linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46
  47#include <linux/uaccess.h>
  48#include <asm/unistd.h>
  49#include <asm/div64.h>
  50#include <asm/timex.h>
  51#include <asm/io.h>
  52
  53#include "tick-internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/timer.h>
  57
  58__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  59
  60EXPORT_SYMBOL(jiffies_64);
  61
  62/*
  63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  65 * level has a different granularity.
  66 *
  67 * The level granularity is:            LVL_CLK_DIV ^ lvl
  68 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  69 *
  70 * The array level of a newly armed timer depends on the relative expiry
  71 * time. The farther the expiry time is away the higher the array level and
  72 * therefor the granularity becomes.
  73 *
  74 * Contrary to the original timer wheel implementation, which aims for 'exact'
  75 * expiry of the timers, this implementation removes the need for recascading
  76 * the timers into the lower array levels. The previous 'classic' timer wheel
  77 * implementation of the kernel already violated the 'exact' expiry by adding
  78 * slack to the expiry time to provide batched expiration. The granularity
  79 * levels provide implicit batching.
  80 *
  81 * This is an optimization of the original timer wheel implementation for the
  82 * majority of the timer wheel use cases: timeouts. The vast majority of
  83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  84 * the timeout expires it indicates that normal operation is disturbed, so it
  85 * does not matter much whether the timeout comes with a slight delay.
  86 *
  87 * The only exception to this are networking timers with a small expiry
  88 * time. They rely on the granularity. Those fit into the first wheel level,
  89 * which has HZ granularity.
  90 *
  91 * We don't have cascading anymore. timers with a expiry time above the
  92 * capacity of the last wheel level are force expired at the maximum timeout
  93 * value of the last wheel level. From data sampling we know that the maximum
  94 * value observed is 5 days (network connection tracking), so this should not
  95 * be an issue.
  96 *
  97 * The currently chosen array constants values are a good compromise between
  98 * array size and granularity.
  99 *
 100 * This results in the following granularity and range levels:
 101 *
 102 * HZ 1000 steps
 103 * Level Offset  Granularity            Range
 104 *  0      0         1 ms                0 ms -         63 ms
 105 *  1     64         8 ms               64 ms -        511 ms
 106 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 107 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 108 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 109 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 110 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 111 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 112 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 113 *
 114 * HZ  300
 115 * Level Offset  Granularity            Range
 116 *  0      0         3 ms                0 ms -        210 ms
 117 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 118 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 119 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 120 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 121 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 122 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 123 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 124 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 125 *
 126 * HZ  250
 127 * Level Offset  Granularity            Range
 128 *  0      0         4 ms                0 ms -        255 ms
 129 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 130 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 131 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 132 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 133 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 134 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 135 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 136 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 137 *
 138 * HZ  100
 139 * Level Offset  Granularity            Range
 140 *  0      0         10 ms               0 ms -        630 ms
 141 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 142 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 143 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 144 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 145 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 146 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 147 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 148 */
 149
 150/* Clock divisor for the next level */
 151#define LVL_CLK_SHIFT   3
 152#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 153#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 154#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 155#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 156
 157/*
 158 * The time start value for each level to select the bucket at enqueue
 159 * time.
 160 */
 161#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 162
 163/* Size of each clock level */
 164#define LVL_BITS        6
 165#define LVL_SIZE        (1UL << LVL_BITS)
 166#define LVL_MASK        (LVL_SIZE - 1)
 167#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 168
 169/* Level depth */
 170#if HZ > 100
 171# define LVL_DEPTH      9
 172# else
 173# define LVL_DEPTH      8
 174#endif
 175
 176/* The cutoff (max. capacity of the wheel) */
 177#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 178#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 179
 180/*
 181 * The resulting wheel size. If NOHZ is configured we allocate two
 182 * wheels so we have a separate storage for the deferrable timers.
 183 */
 184#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 185
 186#ifdef CONFIG_NO_HZ_COMMON
 187# define NR_BASES       2
 188# define BASE_STD       0
 189# define BASE_DEF       1
 190#else
 191# define NR_BASES       1
 192# define BASE_STD       0
 193# define BASE_DEF       0
 194#endif
 195
 196struct timer_base {
 197        raw_spinlock_t          lock;
 198        struct timer_list       *running_timer;
 199        unsigned long           clk;
 200        unsigned long           next_expiry;
 201        unsigned int            cpu;
 202        bool                    is_idle;
 203        bool                    must_forward_clk;
 204        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 205        struct hlist_head       vectors[WHEEL_SIZE];
 206} ____cacheline_aligned;
 207
 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 209
 210#ifdef CONFIG_NO_HZ_COMMON
 211
 212static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 213static DEFINE_MUTEX(timer_keys_mutex);
 214
 215static void timer_update_keys(struct work_struct *work);
 216static DECLARE_WORK(timer_update_work, timer_update_keys);
 217
 218#ifdef CONFIG_SMP
 219unsigned int sysctl_timer_migration = 1;
 220
 221DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 222
 223static void timers_update_migration(void)
 224{
 225        if (sysctl_timer_migration && tick_nohz_active)
 226                static_branch_enable(&timers_migration_enabled);
 227        else
 228                static_branch_disable(&timers_migration_enabled);
 229}
 230#else
 231static inline void timers_update_migration(void) { }
 232#endif /* !CONFIG_SMP */
 233
 234static void timer_update_keys(struct work_struct *work)
 235{
 236        mutex_lock(&timer_keys_mutex);
 237        timers_update_migration();
 238        static_branch_enable(&timers_nohz_active);
 239        mutex_unlock(&timer_keys_mutex);
 240}
 241
 242void timers_update_nohz(void)
 243{
 244        schedule_work(&timer_update_work);
 245}
 246
 247int timer_migration_handler(struct ctl_table *table, int write,
 248                            void __user *buffer, size_t *lenp,
 249                            loff_t *ppos)
 250{
 251        int ret;
 252
 253        mutex_lock(&timer_keys_mutex);
 254        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 255        if (!ret && write)
 256                timers_update_migration();
 257        mutex_unlock(&timer_keys_mutex);
 258        return ret;
 259}
 260
 261static inline bool is_timers_nohz_active(void)
 262{
 263        return static_branch_unlikely(&timers_nohz_active);
 264}
 265#else
 266static inline bool is_timers_nohz_active(void) { return false; }
 267#endif /* NO_HZ_COMMON */
 268
 269static unsigned long round_jiffies_common(unsigned long j, int cpu,
 270                bool force_up)
 271{
 272        int rem;
 273        unsigned long original = j;
 274
 275        /*
 276         * We don't want all cpus firing their timers at once hitting the
 277         * same lock or cachelines, so we skew each extra cpu with an extra
 278         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 279         * already did this.
 280         * The skew is done by adding 3*cpunr, then round, then subtract this
 281         * extra offset again.
 282         */
 283        j += cpu * 3;
 284
 285        rem = j % HZ;
 286
 287        /*
 288         * If the target jiffie is just after a whole second (which can happen
 289         * due to delays of the timer irq, long irq off times etc etc) then
 290         * we should round down to the whole second, not up. Use 1/4th second
 291         * as cutoff for this rounding as an extreme upper bound for this.
 292         * But never round down if @force_up is set.
 293         */
 294        if (rem < HZ/4 && !force_up) /* round down */
 295                j = j - rem;
 296        else /* round up */
 297                j = j - rem + HZ;
 298
 299        /* now that we have rounded, subtract the extra skew again */
 300        j -= cpu * 3;
 301
 302        /*
 303         * Make sure j is still in the future. Otherwise return the
 304         * unmodified value.
