linux/mm/compaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31        count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36        count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
  52
  53static unsigned long release_freepages(struct list_head *freelist)
  54{
  55        struct page *page, *next;
  56        unsigned long high_pfn = 0;
  57
  58        list_for_each_entry_safe(page, next, freelist, lru) {
  59                unsigned long pfn = page_to_pfn(page);
  60                list_del(&page->lru);
  61                __free_page(page);
  62                if (pfn > high_pfn)
  63                        high_pfn = pfn;
  64        }
  65
  66        return high_pfn;
  67}
  68
  69static void split_map_pages(struct list_head *list)
  70{
  71        unsigned int i, order, nr_pages;
  72        struct page *page, *next;
  73        LIST_HEAD(tmp_list);
  74
  75        list_for_each_entry_safe(page, next, list, lru) {
  76                list_del(&page->lru);
  77
  78                order = page_private(page);
  79                nr_pages = 1 << order;
  80
  81                post_alloc_hook(page, order, __GFP_MOVABLE);
  82                if (order)
  83                        split_page(page, order);
  84
  85                for (i = 0; i < nr_pages; i++) {
  86                        list_add(&page->lru, &tmp_list);
  87                        page++;
  88                }
  89        }
  90
  91        list_splice(&tmp_list, list);
  92}
  93
  94#ifdef CONFIG_COMPACTION
  95
  96int PageMovable(struct page *page)
  97{
  98        struct address_space *mapping;
  99
 100        VM_BUG_ON_PAGE(!PageLocked(page), page);
 101        if (!__PageMovable(page))
 102                return 0;
 103
 104        mapping = page_mapping(page);
 105        if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 106                return 1;
 107
 108        return 0;
 109}
 110EXPORT_SYMBOL(PageMovable);
 111
 112void __SetPageMovable(struct page *page, struct address_space *mapping)
 113{
 114        VM_BUG_ON_PAGE(!PageLocked(page), page);
 115        VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 116        page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 117}
 118EXPORT_SYMBOL(__SetPageMovable);
 119
 120void __ClearPageMovable(struct page *page)
 121{
 122        VM_BUG_ON_PAGE(!PageLocked(page), page);
 123        VM_BUG_ON_PAGE(!PageMovable(page), page);
 124        /*
 125         * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 126         * flag so that VM can catch up released page by driver after isolation.
 127         * With it, VM migration doesn't try to put it back.
 128         */
 129        page->mapping = (void *)((unsigned long)page->mapping &
 130                                PAGE_MAPPING_MOVABLE);
 131}
 132EXPORT_SYMBOL(__ClearPageMovable);
 133
 134/* Do not skip compaction more than 64 times */
 135#define COMPACT_MAX_DEFER_SHIFT 6
 136
 137/*
 138 * Compaction is deferred when compaction fails to result in a page
 139 * allocation success. 1 << compact_defer_limit compactions are skipped up
 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 141 */
 142void defer_compaction(struct zone *zone, int order)
 143{
 144        zone->compact_considered = 0;
 145        zone->compact_defer_shift++;
 146
 147        if (order < zone->compact_order_failed)
 148                zone->compact_order_failed = order;
 149
 150        if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 151                zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 152
 153        trace_mm_compaction_defer_compaction(zone, order);
 154}
 155
 156/* Returns true if compaction should be skipped this time */
 157bool compaction_deferred(struct zone *zone, int order)
 158{
 159        unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 160
 161        if (order < zone->compact_order_failed)
 162                return false;
 163
 164        /* Avoid possible overflow */
 165        if (++zone->compact_considered > defer_limit)
 166                zone->compact_considered = defer_limit;
 167
 168        if (zone->compact_considered >= defer_limit)
 169                return false;
 170
 171        trace_mm_compaction_deferred(zone, order);
 172
 173        return true;
 174}
 175
 176/*
 177 * Update defer tracking counters after successful compaction of given order,
 178 * which means an allocation either succeeded (alloc_success == true) or is
 179 * expected to succeed.
 180 */
 181void compaction_defer_reset(struct zone *zone, int order,
 182                bool alloc_success)
 183{
 184        if (alloc_success) {
 185                zone->compact_considered = 0;
 186                zone->compact_defer_shift = 0;
 187        }
 188        if (order >= zone->compact_order_failed)
 189                zone->compact_order_failed = order + 1;
 190
 191        trace_mm_compaction_defer_reset(zone, order);
 192}
 193
 194/* Returns true if restarting compaction after many failures */
 195bool compaction_restarting(struct zone *zone, int order)
 196{
 197        if (order < zone->compact_order_failed)
 198                return false;
 199
 200        return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 201                zone->compact_considered >= 1UL << zone->compact_defer_shift;
 202}
 203
 204/* Returns true if the pageblock should be scanned for pages to isolate. */
 205static inline bool isolation_suitable(struct compact_control *cc,
 206                                        struct page *page)
 207{
 208        if (cc->ignore_skip_hint)
 209                return true;
 210
 211        return !get_pageblock_skip(page);
 212}
 213
 214static void reset_cached_positions(struct zone *zone)
 215{
 216        zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 217        zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 218        zone->compact_cached_free_pfn =
 219                                pageblock_start_pfn(zone_end_pfn(zone) - 1);
 220}
 221
 222/*
 223 * Compound pages of >= pageblock_order should consistenly be skipped until
 224 * released. It is always pointless to compact pages of such order (if they are
 225 * migratable), and the pageblocks they occupy cannot contain any free pages.
 226 */
 227static bool pageblock_skip_persistent(struct page *page)
 228{
 229        if (!PageCompound(page))
 230                return false;
 231
 232        page = compound_head(page);
 233
 234        if (compound_order(page) >= pageblock_order)
 235                return true;
 236
 237        return false;
 238}
 239
 240static bool
 241__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 242                                                        bool check_target)
 243{
 244        struct page *page = pfn_to_online_page(pfn);
 245        struct page *block_page;
 246        struct page *end_page;
 247        unsigned long block_pfn;
 248
 249        if (!page)
 250                return false;
 251        if (zone != page_zone(page))
 252                return false;
 253        if (pageblock_skip_persistent(page))
 254                return false;
 255
 256        /*
 257         * If skip is already cleared do no further checking once the
 258         * restart points have been set.
 259         */
 260        if (check_source && check_target && !get_pageblock_skip(page))
 261                return true;
 262
 263        /*
 264         * If clearing skip for the target scanner, do not select a
 265         * non-movable pageblock as the starting point.
 266         */
 267        if (!check_source && check_target &&
 268            get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 269                return false;
 270
 271        /* Ensure the start of the pageblock or zone is online and valid */
 272        block_pfn = pageblock_start_pfn(pfn);
 273        block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
 274        if (block_page) {
 275                page = block_page;
 276                pfn = block_pfn;
 277        }
 278
 279        /* Ensure the end of the pageblock or zone is online and valid */
 280        block_pfn += pageblock_nr_pages;
 281        block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 282        end_page = pfn_to_online_page(block_pfn);
 283        if (!end_page)
 284                return false;
 285
 286        /*
 287         * Only clear the hint if a sample indicates there is either a
 288         * free page or an LRU page in the block. One or other condition
 289         * is necessary for the block to be a migration source/target.
 290         */
 291        do {
 292                if (pfn_valid_within(pfn)) {
 293                        if (check_source && PageLRU(page)) {
 294                                clear_pageblock_skip(page);
 295                                return true;
 296                        }
 297
 298                        if (check_target && PageBuddy(page)) {
 299                                clear_pageblock_skip(page);
 300                                return true;
 301                        }
 302                }
 303
 304                page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 305                pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 306        } while (page < end_page);
 307
 308        return false;
 309}
 310
 311/*
 312 * This function is called to clear all cached information on pageblocks that
 313 * should be skipped for page isolation when the migrate and free page scanner
 314 * meet.
 315 */
 316static void __reset_isolation_suitable(struct zone *zone)
 317{
 318        unsigned long migrate_pfn = zone->zone_start_pfn;
 319        unsigned long free_pfn = zone_end_pfn(zone) - 1;
 320        unsigned long reset_migrate = free_pfn;
 321        unsigned long reset_free = migrate_pfn;
 322        bool source_set = false;
 323        bool free_set = false;
 324
 325        if (!zone->compact_blockskip_flush)
 326                return;
 327
 328        zone->compact_blockskip_flush = false;
 329
 330        /*
 331         * Walk the zone and update pageblock skip information. Source looks
 332         * for PageLRU while target looks for PageBuddy. When the scanner
 333         * is found, both PageBuddy and PageLRU are checked as the pageblock
 334         * is suitable as both source and target.
 335         */
 336        for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 337                                        free_pfn -= pageblock_nr_pages) {
 338                cond_resched();
 339
 340                /* Update the migrate PFN */
 341                if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 342                    migrate_pfn < reset_migrate) {
 343                        source_set = true;
 344                        reset_migrate = migrate_pfn;
 345                        zone->compact_init_migrate_pfn = reset_migrate;
 346                        zone->compact_cached_migrate_pfn[0] = reset_migrate;
 347                        zone->compact_cached_migrate_pfn[1] = reset_migrate;
 348                }
 349
 350                /* Update the free PFN */
 351                if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 352                    free_pfn > reset_free) {
 353                        free_set = true;
 354                        reset_free = free_pfn;
 355                        zone->compact_init_free_pfn = reset_free;
 356                        zone->compact_cached_free_pfn = reset_free;
 357                }
 358        }
 359
 360        /* Leave no distance if no suitable block was reset */
 361        if (reset_migrate >= reset_free) {
 362                zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 363                zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 364                zone->compact_cached_free_pfn = free_pfn;
 365        }
 366}
 367
 368void reset_isolation_suitable(pg_data_t *pgdat)
 369{
 370        int zoneid;
 371
 372        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 373                struct zone *zone = &pgdat->node_zones[zoneid];
 374                if (!populated_zone(zone))
 375                        continue;
 376
 377                /* Only flush if a full compaction finished recently */
 378                if (zone->compact_blockskip_flush)
 379                        __reset_isolation_suitable(zone);
 380        }
 381}
 382
 383/*
 384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 385 * locks are not required for read/writers. Returns true if it was already set.
 386 */
 387static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 388                                                        unsigned long pfn)
 389{
 390        bool skip;
 391
 392        /* Do no update if skip hint is being ignored */
 393        if (cc->ignore_skip_hint)
 394                return false;
 395
 396        if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 397                return false;
 398
 399        skip = get_pageblock_skip(page);
 400        if (!skip && !cc->no_set_skip_hint)
 401                set_pageblock_skip(page);
 402
 403        return skip;
 404}
 405
 406static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 407{
 408        struct zone *zone = cc->zone;
 409
 410        pfn = pageblock_end_pfn(pfn);
 411
 412        /* Set for isolation rather than compaction */
 413        if (cc->no_set_skip_hint)
 414                return;
 415
 416        if (pfn > zone->compact_cached_migrate_pfn[0])
 417                zone->compact_cached_migrate_pfn[0] = pfn;
 418        if (cc->mode != MIGRATE_ASYNC &&
 419            pfn > zone->compact_cached_migrate_pfn[1])
 420                zone->compact_cached_migrate_pfn[1] = pfn;
 421}
 422
 423/*
 424 * If no pages were isolated then mark this pageblock to be skipped in the
 425 * future. The information is later cleared by __reset_isolation_suitable().
