linux/kernel/locking/rwsem-xadd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* rwsem.c: R/W semaphores: contention handling functions
   3 *
   4 * Written by David Howells (dhowells@redhat.com).
   5 * Derived from arch/i386/kernel/semaphore.c
   6 *
   7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
   8 * and Michel Lespinasse <walken@google.com>
   9 *
  10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
  11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
  12 */
  13#include <linux/rwsem.h>
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/rt.h>
  18#include <linux/sched/wake_q.h>
  19#include <linux/sched/debug.h>
  20#include <linux/osq_lock.h>
  21
  22#include "rwsem.h"
  23
  24/*
  25 * Guide to the rw_semaphore's count field for common values.
  26 * (32-bit case illustrated, similar for 64-bit)
  27 *
  28 * 0x0000000X   (1) X readers active or attempting lock, no writer waiting
  29 *                  X = #active_readers + #readers attempting to lock
  30 *                  (X*ACTIVE_BIAS)
  31 *
  32 * 0x00000000   rwsem is unlocked, and no one is waiting for the lock or
  33 *              attempting to read lock or write lock.
  34 *
  35 * 0xffff000X   (1) X readers active or attempting lock, with waiters for lock
  36 *                  X = #active readers + # readers attempting lock
  37 *                  (X*ACTIVE_BIAS + WAITING_BIAS)
  38 *              (2) 1 writer attempting lock, no waiters for lock
  39 *                  X-1 = #active readers + #readers attempting lock
  40 *                  ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
  41 *              (3) 1 writer active, no waiters for lock
  42 *                  X-1 = #active readers + #readers attempting lock
  43 *                  ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
  44 *
  45 * 0xffff0001   (1) 1 reader active or attempting lock, waiters for lock
  46 *                  (WAITING_BIAS + ACTIVE_BIAS)
  47 *              (2) 1 writer active or attempting lock, no waiters for lock
  48 *                  (ACTIVE_WRITE_BIAS)
  49 *
  50 * 0xffff0000   (1) There are writers or readers queued but none active
  51 *                  or in the process of attempting lock.
  52 *                  (WAITING_BIAS)
  53 *              Note: writer can attempt to steal lock for this count by adding
  54 *              ACTIVE_WRITE_BIAS in cmpxchg and checking the old count
  55 *
  56 * 0xfffe0001   (1) 1 writer active, or attempting lock. Waiters on queue.
  57 *                  (ACTIVE_WRITE_BIAS + WAITING_BIAS)
  58 *
  59 * Note: Readers attempt to lock by adding ACTIVE_BIAS in down_read and checking
  60 *       the count becomes more than 0 for successful lock acquisition,
  61 *       i.e. the case where there are only readers or nobody has lock.
  62 *       (1st and 2nd case above).
  63 *
  64 *       Writers attempt to lock by adding ACTIVE_WRITE_BIAS in down_write and
  65 *       checking the count becomes ACTIVE_WRITE_BIAS for successful lock
  66 *       acquisition (i.e. nobody else has lock or attempts lock).  If
  67 *       unsuccessful, in rwsem_down_write_failed, we'll check to see if there
  68 *       are only waiters but none active (5th case above), and attempt to
  69 *       steal the lock.