 305         */
 306        return time_is_after_jiffies(j) ? j : original;
 307}
 308
 309/**
 310 * __round_jiffies - function to round jiffies to a full second
 311 * @j: the time in (absolute) jiffies that should be rounded
 312 * @cpu: the processor number on which the timeout will happen
 313 *
 314 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 315 * up or down to (approximately) full seconds. This is useful for timers
 316 * for which the exact time they fire does not matter too much, as long as
 317 * they fire approximately every X seconds.
 318 *
 319 * By rounding these timers to whole seconds, all such timers will fire
 320 * at the same time, rather than at various times spread out. The goal
 321 * of this is to have the CPU wake up less, which saves power.
 322 *
 323 * The exact rounding is skewed for each processor to avoid all
 324 * processors firing at the exact same time, which could lead
 325 * to lock contention or spurious cache line bouncing.
 326 *
 327 * The return value is the rounded version of the @j parameter.
 328 */
 329unsigned long __round_jiffies(unsigned long j, int cpu)
 330{
 331        return round_jiffies_common(j, cpu, false);
 332}
 333EXPORT_SYMBOL_GPL(__round_jiffies);
 334
 335/**
 336 * __round_jiffies_relative - function to round jiffies to a full second
 337 * @j: the time in (relative) jiffies that should be rounded
 338 * @cpu: the processor number on which the timeout will happen
 339 *
 340 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 341 * up or down to (approximately) full seconds. This is useful for timers
 342 * for which the exact time they fire does not matter too much, as long as
 343 * they fire approximately every X seconds.
 344 *
 345 * By rounding these timers to whole seconds, all such timers will fire
 346 * at the same time, rather than at various times spread out. The goal
 347 * of this is to have the CPU wake up less, which saves power.
 348 *
 349 * The exact rounding is skewed for each processor to avoid all
 350 * processors firing at the exact same time, which could lead
 351 * to lock contention or spurious cache line bouncing.
 352 *
 353 * The return value is the rounded version of the @j parameter.
 354 */
 355unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 356{
 357        unsigned long j0 = jiffies;
 358
 359        /* Use j0 because jiffies might change while we run */
 360        return round_jiffies_common(j + j0, cpu, false) - j0;
 361}
 362EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 363
 364/**
 365 * round_jiffies - function to round jiffies to a full second
 366 * @j: the time in (absolute) jiffies that should be rounded
 367 *
 368 * round_jiffies() rounds an absolute time in the future (in jiffies)
 369 * up or down to (approximately) full seconds. This is useful for timers
 370 * for which the exact time they fire does not matter too much, as long as
 371 * they fire approximately every X seconds.
 372 *
 373 * By rounding these timers to whole seconds, all such timers will fire
 374 * at the same time, rather than at various times spread out. The goal
 375 * of this is to have the CPU wake up less, which saves power.
 376 *
 377 * The return value is the rounded version of the @j parameter.
 378 */
 379unsigned long round_jiffies(unsigned long j)
 380{
 381        return round_jiffies_common(j, raw_smp_processor_id(), false);
 382}
 383EXPORT_SYMBOL_GPL(round_jiffies);
 384
 385/**
 386 * round_jiffies_relative - function to round jiffies to a full second
 387 * @j: the time in (relative) jiffies that should be rounded
 388 *
 389 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 390 * up or down to (approximately) full seconds. This is useful for timers
 391 * for which the exact time they fire does not matter too much, as long as
 392 * they fire approximately every X seconds.
 393 *
 394 * By rounding these timers to whole seconds, all such timers will fire
 395 * at the same time, rather than at various times spread out. The goal
 396 * of this is to have the CPU wake up less, which saves power.
 397 *
 398 * The return value is the rounded version of the @j parameter.
 399 */
 400unsigned long round_jiffies_relative(unsigned long j)
 401{
 402        return __round_jiffies_relative(j, raw_smp_processor_id());
 403}
 404EXPORT_SYMBOL_GPL(round_jiffies_relative);
 405
 406/**
 407 * __round_jiffies_up - function to round jiffies up to a full second
 408 * @j: the time in (absolute) jiffies that should be rounded
 409 * @cpu: the processor number on which the timeout will happen
 410 *
 411 * This is the same as __round_jiffies() except that it will never
 412 * round down.  This is useful for timeouts for which the exact time
 413 * of firing does not matter too much, as long as they don't fire too
 414 * early.
 415 */
 416unsigned long __round_jiffies_up(unsigned long j, int cpu)
 417{
 418        return round_jiffies_common(j, cpu, true);
 419}
 420EXPORT_SYMBOL_GPL(__round_jiffies_up);
 421
 422/**
 423 * __round_jiffies_up_relative - function to round jiffies up to a full second
 424 * @j: the time in (relative) jiffies that should be rounded
 425 * @cpu: the processor number on which the timeout will happen
 426 *
 427 * This is the same as __round_jiffies_relative() except that it will never
 428 * round down.  This is useful for timeouts for which the exact time
 429 * of firing does not matter too much, as long as they don't fire too
 430 * early.
 431 */
 432unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 433{
 434        unsigned long j0 = jiffies;
 435
 436        /* Use j0 because jiffies might change while we run */
 437        return round_jiffies_common(j + j0, cpu, true) - j0;
 438}
 439EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 440
 441/**
 442 * round_jiffies_up - function to round jiffies up to a full second
 443 * @j: the time in (absolute) jiffies that should be rounded
 444 *
 445 * This is the same as round_jiffies() except that it will never
 446 * round down.  This is useful for timeouts for which the exact time
 447 * of firing does not matter too much, as long as they don't fire too
 448 * early.
 449 */
 450unsigned long round_jiffies_up(unsigned long j)
 451{
 452        return round_jiffies_common(j, raw_smp_processor_id(), true);
 453}
 454EXPORT_SYMBOL_GPL(round_jiffies_up);
 455
 456/**
 457 * round_jiffies_up_relative - function to round jiffies up to a full second
 458 * @j: the time in (relative) jiffies that should be rounded
 459 *
 460 * This is the same as round_jiffies_relative() except that it will never
 461 * round down.  This is useful for timeouts for which the exact time
 462 * of firing does not matter too much, as long as they don't fire too
 463 * early.
 464 */
 465unsigned long round_jiffies_up_relative(unsigned long j)
 466{
 467        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 468}
 469EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 470
 471
 472static inline unsigned int timer_get_idx(struct timer_list *timer)
 473{
 474        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 475}
 476
 477static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 478{
 479        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 480                        idx << TIMER_ARRAYSHIFT;
 481}
 482
 483/*
 484 * Helper function to calculate the array index for a given expiry
 485 * time.
 486 */
 487static inline unsigned calc_index(unsigned expires, unsigned lvl)
 488{
 489        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 490        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 491}
 492
 493static int calc_wheel_index(unsigned long expires, unsigned long clk)
 494{
 495        unsigned long delta = expires - clk;
 496        unsigned int idx;
 497
 498        if (delta < LVL_START(1)) {
 499                idx = calc_index(expires, 0);
 500        } else if (delta < LVL_START(2)) {
 501                idx = calc_index(expires, 1);
 502        } else if (delta < LVL_START(3)) {
 503                idx = calc_index(expires, 2);
 504        } else if (delta < LVL_START(4)) {
 505                idx = calc_index(expires, 3);
 506        } else if (delta < LVL_START(5)) {
 507                idx = calc_index(expires, 4);
 508        } else if (delta < LVL_START(6)) {
 509                idx = calc_index(expires, 5);
 510        } else if (delta < LVL_START(7)) {
 511                idx = calc_index(expires, 6);
 512        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 513                idx = calc_index(expires, 7);
 514        } else if ((long) delta < 0) {
 515                idx = clk & LVL_MASK;
 516        } else {
 517                /*
 518                 * Force expire obscene large timeouts to expire at the
 519                 * capacity limit of the wheel.