 426 */
 427static void update_pageblock_skip(struct compact_control *cc,
 428                        struct page *page, unsigned long pfn)
 429{
 430        struct zone *zone = cc->zone;
 431
 432        if (cc->no_set_skip_hint)
 433                return;
 434
 435        if (!page)
 436                return;
 437
 438        set_pageblock_skip(page);
 439
 440        /* Update where async and sync compaction should restart */
 441        if (pfn < zone->compact_cached_free_pfn)
 442                zone->compact_cached_free_pfn = pfn;
 443}
 444#else
 445static inline bool isolation_suitable(struct compact_control *cc,
 446                                        struct page *page)
 447{
 448        return true;
 449}
 450
 451static inline bool pageblock_skip_persistent(struct page *page)
 452{
 453        return false;
 454}
 455
 456static inline void update_pageblock_skip(struct compact_control *cc,
 457                        struct page *page, unsigned long pfn)
 458{
 459}
 460
 461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 462{
 463}
 464
 465static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 466                                                        unsigned long pfn)
 467{
 468        return false;
 469}
 470#endif /* CONFIG_COMPACTION */
 471
 472/*
 473 * Compaction requires the taking of some coarse locks that are potentially
 474 * very heavily contended. For async compaction, trylock and record if the
 475 * lock is contended. The lock will still be acquired but compaction will
 476 * abort when the current block is finished regardless of success rate.
 477 * Sync compaction acquires the lock.
 478 *
 479 * Always returns true which makes it easier to track lock state in callers.
 480 */
 481static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 482                                                struct compact_control *cc)
 483{
 484        /* Track if the lock is contended in async mode */
 485        if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 486                if (spin_trylock_irqsave(lock, *flags))
 487                        return true;
 488
 489                cc->contended = true;
 490        }
 491
 492        spin_lock_irqsave(lock, *flags);
 493        return true;
 494}
 495
 496/*
 497 * Compaction requires the taking of some coarse locks that are potentially
 498 * very heavily contended. The lock should be periodically unlocked to avoid
 499 * having disabled IRQs for a long time, even when there is nobody waiting on
 500 * the lock. It might also be that allowing the IRQs will result in
 501 * need_resched() becoming true. If scheduling is needed, async compaction
 502 * aborts. Sync compaction schedules.
 503 * Either compaction type will also abort if a fatal signal is pending.
 504 * In either case if the lock was locked, it is dropped and not regained.
 505 *
 506 * Returns true if compaction should abort due to fatal signal pending, or
 507 *              async compaction due to need_resched()
 508 * Returns false when compaction can continue (sync compaction might have
 509 *              scheduled)
 510 */
 511static bool compact_unlock_should_abort(spinlock_t *lock,
 512                unsigned long flags, bool *locked, struct compact_control *cc)
 513{
 514        if (*locked) {
 515                spin_unlock_irqrestore(lock, flags);
 516                *locked = false;
 517        }
 518
 519        if (fatal_signal_pending(current)) {
 520                cc->contended = true;
 521                return true;
 522        }
 523
 524        cond_resched();
 525
 526        return false;
 527}
 528
 529/*
 530 * Isolate free pages onto a private freelist. If @strict is true, will abort
 531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 532 * (even though it may still end up isolating some pages).
 533 */
 534static unsigned long isolate_freepages_block(struct compact_control *cc,
 535                                unsigned long *start_pfn,
 536                                unsigned long end_pfn,
 537                                struct list_head *freelist,
 538                                unsigned int stride,
 539                                bool strict)
 540{
 541        int nr_scanned = 0, total_isolated = 0;
 542        struct page *cursor;
 543        unsigned long flags = 0;
 544        bool locked = false;
 545        unsigned long blockpfn = *start_pfn;
 546        unsigned int order;
 547
 548        /* Strict mode is for isolation, speed is secondary */
 549        if (strict)
 550                stride = 1;
 551
 552        cursor = pfn_to_page(blockpfn);
 553
 554        /* Isolate free pages. */
 555        for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 556                int isolated;
 557                struct page *page = cursor;
 558
 559                /*
 560                 * Periodically drop the lock (if held) regardless of its
 561                 * contention, to give chance to IRQs. Abort if fatal signal
 562                 * pending or async compaction detects need_resched()
 563                 */
 564                if (!(blockpfn % SWAP_CLUSTER_MAX)
 565                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 566                                                                &locked, cc))
 567                        break;
 568
 569                nr_scanned++;
 570                if (!pfn_valid_within(blockpfn))
 571                        goto isolate_fail;
 572
 573                /*
 574                 * For compound pages such as THP and hugetlbfs, we can save
 575                 * potentially a lot of iterations if we skip them at once.
 576                 * The check is racy, but we can consider only valid values
 577                 * and the only danger is skipping too much.
 578                 */
 579                if (PageCompound(page)) {
 580                        const unsigned int order = compound_order(page);
 581
 582                        if (likely(order < MAX_ORDER)) {
 583                                blockpfn += (1UL << order) - 1;
 584                                cursor += (1UL << order) - 1;
 585                        }
 586                        goto isolate_fail;
 587                }
 588
 589                if (!PageBuddy(page))
 590                        goto isolate_fail;
 591
 592                /*
 593                 * If we already hold the lock, we can skip some rechecking.
 594                 * Note that if we hold the lock now, checked_pageblock was
 595                 * already set in some previous iteration (or strict is true),
 596                 * so it is correct to skip the suitable migration target
 597                 * recheck as well.
 598                 */
 599                if (!locked) {
 600                        locked = compact_lock_irqsave(&cc->zone->lock,
 601                                                                &flags, cc);
 602
 603                        /* Recheck this is a buddy page under lock */
 604                        if (!PageBuddy(page))
 605                                goto isolate_fail;
 606                }
 607
 608                /* Found a free page, will break it into order-0 pages */
 609                order = page_order(page);
 610                isolated = __isolate_free_page(page, order);
 611                if (!isolated)
 612                        break;
 613                set_page_private(page, order);
 614
 615                total_isolated += isolated;
 616                cc->nr_freepages += isolated;
 617                list_add_tail(&page->lru, freelist);
 618
 619                if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 620                        blockpfn += isolated;
 621                        break;
 622                }
 623                /* Advance to the end of split page */
 624                blockpfn += isolated - 1;
 625                cursor += isolated - 1;
 626                continue;
 627
 628isolate_fail:
 629                if (strict)
 630                        break;
 631                else
 632                        continue;
 633
 634        }
 635
 636        if (locked)
 637                spin_unlock_irqrestore(&cc->zone->lock, flags);
 638
 639        /*
 640         * There is a tiny chance that we have read bogus compound_order(),
 641         * so be careful to not go outside of the pageblock.
 642         */
 643        if (unlikely(blockpfn > end_pfn))
 644                blockpfn = end_pfn;
 645
 646        trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 647                                        nr_scanned, total_isolated);
 648
 649        /* Record how far we have got within the block */
 650        *start_pfn = blockpfn;
 651
 652        /*
 653         * If strict isolation is requested by CMA then check that all the
 654         * pages requested were isolated. If there were any failures, 0 is
 655         * returned and CMA will fail.
 656         */
 657        if (strict && blockpfn < end_pfn)
 658                total_isolated = 0;
 659
 660        cc->total_free_scanned += nr_scanned;
 661        if (total_isolated)
 662                count_compact_events(COMPACTISOLATED, total_isolated);
 663        return total_isolated;
 664}
 665
 666/**
 667 * isolate_freepages_range() - isolate free pages.
 668 * @cc:        Compaction control structure.
 669 * @start_pfn: The first PFN to start isolating.
 670 * @end_pfn:   The one-past-last PFN.
 671 *
 672 * Non-free pages, invalid PFNs, or zone boundaries within the
 673 * [start_pfn, end_pfn) range are considered errors, cause function to
 674 * undo its actions and return zero.
 675 *
 676 * Otherwise, function returns one-past-the-last PFN of isolated page
 677 * (which may be greater then end_pfn if end fell in a middle of
 678 * a free page).
 679 */
 680unsigned long
 681isolate_freepages_range(struct compact_control *cc,
 682                        unsigned long start_pfn, unsigned long end_pfn)
 683{
 684        unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 685        LIST_HEAD(freelist);
 686
 687        pfn = start_pfn;
 688        block_start_pfn = pageblock_start_pfn(pfn);
 689        if (block_start_pfn < cc->zone->zone_start_pfn)
 690                block_start_pfn = cc->zone->zone_start_pfn;
 691        block_end_pfn = pageblock_end_pfn(pfn);
 692
 693        for (; pfn < end_pfn; pfn += isolated,
 694                                block_start_pfn = block_end_pfn,
 695                                block_end_pfn += pageblock_nr_pages) {
 696                /* Protect pfn from changing by isolate_freepages_block */
 697                unsigned long isolate_start_pfn = pfn;
 698
 699                block_end_pfn = min(block_end_pfn, end_pfn);
 700
 701                /*
 702                 * pfn could pass the block_end_pfn if isolated freepage
 703                 * is more than pageblock order. In this case, we adjust
 704                 * scanning range to right one.
 705                 */
 706                if (pfn >= block_end_pfn) {
 707                        block_start_pfn = pageblock_start_pfn(pfn);
 708                        block_end_pfn = pageblock_end_pfn(pfn);
 709                        block_end_pfn = min(block_end_pfn, end_pfn);
 710                }
 711
 712                if (!pageblock_pfn_to_page(block_start_pfn,
 713                                        block_end_pfn, cc->zone))
 714                        break;
 715
 716                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 717                                        block_end_pfn, &freelist, 0, true);
 718
 719                /*
 720                 * In strict mode, isolate_freepages_block() returns 0 if
 721                 * there are any holes in the block (ie. invalid PFNs or
 722                 * non-free pages).
 723                 */
 724                if (!isolated)
 725                        break;
 726
 727                /*
 728                 * If we managed to isolate pages, it is always (1 << n) *
 729                 * pageblock_nr_pages for some non-negative n.  (Max order
 730                 * page may span two pageblocks).