  70 *
  71 */
  72
  73/*
  74 * Initialize an rwsem:
  75 */
  76void __init_rwsem(struct rw_semaphore *sem, const char *name,
  77                  struct lock_class_key *key)
  78{
  79#ifdef CONFIG_DEBUG_LOCK_ALLOC
  80        /*
  81         * Make sure we are not reinitializing a held semaphore:
  82         */
  83        debug_check_no_locks_freed((void *)sem, sizeof(*sem));
  84        lockdep_init_map(&sem->dep_map, name, key, 0);
  85#endif
  86        atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
  87        raw_spin_lock_init(&sem->wait_lock);
  88        INIT_LIST_HEAD(&sem->wait_list);
  89#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
  90        sem->owner = NULL;
  91        osq_lock_init(&sem->osq);
  92#endif
  93}
  94
  95EXPORT_SYMBOL(__init_rwsem);
  96
  97enum rwsem_waiter_type {
  98        RWSEM_WAITING_FOR_WRITE,
  99        RWSEM_WAITING_FOR_READ
 100};
 101
 102struct rwsem_waiter {
 103        struct list_head list;
 104        struct task_struct *task;
 105        enum rwsem_waiter_type type;
 106};
 107
 108enum rwsem_wake_type {
 109        RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
 110        RWSEM_WAKE_READERS,     /* Wake readers only */
 111        RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
 112};
 113
 114/*
 115 * handle the lock release when processes blocked on it that can now run
 116 * - if we come here from up_xxxx(), then:
 117 *   - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
 118 *   - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
 119 * - there must be someone on the queue
 120 * - the wait_lock must be held by the caller
 121 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 122 *   to actually wakeup the blocked task(s) and drop the reference count,
 123 *   preferably when the wait_lock is released
 124 * - woken process blocks are discarded from the list after having task zeroed
 125 * - writers are only marked woken if downgrading is false
 126 */
 127static void __rwsem_mark_wake(struct rw_semaphore *sem,
 128                              enum rwsem_wake_type wake_type,
 129                              struct wake_q_head *wake_q)
 130{
 131        struct rwsem_waiter *waiter, *tmp;
 132        long oldcount, woken = 0, adjustment = 0;
 133
 134        /*
 135         * Take a peek at the queue head waiter such that we can determine
 136         * the wakeup(s) to perform.
 137         */
 138        waiter = list_first_entry(&sem->wait_list, struct rwsem_waiter, list);
 139
 140        if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 141                if (wake_type == RWSEM_WAKE_ANY) {
 142                        /*
 143                         * Mark writer at the front of the queue for wakeup.
 144                         * Until the task is actually later awoken later by
 145                         * the caller, other writers are able to steal it.
 146                         * Readers, on the other hand, will block as they
 147                         * will notice the queued writer.
 148                         */
 149                        wake_q_add(wake_q, waiter->task);
 150                }
 151
 152                return;
 153        }
 154
 155        /*
 156         * Writers might steal the lock before we grant it to the next reader.
 157         * We prefer to do the first reader grant before counting readers
 158         * so we can bail out early if a writer stole the lock.
 159         */
 160        if (wake_type != RWSEM_WAKE_READ_OWNED) {
 161                adjustment = RWSEM_ACTIVE_READ_BIAS;
 162 try_reader_grant:
 163                oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 164                if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {
 165                        /*
 166                         * If the count is still less than RWSEM_WAITING_BIAS
 167                         * after removing the adjustment, it is assumed that
 168                         * a writer has stolen the lock. We have to undo our
 169                         * reader grant.
 170                         */
 171                        if (atomic_long_add_return(-adjustment, &sem->count) <
 172                            RWSEM_WAITING_BIAS)
 173                                return;
 174
 175                        /* Last active locker left. Retry waking readers. */
 176                        goto try_reader_grant;
 177                }
 178                /*
 179                 * It is not really necessary to set it to reader-owned here,
 180                 * but it gives the spinners an early indication that the
 181                 * readers now have the lock.
 182                 */
 183                __rwsem_set_reader_owned(sem, waiter->task);
 184        }
 185
 186        /*
 187         * Grant an infinite number of read locks to the readers at the front
 188         * of the queue. We know that woken will be at least 1 as we accounted
 189         * for above. Note we increment the 'active part' of the count by the
 190         * number of readers before waking any processes up.
 191         */
 192        list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 193                struct task_struct *tsk;
 194
 195                if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 196                        break;
 197
 198                woken++;
 199                tsk = waiter->task;
 200
 201                get_task_struct(tsk);
 202                list_del(&waiter->list);
 203                /*
 204                 * Ensure calling get_task_struct() before setting the reader
 205                 * waiter to nil such that rwsem_down_read_failed() cannot
 206                 * race with do_exit() by always holding a reference count
 207                 * to the task to wakeup.
 208                 */
 209                smp_store_release(&waiter->task, NULL);
 210                /*
 211                 * Ensure issuing the wakeup (either by us or someone else)
 212                 * after setting the reader waiter to nil.