 520                 */
 521                if (expires >= WHEEL_TIMEOUT_CUTOFF)
 522                        expires = WHEEL_TIMEOUT_MAX;
 523
 524                idx = calc_index(expires, LVL_DEPTH - 1);
 525        }
 526        return idx;
 527}
 528
 529/*
 530 * Enqueue the timer into the hash bucket, mark it pending in
 531 * the bitmap and store the index in the timer flags.
 532 */
 533static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 534                          unsigned int idx)
 535{
 536        hlist_add_head(&timer->entry, base->vectors + idx);
 537        __set_bit(idx, base->pending_map);
 538        timer_set_idx(timer, idx);
 539}
 540
 541static void
 542__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 543{
 544        unsigned int idx;
 545
 546        idx = calc_wheel_index(timer->expires, base->clk);
 547        enqueue_timer(base, timer, idx);
 548}
 549
 550static void
 551trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 552{
 553        if (!is_timers_nohz_active())
 554                return;
 555
 556        /*
 557         * TODO: This wants some optimizing similar to the code below, but we
 558         * will do that when we switch from push to pull for deferrable timers.
 559         */
 560        if (timer->flags & TIMER_DEFERRABLE) {
 561                if (tick_nohz_full_cpu(base->cpu))
 562                        wake_up_nohz_cpu(base->cpu);
 563                return;
 564        }
 565
 566        /*
 567         * We might have to IPI the remote CPU if the base is idle and the
 568         * timer is not deferrable. If the other CPU is on the way to idle
 569         * then it can't set base->is_idle as we hold the base lock:
 570         */
 571        if (!base->is_idle)
 572                return;
 573
 574        /* Check whether this is the new first expiring timer: */
 575        if (time_after_eq(timer->expires, base->next_expiry))
 576                return;
 577
 578        /*
 579         * Set the next expiry time and kick the CPU so it can reevaluate the
 580         * wheel:
 581         */
 582        base->next_expiry = timer->expires;
 583        wake_up_nohz_cpu(base->cpu);
 584}
 585
 586static void
 587internal_add_timer(struct timer_base *base, struct timer_list *timer)
 588{
 589        __internal_add_timer(base, timer);
 590        trigger_dyntick_cpu(base, timer);
 591}
 592
 593#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 594
 595static struct debug_obj_descr timer_debug_descr;
 596
 597static void *timer_debug_hint(void *addr)
 598{
 599        return ((struct timer_list *) addr)->function;
 600}
 601
 602static bool timer_is_static_object(void *addr)
 603{
 604        struct timer_list *timer = addr;
 605
 606        return (timer->entry.pprev == NULL &&
 607                timer->entry.next == TIMER_ENTRY_STATIC);
 608}
 609
 610/*
 611 * fixup_init is called when:
 612 * - an active object is initialized
 613 */
 614static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 615{
 616        struct timer_list *timer = addr;
 617
 618        switch (state) {
 619        case ODEBUG_STATE_ACTIVE:
 620                del_timer_sync(timer);
 621                debug_object_init(timer, &timer_debug_descr);
 622                return true;
 623        default:
 624                return false;
 625        }
 626}
 627
 628/* Stub timer callback for improperly used timers. */
 629static void stub_timer(struct timer_list *unused)
 630{
 631        WARN_ON(1);
 632}
 633
 634/*
 635 * fixup_activate is called when:
 636 * - an active object is activated
 637 * - an unknown non-static object is activated
 638 */
 639static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 640{
 641        struct timer_list *timer = addr;
 642
 643        switch (state) {
 644        case ODEBUG_STATE_NOTAVAILABLE:
 645                timer_setup(timer, stub_timer, 0);
 646                return true;
 647
 648        case ODEBUG_STATE_ACTIVE:
 649                WARN_ON(1);
 650                /* fall through */
 651        default:
 652                return false;
 653        }
 654}
 655
 656/*
 657 * fixup_free is called when:
 658 * - an active object is freed
 659 */
 660static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 661{
 662        struct timer_list *timer = addr;
 663
 664        switch (state) {
 665        case ODEBUG_STATE_ACTIVE:
 666                del_timer_sync(timer);
 667                debug_object_free(timer, &timer_debug_descr);
 668                return true;
 669        default:
 670                return false;
 671        }
 672}
 673
 674/*
 675 * fixup_assert_init is called when:
 676 * - an untracked/uninit-ed object is found
 677 */
 678static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 679{
 680        struct timer_list *timer = addr;
 681
 682        switch (state) {
 683        case ODEBUG_STATE_NOTAVAILABLE:
 684                timer_setup(timer, stub_timer, 0);
 685                return true;
 686        default:
 687                return false;
 688        }
 689}
 690
 691static struct debug_obj_descr timer_debug_descr = {
 692        .name                   = "timer_list",
 693        .debug_hint             = timer_debug_hint,
 694        .is_static_object       = timer_is_static_object,
 695        .fixup_init             = timer_fixup_init,
 696        .fixup_activate         = timer_fixup_activate,
 697        .fixup_free             = timer_fixup_free,
 698        .fixup_assert_init      = timer_fixup_assert_init,
 699};
 700
 701static inline void debug_timer_init(struct timer_list *timer)
 702{
 703        debug_object_init(timer, &timer_debug_descr);
 704}
 705
 706static inline void debug_timer_activate(struct timer_list *timer)
 707{
 708        debug_object_activate(timer, &timer_debug_descr);
 709}
 710
 711static inline void debug_timer_deactivate(struct timer_list *timer)
 712{
 713        debug_object_deactivate(timer, &timer_debug_descr);
 714}
 715
 716static inline void debug_timer_free(struct timer_list *timer)
 717{
 718        debug_object_free(timer, &timer_debug_descr);
 719}
 720
 721static inline void debug_timer_assert_init(struct timer_list *timer)
 722{
 723        debug_object_assert_init(timer, &timer_debug_descr);
 724}
 725
 726static void do_init_timer(struct timer_list *timer,
 727                          void (*func)(struct timer_list *),
 728                          unsigned int flags,
 729                          const char *name, struct lock_class_key *key);
 730
 731void init_timer_on_stack_key(struct timer_list *timer,
 732                             void (*func)(struct timer_list *),
 733                             unsigned int flags,
 734                             const char *name, struct lock_class_key *key)
 735{
 736        debug_object_init_on_stack(timer, &timer_debug_descr);
 737        do_init_timer(timer, func, flags, name, key);
 738}
 739EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 740
 741void destroy_timer_on_stack(struct timer_list *timer)
 742{
 743        debug_object_free(timer, &timer_debug_descr);
 744}
 745EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 746
 747#else
 748static inline void debug_timer_init(struct timer_list *timer) { }
 749static inline void debug_timer_activate(struct timer_list *timer) { }
 750static inline void debug_timer_deactivate(struct timer_list *timer) { }
 751static inline void debug_timer_assert_init(struct timer_list *timer) { }
 752#endif
 753
 754static inline void debug_init(struct timer_list *timer)
 755{
 756        debug_timer_init(timer);
 757        trace_timer_init(timer);
 758}
 759
 760static inline void
 761debug_activate(struct timer_list *timer, unsigned long expires)
 762{
 763        debug_timer_activate(timer);
 764        trace_timer_start(timer, expires, timer->flags);
 765}
 766
 767static inline void debug_deactivate(struct timer_list *timer)
 768{
 769        debug_timer_deactivate(timer);
 770        trace_timer_cancel(timer);
 771}
 772
 773static inline void debug_assert_init(struct timer_list *timer)
 774{
 775        debug_timer_assert_init(timer);
 776}
 777
 778static void do_init_timer(struct timer_list *timer,
 779                          void (*func)(struct timer_list *),
 780                          unsigned int flags,
 781                          const char *name, struct lock_class_key *key)
 782{
 783        timer->entry.pprev = NULL;
 784        timer->function = func;
 785        timer->flags = flags | raw_smp_processor_id();
 786        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 787}
 788
 789/**
 790 * init_timer_key - initialize a timer
 791 * @timer: the timer to be initialized
 792 * @func: timer callback function
 793 * @flags: timer flags
 794 * @name: name of the timer
 795 * @key: lockdep class key of the fake lock used for tracking timer
 796 *       sync lock dependencies
 797 *
 798 * init_timer_key() must be done to a timer prior calling *any* of the
 799 * other timer functions.
