152                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 153                unsigned long attrs)
 154{
 155#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
 156        unsigned long user_count = vma_pages(vma);
 157        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 158        unsigned long off = vma->vm_pgoff;
 159        unsigned long pfn;
 160        int ret = -ENXIO;
 161
 162        vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
 163
 164        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 165                return ret;
 166
 167        if (off >= count || user_count > count - off)
 168                return -ENXIO;
 169
 170        if (!dev_is_dma_coherent(dev)) {
 171                if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
 172                        return -ENXIO;
 173                pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
 174        } else {
 175                pfn = page_to_pfn(virt_to_page(cpu_addr));
 176        }
 177
 178        return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
 179                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 180#else
 181        return -ENXIO;
 182#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
 183}
 184
 185/**
 186 * dma_mmap_attrs - map a coherent DMA allocation into user space
 187 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 188 * @vma: vm_area_struct describing requested user mapping
 189 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 190 * @dma_addr: device-view address returned from dma_alloc_attrs
 191 * @size: size of memory originally requested in dma_alloc_attrs
 192 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 193 *
 194 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 195 * space.  The coherent DMA buffer must not be freed by the driver until the
 196 * user space mapping has been released.
 197 */
 198int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 199                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 200                unsigned long attrs)
 201{
 202        const struct dma_map_ops *ops = get_dma_ops(dev);
 203
 204        if (!dma_is_direct(ops) && ops->mmap)
 205                return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 206        return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 207}
 208EXPORT_SYMBOL(dma_mmap_attrs);
 209
 210static u64 dma_default_get_required_mask(struct device *dev)
 211{
 212        u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
 213        u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
 214        u64 mask;
 215
 216        if (!high_totalram) {
 217                /* convert to mask just covering totalram */
 218                low_totalram = (1 << (fls(low_totalram) - 1));
 219                low_totalram += low_totalram - 1;
 220                mask = low_totalram;
 221        } else {
 222                high_totalram = (1 << (fls(high_totalram) - 1));
 223                high_totalram += high_totalram - 1;
 224                mask = (((u64)high_totalram) << 32) + 0xffffffff;
 225        }
 226        return mask;
 227}
 228
 229u64 dma_get_required_mask(struct device *dev)
 230{
 231        const struct dma_map_ops *ops = get_dma_ops(dev);
 232
 233        if (dma_is_direct(ops))
 234                return dma_direct_get_required_mask(dev);
 235        if (ops->get_required_mask)
 236                return ops->get_required_mask(dev);
 237        return dma_default_get_required_mask(dev);
 238}
 239EXPORT_SYMBOL_GPL(dma_get_required_mask);
 240
 241#ifndef arch_dma_alloc_attrs
 242#define arch_dma_alloc_attrs(dev)       (true)
 243#endif
 244
 245void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 246                gfp_t flag, unsigned long attrs)
 247{
 248        const struct dma_map_ops *ops = get_dma_ops(dev);
 249        void *cpu_addr;
 250
 251        WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
 252
 253        if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
 254                return cpu_addr;
 255
 256        /* let the implementation decide on the zone to allocate from: */
 257        flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 258
 259        if (!arch_dma_alloc_attrs(&dev))
 260                return NULL;
 261
 262        if (dma_is_direct(ops))
 263                cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
 264        else if (ops->alloc)
 265                cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
 266        else
 267                return NULL;
 268
 269        debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
 270        return cpu_addr;
 271}
 272EXPORT_SYMBOL(dma_alloc_attrs);
 273
 274void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
 275                dma_addr_t dma_handle, unsigned long attrs)
 276{
 277        const struct dma_map_ops *ops = get_dma_ops(dev);
 278
 279        if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
 280                return;
 281        /*
 282         * On non-coherent platforms which implement DMA-coherent buffers via
 283         * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
 284         * this far in IRQ context is a) at risk of a BUG_ON() or trying to
 285         * sleep on some machines, and b) an indication that the driver is
 286         * probably misusing the coherent API anyway.
 287         */
 288        WARN_ON(irqs_disabled());
 289
 290        if (!cpu_addr)
 291                return;
 292
 293        debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
 294        if (dma_is_direct(ops))
 295                dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
 296        else if (ops->free)
 297                ops->free(dev, size, cpu_addr, dma_handle, attrs);
 298}
 299EXPORT_SYMBOL(dma_free_attrs);
 300
 301static inline void dma_check_mask(struct device *dev, u64 mask)
 302{
 303        if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
 304                dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
 305}
 306
 307int dma_supported(struct device *dev, u64 mask)
 308{
 309        const struct dma_map_ops *ops = get_dma_ops(dev);
 310
 311        if (dma_is_direct(ops))
 312                return dma_direct_supported(dev, mask);
 313        if (!ops->dma_supported)
 314                return 1;
 315        return ops->dma_supported(dev, mask);
 316}
 317EXPORT_SYMBOL(dma_supported);
 318
 319#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
 320void arch_dma_set_mask(struct device *dev, u64 mask);
 321#else
 322#define arch_dma_set_mask(dev, mask)    do { } while (0)
 323#endif
 324
 325int dma_set_mask(struct device *dev, u64 mask)
 326{
 327        if (!dev->dma_mask || !dma_supported(dev, mask))
 328                return -EIO;
 329
 330        arch_dma_set_mask(dev, mask);
 331        dma_check_mask(dev, mask);
 332        *dev->dma_mask = mask;
 333        return 0;
 334}
 335EXPORT_SYMBOL(dma_set_mask);
 336
 337#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
 338int dma_set_coherent_mask(struct device *dev, u64 mask)
 339{
 340        if (!dma_supported(dev, mask))
 341                return -EIO;
 342
 343        dma_check_mask(dev, mask);
 344        dev->coherent_dma_mask = mask;
 345        return 0;
 346}
 347EXPORT_SYMBOL(dma_set_coherent_mask);
 348#endif
 349
 350void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 351                enum dma_data_direction dir)
 352{
 353        const struct dma_map_ops *ops = get_dma_ops(dev);
 354
 355        BUG_ON(!valid_dma_direction(dir));
 356
 357        if (dma_is_direct(ops))
 358                arch_dma_cache_sync(dev, vaddr, size, dir);
 359        else if (ops->cache_sync)
 360                ops->cache_sync(dev, vaddr, size, dir);
 361}
 362EXPORT_SYMBOL(dma_cache_sync);
 363
 364size_t dma_max_mapping_size(struct device *dev)
 365{
 366        const struct dma_map_ops *ops = get_dma_ops(dev);
 367        size_t size = SIZE_MAX;
 368
 369        if (dma_is_direct(ops))
 370                size = dma_direct_max_mapping_size(dev);
 371        else if (ops && ops->max_mapping_size)
 372                size = ops->max_mapping_size(dev);
 373
 374        return size;
 375}
 376EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 377