 213                 */
 214                wake_q_add_safe(wake_q, tsk);
 215        }
 216
 217        adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;
 218        if (list_empty(&sem->wait_list)) {
 219                /* hit end of list above */
 220                adjustment -= RWSEM_WAITING_BIAS;
 221        }
 222
 223        if (adjustment)
 224                atomic_long_add(adjustment, &sem->count);
 225}
 226
 227/*
 228 * Wait for the read lock to be granted
 229 */
 230static inline struct rw_semaphore __sched *
 231__rwsem_down_read_failed_common(struct rw_semaphore *sem, int state)
 232{
 233        long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
 234        struct rwsem_waiter waiter;
 235        DEFINE_WAKE_Q(wake_q);
 236
 237        waiter.task = current;
 238        waiter.type = RWSEM_WAITING_FOR_READ;
 239
 240        raw_spin_lock_irq(&sem->wait_lock);
 241        if (list_empty(&sem->wait_list)) {
 242                /*
 243                 * In case the wait queue is empty and the lock isn't owned
 244                 * by a writer, this reader can exit the slowpath and return
 245                 * immediately as its RWSEM_ACTIVE_READ_BIAS has already
 246                 * been set in the count.
 247                 */
 248                if (atomic_long_read(&sem->count) >= 0) {
 249                        raw_spin_unlock_irq(&sem->wait_lock);
 250                        return sem;
 251                }
 252                adjustment += RWSEM_WAITING_BIAS;
 253        }
 254        list_add_tail(&waiter.list, &sem->wait_list);
 255
 256        /* we're now waiting on the lock, but no longer actively locking */
 257        count = atomic_long_add_return(adjustment, &sem->count);
 258
 259        /*
 260         * If there are no active locks, wake the front queued process(es).
 261         *
 262         * If there are no writers and we are first in the queue,
 263         * wake our own waiter to join the existing active readers !
 264         */
 265        if (count == RWSEM_WAITING_BIAS ||
 266            (count > RWSEM_WAITING_BIAS &&
 267             adjustment != -RWSEM_ACTIVE_READ_BIAS))
 268                __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 269
 270        raw_spin_unlock_irq(&sem->wait_lock);
 271        wake_up_q(&wake_q);
 272
 273        /* wait to be given the lock */
 274        while (true) {
 275                set_current_state(state);
 276                if (!waiter.task)
 277                        break;
 278                if (signal_pending_state(state, current)) {
 279                        raw_spin_lock_irq(&sem->wait_lock);
 280                        if (waiter.task)
 281                                goto out_nolock;
 282                        raw_spin_unlock_irq(&sem->wait_lock);
 283                        break;
 284                }
 285                schedule();
 286        }
 287
 288        __set_current_state(TASK_RUNNING);
 289        return sem;
 290out_nolock:
 291        list_del(&waiter.list);
 292        if (list_empty(&sem->wait_list))
 293                atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
 294        raw_spin_unlock_irq(&sem->wait_lock);
 295        __set_current_state(TASK_RUNNING);
 296        return ERR_PTR(-EINTR);
 297}
 298
 299__visible struct rw_semaphore * __sched
 300rwsem_down_read_failed(struct rw_semaphore *sem)
 301{
 302        return __rwsem_down_read_failed_common(sem, TASK_UNINTERRUPTIBLE);
 303}
 304EXPORT_SYMBOL(rwsem_down_read_failed);
 305
 306__visible struct rw_semaphore * __sched
 307rwsem_down_read_failed_killable(struct rw_semaphore *sem)
 308{
 309        return __rwsem_down_read_failed_common(sem, TASK_KILLABLE);
 310}
 311EXPORT_SYMBOL(rwsem_down_read_failed_killable);
 312
 313/*
 314 * This function must be called with the sem->wait_lock held to prevent
 315 * race conditions between checking the rwsem wait list and setting the
 316 * sem->count accordingly.
 317 */
 318static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
 319{
 320        /*
 321         * Avoid trying to acquire write lock if count isn't RWSEM_WAITING_BIAS.
 322         */
 323        if (count != RWSEM_WAITING_BIAS)
 324                return false;
 325
 326        /*
 327         * Acquire the lock by trying to set it to ACTIVE_WRITE_BIAS. If there
 328         * are other tasks on the wait list, we need to add on WAITING_BIAS.
 329         */
 330        count = list_is_singular(&sem->wait_list) ?