 800 */
 801void init_timer_key(struct timer_list *timer,
 802                    void (*func)(struct timer_list *), unsigned int flags,
 803                    const char *name, struct lock_class_key *key)
 804{
 805        debug_init(timer);
 806        do_init_timer(timer, func, flags, name, key);
 807}
 808EXPORT_SYMBOL(init_timer_key);
 809
 810static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 811{
 812        struct hlist_node *entry = &timer->entry;
 813
 814        debug_deactivate(timer);
 815
 816        __hlist_del(entry);
 817        if (clear_pending)
 818                entry->pprev = NULL;
 819        entry->next = LIST_POISON2;
 820}
 821
 822static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 823                             bool clear_pending)
 824{
 825        unsigned idx = timer_get_idx(timer);
 826
 827        if (!timer_pending(timer))
 828                return 0;
 829
 830        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 831                __clear_bit(idx, base->pending_map);
 832
 833        detach_timer(timer, clear_pending);
 834        return 1;
 835}
 836
 837static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 838{
 839        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 840
 841        /*
 842         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 843         * to use the deferrable base.
 844         */
 845        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 846                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 847        return base;
 848}
 849
 850static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 851{
 852        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 853
 854        /*
 855         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 856         * to use the deferrable base.
 857         */
 858        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 859                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 860        return base;
 861}
 862
 863static inline struct timer_base *get_timer_base(u32 tflags)
 864{
 865        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 866}
 867
 868static inline struct timer_base *
 869get_target_base(struct timer_base *base, unsigned tflags)
 870{
 871#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 872        if (static_branch_likely(&timers_migration_enabled) &&
 873            !(tflags & TIMER_PINNED))
 874                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 875#endif
 876        return get_timer_this_cpu_base(tflags);
 877}
 878
 879static inline void forward_timer_base(struct timer_base *base)
 880{
 881#ifdef CONFIG_NO_HZ_COMMON
 882        unsigned long jnow;
 883
 884        /*
 885         * We only forward the base when we are idle or have just come out of
 886         * idle (must_forward_clk logic), and have a delta between base clock
 887         * and jiffies. In the common case, run_timers will take care of it.
 888         */
 889        if (likely(!base->must_forward_clk))
 890                return;
 891
 892        jnow = READ_ONCE(jiffies);
 893        base->must_forward_clk = base->is_idle;
 894        if ((long)(jnow - base->clk) < 2)
 895                return;
 896
 897        /*
 898         * If the next expiry value is > jiffies, then we fast forward to
 899         * jiffies otherwise we forward to the next expiry value.
 900         */
 901        if (time_after(base->next_expiry, jnow))
 902                base->clk = jnow;
 903        else
 904                base->clk = base->next_expiry;
 905#endif
 906}
 907
 908
 909/*
 910 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 911 * that all timers which are tied to this base are locked, and the base itself
 912 * is locked too.
 913 *
 914 * So __run_timers/migrate_timers can safely modify all timers which could
 915 * be found in the base->vectors array.
 916 *
 917 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 918 * to wait until the migration is done.
 919 */
 920static struct timer_base *lock_timer_base(struct timer_list *timer,
 921                                          unsigned long *flags)
 922        __acquires(timer->base->lock)
 923{
 924        for (;;) {
 925                struct timer_base *base;
 926                u32 tf;
 927
 928                /*
 929                 * We need to use READ_ONCE() here, otherwise the compiler
 930                 * might re-read @tf between the check for TIMER_MIGRATING
 931                 * and spin_lock().
 932                 */
 933                tf = READ_ONCE(timer->flags);
 934
 935                if (!(tf & TIMER_MIGRATING)) {
 936                        base = get_timer_base(tf);
 937                        raw_spin_lock_irqsave(&base->lock, *flags);
 938                        if (timer->flags == tf)
 939                                return base;
 940                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 941                }
 942                cpu_relax();
 943        }
 944}
 945
 946#define MOD_TIMER_PENDING_ONLY          0x01
 947#define MOD_TIMER_REDUCE                0x02
 948
 949static inline int
 950__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 951{
 952        struct timer_base *base, *new_base;
 953        unsigned int idx = UINT_MAX;
 954        unsigned long clk = 0, flags;
 955        int ret = 0;
 956
 957        BUG_ON(!timer->function);
 958
 959        /*
 960         * This is a common optimization triggered by the networking code - if
 961         * the timer is re-modified to have the same timeout or ends up in the
 962         * same array bucket then just return:
 963         */
 964        if (timer_pending(timer)) {
 965                /*
 966                 * The downside of this optimization is that it can result in
 967                 * larger granularity than you would get from adding a new
 968                 * timer with this expiry.
 969                 */
 970                long diff = timer->expires - expires;
 971
 972                if (!diff)
 973                        return 1;
 974                if (options & MOD_TIMER_REDUCE && diff <= 0)
 975                        return 1;
 976
 977                /*
 978                 * We lock timer base and calculate the bucket index right
 979                 * here. If the timer ends up in the same bucket, then we
 980                 * just update the expiry time and avoid the whole
 981                 * dequeue/enqueue dance.
 982                 */
 983                base = lock_timer_base(timer, &flags);
 984                forward_timer_base(base);
 985
 986                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 987                    time_before_eq(timer->expires, expires)) {
 988                        ret = 1;
 989                        goto out_unlock;
 990                }
 991
 992                clk = base->clk;
 993                idx = calc_wheel_index(expires, clk);
 994
 995                /*
 996                 * Retrieve and compare the array index of the pending
 997                 * timer. If it matches set the expiry to the new value so a
 998                 * subsequent call will exit in the expires check above.
 999                 */
1000                if (idx == timer_get_idx(timer)) {
1001                        if (!(options & MOD_TIMER_REDUCE))
1002                                timer->expires = expires;
1003                        else if (time_after(timer->expires, expires))
1004                                timer->expires = expires;
1005                        ret = 1;
1006                        goto out_unlock;
1007                }
1008        } else {
1009                base = lock_timer_base(timer, &flags);
1010                forward_timer_base(base);
1011        }
1012
1013        ret = detach_if_pending(timer, base, false);
1014        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1015                goto out_unlock;
1016
1017        new_base = get_target_base(base, timer->flags);
1018
1019        if (base != new_base) {
1020                /*
1021                 * We are trying to schedule the timer on the new base.
1022                 * However we can't change timer's base while it is running,
1023                 * otherwise del_timer_sync() can't detect that the timer's
1024                 * handler yet has not finished. This also guarantees that the
1025                 * timer is serialized wrt itself.
1026                 */
1027                if (likely(base->running_timer != timer)) {
1028                        /* See the comment in lock_timer_base() */
1029                        timer->flags |= TIMER_MIGRATING;
1030
1031                        raw_spin_unlock(&base->lock);
1032                        base = new_base;
1033                        raw_spin_lock(&base->lock);
1034                        WRITE_ONCE(timer->flags,
1035                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1036                        forward_timer_base(base);
1037                }
1038        }
1039
1040        debug_activate(timer, expires);
1041
1042        timer->expires = expires;
1043        /*
1044         * If 'idx' was calculated above and the base time did not advance
1045         * between calculating 'idx' and possibly switching the base, only
1046         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1047         * we need to (re)calculate the wheel index via
1048         * internal_add_timer().