 731                 */
 732        }
 733
 734        /* __isolate_free_page() does not map the pages */
 735        split_map_pages(&freelist);
 736
 737        if (pfn < end_pfn) {
 738                /* Loop terminated early, cleanup. */
 739                release_freepages(&freelist);
 740                return 0;
 741        }
 742
 743        /* We don't use freelists for anything. */
 744        return pfn;
 745}
 746
 747/* Similar to reclaim, but different enough that they don't share logic */
 748static bool too_many_isolated(pg_data_t *pgdat)
 749{
 750        unsigned long active, inactive, isolated;
 751
 752        inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 753                        node_page_state(pgdat, NR_INACTIVE_ANON);
 754        active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 755                        node_page_state(pgdat, NR_ACTIVE_ANON);
 756        isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 757                        node_page_state(pgdat, NR_ISOLATED_ANON);
 758
 759        return isolated > (inactive + active) / 2;
 760}
 761
 762/**
 763 * isolate_migratepages_block() - isolate all migrate-able pages within
 764 *                                a single pageblock
 765 * @cc:         Compaction control structure.
 766 * @low_pfn:    The first PFN to isolate
 767 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 768 * @isolate_mode: Isolation mode to be used.
 769 *
 770 * Isolate all pages that can be migrated from the range specified by
 771 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 772 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 773 * first page that was not scanned (which may be both less, equal to or more
 774 * than end_pfn).
 775 *
 776 * The pages are isolated on cc->migratepages list (not required to be empty),
 777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 778 * is neither read nor updated.
 779 */
 780static unsigned long
 781isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 782                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 783{
 784        pg_data_t *pgdat = cc->zone->zone_pgdat;
 785        unsigned long nr_scanned = 0, nr_isolated = 0;
 786        struct lruvec *lruvec;
 787        unsigned long flags = 0;
 788        bool locked = false;
 789        struct page *page = NULL, *valid_page = NULL;
 790        unsigned long start_pfn = low_pfn;
 791        bool skip_on_failure = false;
 792        unsigned long next_skip_pfn = 0;
 793        bool skip_updated = false;
 794
 795        /*
 796         * Ensure that there are not too many pages isolated from the LRU
 797         * list by either parallel reclaimers or compaction. If there are,
 798         * delay for some time until fewer pages are isolated
 799         */
 800        while (unlikely(too_many_isolated(pgdat))) {
 801                /* async migration should just abort */
 802                if (cc->mode == MIGRATE_ASYNC)
 803                        return 0;
 804
 805                congestion_wait(BLK_RW_ASYNC, HZ/10);
 806
 807                if (fatal_signal_pending(current))
 808                        return 0;
 809        }
 810
 811        cond_resched();
 812
 813        if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 814                skip_on_failure = true;
 815                next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 816        }
 817
 818        /* Time to isolate some pages for migration */
 819        for (; low_pfn < end_pfn; low_pfn++) {
 820
 821                if (skip_on_failure && low_pfn >= next_skip_pfn) {
 822                        /*
 823                         * We have isolated all migration candidates in the
 824                         * previous order-aligned block, and did not skip it due
 825                         * to failure. We should migrate the pages now and
 826                         * hopefully succeed compaction.
 827                         */
 828                        if (nr_isolated)
 829                                break;
 830
 831                        /*
 832                         * We failed to isolate in the previous order-aligned
 833                         * block. Set the new boundary to the end of the
 834                         * current block. Note we can't simply increase
 835                         * next_skip_pfn by 1 << order, as low_pfn might have
 836                         * been incremented by a higher number due to skipping
 837                         * a compound or a high-order buddy page in the
 838                         * previous loop iteration.
 839                         */
 840                        next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 841                }
 842
 843                /*
 844                 * Periodically drop the lock (if held) regardless of its
 845                 * contention, to give chance to IRQs. Abort async compaction
 846                 * if contended.
 847                 */
 848                if (!(low_pfn % SWAP_CLUSTER_MAX)
 849                    && compact_unlock_should_abort(&pgdat->lru_lock,
 850                                            flags, &locked, cc))
 851                        break;
 852
 853                if (!pfn_valid_within(low_pfn))
 854                        goto isolate_fail;
 855                nr_scanned++;
 856
 857                page = pfn_to_page(low_pfn);
 858
 859                /*
 860                 * Check if the pageblock has already been marked skipped.
 861                 * Only the aligned PFN is checked as the caller isolates
 862                 * COMPACT_CLUSTER_MAX at a time so the second call must
 863                 * not falsely conclude that the block should be skipped.
 864                 */
 865                if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 866                        if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 867                                low_pfn = end_pfn;
 868                                goto isolate_abort;
 869                        }
 870                        valid_page = page;
 871                }
 872
 873                /*
 874                 * Skip if free. We read page order here without zone lock
 875                 * which is generally unsafe, but the race window is small and
 876                 * the worst thing that can happen is that we skip some
 877                 * potential isolation targets.
 878                 */
 879                if (PageBuddy(page)) {
 880                        unsigned long freepage_order = page_order_unsafe(page);
 881
 882                        /*
 883                         * Without lock, we cannot be sure that what we got is
 884                         * a valid page order. Consider only values in the
 885                         * valid order range to prevent low_pfn overflow.
 886                         */
 887                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 888                                low_pfn += (1UL << freepage_order) - 1;
 889                        continue;
 890                }
 891
 892                /*
 893                 * Regardless of being on LRU, compound pages such as THP and
 894                 * hugetlbfs are not to be compacted. We can potentially save
 895                 * a lot of iterations if we skip them at once. The check is
 896                 * racy, but we can consider only valid values and the only
 897                 * danger is skipping too much.
 898                 */
 899                if (PageCompound(page)) {
 900                        const unsigned int order = compound_order(page);
 901
 902                        if (likely(order < MAX_ORDER))
 903                                low_pfn += (1UL << order) - 1;
 904                        goto isolate_fail;
 905                }
 906
 907                /*
 908                 * Check may be lockless but that's ok as we recheck later.
 909                 * It's possible to migrate LRU and non-lru movable pages.
 910                 * Skip any other type of page
 911                 */
 912                if (!PageLRU(page)) {
 913                        /*
 914                         * __PageMovable can return false positive so we need
 915                         * to verify it under page_lock.
 916                         */
 917                        if (unlikely(__PageMovable(page)) &&
 918                                        !PageIsolated(page)) {
 919                                if (locked) {
 920                                        spin_unlock_irqrestore(&pgdat->lru_lock,
 921                                                                        flags);
 922                                        locked = false;
 923                                }
 924
 925                                if (!isolate_movable_page(page, isolate_mode))
 926                                        goto isolate_success;
 927                        }
 928
 929                        goto isolate_fail;
 930                }
 931
 932                /*
 933                 * Migration will fail if an anonymous page is pinned in memory,
 934                 * so avoid taking lru_lock and isolating it unnecessarily in an
 935                 * admittedly racy check.
 936                 */
 937                if (!page_mapping(page) &&
 938                    page_count(page) > page_mapcount(page))
 939                        goto isolate_fail;
 940
 941                /*
 942                 * Only allow to migrate anonymous pages in GFP_NOFS context
 943                 * because those do not depend on fs locks.
 944                 */
 945                if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 946                        goto isolate_fail;
 947
 948                /* If we already hold the lock, we can skip some rechecking */
 949                if (!locked) {
 950                        locked = compact_lock_irqsave(&pgdat->lru_lock,
 951                                                                &flags, cc);
 952
 953                        /* Try get exclusive access under lock */
 954                        if (!skip_updated) {
 955                                skip_updated = true;
 956                                if (test_and_set_skip(cc, page, low_pfn))
 957                                        goto isolate_abort;
 958                        }
 959
 960                        /* Recheck PageLRU and PageCompound under lock */
 961                        if (!PageLRU(page))
 962                                goto isolate_fail;
 963
 964                        /*
 965                         * Page become compound since the non-locked check,
 966                         * and it's on LRU. It can only be a THP so the order
 967                         * is safe to read and it's 0 for tail pages.
 968                         */
 969                        if (unlikely(PageCompound(page))) {
 970                                low_pfn += (1UL << compound_order(page)) - 1;
 971                                goto isolate_fail;
 972                        }
 973                }
 974
 975                lruvec = mem_cgroup_page_lruvec(page, pgdat);
 976
 977                /* Try isolate the page */
 978                if (__isolate_lru_page(page, isolate_mode) != 0)
 979                        goto isolate_fail;
 980
 981                VM_BUG_ON_PAGE(PageCompound(page), page);
 982
 983                /* Successfully isolated */
 984                del_page_from_lru_list(page, lruvec, page_lru(page));
 985                inc_node_page_state(page,
 986                                NR_ISOLATED_ANON + page_is_file_cache(page));
 987
 988isolate_success:
 989                list_add(&page->lru, &cc->migratepages);
 990                cc->nr_migratepages++;
 991                nr_isolated++;
 992
 993                /*
 994                 * Avoid isolating too much unless this block is being
 995                 * rescanned (e.g. dirty/writeback pages, parallel allocation)
 996                 * or a lock is contended. For contention, isolate quickly to
 997                 * potentially remove one source of contention.
 998                 */
 999                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000                    !cc->rescan && !cc->contended) {
1001                        ++low_pfn;
1002                        break;
1003                }
1004
1005                continue;
1006isolate_fail:
1007                if (!skip_on_failure)
1008                        continue;
1009
1010                /*
1011                 * We have isolated some pages, but then failed. Release them
1012                 * instead of migrating, as we cannot form the cc->order buddy
1013                 * page anyway.
1014                 */
1015                if (nr_isolated) {
1016                        if (locked) {
1017                                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018                                locked = false;
1019                        }
1020                        putback_movable_pages(&cc->migratepages);
1021                        cc->nr_migratepages = 0;
1022                        nr_isolated = 0;
1023                }
1024
1025                if (low_pfn < next_skip_pfn) {
1026                        low_pfn = next_skip_pfn - 1;
1027                        /*
1028                         * The check near the loop beginning would have updated
1029                         * next_skip_pfn too, but this is a bit simpler.
1030                         */
1031                        next_skip_pfn += 1UL << cc->order;
1032                }
1033        }
1034
1035        /*
1036         * The PageBuddy() check could have potentially brought us outside
1037         * the range to be scanned.
1038         */
1039        if (unlikely(low_pfn > end_pfn))
1040                low_pfn = end_pfn;
1041
1042isolate_abort:
1043        if (locked)
1044                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046        /*
1047         * Updated the cached scanner pfn once the pageblock has been scanned
1048         * Pages will either be migrated in which case there is no point
1049         * scanning in the near future or migration failed in which case the
1050         * failure reason may persist. The block is marked for skipping if
1051         * there were no pages isolated in the block or if the block is
1052         * rescanned twice in a row.