 331                        RWSEM_ACTIVE_WRITE_BIAS :
 332                        RWSEM_ACTIVE_WRITE_BIAS + RWSEM_WAITING_BIAS;
 333
 334        if (atomic_long_cmpxchg_acquire(&sem->count, RWSEM_WAITING_BIAS, count)
 335                                                        == RWSEM_WAITING_BIAS) {
 336                rwsem_set_owner(sem);
 337                return true;
 338        }
 339
 340        return false;
 341}
 342
 343#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 344/*
 345 * Try to acquire write lock before the writer has been put on wait queue.
 346 */
 347static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 348{
 349        long old, count = atomic_long_read(&sem->count);
 350
 351        while (true) {
 352                if (!(count == 0 || count == RWSEM_WAITING_BIAS))
 353                        return false;
 354
 355                old = atomic_long_cmpxchg_acquire(&sem->count, count,
 356                                      count + RWSEM_ACTIVE_WRITE_BIAS);
 357                if (old == count) {
 358                        rwsem_set_owner(sem);
 359                        return true;
 360                }
 361
 362                count = old;
 363        }
 364}
 365
 366static inline bool owner_on_cpu(struct task_struct *owner)
 367{
 368        /*
 369         * As lock holder preemption issue, we both skip spinning if
 370         * task is not on cpu or its cpu is preempted
 371         */
 372        return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 373}
 374
 375static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 376{
 377        struct task_struct *owner;
 378        bool ret = true;
 379
 380        BUILD_BUG_ON(!rwsem_has_anonymous_owner(RWSEM_OWNER_UNKNOWN));
 381
 382        if (need_resched())
 383                return false;
 384
 385        rcu_read_lock();
 386        owner = READ_ONCE(sem->owner);
 387        if (owner) {
 388                ret = is_rwsem_owner_spinnable(owner) &&
 389                      owner_on_cpu(owner);
 390        }
 391        rcu_read_unlock();
 392        return ret;
 393}
 394
 395/*
 396 * Return true only if we can still spin on the owner field of the rwsem.
 397 */
 398static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
 399{
 400        struct task_struct *owner = READ_ONCE(sem->owner);
 401
 402        if (!is_rwsem_owner_spinnable(owner))
 403                return false;
 404
 405        rcu_read_lock();
 406        while (owner && (READ_ONCE(sem->owner) == owner)) {
 407                /*
 408                 * Ensure we emit the owner->on_cpu, dereference _after_
 409                 * checking sem->owner still matches owner, if that fails,
 410                 * owner might point to free()d memory, if it still matches,
 411                 * the rcu_read_lock() ensures the memory stays valid.
 412                 */
 413                barrier();
 414
 415                /*
 416                 * abort spinning when need_resched or owner is not running or
 417                 * owner's cpu is preempted.
 418                 */
 419                if (need_resched() || !owner_on_cpu(owner)) {
 420                        rcu_read_unlock();
 421                        return false;
 422                }
 423
 424                cpu_relax();
 425        }
 426        rcu_read_unlock();
 427
 428        /*
 429         * If there is a new owner or the owner is not set, we continue
 430         * spinning.
 431         */
 432        return is_rwsem_owner_spinnable(READ_ONCE(sem->owner));
 433}
 434
 435static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 436{
 437        bool taken = false;
 438
 439        preempt_disable();
 440
 441        /* sem->wait_lock should not be held when doing optimistic spinning */
 442        if (!rwsem_can_spin_on_owner(sem))
 443                goto done;
 444
 445        if (!osq_lock(&sem->osq))
 446                goto done;
 447
 448        /*
 449         * Optimistically spin on the owner field and attempt to acquire the
 450         * lock whenever the owner changes. Spinning will be stopped when:
 451         *  1) the owning writer isn't running; or
 452         *  2) readers own the lock as we can't determine if they are
 453         *     actively running or not.
 454         */
 455        while (rwsem_spin_on_owner(sem)) {
 456                /*
 457                 * Try to acquire the lock
 458                 */
 459                if (rwsem_try_write_lock_unqueued(sem)) {
 460                        taken = true;
 461                        break;
 462                }
 463
 464                /*
 465                 * When there's no owner, we might have preempted between the
 466                 * owner acquiring the lock and setting the owner field. If
 467                 * we're an RT task that will live-lock because we won't let
 468                 * the owner complete.