1049         */
1050        if (idx != UINT_MAX && clk == base->clk) {
1051                enqueue_timer(base, timer, idx);
1052                trigger_dyntick_cpu(base, timer);
1053        } else {
1054                internal_add_timer(base, timer);
1055        }
1056
1057out_unlock:
1058        raw_spin_unlock_irqrestore(&base->lock, flags);
1059
1060        return ret;
1061}
1062
1063/**
1064 * mod_timer_pending - modify a pending timer's timeout
1065 * @timer: the pending timer to be modified
1066 * @expires: new timeout in jiffies
1067 *
1068 * mod_timer_pending() is the same for pending timers as mod_timer(),
1069 * but will not re-activate and modify already deleted timers.
1070 *
1071 * It is useful for unserialized use of timers.
1072 */
1073int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1074{
1075        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1076}
1077EXPORT_SYMBOL(mod_timer_pending);
1078
1079/**
1080 * mod_timer - modify a timer's timeout
1081 * @timer: the timer to be modified
1082 * @expires: new timeout in jiffies
1083 *
1084 * mod_timer() is a more efficient way to update the expire field of an
1085 * active timer (if the timer is inactive it will be activated)
1086 *
1087 * mod_timer(timer, expires) is equivalent to:
1088 *
1089 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1090 *
1091 * Note that if there are multiple unserialized concurrent users of the
1092 * same timer, then mod_timer() is the only safe way to modify the timeout,
1093 * since add_timer() cannot modify an already running timer.
1094 *
1095 * The function returns whether it has modified a pending timer or not.
1096 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1097 * active timer returns 1.)
1098 */
1099int mod_timer(struct timer_list *timer, unsigned long expires)
1100{
1101        return __mod_timer(timer, expires, 0);
1102}
1103EXPORT_SYMBOL(mod_timer);
1104
1105/**
1106 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1107 * @timer:      The timer to be modified
1108 * @expires:    New timeout in jiffies
1109 *
1110 * timer_reduce() is very similar to mod_timer(), except that it will only
1111 * modify a running timer if that would reduce the expiration time (it will
1112 * start a timer that isn't running).
1113 */
1114int timer_reduce(struct timer_list *timer, unsigned long expires)
1115{
1116        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1117}
1118EXPORT_SYMBOL(timer_reduce);
1119
1120/**
1121 * add_timer - start a timer
1122 * @timer: the timer to be added
1123 *
1124 * The kernel will do a ->function(@timer) callback from the
1125 * timer interrupt at the ->expires point in the future. The
1126 * current time is 'jiffies'.
1127 *
1128 * The timer's ->expires, ->function fields must be set prior calling this
1129 * function.
1130 *
1131 * Timers with an ->expires field in the past will be executed in the next
1132 * timer tick.
1133 */
1134void add_timer(struct timer_list *timer)
1135{
1136        BUG_ON(timer_pending(timer));
1137        mod_timer(timer, timer->expires);
1138}
1139EXPORT_SYMBOL(add_timer);
1140
1141/**
1142 * add_timer_on - start a timer on a particular CPU
1143 * @timer: the timer to be added
1144 * @cpu: the CPU to start it on
1145 *
1146 * This is not very scalable on SMP. Double adds are not possible.
1147 */
1148void add_timer_on(struct timer_list *timer, int cpu)
1149{
1150        struct timer_base *new_base, *base;
1151        unsigned long flags;
1152
1153        BUG_ON(timer_pending(timer) || !timer->function);
1154
1155        new_base = get_timer_cpu_base(timer->flags, cpu);
1156
1157        /*
1158         * If @timer was on a different CPU, it should be migrated with the
1159         * old base locked to prevent other operations proceeding with the
1160         * wrong base locked.  See lock_timer_base().
1161         */
1162        base = lock_timer_base(timer, &flags);
1163        if (base != new_base) {
1164                timer->flags |= TIMER_MIGRATING;
1165
1166                raw_spin_unlock(&base->lock);
1167                base = new_base;
1168                raw_spin_lock(&base->lock);
1169                WRITE_ONCE(timer->flags,
1170                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1171        }
1172        forward_timer_base(base);
1173
1174        debug_activate(timer, timer->expires);
1175        internal_add_timer(base, timer);
1176        raw_spin_unlock_irqrestore(&base->lock, flags);
1177}
1178EXPORT_SYMBOL_GPL(add_timer_on);
1179
1180/**
1181 * del_timer - deactivate a timer.
1182 * @timer: the timer to be deactivated
1183 *
1184 * del_timer() deactivates a timer - this works on both active and inactive
1185 * timers.
1186 *
1187 * The function returns whether it has deactivated a pending timer or not.
1188 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1189 * active timer returns 1.)
1190 */
1191int del_timer(struct timer_list *timer)
1192{
1193        struct timer_base *base;
1194        unsigned long flags;
1195        int ret = 0;
1196
1197        debug_assert_init(timer);
1198
1199        if (timer_pending(timer)) {
1200                base = lock_timer_base(timer, &flags);
1201                ret = detach_if_pending(timer, base, true);
1202                raw_spin_unlock_irqrestore(&base->lock, flags);
1203        }
1204
1205        return ret;
1206}
1207EXPORT_SYMBOL(del_timer);
1208
1209/**
1210 * try_to_del_timer_sync - Try to deactivate a timer
1211 * @timer: timer to delete
1212 *
1213 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1214 * exit the timer is not queued and the handler is not running on any CPU.
1215 */
1216int try_to_del_timer_sync(struct timer_list *timer)
1217{
1218        struct timer_base *base;
1219        unsigned long flags;
1220        int ret = -1;
1221
1222        debug_assert_init(timer);
1223
1224        base = lock_timer_base(timer, &flags);
1225
1226        if (base->running_timer != timer)
1227                ret = detach_if_pending(timer, base, true);
1228
1229        raw_spin_unlock_irqrestore(&base->lock, flags);
1230
1231        return ret;
1232}
1233EXPORT_SYMBOL(try_to_del_timer_sync);
1234
1235#ifdef CONFIG_SMP
1236/**
1237 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1238 * @timer: the timer to be deactivated
1239 *
1240 * This function only differs from del_timer() on SMP: besides deactivating
1241 * the timer it also makes sure the handler has finished executing on other
1242 * CPUs.
1243 *
1244 * Synchronization rules: Callers must prevent restarting of the timer,
1245 * otherwise this function is meaningless. It must not be called from
1246 * interrupt contexts unless the timer is an irqsafe one. The caller must
1247 * not hold locks which would prevent completion of the timer's
1248 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1249 * timer is not queued and the handler is not running on any CPU.
1250 *
1251 * Note: For !irqsafe timers, you must not hold locks that are held in
1252 *   interrupt context while calling this function. Even if the lock has
1253 *   nothing to do with the timer in question.  Here's why::
1254 *
1255 *    CPU0                             CPU1
1256 *    ----                             ----
1257 *                                     <SOFTIRQ>
1258 *                                       call_timer_fn();
1259 *                                       base->running_timer = mytimer;
1260 *    spin_lock_irq(somelock);
1261 *                                     <IRQ>
1262 *                                        spin_lock(somelock);
1263 *    del_timer_sync(mytimer);
1264 *    while (base->running_timer == mytimer);
1265 *
1266 * Now del_timer_sync() will never return and never release somelock.
1267 * The interrupt on the other CPU is waiting to grab somelock but
1268 * it has interrupted the softirq that CPU0 is waiting to finish.