1053         */
1054        if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055                if (valid_page && !skip_updated)
1056                        set_pageblock_skip(valid_page);
1057                update_cached_migrate(cc, low_pfn);
1058        }
1059
1060        trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061                                                nr_scanned, nr_isolated);
1062
1063        cc->total_migrate_scanned += nr_scanned;
1064        if (nr_isolated)
1065                count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067        return low_pfn;
1068}
1069
1070/**
1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072 * @cc:        Compaction control structure.
1073 * @start_pfn: The first PFN to start isolating.
1074 * @end_pfn:   The one-past-last PFN.
1075 *
1076 * Returns zero if isolation fails fatally due to e.g. pending signal.
1077 * Otherwise, function returns one-past-the-last PFN of isolated page
1078 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079 */
1080unsigned long
1081isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082                                                        unsigned long end_pfn)
1083{
1084        unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086        /* Scan block by block. First and last block may be incomplete */
1087        pfn = start_pfn;
1088        block_start_pfn = pageblock_start_pfn(pfn);
1089        if (block_start_pfn < cc->zone->zone_start_pfn)
1090                block_start_pfn = cc->zone->zone_start_pfn;
1091        block_end_pfn = pageblock_end_pfn(pfn);
1092
1093        for (; pfn < end_pfn; pfn = block_end_pfn,
1094                                block_start_pfn = block_end_pfn,
1095                                block_end_pfn += pageblock_nr_pages) {
1096
1097                block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099                if (!pageblock_pfn_to_page(block_start_pfn,
1100                                        block_end_pfn, cc->zone))
1101                        continue;
1102
1103                pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104                                                        ISOLATE_UNEVICTABLE);
1105
1106                if (!pfn)
1107                        break;
1108
1109                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110                        break;
1111        }
1112
1113        return pfn;
1114}
1115
1116#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117#ifdef CONFIG_COMPACTION
1118
1119static bool suitable_migration_source(struct compact_control *cc,
1120                                                        struct page *page)
1121{
1122        int block_mt;
1123
1124        if (pageblock_skip_persistent(page))
1125                return false;
1126
1127        if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128                return true;
1129
1130        block_mt = get_pageblock_migratetype(page);
1131
1132        if (cc->migratetype == MIGRATE_MOVABLE)
1133                return is_migrate_movable(block_mt);
1134        else
1135                return block_mt == cc->migratetype;
1136}
1137
1138/* Returns true if the page is within a block suitable for migration to */
1139static bool suitable_migration_target(struct compact_control *cc,
1140                                                        struct page *page)
1141{
1142        /* If the page is a large free page, then disallow migration */
1143        if (PageBuddy(page)) {
1144                /*
1145                 * We are checking page_order without zone->lock taken. But
1146                 * the only small danger is that we skip a potentially suitable
1147                 * pageblock, so it's not worth to check order for valid range.
1148                 */
1149                if (page_order_unsafe(page) >= pageblock_order)
1150                        return false;
1151        }
1152
1153        if (cc->ignore_block_suitable)
1154                return true;
1155
1156        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157        if (is_migrate_movable(get_pageblock_migratetype(page)))
1158                return true;
1159
1160        /* Otherwise skip the block */
1161        return false;
1162}
1163
1164static inline unsigned int
1165freelist_scan_limit(struct compact_control *cc)
1166{
1167        return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
1168}
1169
1170/*
1171 * Test whether the free scanner has reached the same or lower pageblock than
1172 * the migration scanner, and compaction should thus terminate.
1173 */
1174static inline bool compact_scanners_met(struct compact_control *cc)
1175{
1176        return (cc->free_pfn >> pageblock_order)
1177                <= (cc->migrate_pfn >> pageblock_order);
1178}
1179
1180/*
1181 * Used when scanning for a suitable migration target which scans freelists
1182 * in reverse. Reorders the list such as the unscanned pages are scanned
1183 * first on the next iteration of the free scanner
1184 */
1185static void
1186move_freelist_head(struct list_head *freelist, struct page *freepage)
1187{
1188        LIST_HEAD(sublist);
1189
1190        if (!list_is_last(freelist, &freepage->lru)) {
1191                list_cut_before(&sublist, freelist, &freepage->lru);
1192                if (!list_empty(&sublist))
1193                        list_splice_tail(&sublist, freelist);
1194        }
1195}
1196
1197/*
1198 * Similar to move_freelist_head except used by the migration scanner
1199 * when scanning forward. It's possible for these list operations to
1200 * move against each other if they search the free list exactly in
1201 * lockstep.
1202 */
1203static void
1204move_freelist_tail(struct list_head *freelist, struct page *freepage)
1205{
1206        LIST_HEAD(sublist);
1207
1208        if (!list_is_first(freelist, &freepage->lru)) {
1209                list_cut_position(&sublist, freelist, &freepage->lru);
1210                if (!list_empty(&sublist))
1211                        list_splice_tail(&sublist, freelist);
1212        }
1213}
1214
1215static void
1216fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1217{
1218        unsigned long start_pfn, end_pfn;
1219        struct page *page = pfn_to_page(pfn);
1220
1221        /* Do not search around if there are enough pages already */
1222        if (cc->nr_freepages >= cc->nr_migratepages)
1223                return;
1224
1225        /* Minimise scanning during async compaction */
1226        if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1227                return;
1228
1229        /* Pageblock boundaries */
1230        start_pfn = pageblock_start_pfn(pfn);
1231        end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));
1232
1233        /* Scan before */
1234        if (start_pfn != pfn) {
1235                isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1236                if (cc->nr_freepages >= cc->nr_migratepages)
1237                        return;
1238        }
1239
1240        /* Scan after */
1241        start_pfn = pfn + nr_isolated;
1242        if (start_pfn != end_pfn)
1243                isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1244
1245        /* Skip this pageblock in the future as it's full or nearly full */
1246        if (cc->nr_freepages < cc->nr_migratepages)
1247                set_pageblock_skip(page);
1248}
1249
1250/* Search orders in round-robin fashion */
1251static int next_search_order(struct compact_control *cc, int order)
1252{
1253        order--;
1254        if (order < 0)
1255                order = cc->order - 1;
1256
1257        /* Search wrapped around? */
1258        if (order == cc->search_order) {
1259                cc->search_order--;
1260                if (cc->search_order < 0)
1261                        cc->search_order = cc->order - 1;
1262                return -1;
1263        }
1264
1265        return order;
1266}
1267
1268static unsigned long
1269fast_isolate_freepages(struct compact_control *cc)
1270{
1271        unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1272        unsigned int nr_scanned = 0;
1273        unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1274        unsigned long nr_isolated = 0;
1275        unsigned long distance;
1276        struct page *page = NULL;
1277        bool scan_start = false;
1278        int order;
1279
1280        /* Full compaction passes in a negative order */
1281        if (cc->order <= 0)
1282                return cc->free_pfn;
1283
1284        /*
1285         * If starting the scan, use a deeper search and use the highest
1286         * PFN found if a suitable one is not found.
1287         */
1288        if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1289                limit = pageblock_nr_pages >> 1;
1290                scan_start = true;
1291        }
1292
1293        /*
1294         * Preferred point is in the top quarter of the scan space but take
1295         * a pfn from the top half if the search is problematic.
1296         */
1297        distance = (cc->free_pfn - cc->migrate_pfn);
1298        low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1299        min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1300
1301        if (WARN_ON_ONCE(min_pfn > low_pfn))
1302                low_pfn = min_pfn;
1303
1304        /*
1305         * Search starts from the last successful isolation order or the next
1306         * order to search after a previous failure
1307         */
1308        cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1309
1310        for (order = cc->search_order;
1311             !page && order >= 0;
1312             order = next_search_order(cc, order)) {
1313                struct free_area *area = &cc->zone->free_area[order];
1314                struct list_head *freelist;
1315                struct page *freepage;
1316                unsigned long flags;
1317                unsigned int order_scanned = 0;
1318
1319                if (!area->nr_free)
1320                        continue;
1321
1322                spin_lock_irqsave(&cc->zone->lock, flags);
1323                freelist = &area->free_list[MIGRATE_MOVABLE];
1324                list_for_each_entry_reverse(freepage, freelist, lru) {
1325                        unsigned long pfn;
1326
1327                        order_scanned++;
1328                        nr_scanned++;
1329                        pfn = page_to_pfn(freepage);
1330
1331                        if (pfn >= highest)
1332                                highest = pageblock_start_pfn(pfn);
1333
1334                        if (pfn >= low_pfn) {
1335                                cc->fast_search_fail = 0;
1336                                cc->search_order = order;
1337                                page = freepage;
1338                                break;
1339                        }
1340
1341                        if (pfn >= min_pfn && pfn > high_pfn) {
1342                                high_pfn = pfn;
1343
1344                                /* Shorten the scan if a candidate is found */
1345                                limit >>= 1;
1346                        }
1347
1348                        if (order_scanned >= limit)
1349                                break;
1350                }
1351
1352                /* Use a minimum pfn if a preferred one was not found */
1353                if (!page && high_pfn) {
1354                        page = pfn_to_page(high_pfn);
1355
1356                        /* Update freepage for the list reorder below */
1357                        freepage = page;
1358                }
1359
1360                /* Reorder to so a future search skips recent pages */
1361                move_freelist_head(freelist, freepage);
1362
1363                /* Isolate the page if available */
1364                if (page) {
1365                        if (__isolate_free_page(page, order)) {
1366                                set_page_private(page, order);
1367                                nr_isolated = 1 << order;
1368                                cc->nr_freepages += nr_isolated;
1369                                list_add_tail(&page->lru, &cc->freepages);
1370                                count_compact_events(COMPACTISOLATED, nr_isolated);
1371                        } else {
1372                                /* If isolation fails, abort the search */
1373                                order = cc->search_order + 1;
1374                                page = NULL;
1375                        }
1376                }
1377
1378                spin_unlock_irqrestore(&cc->zone->lock, flags);
1379
1380                /*
1381                 * Smaller scan on next order so the total scan ig related
1382                 * to freelist_scan_limit.
1383                 */
1384                if (order_scanned >= limit)
1385                        limit = min(1U, limit >> 1);
1386        }
1387
1388        if (!page) {
1389                cc->fast_search_fail++;
1390                if (scan_start) {
1391                        /*
1392                         * Use the highest PFN found above min. If one was
1393                         * not found, be pessemistic for direct compaction
1394                         * and use the min mark.
1395                         */
1396                        if (highest) {
1397                                page = pfn_to_page(highest);
1398                                cc->free_pfn = highest;
1399                        } else {
1400                                if (cc->direct_compaction) {
1401                                        page = pfn_to_page(min_pfn);
1402                                        cc->free_pfn = min_pfn;
1403                                }
1404                        }
1405                }
1406        }
1407
1408        if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1409                highest -= pageblock_nr_pages;
1410                cc->zone->compact_cached_free_pfn = highest;
1411        }
1412
1413        cc->total_free_scanned += nr_scanned;
1414        if (!page)
1415                return cc->free_pfn;
1416
1417        low_pfn = page_to_pfn(page);
1418        fast_isolate_around(cc, low_pfn, nr_isolated);
1419        return low_pfn;
1420}
1421
1422/*
1423 * Based on information in the current compact_control, find blocks
1424 * suitable for isolating free pages from and then isolate them.