 469                 */
 470                if (!sem->owner && (need_resched() || rt_task(current)))
 471                        break;
 472
 473                /*
 474                 * The cpu_relax() call is a compiler barrier which forces
 475                 * everything in this loop to be re-loaded. We don't need
 476                 * memory barriers as we'll eventually observe the right
 477                 * values at the cost of a few extra spins.
 478                 */
 479                cpu_relax();
 480        }
 481        osq_unlock(&sem->osq);
 482done:
 483        preempt_enable();
 484        return taken;
 485}
 486
 487/*
 488 * Return true if the rwsem has active spinner
 489 */
 490static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
 491{
 492        return osq_is_locked(&sem->osq);
 493}
 494
 495#else
 496static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 497{
 498        return false;
 499}
 500
 501static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
 502{
 503        return false;
 504}
 505#endif
 506
 507/*
 508 * Wait until we successfully acquire the write lock
 509 */
 510static inline struct rw_semaphore *
 511__rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
 512{
 513        long count;
 514        bool waiting = true; /* any queued threads before us */
 515        struct rwsem_waiter waiter;
 516        struct rw_semaphore *ret = sem;
 517        DEFINE_WAKE_Q(wake_q);
 518
 519        /* undo write bias from down_write operation, stop active locking */
 520        count = atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS, &sem->count);
 521
 522        /* do optimistic spinning and steal lock if possible */
 523        if (rwsem_optimistic_spin(sem))
 524                return sem;
 525
 526        /*
 527         * Optimistic spinning failed, proceed to the slowpath
 528         * and block until we can acquire the sem.
 529         */
 530        waiter.task = current;
 531        waiter.type = RWSEM_WAITING_FOR_WRITE;
 532
 533        raw_spin_lock_irq(&sem->wait_lock);
 534
 535        /* account for this before adding a new element to the list */
 536        if (list_empty(&sem->wait_list))
 537                waiting = false;
 538
 539        list_add_tail(&waiter.list, &sem->wait_list);
 540
 541        /* we're now waiting on the lock, but no longer actively locking */
 542        if (waiting) {
 543                count = atomic_long_read(&sem->count);
 544
 545                /*
 546                 * If there were already threads queued before us and there are
 547                 * no active writers, the lock must be read owned; so we try to
 548                 * wake any read locks that were queued ahead of us.
 549                 */
 550                if (count > RWSEM_WAITING_BIAS) {
 551                        __rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q);
 552                        /*
 553                         * The wakeup is normally called _after_ the wait_lock
 554                         * is released, but given that we are proactively waking
 555                         * readers we can deal with the wake_q overhead as it is
 556                         * similar to releasing and taking the wait_lock again
 557                         * for attempting rwsem_try_write_lock().
 558                         */
 559                        wake_up_q(&wake_q);
 560
 561                        /*
 562                         * Reinitialize wake_q after use.
 563                         */
 564                        wake_q_init(&wake_q);
 565                }
 566
 567        } else
 568                count = atomic_long_add_return(RWSEM_WAITING_BIAS, &sem->count);
 569
 570        /* wait until we successfully acquire the lock */
 571        set_current_state(state);
 572        while (true) {
 573                if (rwsem_try_write_lock(count, sem))
 574                        break;
 575                raw_spin_unlock_irq(&sem->wait_lock);
 576
 577                /* Block until there are no active lockers. */
 578                do {
 579                        if (signal_pending_state(state, current))
 580                                goto out_nolock;
 581
 582                        schedule();
 583                        set_current_state(state);
 584                } while ((count = atomic_long_read(&sem->count)) & RWSEM_ACTIVE_MASK);
 585
 586                raw_spin_lock_irq(&sem->wait_lock);
 587        }
 588        __set_current_state(TASK_RUNNING);
 589        list_del(&waiter.list);
 590        raw_spin_unlock_irq(&sem->wait_lock);
 591
 592        return ret;
 593
 594out_nolock:
 595        __set_current_state(TASK_RUNNING);
 596        raw_spin_lock_irq(&sem->wait_lock);
 597        list_del(&waiter.list);
 598        if (list_empty(&sem->wait_list))
 599                atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
 600        else
 601                __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 602        raw_spin_unlock_irq(&sem->wait_lock);
 603        wake_up_q(&wake_q);
 604
 605        return ERR_PTR(-EINTR);
 606}
 607
 608__visible struct rw_semaphore * __sched
 609rwsem_down_write_failed(struct rw_semaphore *sem)
 610{
 611        return __rwsem_down_write_failed_common(sem, TASK_UNINTERRUPTIBLE);
 612}
 613EXPORT_SYMBOL(rwsem_down_write_failed);
 614
 615__visible struct rw_semaphore * __sched
 616rwsem_down_write_failed_killable(struct rw_semaphore *sem)
 617{
 618        return __rwsem_down_write_failed_common(sem, TASK_KILLABLE);
 619}
 620EXPORT_SYMBOL(rwsem_down_write_failed_killable);
 621
 622/*
 623 * handle waking up a waiter on the semaphore
 624 * - up_read/up_write has decremented the active part of count if we come here
 625 */
 626__visible
 627struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
 628{
 629        unsigned long flags;
 630        DEFINE_WAKE_Q(wake_q);
 631
 632        /*
 633        * __rwsem_down_write_failed_common(sem)
 634        *   rwsem_optimistic_spin(sem)
 635        *     osq_unlock(sem->osq)
 636        *   ...