1269 *
1270 * The function returns whether it has deactivated a pending timer or not.
1271 */
1272int del_timer_sync(struct timer_list *timer)
1273{
1274#ifdef CONFIG_LOCKDEP
1275        unsigned long flags;
1276
1277        /*
1278         * If lockdep gives a backtrace here, please reference
1279         * the synchronization rules above.
1280         */
1281        local_irq_save(flags);
1282        lock_map_acquire(&timer->lockdep_map);
1283        lock_map_release(&timer->lockdep_map);
1284        local_irq_restore(flags);
1285#endif
1286        /*
1287         * don't use it in hardirq context, because it
1288         * could lead to deadlock.
1289         */
1290        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1291        for (;;) {
1292                int ret = try_to_del_timer_sync(timer);
1293                if (ret >= 0)
1294                        return ret;
1295                cpu_relax();
1296        }
1297}
1298EXPORT_SYMBOL(del_timer_sync);
1299#endif
1300
1301static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
1302{
1303        int count = preempt_count();
1304
1305#ifdef CONFIG_LOCKDEP
1306        /*
1307         * It is permissible to free the timer from inside the
1308         * function that is called from it, this we need to take into
1309         * account for lockdep too. To avoid bogus "held lock freed"
1310         * warnings as well as problems when looking into
1311         * timer->lockdep_map, make a copy and use that here.
1312         */
1313        struct lockdep_map lockdep_map;
1314
1315        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1316#endif
1317        /*
1318         * Couple the lock chain with the lock chain at
1319         * del_timer_sync() by acquiring the lock_map around the fn()
1320         * call here and in del_timer_sync().
1321         */
1322        lock_map_acquire(&lockdep_map);
1323
1324        trace_timer_expire_entry(timer);
1325        fn(timer);
1326        trace_timer_expire_exit(timer);
1327
1328        lock_map_release(&lockdep_map);
1329
1330        if (count != preempt_count()) {
1331                WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1332                          fn, count, preempt_count());
1333                /*
1334                 * Restore the preempt count. That gives us a decent
1335                 * chance to survive and extract information. If the
1336                 * callback kept a lock held, bad luck, but not worse
1337                 * than the BUG() we had.
1338                 */
1339                preempt_count_set(count);
1340        }
1341}
1342
1343static void expire_timers(struct timer_base *base, struct hlist_head *head)
1344{
1345        while (!hlist_empty(head)) {
1346                struct timer_list *timer;
1347                void (*fn)(struct timer_list *);
1348
1349                timer = hlist_entry(head->first, struct timer_list, entry);
1350
1351                base->running_timer = timer;
1352                detach_timer(timer, true);
1353
1354                fn = timer->function;
1355
1356                if (timer->flags & TIMER_IRQSAFE) {
1357                        raw_spin_unlock(&base->lock);
1358                        call_timer_fn(timer, fn);
1359                        raw_spin_lock(&base->lock);
1360                } else {
1361                        raw_spin_unlock_irq(&base->lock);
1362                        call_timer_fn(timer, fn);
1363                        raw_spin_lock_irq(&base->lock);
1364                }
1365        }
1366}
1367
1368static int __collect_expired_timers(struct timer_base *base,
1369                                    struct hlist_head *heads)
1370{
1371        unsigned long clk = base->clk;
1372        struct hlist_head *vec;
1373        int i, levels = 0;
1374        unsigned int idx;
1375
1376        for (i = 0; i < LVL_DEPTH; i++) {
1377                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1378
1379                if (__test_and_clear_bit(idx, base->pending_map)) {
1380                        vec = base->vectors + idx;
1381                        hlist_move_list(vec, heads++);
1382                        levels++;
1383                }
1384                /* Is it time to look at the next level? */
1385                if (clk & LVL_CLK_MASK)
1386                        break;
1387                /* Shift clock for the next level granularity */
1388                clk >>= LVL_CLK_SHIFT;
1389        }
1390        return levels;
1391}
1392
1393#ifdef CONFIG_NO_HZ_COMMON
1394/*
1395 * Find the next pending bucket of a level. Search from level start (@offset)
1396 * + @clk upwards and if nothing there, search from start of the level
1397 * (@offset) up to @offset + clk.
1398 */
1399static int next_pending_bucket(struct timer_base *base, unsigned offset,
1400                               unsigned clk)
1401{
1402        unsigned pos, start = offset + clk;
1403        unsigned end = offset + LVL_SIZE;
1404
1405        pos = find_next_bit(base->pending_map, end, start);
1406        if (pos < end)
1407                return pos - start;
1408
1409        pos = find_next_bit(base->pending_map, start, offset);
1410        return pos < start ? pos + LVL_SIZE - start : -1;
1411}
1412
1413/*
1414 * Search the first expiring timer in the various clock levels. Caller must
1415 * hold base->lock.
1416 */
1417static unsigned long __next_timer_interrupt(struct timer_base *base)
1418{
1419        unsigned long clk, next, adj;
1420        unsigned lvl, offset = 0;
1421
1422        next = base->clk + NEXT_TIMER_MAX_DELTA;
1423        clk = base->clk;
1424        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1425                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1426
1427                if (pos >= 0) {
1428                        unsigned long tmp = clk + (unsigned long) pos;
1429
1430                        tmp <<= LVL_SHIFT(lvl);
1431                        if (time_before(tmp, next))
1432                                next = tmp;
1433                }
1434                /*
1435                 * Clock for the next level. If the current level clock lower
1436                 * bits are zero, we look at the next level as is. If not we
1437                 * need to advance it by one because that's going to be the
1438                 * next expiring bucket in that level. base->clk is the next
1439                 * expiring jiffie. So in case of:
1440                 *
1441                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442                 *  0    0    0    0    0    0
1443                 *
1444                 * we have to look at all levels @index 0. With
1445                 *
1446                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1447                 *  0    0    0    0    0    2
1448                 *
1449                 * LVL0 has the next expiring bucket @index 2. The upper
1450                 * levels have the next expiring bucket @index 1.
1451                 *
1452                 * In case that the propagation wraps the next level the same
1453                 * rules apply:
1454                 *
1455                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1456                 *  0    0    0    0    F    2
1457                 *
1458                 * So after looking at LVL0 we get:
1459                 *
1460                 * LVL5 LVL4 LVL3 LVL2 LVL1
1461                 *  0    0    0    1    0
1462                 *
1463                 * So no propagation from LVL1 to LVL2 because that happened
1464                 * with the add already, but then we need to propagate further
1465                 * from LVL2 to LVL3.
1466                 *
1467                 * So the simple check whether the lower bits of the current
1468                 * level are 0 or not is sufficient for all cases.
1469                 */
1470                adj = clk & LVL_CLK_MASK ? 1 : 0;
1471                clk >>= LVL_CLK_SHIFT;
1472                clk += adj;
1473        }
1474        return next;
1475}
1476
1477/*
1478 * Check, if the next hrtimer event is before the next timer wheel
1479 * event:
1480 */
1481static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1482{
1483        u64 nextevt = hrtimer_get_next_event();
1484
1485        /*
1486         * If high resolution timers are enabled
1487         * hrtimer_get_next_event() returns KTIME_MAX.
1488         */
1489        if (expires <= nextevt)
1490                return expires;
1491
1492        /*
1493         * If the next timer is already expired, return the tick base
1494         * time so the tick is fired immediately.
1495         */
1496        if (nextevt <= basem)
1497                return basem;
1498
1499        /*
1500         * Round up to the next jiffie. High resolution timers are
1501         * off, so the hrtimers are expired in the tick and we need to
1502         * make sure that this tick really expires the timer to avoid
1503         * a ping pong of the nohz stop code.