1425 */
1426static void isolate_freepages(struct compact_control *cc)
1427{
1428        struct zone *zone = cc->zone;
1429        struct page *page;
1430        unsigned long block_start_pfn;  /* start of current pageblock */
1431        unsigned long isolate_start_pfn; /* exact pfn we start at */
1432        unsigned long block_end_pfn;    /* end of current pageblock */
1433        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1434        struct list_head *freelist = &cc->freepages;
1435        unsigned int stride;
1436
1437        /* Try a small search of the free lists for a candidate */
1438        isolate_start_pfn = fast_isolate_freepages(cc);
1439        if (cc->nr_freepages)
1440                goto splitmap;
1441
1442        /*
1443         * Initialise the free scanner. The starting point is where we last
1444         * successfully isolated from, zone-cached value, or the end of the
1445         * zone when isolating for the first time. For looping we also need
1446         * this pfn aligned down to the pageblock boundary, because we do
1447         * block_start_pfn -= pageblock_nr_pages in the for loop.
1448         * For ending point, take care when isolating in last pageblock of a
1449         * a zone which ends in the middle of a pageblock.
1450         * The low boundary is the end of the pageblock the migration scanner
1451         * is using.
1452         */
1453        isolate_start_pfn = cc->free_pfn;
1454        block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1455        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1456                                                zone_end_pfn(zone));
1457        low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1458        stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1459
1460        /*
1461         * Isolate free pages until enough are available to migrate the
1462         * pages on cc->migratepages. We stop searching if the migrate
1463         * and free page scanners meet or enough free pages are isolated.
1464         */
1465        for (; block_start_pfn >= low_pfn;
1466                                block_end_pfn = block_start_pfn,
1467                                block_start_pfn -= pageblock_nr_pages,
1468                                isolate_start_pfn = block_start_pfn) {
1469                unsigned long nr_isolated;
1470
1471                /*
1472                 * This can iterate a massively long zone without finding any
1473                 * suitable migration targets, so periodically check resched.
1474                 */
1475                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1476                        cond_resched();
1477
1478                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1479                                                                        zone);
1480                if (!page)
1481                        continue;
1482
1483                /* Check the block is suitable for migration */
1484                if (!suitable_migration_target(cc, page))
1485                        continue;
1486
1487                /* If isolation recently failed, do not retry */
1488                if (!isolation_suitable(cc, page))
1489                        continue;
1490
1491                /* Found a block suitable for isolating free pages from. */
1492                nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1493                                        block_end_pfn, freelist, stride, false);
1494
1495                /* Update the skip hint if the full pageblock was scanned */
1496                if (isolate_start_pfn == block_end_pfn)
1497                        update_pageblock_skip(cc, page, block_start_pfn);
1498
1499                /* Are enough freepages isolated? */
1500                if (cc->nr_freepages >= cc->nr_migratepages) {
1501                        if (isolate_start_pfn >= block_end_pfn) {
1502                                /*
1503                                 * Restart at previous pageblock if more
1504                                 * freepages can be isolated next time.
1505                                 */
1506                                isolate_start_pfn =
1507                                        block_start_pfn - pageblock_nr_pages;
1508                        }
1509                        break;
1510                } else if (isolate_start_pfn < block_end_pfn) {
1511                        /*
1512                         * If isolation failed early, do not continue
1513                         * needlessly.
1514                         */
1515                        break;
1516                }
1517
1518                /* Adjust stride depending on isolation */
1519                if (nr_isolated) {
1520                        stride = 1;
1521                        continue;
1522                }
1523                stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1524        }
1525
1526        /*
1527         * Record where the free scanner will restart next time. Either we
1528         * broke from the loop and set isolate_start_pfn based on the last
1529         * call to isolate_freepages_block(), or we met the migration scanner
1530         * and the loop terminated due to isolate_start_pfn < low_pfn
1531         */
1532        cc->free_pfn = isolate_start_pfn;
1533
1534splitmap:
1535        /* __isolate_free_page() does not map the pages */
1536        split_map_pages(freelist);
1537}
1538
1539/*
1540 * This is a migrate-callback that "allocates" freepages by taking pages
1541 * from the isolated freelists in the block we are migrating to.
1542 */
1543static struct page *compaction_alloc(struct page *migratepage,
1544                                        unsigned long data)
1545{
1546        struct compact_control *cc = (struct compact_control *)data;
1547        struct page *freepage;
1548
1549        if (list_empty(&cc->freepages)) {
1550                isolate_freepages(cc);
1551
1552                if (list_empty(&cc->freepages))
1553                        return NULL;
1554        }
1555
1556        freepage = list_entry(cc->freepages.next, struct page, lru);
1557        list_del(&freepage->lru);
1558        cc->nr_freepages--;
1559
1560        return freepage;
1561}
1562
1563/*
1564 * This is a migrate-callback that "frees" freepages back to the isolated
1565 * freelist.  All pages on the freelist are from the same zone, so there is no
1566 * special handling needed for NUMA.
1567 */
1568static void compaction_free(struct page *page, unsigned long data)
1569{
1570        struct compact_control *cc = (struct compact_control *)data;
1571
1572        list_add(&page->lru, &cc->freepages);
1573        cc->nr_freepages++;
1574}
1575
1576/* possible outcome of isolate_migratepages */
1577typedef enum {
1578        ISOLATE_ABORT,          /* Abort compaction now */
1579        ISOLATE_NONE,           /* No pages isolated, continue scanning */
1580        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1581} isolate_migrate_t;
1582
1583/*
1584 * Allow userspace to control policy on scanning the unevictable LRU for
1585 * compactable pages.
1586 */
1587int sysctl_compact_unevictable_allowed __read_mostly = 1;
1588
1589static inline void
1590update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1591{
1592        if (cc->fast_start_pfn == ULONG_MAX)
1593                return;
1594
1595        if (!cc->fast_start_pfn)
1596                cc->fast_start_pfn = pfn;
1597
1598        cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1599}
1600
1601static inline unsigned long
1602reinit_migrate_pfn(struct compact_control *cc)
1603{
1604        if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1605                return cc->migrate_pfn;
1606
1607        cc->migrate_pfn = cc->fast_start_pfn;
1608        cc->fast_start_pfn = ULONG_MAX;
1609
1610        return cc->migrate_pfn;
1611}
1612
1613/*
1614 * Briefly search the free lists for a migration source that already has
1615 * some free pages to reduce the number of pages that need migration
1616 * before a pageblock is free.
1617 */
1618static unsigned long fast_find_migrateblock(struct compact_control *cc)
1619{
1620        unsigned int limit = freelist_scan_limit(cc);
1621        unsigned int nr_scanned = 0;
1622        unsigned long distance;
1623        unsigned long pfn = cc->migrate_pfn;
1624        unsigned long high_pfn;
1625        int order;
1626
1627        /* Skip hints are relied on to avoid repeats on the fast search */
1628        if (cc->ignore_skip_hint)
1629                return pfn;
1630
1631        /*
1632         * If the migrate_pfn is not at the start of a zone or the start
1633         * of a pageblock then assume this is a continuation of a previous
1634         * scan restarted due to COMPACT_CLUSTER_MAX.
1635         */
1636        if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1637                return pfn;
1638
1639        /*
1640         * For smaller orders, just linearly scan as the number of pages
1641         * to migrate should be relatively small and does not necessarily
1642         * justify freeing up a large block for a small allocation.
1643         */
1644        if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1645                return pfn;
1646
1647        /*
1648         * Only allow kcompactd and direct requests for movable pages to
1649         * quickly clear out a MOVABLE pageblock for allocation. This
1650         * reduces the risk that a large movable pageblock is freed for
1651         * an unmovable/reclaimable small allocation.
1652         */
1653        if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1654                return pfn;
1655
1656        /*
1657         * When starting the migration scanner, pick any pageblock within the
1658         * first half of the search space. Otherwise try and pick a pageblock
1659         * within the first eighth to reduce the chances that a migration
1660         * target later becomes a source.
1661         */
1662        distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1663        if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1664                distance >>= 2;
1665        high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1666
1667        for (order = cc->order - 1;
1668             order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1669             order--) {
1670                struct free_area *area = &cc->zone->free_area[order];
1671                struct list_head *freelist;
1672                unsigned long flags;
1673                struct page *freepage;
1674
1675                if (!area->nr_free)
1676                        continue;
1677
1678                spin_lock_irqsave(&cc->zone->lock, flags);
1679                freelist = &area->free_list[MIGRATE_MOVABLE];
1680                list_for_each_entry(freepage, freelist, lru) {
1681                        unsigned long free_pfn;
1682
1683                        nr_scanned++;
1684                        free_pfn = page_to_pfn(freepage);
1685                        if (free_pfn < high_pfn) {
1686                                /*
1687                                 * Avoid if skipped recently. Ideally it would
1688                                 * move to the tail but even safe iteration of
1689                                 * the list assumes an entry is deleted, not
1690                                 * reordered.
1691                                 */
1692                                if (get_pageblock_skip(freepage)) {
1693                                        if (list_is_last(freelist, &freepage->lru))
1694                                                break;
1695
1696                                        continue;
1697                                }
1698
1699                                /* Reorder to so a future search skips recent pages */
1700                                move_freelist_tail(freelist, freepage);
1701
1702                                update_fast_start_pfn(cc, free_pfn);
1703                                pfn = pageblock_start_pfn(free_pfn);
1704                                cc->fast_search_fail = 0;
1705                                set_pageblock_skip(freepage);
1706                                break;
1707                        }
1708
1709                        if (nr_scanned >= limit) {
1710                                cc->fast_search_fail++;
1711                                move_freelist_tail(freelist, freepage);
1712                                break;
1713                        }
1714                }
1715                spin_unlock_irqrestore(&cc->zone->lock, flags);
1716        }
1717
1718        cc->total_migrate_scanned += nr_scanned;
1719
1720        /*
1721         * If fast scanning failed then use a cached entry for a page block
1722         * that had free pages as the basis for starting a linear scan.
1723         */
1724        if (pfn == cc->migrate_pfn)
1725                pfn = reinit_migrate_pfn(cc);
1726
1727        return pfn;
1728}
1729
1730/*
1731 * Isolate all pages that can be migrated from the first suitable block,
1732 * starting at the block pointed to by the migrate scanner pfn within
1733 * compact_control.