 637        *   atomic_long_add_return(&sem->count)
 638        *
 639        *      - VS -
 640        *
 641        *              __up_write()
 642        *                if (atomic_long_sub_return_release(&sem->count) < 0)
 643        *                  rwsem_wake(sem)
 644        *                    osq_is_locked(&sem->osq)
 645        *
 646        * And __up_write() must observe !osq_is_locked() when it observes the
 647        * atomic_long_add_return() in order to not miss a wakeup.
 648        *
 649        * This boils down to:
 650        *
 651        * [S.rel] X = 1                [RmW] r0 = (Y += 0)
 652        *         MB                         RMB
 653        * [RmW]   Y += 1               [L]   r1 = X
 654        *
 655        * exists (r0=1 /\ r1=0)
 656        */
 657        smp_rmb();
 658
 659        /*
 660         * If a spinner is present, it is not necessary to do the wakeup.
 661         * Try to do wakeup only if the trylock succeeds to minimize
 662         * spinlock contention which may introduce too much delay in the
 663         * unlock operation.
 664         *
 665         *    spinning writer           up_write/up_read caller
 666         *    ---------------           -----------------------
 667         * [S]   osq_unlock()           [L]   osq
 668         *       MB                           RMB
 669         * [RmW] rwsem_try_write_lock() [RmW] spin_trylock(wait_lock)
 670         *
 671         * Here, it is important to make sure that there won't be a missed
 672         * wakeup while the rwsem is free and the only spinning writer goes
 673         * to sleep without taking the rwsem. Even when the spinning writer
 674         * is just going to break out of the waiting loop, it will still do
 675         * a trylock in rwsem_down_write_failed() before sleeping. IOW, if
 676         * rwsem_has_spinner() is true, it will guarantee at least one
 677         * trylock attempt on the rwsem later on.
 678         */
 679        if (rwsem_has_spinner(sem)) {
 680                /*
 681                 * The smp_rmb() here is to make sure that the spinner
 682                 * state is consulted before reading the wait_lock.
 683                 */
 684                smp_rmb();
 685                if (!raw_spin_trylock_irqsave(&sem->wait_lock, flags))
 686                        return sem;
 687                goto locked;
 688        }
 689        raw_spin_lock_irqsave(&sem->wait_lock, flags);
 690locked:
 691
 692        if (!list_empty(&sem->wait_list))
 693                __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 694
 695        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
 696        wake_up_q(&wake_q);
 697
 698        return sem;
 699}
 700EXPORT_SYMBOL(rwsem_wake);
 701
 702/*
 703 * downgrade a write lock into a read lock
 704 * - caller incremented waiting part of count and discovered it still negative
 705 * - just wake up any readers at the front of the queue
 706 */
 707__visible
 708struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
 709{
 710        unsigned long flags;
 711        DEFINE_WAKE_Q(wake_q);
 712
 713        raw_spin_lock_irqsave(&sem->wait_lock, flags);
 714
 715        if (!list_empty(&sem->wait_list))
 716                __rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
 717
 718        raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
 719        wake_up_q(&wake_q);
 720
 721        return sem;
 722}
 723EXPORT_SYMBOL(rwsem_downgrade_wake);
 724