1504         *
1505         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1506         */
1507        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1508}
1509
1510/**
1511 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1512 * @basej:      base time jiffies
1513 * @basem:      base time clock monotonic
1514 *
1515 * Returns the tick aligned clock monotonic time of the next pending
1516 * timer or KTIME_MAX if no timer is pending.
1517 */
1518u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1519{
1520        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1521        u64 expires = KTIME_MAX;
1522        unsigned long nextevt;
1523        bool is_max_delta;
1524
1525        /*
1526         * Pretend that there is no timer pending if the cpu is offline.
1527         * Possible pending timers will be migrated later to an active cpu.
1528         */
1529        if (cpu_is_offline(smp_processor_id()))
1530                return expires;
1531
1532        raw_spin_lock(&base->lock);
1533        nextevt = __next_timer_interrupt(base);
1534        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1535        base->next_expiry = nextevt;
1536        /*
1537         * We have a fresh next event. Check whether we can forward the
1538         * base. We can only do that when @basej is past base->clk
1539         * otherwise we might rewind base->clk.
1540         */
1541        if (time_after(basej, base->clk)) {
1542                if (time_after(nextevt, basej))
1543                        base->clk = basej;
1544                else if (time_after(nextevt, base->clk))
1545                        base->clk = nextevt;
1546        }
1547
1548        if (time_before_eq(nextevt, basej)) {
1549                expires = basem;
1550                base->is_idle = false;
1551        } else {
1552                if (!is_max_delta)
1553                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1554                /*
1555                 * If we expect to sleep more than a tick, mark the base idle.
1556                 * Also the tick is stopped so any added timer must forward
1557                 * the base clk itself to keep granularity small. This idle
1558                 * logic is only maintained for the BASE_STD base, deferrable
1559                 * timers may still see large granularity skew (by design).
1560                 */
1561                if ((expires - basem) > TICK_NSEC) {
1562                        base->must_forward_clk = true;
1563                        base->is_idle = true;
1564                }
1565        }
1566        raw_spin_unlock(&base->lock);
1567
1568        return cmp_next_hrtimer_event(basem, expires);
1569}
1570
1571/**
1572 * timer_clear_idle - Clear the idle state of the timer base
1573 *
1574 * Called with interrupts disabled
1575 */
1576void timer_clear_idle(void)
1577{
1578        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1579
1580        /*
1581         * We do this unlocked. The worst outcome is a remote enqueue sending
1582         * a pointless IPI, but taking the lock would just make the window for
1583         * sending the IPI a few instructions smaller for the cost of taking
1584         * the lock in the exit from idle path.
1585         */
1586        base->is_idle = false;
1587}
1588
1589static int collect_expired_timers(struct timer_base *base,
1590                                  struct hlist_head *heads)
1591{
1592        /*
1593         * NOHZ optimization. After a long idle sleep we need to forward the
1594         * base to current jiffies. Avoid a loop by searching the bitfield for
1595         * the next expiring timer.
1596         */
1597        if ((long)(jiffies - base->clk) > 2) {
1598                unsigned long next = __next_timer_interrupt(base);
1599
1600                /*
1601                 * If the next timer is ahead of time forward to current
1602                 * jiffies, otherwise forward to the next expiry time:
1603                 */
1604                if (time_after(next, jiffies)) {
1605                        /*
1606                         * The call site will increment base->clk and then
1607                         * terminate the expiry loop immediately.
1608                         */
1609                        base->clk = jiffies;
1610                        return 0;
1611                }
1612                base->clk = next;
1613        }
1614        return __collect_expired_timers(base, heads);
1615}
1616#else
1617static inline int collect_expired_timers(struct timer_base *base,
1618                                         struct hlist_head *heads)
1619{
1620        return __collect_expired_timers(base, heads);
1621}
1622#endif
1623
1624/*
1625 * Called from the timer interrupt handler to charge one tick to the current
1626 * process.  user_tick is 1 if the tick is user time, 0 for system.
1627 */
1628void update_process_times(int user_tick)
1629{
1630        struct task_struct *p = current;
1631
1632        /* Note: this timer irq context must be accounted for as well. */
1633        account_process_tick(p, user_tick);
1634        run_local_timers();
1635        rcu_sched_clock_irq(user_tick);
1636#ifdef CONFIG_IRQ_WORK
1637        if (in_irq())
1638                irq_work_tick();
1639#endif
1640        scheduler_tick();
1641        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1642                run_posix_cpu_timers(p);
1643}
1644
1645/**
1646 * __run_timers - run all expired timers (if any) on this CPU.
1647 * @base: the timer vector to be processed.
1648 */
1649static inline void __run_timers(struct timer_base *base)
1650{
1651        struct hlist_head heads[LVL_DEPTH];
1652        int levels;
1653
1654        if (!time_after_eq(jiffies, base->clk))
1655                return;
1656
1657        raw_spin_lock_irq(&base->lock);
1658
1659        /*
1660         * timer_base::must_forward_clk must be cleared before running
1661         * timers so that any timer functions that call mod_timer() will
1662         * not try to forward the base. Idle tracking / clock forwarding
1663         * logic is only used with BASE_STD timers.
1664         *
1665         * The must_forward_clk flag is cleared unconditionally also for
1666         * the deferrable base. The deferrable base is not affected by idle
1667         * tracking and never forwarded, so clearing the flag is a NOOP.
1668         *
1669         * The fact that the deferrable base is never forwarded can cause
1670         * large variations in granularity for deferrable timers, but they
1671         * can be deferred for long periods due to idle anyway.
1672         */
1673        base->must_forward_clk = false;
1674
1675        while (time_after_eq(jiffies, base->clk)) {
1676
1677                levels = collect_expired_timers(base, heads);
1678                base->clk++;
1679
1680                while (levels--)
1681                        expire_timers(base, heads + levels);
1682        }
1683        base->running_timer = NULL;
1684        raw_spin_unlock_irq(&base->lock);
1685}
1686
1687/*
1688 * This function runs timers and the timer-tq in bottom half context.
1689 */
1690static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1691{
1692        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1693
1694        __run_timers(base);
1695        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1696                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1697}
1698
1699/*
1700 * Called by the local, per-CPU timer interrupt on SMP.
1701 */
1702void run_local_timers(void)
1703{
1704        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1705
1706        hrtimer_run_queues();
1707        /* Raise the softirq only if required. */
1708        if (time_before(jiffies, base->clk)) {
1709                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1710                        return;
1711                /* CPU is awake, so check the deferrable base. */
1712                base++;
1713                if (time_before(jiffies, base->clk))
1714                        return;
1715        }
1716        raise_softirq(TIMER_SOFTIRQ);
1717}
1718
1719/*
1720 * Since schedule_timeout()'s timer is defined on the stack, it must store
1721 * the target task on the stack as well.
1722 */
1723struct process_timer {
1724        struct timer_list timer;
1725        struct task_struct *task;
1726};
1727
1728static void process_timeout(struct timer_list *t)
1729{
1730        struct process_timer *timeout = from_timer(timeout, t, timer);
1731
1732        wake_up_process(timeout->task);
1733}
1734
1735/**
1736 * schedule_timeout - sleep until timeout
1737 * @timeout: timeout value in jiffies
1738 *
1739 * Make the current task sleep until @timeout jiffies have
1740 * elapsed. The routine will return immediately unless
1741 * the current task state has been set (see set_current_state()).
1742 *
1743 * You can set the task state as follows -
1744 *
1745 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1746 * pass before the routine returns unless the current task is explicitly
1747 * woken up, (e.g. by wake_up_process())".
1748 *
1749 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1750 * delivered to the current task or the current task is explicitly woken
1751 * up.
1752 *
1753 * The current task state is guaranteed to be TASK_RUNNING when this
1754 * routine returns.