1734 */
1735static isolate_migrate_t isolate_migratepages(struct zone *zone,
1736                                        struct compact_control *cc)
1737{
1738        unsigned long block_start_pfn;
1739        unsigned long block_end_pfn;
1740        unsigned long low_pfn;
1741        struct page *page;
1742        const isolate_mode_t isolate_mode =
1743                (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1744                (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1745        bool fast_find_block;
1746
1747        /*
1748         * Start at where we last stopped, or beginning of the zone as
1749         * initialized by compact_zone(). The first failure will use
1750         * the lowest PFN as the starting point for linear scanning.
1751         */
1752        low_pfn = fast_find_migrateblock(cc);
1753        block_start_pfn = pageblock_start_pfn(low_pfn);
1754        if (block_start_pfn < zone->zone_start_pfn)
1755                block_start_pfn = zone->zone_start_pfn;
1756
1757        /*
1758         * fast_find_migrateblock marks a pageblock skipped so to avoid
1759         * the isolation_suitable check below, check whether the fast
1760         * search was successful.
1761         */
1762        fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1763
1764        /* Only scan within a pageblock boundary */
1765        block_end_pfn = pageblock_end_pfn(low_pfn);
1766
1767        /*
1768         * Iterate over whole pageblocks until we find the first suitable.
1769         * Do not cross the free scanner.
1770         */
1771        for (; block_end_pfn <= cc->free_pfn;
1772                        fast_find_block = false,
1773                        low_pfn = block_end_pfn,
1774                        block_start_pfn = block_end_pfn,
1775                        block_end_pfn += pageblock_nr_pages) {
1776
1777                /*
1778                 * This can potentially iterate a massively long zone with
1779                 * many pageblocks unsuitable, so periodically check if we
1780                 * need to schedule.
1781                 */
1782                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1783                        cond_resched();
1784
1785                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786                                                                        zone);
1787                if (!page)
1788                        continue;
1789
1790                /*
1791                 * If isolation recently failed, do not retry. Only check the
1792                 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1793                 * to be visited multiple times. Assume skip was checked
1794                 * before making it "skip" so other compaction instances do
1795                 * not scan the same block.
1796                 */
1797                if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1798                    !fast_find_block && !isolation_suitable(cc, page))
1799                        continue;
1800
1801                /*
1802                 * For async compaction, also only scan in MOVABLE blocks
1803                 * without huge pages. Async compaction is optimistic to see
1804                 * if the minimum amount of work satisfies the allocation.
1805                 * The cached PFN is updated as it's possible that all
1806                 * remaining blocks between source and target are unsuitable
1807                 * and the compaction scanners fail to meet.
1808                 */
1809                if (!suitable_migration_source(cc, page)) {
1810                        update_cached_migrate(cc, block_end_pfn);
1811                        continue;
1812                }
1813
1814                /* Perform the isolation */
1815                low_pfn = isolate_migratepages_block(cc, low_pfn,
1816                                                block_end_pfn, isolate_mode);
1817
1818                if (!low_pfn)
1819                        return ISOLATE_ABORT;
1820
1821                /*
1822                 * Either we isolated something and proceed with migration. Or
1823                 * we failed and compact_zone should decide if we should
1824                 * continue or not.
1825                 */
1826                break;
1827        }
1828
1829        /* Record where migration scanner will be restarted. */
1830        cc->migrate_pfn = low_pfn;
1831
1832        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1833}
1834
1835/*
1836 * order == -1 is expected when compacting via
1837 * /proc/sys/vm/compact_memory
1838 */
1839static inline bool is_via_compact_memory(int order)
1840{
1841        return order == -1;
1842}
1843
1844static enum compact_result __compact_finished(struct compact_control *cc)
1845{
1846        unsigned int order;
1847        const int migratetype = cc->migratetype;
1848        int ret;
1849
1850        /* Compaction run completes if the migrate and free scanner meet */
1851        if (compact_scanners_met(cc)) {
1852                /* Let the next compaction start anew. */
1853                reset_cached_positions(cc->zone);
1854
1855                /*
1856                 * Mark that the PG_migrate_skip information should be cleared
1857                 * by kswapd when it goes to sleep. kcompactd does not set the
1858                 * flag itself as the decision to be clear should be directly
1859                 * based on an allocation request.
1860                 */
1861                if (cc->direct_compaction)
1862                        cc->zone->compact_blockskip_flush = true;
1863
1864                if (cc->whole_zone)
1865                        return COMPACT_COMPLETE;
1866                else
1867                        return COMPACT_PARTIAL_SKIPPED;
1868        }
1869
1870        if (is_via_compact_memory(cc->order))
1871                return COMPACT_CONTINUE;
1872
1873        /*
1874         * Always finish scanning a pageblock to reduce the possibility of
1875         * fallbacks in the future. This is particularly important when
1876         * migration source is unmovable/reclaimable but it's not worth
1877         * special casing.
1878         */
1879        if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1880                return COMPACT_CONTINUE;
1881
1882        /* Direct compactor: Is a suitable page free? */
1883        ret = COMPACT_NO_SUITABLE_PAGE;
1884        for (order = cc->order; order < MAX_ORDER; order++) {
1885                struct free_area *area = &cc->zone->free_area[order];
1886                bool can_steal;
1887
1888                /* Job done if page is free of the right migratetype */
1889                if (!list_empty(&area->free_list[migratetype]))
1890                        return COMPACT_SUCCESS;
1891
1892#ifdef CONFIG_CMA
1893                /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1894                if (migratetype == MIGRATE_MOVABLE &&
1895                        !list_empty(&area->free_list[MIGRATE_CMA]))
1896                        return COMPACT_SUCCESS;
1897#endif
1898                /*
1899                 * Job done if allocation would steal freepages from
1900                 * other migratetype buddy lists.
1901                 */
1902                if (find_suitable_fallback(area, order, migratetype,
1903                                                true, &can_steal) != -1) {
1904
1905                        /* movable pages are OK in any pageblock */
1906                        if (migratetype == MIGRATE_MOVABLE)
1907                                return COMPACT_SUCCESS;
1908
1909                        /*
1910                         * We are stealing for a non-movable allocation. Make
1911                         * sure we finish compacting the current pageblock
1912                         * first so it is as free as possible and we won't
1913                         * have to steal another one soon. This only applies
1914                         * to sync compaction, as async compaction operates
1915                         * on pageblocks of the same migratetype.
1916                         */
1917                        if (cc->mode == MIGRATE_ASYNC ||
1918                                        IS_ALIGNED(cc->migrate_pfn,
1919                                                        pageblock_nr_pages)) {
1920                                return COMPACT_SUCCESS;
1921                        }
1922
1923                        ret = COMPACT_CONTINUE;
1924                        break;
1925                }
1926        }
1927
1928        if (cc->contended || fatal_signal_pending(current))
1929                ret = COMPACT_CONTENDED;
1930
1931        return ret;
1932}
1933
1934static enum compact_result compact_finished(struct compact_control *cc)
1935{
1936        int ret;
1937
1938        ret = __compact_finished(cc);
1939        trace_mm_compaction_finished(cc->zone, cc->order, ret);
1940        if (ret == COMPACT_NO_SUITABLE_PAGE)
1941                ret = COMPACT_CONTINUE;
1942
1943        return ret;
1944}
1945
1946/*
1947 * compaction_suitable: Is this suitable to run compaction on this zone now?
1948 * Returns
1949 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1950 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1951 *   COMPACT_CONTINUE - If compaction should run now
1952 */
1953static enum compact_result __compaction_suitable(struct zone *zone, int order,
1954                                        unsigned int alloc_flags,
1955                                        int classzone_idx,
1956                                        unsigned long wmark_target)
1957{
1958        unsigned long watermark;
1959
1960        if (is_via_compact_memory(order))
1961                return COMPACT_CONTINUE;
1962
1963        watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1964        /*
1965         * If watermarks for high-order allocation are already met, there
1966         * should be no need for compaction at all.
1967         */
1968        if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1969                                                                alloc_flags))
1970                return COMPACT_SUCCESS;
1971
1972        /*
1973         * Watermarks for order-0 must be met for compaction to be able to
1974         * isolate free pages for migration targets. This means that the
1975         * watermark and alloc_flags have to match, or be more pessimistic than
1976         * the check in __isolate_free_page(). We don't use the direct
1977         * compactor's alloc_flags, as they are not relevant for freepage
1978         * isolation. We however do use the direct compactor's classzone_idx to
1979         * skip over zones where lowmem reserves would prevent allocation even
1980         * if compaction succeeds.
1981         * For costly orders, we require low watermark instead of min for
1982         * compaction to proceed to increase its chances.
1983         * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1984         * suitable migration targets
1985         */
1986        watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1987                                low_wmark_pages(zone) : min_wmark_pages(zone);
1988        watermark += compact_gap(order);
1989        if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1990                                                ALLOC_CMA, wmark_target))
1991                return COMPACT_SKIPPED;
1992
1993        return COMPACT_CONTINUE;
1994}
1995
1996enum compact_result compaction_suitable(struct zone *zone, int order,
1997                                        unsigned int alloc_flags,
1998                                        int classzone_idx)
1999{
2000        enum compact_result ret;
2001        int fragindex;
2002
2003        ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2004                                    zone_page_state(zone, NR_FREE_PAGES));
2005        /*
2006         * fragmentation index determines if allocation failures are due to
2007         * low memory or external fragmentation
2008         *
2009         * index of -1000 would imply allocations might succeed depending on
2010         * watermarks, but we already failed the high-order watermark check
2011         * index towards 0 implies failure is due to lack of memory
2012         * index towards 1000 implies failure is due to fragmentation
2013         *
2014         * Only compact if a failure would be due to fragmentation. Also
2015         * ignore fragindex for non-costly orders where the alternative to
2016         * a successful reclaim/compaction is OOM. Fragindex and the
2017         * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2018         * excessive compaction for costly orders, but it should not be at the
2019         * expense of system stability.
2020         */
2021        if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2022                fragindex = fragmentation_index(zone, order);
2023                if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2024                        ret = COMPACT_NOT_SUITABLE_ZONE;
2025        }
2026
2027        trace_mm_compaction_suitable(zone, order, ret);
2028        if (ret == COMPACT_NOT_SUITABLE_ZONE)
2029                ret = COMPACT_SKIPPED;
2030
2031        return ret;
2032}
2033
2034bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2035                int alloc_flags)
2036{
2037        struct zone *zone;
2038        struct zoneref *z;
2039
2040        /*
2041         * Make sure at least one zone would pass __compaction_suitable if we continue
2042         * retrying the reclaim.
2043         */
2044        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2045                                        ac->nodemask) {
2046                unsigned long available;
2047                enum compact_result compact_result;
2048
2049                /*
2050                 * Do not consider all the reclaimable memory because we do not
2051                 * want to trash just for a single high order allocation which
2052                 * is even not guaranteed to appear even if __compaction_suitable
2053                 * is happy about the watermark check.
2054                 */
2055                available = zone_reclaimable_pages(zone) / order;
2056                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2057                compact_result = __compaction_suitable(zone, order, alloc_flags,
2058                                ac_classzone_idx(ac), available);
2059                if (compact_result != COMPACT_SKIPPED)
2060                        return true;
2061        }
2062
2063        return false;
2064}
2065
2066static enum compact_result
2067compact_zone(struct compact_control *cc, struct capture_control *capc)
2068{
2069        enum compact_result ret;
2070        unsigned long start_pfn = cc->zone->zone_start_pfn;
2071        unsigned long end_pfn = zone_end_pfn(cc->zone);
2072        unsigned long last_migrated_pfn;
2073        const bool sync = cc->mode != MIGRATE_ASYNC;
2074        bool update_cached;
2075
2076        cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2077        ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2078                                                        cc->classzone_idx);
2079        /* Compaction is likely to fail */
2080        if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2081                return ret;
2082
2083        /* huh, compaction_suitable is returning something unexpected */
2084        VM_BUG_ON(ret != COMPACT_CONTINUE);
2085
2086        /*
2087         * Clear pageblock skip if there were failures recently and compaction
2088         * is about to be retried after being deferred.
2089         */
2090        if (compaction_restarting(cc->zone, cc->order))
2091                __reset_isolation_suitable(cc->zone);
2092
2093        /*
2094         * Setup to move all movable pages to the end of the zone. Used cached
2095         * information on where the scanners should start (unless we explicitly
2096         * want to compact the whole zone), but check that it is initialised
2097         * by ensuring the values are within zone boundaries.
2098         */
2099        cc->fast_start_pfn = 0;
2100        if (cc->whole_zone) {
2101                cc->migrate_pfn = start_pfn;
2102                cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2103        } else {
2104                cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2105                cc->free_pfn = cc->zone->compact_cached_free_pfn;
2106                if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2107                        cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108                        cc->zone->compact_cached_free_pfn = cc->free_pfn;
2109                }
2110                if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2111                        cc->migrate_pfn = start_pfn;
2112                        cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2113                        cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2114                }
2115
2116                if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2117                        cc->whole_zone = true;
2118        }
2119
2120        last_migrated_pfn = 0;
2121
2122        /*
2123         * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2124         * the basis that some migrations will fail in ASYNC mode. However,
2125         * if the cached PFNs match and pageblocks are skipped due to having
2126         * no isolation candidates, then the sync state does not matter.
2127         * Until a pageblock with isolation candidates is found, keep the
2128         * cached PFNs in sync to avoid revisiting the same blocks.
2129         */
2130        update_cached = !sync &&
2131                cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2132
2133        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2134                                cc->free_pfn, end_pfn, sync);
2135
2136        migrate_prep_local();
2137
2138        while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2139                int err;
2140                unsigned long start_pfn = cc->migrate_pfn;
2141
2142                /*
2143                 * Avoid multiple rescans which can happen if a page cannot be
2144                 * isolated (dirty/writeback in async mode) or if the migrated
2145                 * pages are being allocated before the pageblock is cleared.
2146                 * The first rescan will capture the entire pageblock for
2147                 * migration. If it fails, it'll be marked skip and scanning
2148                 * will proceed as normal.
2149                 */
2150                cc->rescan = false;
2151                if (pageblock_start_pfn(last_migrated_pfn) ==
2152                    pageblock_start_pfn(start_pfn)) {
2153                        cc->rescan = true;
2154                }
2155
2156                switch (isolate_migratepages(cc->zone, cc)) {
2157                case ISOLATE_ABORT:
2158                        ret = COMPACT_CONTENDED;
2159                        putback_movable_pages(&cc->migratepages);
2160                        cc->nr_migratepages = 0;
2161                        last_migrated_pfn = 0;
2162                        goto out;
2163                case ISOLATE_NONE:
2164                        if (update_cached) {
2165                                cc->zone->compact_cached_migrate_pfn[1] =
2166                                        cc->zone->compact_cached_migrate_pfn[0];
2167                        }
2168
2169                        /*
2170                         * We haven't isolated and migrated anything, but
2171                         * there might still be unflushed migrations from
2172                         * previous cc->order aligned block.
2173                         */
2174                        goto check_drain;
2175                case ISOLATE_SUCCESS:
2176                        update_cached = false;
2177                        last_migrated_pfn = start_pfn;
2178                        ;
2179                }
2180
2181                err = migrate_pages(&cc->migratepages, compaction_alloc,
2182                                compaction_free, (unsigned long)cc, cc->mode,
2183                                MR_COMPACTION);
2184
2185                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2186                                                        &cc->migratepages);
2187
2188                /* All pages were either migrated or will be released */
2189                cc->nr_migratepages = 0;
2190                if (err) {
2191                        putback_movable_pages(&cc->migratepages);
2192                        /*
2193                         * migrate_pages() may return -ENOMEM when scanners meet
2194                         * and we want compact_finished() to detect it
2195                         */
2196                        if (err == -ENOMEM && !compact_scanners_met(cc)) {
2197                                ret = COMPACT_CONTENDED;
2198                                goto out;
2199                        }
2200                        /*
2201                         * We failed to migrate at least one page in the current
2202                         * order-aligned block, so skip the rest of it.
2203                         */
2204                        if (cc->direct_compaction &&
2205                                                (cc->mode == MIGRATE_ASYNC)) {
2206                                cc->migrate_pfn = block_end_pfn(
2207                                                cc->migrate_pfn - 1, cc->order);
2208                                /* Draining pcplists is useless in this case */
2209                                last_migrated_pfn = 0;
2210                        }
2211                }
2212
2213check_drain:
2214                /*
2215                 * Has the migration scanner moved away from the previous
2216                 * cc->order aligned block where we migrated from? If yes,
2217                 * flush the pages that were freed, so that they can merge and
2218                 * compact_finished() can detect immediately if allocation
2219                 * would succeed.
2220                 */
2221                if (cc->order > 0 && last_migrated_pfn) {
2222                        int cpu;
2223                        unsigned long current_block_start =
2224                                block_start_pfn(cc->migrate_pfn, cc->order);
2225
2226                        if (last_migrated_pfn < current_block_start) {
2227                                cpu = get_cpu();
2228                                lru_add_drain_cpu(cpu);
2229                                drain_local_pages(cc->zone);
2230                                put_cpu();
2231                                /* No more flushing until we migrate again */
2232                                last_migrated_pfn = 0;
2233                        }
2234                }
2235
2236                /* Stop if a page has been captured */
2237                if (capc && capc->page) {
2238                        ret = COMPACT_SUCCESS;
2239                        break;
2240                }
2241        }
2242
2243out:
2244        /*
2245         * Release free pages and update where the free scanner should restart,
2246         * so we don't leave any returned pages behind in the next attempt.
2247         */
2248        if (cc->nr_freepages > 0) {
2249                unsigned long free_pfn = release_freepages(&cc->freepages);
2250
2251                cc->nr_freepages = 0;
2252                VM_BUG_ON(free_pfn == 0);
2253                /* The cached pfn is always the first in a pageblock */
2254                free_pfn = pageblock_start_pfn(free_pfn);
2255                /*
2256                 * Only go back, not forward. The cached pfn might have been
2257                 * already reset to zone end in compact_finished()
2258                 */
2259                if (free_pfn > cc->zone->compact_cached_free_pfn)
2260                        cc->zone->compact_cached_free_pfn = free_pfn;
2261        }
2262
2263        count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2264        count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2265
2266        trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2267                                cc->free_pfn, end_pfn, sync, ret);
2268
2269        return ret;
2270}
2271
2272static enum compact_result compact_zone_order(struct zone *zone, int order,
2273                gfp_t gfp_mask, enum compact_priority prio,
2274                unsigned int alloc_flags, int classzone_idx,
2275                struct page **capture)
2276{
2277        enum compact_result ret;
2278        struct compact_control cc = {
2279                .nr_freepages = 0,
2280                .nr_migratepages = 0,
2281                .total_migrate_scanned = 0,
2282                .total_free_scanned = 0,
2283                .order = order,
2284                .search_order = order,
2285                .gfp_mask = gfp_mask,
2286                .zone = zone,
2287                .mode = (prio == COMPACT_PRIO_ASYNC) ?
2288                                        MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2289                .alloc_flags = alloc_flags,
2290                .classzone_idx = classzone_idx,
2291                .direct_compaction = true,
2292                .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2293                .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2294                .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2295        };
2296        struct capture_control capc = {
2297                .cc = &cc,
2298                .page = NULL,
2299        };
2300
2301        if (capture)
2302                current->capture_control = &capc;
2303        INIT_LIST_HEAD(&cc.freepages);
2304        INIT_LIST_HEAD(&cc.migratepages);
2305
2306        ret = compact_zone(&cc, &capc);
2307
2308        VM_BUG_ON(!list_empty(&cc.freepages));
2309        VM_BUG_ON(!list_empty(&cc.migratepages));
2310
2311        *capture = capc.page;
2312        current->capture_control = NULL;
2313
2314        return ret;
2315}
2316
2317int sysctl_extfrag_threshold = 500;
2318
2319/**
2320 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2321 * @gfp_mask: The GFP mask of the current allocation
2322 * @order: The order of the current allocation
2323 * @alloc_flags: The allocation flags of the current allocation
2324 * @ac: The context of current allocation
2325 * @prio: Determines how hard direct compaction should try to succeed
2326 *
2327 * This is the main entry point for direct page compaction.
2328 */
2329enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2330                unsigned int alloc_flags, const struct alloc_context *ac,
2331                enum compact_priority prio, struct page **capture)
2332{
2333        int may_perform_io = gfp_mask & __GFP_IO;
2334        struct zoneref *z;
2335        struct zone *zone;
2336        enum compact_result rc = COMPACT_SKIPPED;
2337
2338        /*
2339         * Check if the GFP flags allow compaction - GFP_NOIO is really
2340         * tricky context because the migration might require IO
2341         */
2342        if (!may_perform_io)
2343                return COMPACT_SKIPPED;
2344
2345        trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2346
2347        /* Compact each zone in the list */
2348        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2349                                                                ac->nodemask) {
2350                enum compact_result status;
2351
2352                if (prio > MIN_COMPACT_PRIORITY
2353                                        && compaction_deferred(zone, order)) {
2354                        rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2355                        continue;
2356                }
2357
2358                status = compact_zone_order(zone, order, gfp_mask, prio,
2359                                alloc_flags, ac_classzone_idx(ac), capture);
2360                rc = max(status, rc);
2361
2362                /* The allocation should succeed, stop compacting */
2363                if (status == COMPACT_SUCCESS) {
2364                        /*
2365                         * We think the allocation will succeed in this zone,
2366                         * but it is not certain, hence the false. The caller
2367                         * will repeat this with true if allocation indeed
2368                         * succeeds in this zone.