1755 *
1756 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1757 * the CPU away without a bound on the timeout. In this case the return
1758 * value will be %MAX_SCHEDULE_TIMEOUT.
1759 *
1760 * Returns 0 when the timer has expired otherwise the remaining time in
1761 * jiffies will be returned.  In all cases the return value is guaranteed
1762 * to be non-negative.
1763 */
1764signed long __sched schedule_timeout(signed long timeout)
1765{
1766        struct process_timer timer;
1767        unsigned long expire;
1768
1769        switch (timeout)
1770        {
1771        case MAX_SCHEDULE_TIMEOUT:
1772                /*
1773                 * These two special cases are useful to be comfortable
1774                 * in the caller. Nothing more. We could take
1775                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1776                 * but I' d like to return a valid offset (>=0) to allow
1777                 * the caller to do everything it want with the retval.
1778                 */
1779                schedule();
1780                goto out;
1781        default:
1782                /*
1783                 * Another bit of PARANOID. Note that the retval will be
1784                 * 0 since no piece of kernel is supposed to do a check
1785                 * for a negative retval of schedule_timeout() (since it
1786                 * should never happens anyway). You just have the printk()
1787                 * that will tell you if something is gone wrong and where.
1788                 */
1789                if (timeout < 0) {
1790                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1791                                "value %lx\n", timeout);
1792                        dump_stack();
1793                        current->state = TASK_RUNNING;
1794                        goto out;
1795                }
1796        }
1797
1798        expire = timeout + jiffies;
1799
1800        timer.task = current;
1801        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1802        __mod_timer(&timer.timer, expire, 0);
1803        schedule();
1804        del_singleshot_timer_sync(&timer.timer);
1805
1806        /* Remove the timer from the object tracker */
1807        destroy_timer_on_stack(&timer.timer);
1808
1809        timeout = expire - jiffies;
1810
1811 out:
1812        return timeout < 0 ? 0 : timeout;
1813}
1814EXPORT_SYMBOL(schedule_timeout);
1815
1816/*
1817 * We can use __set_current_state() here because schedule_timeout() calls
1818 * schedule() unconditionally.
1819 */
1820signed long __sched schedule_timeout_interruptible(signed long timeout)
1821{
1822        __set_current_state(TASK_INTERRUPTIBLE);
1823        return schedule_timeout(timeout);
1824}
1825EXPORT_SYMBOL(schedule_timeout_interruptible);
1826
1827signed long __sched schedule_timeout_killable(signed long timeout)
1828{
1829        __set_current_state(TASK_KILLABLE);
1830        return schedule_timeout(timeout);
1831}
1832EXPORT_SYMBOL(schedule_timeout_killable);
1833
1834signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1835{
1836        __set_current_state(TASK_UNINTERRUPTIBLE);
1837        return schedule_timeout(timeout);
1838}
1839EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1840
1841/*
1842 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1843 * to load average.
1844 */
1845signed long __sched schedule_timeout_idle(signed long timeout)
1846{
1847        __set_current_state(TASK_IDLE);
1848        return schedule_timeout(timeout);
1849}
1850EXPORT_SYMBOL(schedule_timeout_idle);
1851
1852#ifdef CONFIG_HOTPLUG_CPU
1853static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1854{
1855        struct timer_list *timer;
1856        int cpu = new_base->cpu;
1857
1858        while (!hlist_empty(head)) {
1859                timer = hlist_entry(head->first, struct timer_list, entry);
1860                detach_timer(timer, false);
1861                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1862                internal_add_timer(new_base, timer);
1863        }
1864}
1865
1866int timers_prepare_cpu(unsigned int cpu)
1867{
1868        struct timer_base *base;
1869        int b;
1870
1871        for (b = 0; b < NR_BASES; b++) {
1872                base = per_cpu_ptr(&timer_bases[b], cpu);
1873                base->clk = jiffies;
1874                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1875                base->is_idle = false;
1876                base->must_forward_clk = true;
1877        }
1878        return 0;
1879}
1880
1881int timers_dead_cpu(unsigned int cpu)
1882{
1883        struct timer_base *old_base;
1884        struct timer_base *new_base;
1885        int b, i;
1886
1887        BUG_ON(cpu_online(cpu));
1888
1889        for (b = 0; b < NR_BASES; b++) {
1890                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1891                new_base = get_cpu_ptr(&timer_bases[b]);
1892                /*
1893                 * The caller is globally serialized and nobody else
1894                 * takes two locks at once, deadlock is not possible.
1895                 */
1896                raw_spin_lock_irq(&new_base->lock);
1897                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1898
1899                /*
1900                 * The current CPUs base clock might be stale. Update it
1901                 * before moving the timers over.
1902                 */
1903                forward_timer_base(new_base);
1904
1905                BUG_ON(old_base->running_timer);
1906
1907                for (i = 0; i < WHEEL_SIZE; i++)
1908                        migrate_timer_list(new_base, old_base->vectors + i);
1909
1910                raw_spin_unlock(&old_base->lock);
1911                raw_spin_unlock_irq(&new_base->lock);
1912                put_cpu_ptr(&timer_bases);
1913        }
1914        return 0;
1915}
1916
1917#endif /* CONFIG_HOTPLUG_CPU */
1918
1919static void __init init_timer_cpu(int cpu)
1920{
1921        struct timer_base *base;
1922        int i;
1923
1924        for (i = 0; i < NR_BASES; i++) {
1925                base = per_cpu_ptr(&timer_bases[i], cpu);
1926                base->cpu = cpu;
1927                raw_spin_lock_init(&base->lock);
1928                base->clk = jiffies;
1929        }
1930}
1931
1932static void __init init_timer_cpus(void)
1933{
1934        int cpu;
1935
1936        for_each_possible_cpu(cpu)
1937                init_timer_cpu(cpu);
1938}
1939
1940void __init init_timers(void)
1941{
1942        init_timer_cpus();
1943        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1944}
1945
1946/**
1947 * msleep - sleep safely even with waitqueue interruptions
1948 * @msecs: Time in milliseconds to sleep for
1949 */
1950void msleep(unsigned int msecs)
1951{
1952        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1953
1954        while (timeout)
1955                timeout = schedule_timeout_uninterruptible(timeout);
1956}
1957
1958EXPORT_SYMBOL(msleep);
1959
1960/**
1961 * msleep_interruptible - sleep waiting for signals
1962 * @msecs: Time in milliseconds to sleep for
1963 */
1964unsigned long msleep_interruptible(unsigned int msecs)
1965{
1966        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1967
1968        while (timeout && !signal_pending(current))
1969                timeout = schedule_timeout_interruptible(timeout);
1970        return jiffies_to_msecs(timeout);
1971}
1972
1973EXPORT_SYMBOL(msleep_interruptible);
1974
1975/**
1976 * usleep_range - Sleep for an approximate time
1977 * @min: Minimum time in usecs to sleep
1978 * @max: Maximum time in usecs to sleep
1979 *
1980 * In non-atomic context where the exact wakeup time is flexible, use
1981 * usleep_range() instead of udelay().  The sleep improves responsiveness
1982 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1983 * power usage by allowing hrtimers to take advantage of an already-
1984 * scheduled interrupt instead of scheduling a new one just for this sleep.
1985 */
1986void __sched usleep_range(unsigned long min, unsigned long max)
1987{
1988        ktime_t exp = ktime_add_us(ktime_get(), min);
1989        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1990
1991        for (;;) {
1992                __set_current_state(TASK_UNINTERRUPTIBLE);
1993                /* Do not return before the requested sleep time has elapsed */
1994                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1995                        break;
1996        }
1997}
1998EXPORT_SYMBOL(usleep_range);
1999