2369                         */
2370                        compaction_defer_reset(zone, order, false);
2371
2372                        break;
2373                }
2374
2375                if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2376                                        status == COMPACT_PARTIAL_SKIPPED))
2377                        /*
2378                         * We think that allocation won't succeed in this zone
2379                         * so we defer compaction there. If it ends up
2380                         * succeeding after all, it will be reset.
2381                         */
2382                        defer_compaction(zone, order);
2383
2384                /*
2385                 * We might have stopped compacting due to need_resched() in
2386                 * async compaction, or due to a fatal signal detected. In that
2387                 * case do not try further zones
2388                 */
2389                if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2390                                        || fatal_signal_pending(current))
2391                        break;
2392        }
2393
2394        return rc;
2395}
2396
2397
2398/* Compact all zones within a node */
2399static void compact_node(int nid)
2400{
2401        pg_data_t *pgdat = NODE_DATA(nid);
2402        int zoneid;
2403        struct zone *zone;
2404        struct compact_control cc = {
2405                .order = -1,
2406                .total_migrate_scanned = 0,
2407                .total_free_scanned = 0,
2408                .mode = MIGRATE_SYNC,
2409                .ignore_skip_hint = true,
2410                .whole_zone = true,
2411                .gfp_mask = GFP_KERNEL,
2412        };
2413
2414
2415        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2416
2417                zone = &pgdat->node_zones[zoneid];
2418                if (!populated_zone(zone))
2419                        continue;
2420
2421                cc.nr_freepages = 0;
2422                cc.nr_migratepages = 0;
2423                cc.zone = zone;
2424                INIT_LIST_HEAD(&cc.freepages);
2425                INIT_LIST_HEAD(&cc.migratepages);
2426
2427                compact_zone(&cc, NULL);
2428
2429                VM_BUG_ON(!list_empty(&cc.freepages));
2430                VM_BUG_ON(!list_empty(&cc.migratepages));
2431        }
2432}
2433
2434/* Compact all nodes in the system */
2435static void compact_nodes(void)
2436{
2437        int nid;
2438
2439        /* Flush pending updates to the LRU lists */
2440        lru_add_drain_all();
2441
2442        for_each_online_node(nid)
2443                compact_node(nid);
2444}
2445
2446/* The written value is actually unused, all memory is compacted */
2447int sysctl_compact_memory;
2448
2449/*
2450 * This is the entry point for compacting all nodes via
2451 * /proc/sys/vm/compact_memory
2452 */
2453int sysctl_compaction_handler(struct ctl_table *table, int write,
2454                        void __user *buffer, size_t *length, loff_t *ppos)
2455{
2456        if (write)
2457                compact_nodes();
2458
2459        return 0;
2460}
2461
2462#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2463static ssize_t sysfs_compact_node(struct device *dev,
2464                        struct device_attribute *attr,
2465                        const char *buf, size_t count)
2466{
2467        int nid = dev->id;
2468
2469        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2470                /* Flush pending updates to the LRU lists */
2471                lru_add_drain_all();
2472
2473                compact_node(nid);
2474        }
2475
2476        return count;
2477}
2478static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2479
2480int compaction_register_node(struct node *node)
2481{
2482        return device_create_file(&node->dev, &dev_attr_compact);
2483}
2484
2485void compaction_unregister_node(struct node *node)
2486{
2487        return device_remove_file(&node->dev, &dev_attr_compact);
2488}
2489#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2490
2491static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2492{
2493        return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2494}
2495
2496static bool kcompactd_node_suitable(pg_data_t *pgdat)
2497{
2498        int zoneid;
2499        struct zone *zone;
2500        enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2501
2502        for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2503                zone = &pgdat->node_zones[zoneid];
2504
2505                if (!populated_zone(zone))
2506                        continue;
2507
2508                if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2509                                        classzone_idx) == COMPACT_CONTINUE)
2510                        return true;
2511        }
2512
2513        return false;
2514}
2515
2516static void kcompactd_do_work(pg_data_t *pgdat)
2517{
2518        /*
2519         * With no special task, compact all zones so that a page of requested
2520         * order is allocatable.
2521         */
2522        int zoneid;
2523        struct zone *zone;
2524        struct compact_control cc = {
2525                .order = pgdat->kcompactd_max_order,
2526                .search_order = pgdat->kcompactd_max_order,
2527                .total_migrate_scanned = 0,
2528                .total_free_scanned = 0,
2529                .classzone_idx = pgdat->kcompactd_classzone_idx,
2530                .mode = MIGRATE_SYNC_LIGHT,
2531                .ignore_skip_hint = false,
2532                .gfp_mask = GFP_KERNEL,
2533        };
2534        trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2535                                                        cc.classzone_idx);
2536        count_compact_event(KCOMPACTD_WAKE);
2537
2538        for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2539                int status;
2540
2541                zone = &pgdat->node_zones[zoneid];
2542                if (!populated_zone(zone))
2543                        continue;
2544
2545                if (compaction_deferred(zone, cc.order))
2546                        continue;
2547
2548                if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2549                                                        COMPACT_CONTINUE)
2550                        continue;
2551
2552                cc.nr_freepages = 0;
2553                cc.nr_migratepages = 0;
2554                cc.total_migrate_scanned = 0;
2555                cc.total_free_scanned = 0;
2556                cc.zone = zone;
2557                INIT_LIST_HEAD(&cc.freepages);
2558                INIT_LIST_HEAD(&cc.migratepages);
2559
2560                if (kthread_should_stop())
2561                        return;
2562                status = compact_zone(&cc, NULL);
2563
2564                if (status == COMPACT_SUCCESS) {
2565                        compaction_defer_reset(zone, cc.order, false);
2566                } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2567                        /*
2568                         * Buddy pages may become stranded on pcps that could
2569                         * otherwise coalesce on the zone's free area for
2570                         * order >= cc.order.  This is ratelimited by the
2571                         * upcoming deferral.
2572                         */
2573                        drain_all_pages(zone);
2574
2575                        /*
2576                         * We use sync migration mode here, so we defer like
2577                         * sync direct compaction does.
2578                         */
2579                        defer_compaction(zone, cc.order);
2580                }
2581
2582                count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2583                                     cc.total_migrate_scanned);
2584                count_compact_events(KCOMPACTD_FREE_SCANNED,
2585                                     cc.total_free_scanned);
2586
2587                VM_BUG_ON(!list_empty(&cc.freepages));
2588                VM_BUG_ON(!list_empty(&cc.migratepages));
2589        }
2590
2591        /*
2592         * Regardless of success, we are done until woken up next. But remember
2593         * the requested order/classzone_idx in case it was higher/tighter than
2594         * our current ones
2595         */
2596        if (pgdat->kcompactd_max_order <= cc.order)
2597                pgdat->kcompactd_max_order = 0;
2598        if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2599                pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2600}
2601
2602void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2603{
2604        if (!order)
2605                return;
2606
2607        if (pgdat->kcompactd_max_order < order)
2608                pgdat->kcompactd_max_order = order;
2609
2610        if (pgdat->kcompactd_classzone_idx > classzone_idx)
2611                pgdat->kcompactd_classzone_idx = classzone_idx;
2612
2613        /*
2614         * Pairs with implicit barrier in wait_event_freezable()
2615         * such that wakeups are not missed.
2616         */
2617        if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2618                return;
2619
2620        if (!kcompactd_node_suitable(pgdat))
2621                return;
2622
2623        trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2624                                                        classzone_idx);
2625        wake_up_interruptible(&pgdat->kcompactd_wait);
2626}
2627
2628/*
2629 * The background compaction daemon, started as a kernel thread
2630 * from the init process.
2631 */
2632static int kcompactd(void *p)
2633{
2634        pg_data_t *pgdat = (pg_data_t*)p;
2635        struct task_struct *tsk = current;
2636
2637        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2638
2639        if (!cpumask_empty(cpumask))
2640                set_cpus_allowed_ptr(tsk, cpumask);
2641
2642        set_freezable();
2643
2644        pgdat->kcompactd_max_order = 0;
2645        pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2646
2647        while (!kthread_should_stop()) {
2648                unsigned long pflags;
2649
2650                trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2651                wait_event_freezable(pgdat->kcompactd_wait,
2652                                kcompactd_work_requested(pgdat));
2653
2654                psi_memstall_enter(&pflags);
2655                kcompactd_do_work(pgdat);
2656                psi_memstall_leave(&pflags);
2657        }
2658
2659        return 0;
2660}
2661
2662/*
2663 * This kcompactd start function will be called by init and node-hot-add.
2664 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2665 */
2666int kcompactd_run(int nid)
2667{
2668        pg_data_t *pgdat = NODE_DATA(nid);
2669        int ret = 0;
2670
2671        if (pgdat->kcompactd)
2672                return 0;
2673
2674        pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2675        if (IS_ERR(pgdat->kcompactd)) {
2676                pr_err("Failed to start kcompactd on node %d\n", nid);
2677                ret = PTR_ERR(pgdat->kcompactd);
2678                pgdat->kcompactd = NULL;
2679        }
2680        return ret;
2681}
2682
2683/*
2684 * Called by memory hotplug when all memory in a node is offlined. Caller must
2685 * hold mem_hotplug_begin/end().
2686 */
2687void kcompactd_stop(int nid)
2688{
2689        struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2690
2691        if (kcompactd) {
2692                kthread_stop(kcompactd);
2693                NODE_DATA(nid)->kcompactd = NULL;
2694        }
2695}
2696
2697/*
2698 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2699 * not required for correctness. So if the last cpu in a node goes
2700 * away, we get changed to run anywhere: as the first one comes back,
2701 * restore their cpu bindings.
2702 */
2703static int kcompactd_cpu_online(unsigned int cpu)
2704{
2705        int nid;
2706
2707        for_each_node_state(nid, N_MEMORY) {
2708                pg_data_t *pgdat = NODE_DATA(nid);
2709                const struct cpumask *mask;
2710
2711                mask = cpumask_of_node(pgdat->node_id);
2712
2713                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2714                        /* One of our CPUs online: restore mask */
2715                        set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2716        }
2717        return 0;
2718}
2719
2720static int __init kcompactd_init(void)
2721{
2722        int nid;
2723        int ret;
2724
2725        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2726                                        "mm/compaction:online",
2727                                        kcompactd_cpu_online, NULL);
2728        if (ret < 0) {
2729                pr_err("kcompactd: failed to register hotplug callbacks.\n");
2730                return ret;
2731        }
2732
2733        for_each_node_state(nid, N_MEMORY)
2734                kcompactd_run(nid);
2735        return 0;
2736}
2737subsys_initcall(kcompactd_init)
2738
2739#endif /* CONFIG_COMPACTION */
2740